sched.c 207 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/reciprocal_div.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/bootmem.h>
  70. #include <asm/tlb.h>
  71. #include <asm/irq_regs.h>
  72. /*
  73. * Scheduler clock - returns current time in nanosec units.
  74. * This is default implementation.
  75. * Architectures and sub-architectures can override this.
  76. */
  77. unsigned long long __attribute__((weak)) sched_clock(void)
  78. {
  79. return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
  80. }
  81. /*
  82. * Convert user-nice values [ -20 ... 0 ... 19 ]
  83. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  84. * and back.
  85. */
  86. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  87. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  88. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  89. /*
  90. * 'User priority' is the nice value converted to something we
  91. * can work with better when scaling various scheduler parameters,
  92. * it's a [ 0 ... 39 ] range.
  93. */
  94. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  95. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  96. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  97. /*
  98. * Helpers for converting nanosecond timing to jiffy resolution
  99. */
  100. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  101. #define NICE_0_LOAD SCHED_LOAD_SCALE
  102. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  103. /*
  104. * These are the 'tuning knobs' of the scheduler:
  105. *
  106. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  107. * Timeslices get refilled after they expire.
  108. */
  109. #define DEF_TIMESLICE (100 * HZ / 1000)
  110. /*
  111. * single value that denotes runtime == period, ie unlimited time.
  112. */
  113. #define RUNTIME_INF ((u64)~0ULL)
  114. #ifdef CONFIG_SMP
  115. /*
  116. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  117. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  118. */
  119. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  120. {
  121. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  122. }
  123. /*
  124. * Each time a sched group cpu_power is changed,
  125. * we must compute its reciprocal value
  126. */
  127. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  128. {
  129. sg->__cpu_power += val;
  130. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  131. }
  132. #endif
  133. static inline int rt_policy(int policy)
  134. {
  135. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  136. return 1;
  137. return 0;
  138. }
  139. static inline int task_has_rt_policy(struct task_struct *p)
  140. {
  141. return rt_policy(p->policy);
  142. }
  143. /*
  144. * This is the priority-queue data structure of the RT scheduling class:
  145. */
  146. struct rt_prio_array {
  147. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  148. struct list_head queue[MAX_RT_PRIO];
  149. };
  150. struct rt_bandwidth {
  151. /* nests inside the rq lock: */
  152. spinlock_t rt_runtime_lock;
  153. ktime_t rt_period;
  154. u64 rt_runtime;
  155. struct hrtimer rt_period_timer;
  156. };
  157. static struct rt_bandwidth def_rt_bandwidth;
  158. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  159. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  160. {
  161. struct rt_bandwidth *rt_b =
  162. container_of(timer, struct rt_bandwidth, rt_period_timer);
  163. ktime_t now;
  164. int overrun;
  165. int idle = 0;
  166. for (;;) {
  167. now = hrtimer_cb_get_time(timer);
  168. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  169. if (!overrun)
  170. break;
  171. idle = do_sched_rt_period_timer(rt_b, overrun);
  172. }
  173. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  174. }
  175. static
  176. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  177. {
  178. rt_b->rt_period = ns_to_ktime(period);
  179. rt_b->rt_runtime = runtime;
  180. spin_lock_init(&rt_b->rt_runtime_lock);
  181. hrtimer_init(&rt_b->rt_period_timer,
  182. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  183. rt_b->rt_period_timer.function = sched_rt_period_timer;
  184. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  185. }
  186. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  187. {
  188. ktime_t now;
  189. if (rt_b->rt_runtime == RUNTIME_INF)
  190. return;
  191. if (hrtimer_active(&rt_b->rt_period_timer))
  192. return;
  193. spin_lock(&rt_b->rt_runtime_lock);
  194. for (;;) {
  195. if (hrtimer_active(&rt_b->rt_period_timer))
  196. break;
  197. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  198. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  199. hrtimer_start(&rt_b->rt_period_timer,
  200. rt_b->rt_period_timer.expires,
  201. HRTIMER_MODE_ABS);
  202. }
  203. spin_unlock(&rt_b->rt_runtime_lock);
  204. }
  205. #ifdef CONFIG_RT_GROUP_SCHED
  206. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  207. {
  208. hrtimer_cancel(&rt_b->rt_period_timer);
  209. }
  210. #endif
  211. #ifdef CONFIG_GROUP_SCHED
  212. #include <linux/cgroup.h>
  213. struct cfs_rq;
  214. static LIST_HEAD(task_groups);
  215. /* task group related information */
  216. struct task_group {
  217. #ifdef CONFIG_CGROUP_SCHED
  218. struct cgroup_subsys_state css;
  219. #endif
  220. #ifdef CONFIG_FAIR_GROUP_SCHED
  221. /* schedulable entities of this group on each cpu */
  222. struct sched_entity **se;
  223. /* runqueue "owned" by this group on each cpu */
  224. struct cfs_rq **cfs_rq;
  225. unsigned long shares;
  226. #endif
  227. #ifdef CONFIG_RT_GROUP_SCHED
  228. struct sched_rt_entity **rt_se;
  229. struct rt_rq **rt_rq;
  230. struct rt_bandwidth rt_bandwidth;
  231. #endif
  232. struct rcu_head rcu;
  233. struct list_head list;
  234. };
  235. #ifdef CONFIG_FAIR_GROUP_SCHED
  236. /* Default task group's sched entity on each cpu */
  237. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  238. /* Default task group's cfs_rq on each cpu */
  239. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  240. #endif
  241. #ifdef CONFIG_RT_GROUP_SCHED
  242. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  243. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  244. #endif
  245. /* task_group_lock serializes add/remove of task groups and also changes to
  246. * a task group's cpu shares.
  247. */
  248. static DEFINE_SPINLOCK(task_group_lock);
  249. /* doms_cur_mutex serializes access to doms_cur[] array */
  250. static DEFINE_MUTEX(doms_cur_mutex);
  251. #ifdef CONFIG_FAIR_GROUP_SCHED
  252. #ifdef CONFIG_USER_SCHED
  253. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  254. #else
  255. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  256. #endif
  257. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  258. #endif
  259. /* Default task group.
  260. * Every task in system belong to this group at bootup.
  261. */
  262. struct task_group init_task_group;
  263. /* return group to which a task belongs */
  264. static inline struct task_group *task_group(struct task_struct *p)
  265. {
  266. struct task_group *tg;
  267. #ifdef CONFIG_USER_SCHED
  268. tg = p->user->tg;
  269. #elif defined(CONFIG_CGROUP_SCHED)
  270. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  271. struct task_group, css);
  272. #else
  273. tg = &init_task_group;
  274. #endif
  275. return tg;
  276. }
  277. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  278. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  279. {
  280. #ifdef CONFIG_FAIR_GROUP_SCHED
  281. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  282. p->se.parent = task_group(p)->se[cpu];
  283. #endif
  284. #ifdef CONFIG_RT_GROUP_SCHED
  285. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  286. p->rt.parent = task_group(p)->rt_se[cpu];
  287. #endif
  288. }
  289. static inline void lock_doms_cur(void)
  290. {
  291. mutex_lock(&doms_cur_mutex);
  292. }
  293. static inline void unlock_doms_cur(void)
  294. {
  295. mutex_unlock(&doms_cur_mutex);
  296. }
  297. #else
  298. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  299. static inline void lock_doms_cur(void) { }
  300. static inline void unlock_doms_cur(void) { }
  301. #endif /* CONFIG_GROUP_SCHED */
  302. /* CFS-related fields in a runqueue */
  303. struct cfs_rq {
  304. struct load_weight load;
  305. unsigned long nr_running;
  306. u64 exec_clock;
  307. u64 min_vruntime;
  308. struct rb_root tasks_timeline;
  309. struct rb_node *rb_leftmost;
  310. struct rb_node *rb_load_balance_curr;
  311. /* 'curr' points to currently running entity on this cfs_rq.
  312. * It is set to NULL otherwise (i.e when none are currently running).
  313. */
  314. struct sched_entity *curr, *next;
  315. unsigned long nr_spread_over;
  316. #ifdef CONFIG_FAIR_GROUP_SCHED
  317. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  318. /*
  319. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  320. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  321. * (like users, containers etc.)
  322. *
  323. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  324. * list is used during load balance.
  325. */
  326. struct list_head leaf_cfs_rq_list;
  327. struct task_group *tg; /* group that "owns" this runqueue */
  328. #endif
  329. };
  330. /* Real-Time classes' related field in a runqueue: */
  331. struct rt_rq {
  332. struct rt_prio_array active;
  333. unsigned long rt_nr_running;
  334. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  335. int highest_prio; /* highest queued rt task prio */
  336. #endif
  337. #ifdef CONFIG_SMP
  338. unsigned long rt_nr_migratory;
  339. int overloaded;
  340. #endif
  341. int rt_throttled;
  342. u64 rt_time;
  343. u64 rt_runtime;
  344. /* Nests inside the rq lock: */
  345. spinlock_t rt_runtime_lock;
  346. #ifdef CONFIG_RT_GROUP_SCHED
  347. unsigned long rt_nr_boosted;
  348. struct rq *rq;
  349. struct list_head leaf_rt_rq_list;
  350. struct task_group *tg;
  351. struct sched_rt_entity *rt_se;
  352. #endif
  353. };
  354. #ifdef CONFIG_SMP
  355. /*
  356. * We add the notion of a root-domain which will be used to define per-domain
  357. * variables. Each exclusive cpuset essentially defines an island domain by
  358. * fully partitioning the member cpus from any other cpuset. Whenever a new
  359. * exclusive cpuset is created, we also create and attach a new root-domain
  360. * object.
  361. *
  362. */
  363. struct root_domain {
  364. atomic_t refcount;
  365. cpumask_t span;
  366. cpumask_t online;
  367. /*
  368. * The "RT overload" flag: it gets set if a CPU has more than
  369. * one runnable RT task.
  370. */
  371. cpumask_t rto_mask;
  372. atomic_t rto_count;
  373. };
  374. /*
  375. * By default the system creates a single root-domain with all cpus as
  376. * members (mimicking the global state we have today).
  377. */
  378. static struct root_domain def_root_domain;
  379. #endif
  380. /*
  381. * This is the main, per-CPU runqueue data structure.
  382. *
  383. * Locking rule: those places that want to lock multiple runqueues
  384. * (such as the load balancing or the thread migration code), lock
  385. * acquire operations must be ordered by ascending &runqueue.
  386. */
  387. struct rq {
  388. /* runqueue lock: */
  389. spinlock_t lock;
  390. /*
  391. * nr_running and cpu_load should be in the same cacheline because
  392. * remote CPUs use both these fields when doing load calculation.
  393. */
  394. unsigned long nr_running;
  395. #define CPU_LOAD_IDX_MAX 5
  396. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  397. unsigned char idle_at_tick;
  398. #ifdef CONFIG_NO_HZ
  399. unsigned long last_tick_seen;
  400. unsigned char in_nohz_recently;
  401. #endif
  402. /* capture load from *all* tasks on this cpu: */
  403. struct load_weight load;
  404. unsigned long nr_load_updates;
  405. u64 nr_switches;
  406. struct cfs_rq cfs;
  407. struct rt_rq rt;
  408. #ifdef CONFIG_FAIR_GROUP_SCHED
  409. /* list of leaf cfs_rq on this cpu: */
  410. struct list_head leaf_cfs_rq_list;
  411. #endif
  412. #ifdef CONFIG_RT_GROUP_SCHED
  413. struct list_head leaf_rt_rq_list;
  414. #endif
  415. /*
  416. * This is part of a global counter where only the total sum
  417. * over all CPUs matters. A task can increase this counter on
  418. * one CPU and if it got migrated afterwards it may decrease
  419. * it on another CPU. Always updated under the runqueue lock:
  420. */
  421. unsigned long nr_uninterruptible;
  422. struct task_struct *curr, *idle;
  423. unsigned long next_balance;
  424. struct mm_struct *prev_mm;
  425. u64 clock, prev_clock_raw;
  426. s64 clock_max_delta;
  427. unsigned int clock_warps, clock_overflows, clock_underflows;
  428. u64 idle_clock;
  429. unsigned int clock_deep_idle_events;
  430. u64 tick_timestamp;
  431. atomic_t nr_iowait;
  432. #ifdef CONFIG_SMP
  433. struct root_domain *rd;
  434. struct sched_domain *sd;
  435. /* For active balancing */
  436. int active_balance;
  437. int push_cpu;
  438. /* cpu of this runqueue: */
  439. int cpu;
  440. struct task_struct *migration_thread;
  441. struct list_head migration_queue;
  442. #endif
  443. #ifdef CONFIG_SCHED_HRTICK
  444. unsigned long hrtick_flags;
  445. ktime_t hrtick_expire;
  446. struct hrtimer hrtick_timer;
  447. #endif
  448. #ifdef CONFIG_SCHEDSTATS
  449. /* latency stats */
  450. struct sched_info rq_sched_info;
  451. /* sys_sched_yield() stats */
  452. unsigned int yld_exp_empty;
  453. unsigned int yld_act_empty;
  454. unsigned int yld_both_empty;
  455. unsigned int yld_count;
  456. /* schedule() stats */
  457. unsigned int sched_switch;
  458. unsigned int sched_count;
  459. unsigned int sched_goidle;
  460. /* try_to_wake_up() stats */
  461. unsigned int ttwu_count;
  462. unsigned int ttwu_local;
  463. /* BKL stats */
  464. unsigned int bkl_count;
  465. #endif
  466. struct lock_class_key rq_lock_key;
  467. };
  468. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  469. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  470. {
  471. rq->curr->sched_class->check_preempt_curr(rq, p);
  472. }
  473. static inline int cpu_of(struct rq *rq)
  474. {
  475. #ifdef CONFIG_SMP
  476. return rq->cpu;
  477. #else
  478. return 0;
  479. #endif
  480. }
  481. #ifdef CONFIG_NO_HZ
  482. static inline bool nohz_on(int cpu)
  483. {
  484. return tick_get_tick_sched(cpu)->nohz_mode != NOHZ_MODE_INACTIVE;
  485. }
  486. static inline u64 max_skipped_ticks(struct rq *rq)
  487. {
  488. return nohz_on(cpu_of(rq)) ? jiffies - rq->last_tick_seen + 2 : 1;
  489. }
  490. static inline void update_last_tick_seen(struct rq *rq)
  491. {
  492. rq->last_tick_seen = jiffies;
  493. }
  494. #else
  495. static inline u64 max_skipped_ticks(struct rq *rq)
  496. {
  497. return 1;
  498. }
  499. static inline void update_last_tick_seen(struct rq *rq)
  500. {
  501. }
  502. #endif
  503. /*
  504. * Update the per-runqueue clock, as finegrained as the platform can give
  505. * us, but without assuming monotonicity, etc.:
  506. */
  507. static void __update_rq_clock(struct rq *rq)
  508. {
  509. u64 prev_raw = rq->prev_clock_raw;
  510. u64 now = sched_clock();
  511. s64 delta = now - prev_raw;
  512. u64 clock = rq->clock;
  513. #ifdef CONFIG_SCHED_DEBUG
  514. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  515. #endif
  516. /*
  517. * Protect against sched_clock() occasionally going backwards:
  518. */
  519. if (unlikely(delta < 0)) {
  520. clock++;
  521. rq->clock_warps++;
  522. } else {
  523. /*
  524. * Catch too large forward jumps too:
  525. */
  526. u64 max_jump = max_skipped_ticks(rq) * TICK_NSEC;
  527. u64 max_time = rq->tick_timestamp + max_jump;
  528. if (unlikely(clock + delta > max_time)) {
  529. if (clock < max_time)
  530. clock = max_time;
  531. else
  532. clock++;
  533. rq->clock_overflows++;
  534. } else {
  535. if (unlikely(delta > rq->clock_max_delta))
  536. rq->clock_max_delta = delta;
  537. clock += delta;
  538. }
  539. }
  540. rq->prev_clock_raw = now;
  541. rq->clock = clock;
  542. }
  543. static void update_rq_clock(struct rq *rq)
  544. {
  545. if (likely(smp_processor_id() == cpu_of(rq)))
  546. __update_rq_clock(rq);
  547. }
  548. /*
  549. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  550. * See detach_destroy_domains: synchronize_sched for details.
  551. *
  552. * The domain tree of any CPU may only be accessed from within
  553. * preempt-disabled sections.
  554. */
  555. #define for_each_domain(cpu, __sd) \
  556. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  557. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  558. #define this_rq() (&__get_cpu_var(runqueues))
  559. #define task_rq(p) cpu_rq(task_cpu(p))
  560. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  561. /*
  562. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  563. */
  564. #ifdef CONFIG_SCHED_DEBUG
  565. # define const_debug __read_mostly
  566. #else
  567. # define const_debug static const
  568. #endif
  569. /*
  570. * Debugging: various feature bits
  571. */
  572. enum {
  573. SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
  574. SCHED_FEAT_WAKEUP_PREEMPT = 2,
  575. SCHED_FEAT_START_DEBIT = 4,
  576. SCHED_FEAT_AFFINE_WAKEUPS = 8,
  577. SCHED_FEAT_CACHE_HOT_BUDDY = 16,
  578. SCHED_FEAT_SYNC_WAKEUPS = 32,
  579. SCHED_FEAT_HRTICK = 64,
  580. SCHED_FEAT_DOUBLE_TICK = 128,
  581. SCHED_FEAT_NORMALIZED_SLEEPER = 256,
  582. };
  583. const_debug unsigned int sysctl_sched_features =
  584. SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
  585. SCHED_FEAT_WAKEUP_PREEMPT * 1 |
  586. SCHED_FEAT_START_DEBIT * 1 |
  587. SCHED_FEAT_AFFINE_WAKEUPS * 1 |
  588. SCHED_FEAT_CACHE_HOT_BUDDY * 1 |
  589. SCHED_FEAT_SYNC_WAKEUPS * 1 |
  590. SCHED_FEAT_HRTICK * 1 |
  591. SCHED_FEAT_DOUBLE_TICK * 0 |
  592. SCHED_FEAT_NORMALIZED_SLEEPER * 1;
  593. #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
  594. /*
  595. * Number of tasks to iterate in a single balance run.
  596. * Limited because this is done with IRQs disabled.
  597. */
  598. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  599. /*
  600. * period over which we measure -rt task cpu usage in us.
  601. * default: 1s
  602. */
  603. unsigned int sysctl_sched_rt_period = 1000000;
  604. static __read_mostly int scheduler_running;
  605. /*
  606. * part of the period that we allow rt tasks to run in us.
  607. * default: 0.95s
  608. */
  609. int sysctl_sched_rt_runtime = 950000;
  610. static inline u64 global_rt_period(void)
  611. {
  612. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  613. }
  614. static inline u64 global_rt_runtime(void)
  615. {
  616. if (sysctl_sched_rt_period < 0)
  617. return RUNTIME_INF;
  618. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  619. }
  620. static const unsigned long long time_sync_thresh = 100000;
  621. static DEFINE_PER_CPU(unsigned long long, time_offset);
  622. static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
  623. /*
  624. * Global lock which we take every now and then to synchronize
  625. * the CPUs time. This method is not warp-safe, but it's good
  626. * enough to synchronize slowly diverging time sources and thus
  627. * it's good enough for tracing:
  628. */
  629. static DEFINE_SPINLOCK(time_sync_lock);
  630. static unsigned long long prev_global_time;
  631. static unsigned long long __sync_cpu_clock(cycles_t time, int cpu)
  632. {
  633. unsigned long flags;
  634. spin_lock_irqsave(&time_sync_lock, flags);
  635. if (time < prev_global_time) {
  636. per_cpu(time_offset, cpu) += prev_global_time - time;
  637. time = prev_global_time;
  638. } else {
  639. prev_global_time = time;
  640. }
  641. spin_unlock_irqrestore(&time_sync_lock, flags);
  642. return time;
  643. }
  644. static unsigned long long __cpu_clock(int cpu)
  645. {
  646. unsigned long long now;
  647. unsigned long flags;
  648. struct rq *rq;
  649. /*
  650. * Only call sched_clock() if the scheduler has already been
  651. * initialized (some code might call cpu_clock() very early):
  652. */
  653. if (unlikely(!scheduler_running))
  654. return 0;
  655. local_irq_save(flags);
  656. rq = cpu_rq(cpu);
  657. update_rq_clock(rq);
  658. now = rq->clock;
  659. local_irq_restore(flags);
  660. return now;
  661. }
  662. /*
  663. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  664. * clock constructed from sched_clock():
  665. */
  666. unsigned long long cpu_clock(int cpu)
  667. {
  668. unsigned long long prev_cpu_time, time, delta_time;
  669. prev_cpu_time = per_cpu(prev_cpu_time, cpu);
  670. time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
  671. delta_time = time-prev_cpu_time;
  672. if (unlikely(delta_time > time_sync_thresh))
  673. time = __sync_cpu_clock(time, cpu);
  674. return time;
  675. }
  676. EXPORT_SYMBOL_GPL(cpu_clock);
  677. #ifndef prepare_arch_switch
  678. # define prepare_arch_switch(next) do { } while (0)
  679. #endif
  680. #ifndef finish_arch_switch
  681. # define finish_arch_switch(prev) do { } while (0)
  682. #endif
  683. static inline int task_current(struct rq *rq, struct task_struct *p)
  684. {
  685. return rq->curr == p;
  686. }
  687. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  688. static inline int task_running(struct rq *rq, struct task_struct *p)
  689. {
  690. return task_current(rq, p);
  691. }
  692. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  693. {
  694. }
  695. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  696. {
  697. #ifdef CONFIG_DEBUG_SPINLOCK
  698. /* this is a valid case when another task releases the spinlock */
  699. rq->lock.owner = current;
  700. #endif
  701. /*
  702. * If we are tracking spinlock dependencies then we have to
  703. * fix up the runqueue lock - which gets 'carried over' from
  704. * prev into current:
  705. */
  706. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  707. spin_unlock_irq(&rq->lock);
  708. }
  709. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  710. static inline int task_running(struct rq *rq, struct task_struct *p)
  711. {
  712. #ifdef CONFIG_SMP
  713. return p->oncpu;
  714. #else
  715. return task_current(rq, p);
  716. #endif
  717. }
  718. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  719. {
  720. #ifdef CONFIG_SMP
  721. /*
  722. * We can optimise this out completely for !SMP, because the
  723. * SMP rebalancing from interrupt is the only thing that cares
  724. * here.
  725. */
  726. next->oncpu = 1;
  727. #endif
  728. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  729. spin_unlock_irq(&rq->lock);
  730. #else
  731. spin_unlock(&rq->lock);
  732. #endif
  733. }
  734. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  735. {
  736. #ifdef CONFIG_SMP
  737. /*
  738. * After ->oncpu is cleared, the task can be moved to a different CPU.
  739. * We must ensure this doesn't happen until the switch is completely
  740. * finished.
  741. */
  742. smp_wmb();
  743. prev->oncpu = 0;
  744. #endif
  745. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  746. local_irq_enable();
  747. #endif
  748. }
  749. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  750. /*
  751. * __task_rq_lock - lock the runqueue a given task resides on.
  752. * Must be called interrupts disabled.
  753. */
  754. static inline struct rq *__task_rq_lock(struct task_struct *p)
  755. __acquires(rq->lock)
  756. {
  757. for (;;) {
  758. struct rq *rq = task_rq(p);
  759. spin_lock(&rq->lock);
  760. if (likely(rq == task_rq(p)))
  761. return rq;
  762. spin_unlock(&rq->lock);
  763. }
  764. }
  765. /*
  766. * task_rq_lock - lock the runqueue a given task resides on and disable
  767. * interrupts. Note the ordering: we can safely lookup the task_rq without
  768. * explicitly disabling preemption.
  769. */
  770. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  771. __acquires(rq->lock)
  772. {
  773. struct rq *rq;
  774. for (;;) {
  775. local_irq_save(*flags);
  776. rq = task_rq(p);
  777. spin_lock(&rq->lock);
  778. if (likely(rq == task_rq(p)))
  779. return rq;
  780. spin_unlock_irqrestore(&rq->lock, *flags);
  781. }
  782. }
  783. static void __task_rq_unlock(struct rq *rq)
  784. __releases(rq->lock)
  785. {
  786. spin_unlock(&rq->lock);
  787. }
  788. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  789. __releases(rq->lock)
  790. {
  791. spin_unlock_irqrestore(&rq->lock, *flags);
  792. }
  793. /*
  794. * this_rq_lock - lock this runqueue and disable interrupts.
  795. */
  796. static struct rq *this_rq_lock(void)
  797. __acquires(rq->lock)
  798. {
  799. struct rq *rq;
  800. local_irq_disable();
  801. rq = this_rq();
  802. spin_lock(&rq->lock);
  803. return rq;
  804. }
  805. /*
  806. * We are going deep-idle (irqs are disabled):
  807. */
  808. void sched_clock_idle_sleep_event(void)
  809. {
  810. struct rq *rq = cpu_rq(smp_processor_id());
  811. spin_lock(&rq->lock);
  812. __update_rq_clock(rq);
  813. spin_unlock(&rq->lock);
  814. rq->clock_deep_idle_events++;
  815. }
  816. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  817. /*
  818. * We just idled delta nanoseconds (called with irqs disabled):
  819. */
  820. void sched_clock_idle_wakeup_event(u64 delta_ns)
  821. {
  822. struct rq *rq = cpu_rq(smp_processor_id());
  823. u64 now = sched_clock();
  824. rq->idle_clock += delta_ns;
  825. /*
  826. * Override the previous timestamp and ignore all
  827. * sched_clock() deltas that occured while we idled,
  828. * and use the PM-provided delta_ns to advance the
  829. * rq clock:
  830. */
  831. spin_lock(&rq->lock);
  832. rq->prev_clock_raw = now;
  833. rq->clock += delta_ns;
  834. spin_unlock(&rq->lock);
  835. touch_softlockup_watchdog();
  836. }
  837. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  838. static void __resched_task(struct task_struct *p, int tif_bit);
  839. static inline void resched_task(struct task_struct *p)
  840. {
  841. __resched_task(p, TIF_NEED_RESCHED);
  842. }
  843. #ifdef CONFIG_SCHED_HRTICK
  844. /*
  845. * Use HR-timers to deliver accurate preemption points.
  846. *
  847. * Its all a bit involved since we cannot program an hrt while holding the
  848. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  849. * reschedule event.
  850. *
  851. * When we get rescheduled we reprogram the hrtick_timer outside of the
  852. * rq->lock.
  853. */
  854. static inline void resched_hrt(struct task_struct *p)
  855. {
  856. __resched_task(p, TIF_HRTICK_RESCHED);
  857. }
  858. static inline void resched_rq(struct rq *rq)
  859. {
  860. unsigned long flags;
  861. spin_lock_irqsave(&rq->lock, flags);
  862. resched_task(rq->curr);
  863. spin_unlock_irqrestore(&rq->lock, flags);
  864. }
  865. enum {
  866. HRTICK_SET, /* re-programm hrtick_timer */
  867. HRTICK_RESET, /* not a new slice */
  868. };
  869. /*
  870. * Use hrtick when:
  871. * - enabled by features
  872. * - hrtimer is actually high res
  873. */
  874. static inline int hrtick_enabled(struct rq *rq)
  875. {
  876. if (!sched_feat(HRTICK))
  877. return 0;
  878. return hrtimer_is_hres_active(&rq->hrtick_timer);
  879. }
  880. /*
  881. * Called to set the hrtick timer state.
  882. *
  883. * called with rq->lock held and irqs disabled
  884. */
  885. static void hrtick_start(struct rq *rq, u64 delay, int reset)
  886. {
  887. assert_spin_locked(&rq->lock);
  888. /*
  889. * preempt at: now + delay
  890. */
  891. rq->hrtick_expire =
  892. ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
  893. /*
  894. * indicate we need to program the timer
  895. */
  896. __set_bit(HRTICK_SET, &rq->hrtick_flags);
  897. if (reset)
  898. __set_bit(HRTICK_RESET, &rq->hrtick_flags);
  899. /*
  900. * New slices are called from the schedule path and don't need a
  901. * forced reschedule.
  902. */
  903. if (reset)
  904. resched_hrt(rq->curr);
  905. }
  906. static void hrtick_clear(struct rq *rq)
  907. {
  908. if (hrtimer_active(&rq->hrtick_timer))
  909. hrtimer_cancel(&rq->hrtick_timer);
  910. }
  911. /*
  912. * Update the timer from the possible pending state.
  913. */
  914. static void hrtick_set(struct rq *rq)
  915. {
  916. ktime_t time;
  917. int set, reset;
  918. unsigned long flags;
  919. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  920. spin_lock_irqsave(&rq->lock, flags);
  921. set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
  922. reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
  923. time = rq->hrtick_expire;
  924. clear_thread_flag(TIF_HRTICK_RESCHED);
  925. spin_unlock_irqrestore(&rq->lock, flags);
  926. if (set) {
  927. hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
  928. if (reset && !hrtimer_active(&rq->hrtick_timer))
  929. resched_rq(rq);
  930. } else
  931. hrtick_clear(rq);
  932. }
  933. /*
  934. * High-resolution timer tick.
  935. * Runs from hardirq context with interrupts disabled.
  936. */
  937. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  938. {
  939. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  940. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  941. spin_lock(&rq->lock);
  942. __update_rq_clock(rq);
  943. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  944. spin_unlock(&rq->lock);
  945. return HRTIMER_NORESTART;
  946. }
  947. static inline void init_rq_hrtick(struct rq *rq)
  948. {
  949. rq->hrtick_flags = 0;
  950. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  951. rq->hrtick_timer.function = hrtick;
  952. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  953. }
  954. void hrtick_resched(void)
  955. {
  956. struct rq *rq;
  957. unsigned long flags;
  958. if (!test_thread_flag(TIF_HRTICK_RESCHED))
  959. return;
  960. local_irq_save(flags);
  961. rq = cpu_rq(smp_processor_id());
  962. hrtick_set(rq);
  963. local_irq_restore(flags);
  964. }
  965. #else
  966. static inline void hrtick_clear(struct rq *rq)
  967. {
  968. }
  969. static inline void hrtick_set(struct rq *rq)
  970. {
  971. }
  972. static inline void init_rq_hrtick(struct rq *rq)
  973. {
  974. }
  975. void hrtick_resched(void)
  976. {
  977. }
  978. #endif
  979. /*
  980. * resched_task - mark a task 'to be rescheduled now'.
  981. *
  982. * On UP this means the setting of the need_resched flag, on SMP it
  983. * might also involve a cross-CPU call to trigger the scheduler on
  984. * the target CPU.
  985. */
  986. #ifdef CONFIG_SMP
  987. #ifndef tsk_is_polling
  988. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  989. #endif
  990. static void __resched_task(struct task_struct *p, int tif_bit)
  991. {
  992. int cpu;
  993. assert_spin_locked(&task_rq(p)->lock);
  994. if (unlikely(test_tsk_thread_flag(p, tif_bit)))
  995. return;
  996. set_tsk_thread_flag(p, tif_bit);
  997. cpu = task_cpu(p);
  998. if (cpu == smp_processor_id())
  999. return;
  1000. /* NEED_RESCHED must be visible before we test polling */
  1001. smp_mb();
  1002. if (!tsk_is_polling(p))
  1003. smp_send_reschedule(cpu);
  1004. }
  1005. static void resched_cpu(int cpu)
  1006. {
  1007. struct rq *rq = cpu_rq(cpu);
  1008. unsigned long flags;
  1009. if (!spin_trylock_irqsave(&rq->lock, flags))
  1010. return;
  1011. resched_task(cpu_curr(cpu));
  1012. spin_unlock_irqrestore(&rq->lock, flags);
  1013. }
  1014. #ifdef CONFIG_NO_HZ
  1015. /*
  1016. * When add_timer_on() enqueues a timer into the timer wheel of an
  1017. * idle CPU then this timer might expire before the next timer event
  1018. * which is scheduled to wake up that CPU. In case of a completely
  1019. * idle system the next event might even be infinite time into the
  1020. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1021. * leaves the inner idle loop so the newly added timer is taken into
  1022. * account when the CPU goes back to idle and evaluates the timer
  1023. * wheel for the next timer event.
  1024. */
  1025. void wake_up_idle_cpu(int cpu)
  1026. {
  1027. struct rq *rq = cpu_rq(cpu);
  1028. if (cpu == smp_processor_id())
  1029. return;
  1030. /*
  1031. * This is safe, as this function is called with the timer
  1032. * wheel base lock of (cpu) held. When the CPU is on the way
  1033. * to idle and has not yet set rq->curr to idle then it will
  1034. * be serialized on the timer wheel base lock and take the new
  1035. * timer into account automatically.
  1036. */
  1037. if (rq->curr != rq->idle)
  1038. return;
  1039. /*
  1040. * We can set TIF_RESCHED on the idle task of the other CPU
  1041. * lockless. The worst case is that the other CPU runs the
  1042. * idle task through an additional NOOP schedule()
  1043. */
  1044. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1045. /* NEED_RESCHED must be visible before we test polling */
  1046. smp_mb();
  1047. if (!tsk_is_polling(rq->idle))
  1048. smp_send_reschedule(cpu);
  1049. }
  1050. #endif
  1051. #else
  1052. static void __resched_task(struct task_struct *p, int tif_bit)
  1053. {
  1054. assert_spin_locked(&task_rq(p)->lock);
  1055. set_tsk_thread_flag(p, tif_bit);
  1056. }
  1057. #endif
  1058. #if BITS_PER_LONG == 32
  1059. # define WMULT_CONST (~0UL)
  1060. #else
  1061. # define WMULT_CONST (1UL << 32)
  1062. #endif
  1063. #define WMULT_SHIFT 32
  1064. /*
  1065. * Shift right and round:
  1066. */
  1067. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1068. static unsigned long
  1069. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1070. struct load_weight *lw)
  1071. {
  1072. u64 tmp;
  1073. if (unlikely(!lw->inv_weight))
  1074. lw->inv_weight = (WMULT_CONST-lw->weight/2) / (lw->weight+1);
  1075. tmp = (u64)delta_exec * weight;
  1076. /*
  1077. * Check whether we'd overflow the 64-bit multiplication:
  1078. */
  1079. if (unlikely(tmp > WMULT_CONST))
  1080. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1081. WMULT_SHIFT/2);
  1082. else
  1083. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1084. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1085. }
  1086. static inline unsigned long
  1087. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  1088. {
  1089. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  1090. }
  1091. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1092. {
  1093. lw->weight += inc;
  1094. lw->inv_weight = 0;
  1095. }
  1096. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1097. {
  1098. lw->weight -= dec;
  1099. lw->inv_weight = 0;
  1100. }
  1101. /*
  1102. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1103. * of tasks with abnormal "nice" values across CPUs the contribution that
  1104. * each task makes to its run queue's load is weighted according to its
  1105. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1106. * scaled version of the new time slice allocation that they receive on time
  1107. * slice expiry etc.
  1108. */
  1109. #define WEIGHT_IDLEPRIO 2
  1110. #define WMULT_IDLEPRIO (1 << 31)
  1111. /*
  1112. * Nice levels are multiplicative, with a gentle 10% change for every
  1113. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1114. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1115. * that remained on nice 0.
  1116. *
  1117. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1118. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1119. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1120. * If a task goes up by ~10% and another task goes down by ~10% then
  1121. * the relative distance between them is ~25%.)
  1122. */
  1123. static const int prio_to_weight[40] = {
  1124. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1125. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1126. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1127. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1128. /* 0 */ 1024, 820, 655, 526, 423,
  1129. /* 5 */ 335, 272, 215, 172, 137,
  1130. /* 10 */ 110, 87, 70, 56, 45,
  1131. /* 15 */ 36, 29, 23, 18, 15,
  1132. };
  1133. /*
  1134. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1135. *
  1136. * In cases where the weight does not change often, we can use the
  1137. * precalculated inverse to speed up arithmetics by turning divisions
  1138. * into multiplications:
  1139. */
  1140. static const u32 prio_to_wmult[40] = {
  1141. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1142. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1143. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1144. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1145. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1146. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1147. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1148. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1149. };
  1150. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1151. /*
  1152. * runqueue iterator, to support SMP load-balancing between different
  1153. * scheduling classes, without having to expose their internal data
  1154. * structures to the load-balancing proper:
  1155. */
  1156. struct rq_iterator {
  1157. void *arg;
  1158. struct task_struct *(*start)(void *);
  1159. struct task_struct *(*next)(void *);
  1160. };
  1161. #ifdef CONFIG_SMP
  1162. static unsigned long
  1163. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1164. unsigned long max_load_move, struct sched_domain *sd,
  1165. enum cpu_idle_type idle, int *all_pinned,
  1166. int *this_best_prio, struct rq_iterator *iterator);
  1167. static int
  1168. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1169. struct sched_domain *sd, enum cpu_idle_type idle,
  1170. struct rq_iterator *iterator);
  1171. #endif
  1172. #ifdef CONFIG_CGROUP_CPUACCT
  1173. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1174. #else
  1175. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1176. #endif
  1177. #ifdef CONFIG_SMP
  1178. static unsigned long source_load(int cpu, int type);
  1179. static unsigned long target_load(int cpu, int type);
  1180. static unsigned long cpu_avg_load_per_task(int cpu);
  1181. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1182. #endif /* CONFIG_SMP */
  1183. #include "sched_stats.h"
  1184. #include "sched_idletask.c"
  1185. #include "sched_fair.c"
  1186. #include "sched_rt.c"
  1187. #ifdef CONFIG_SCHED_DEBUG
  1188. # include "sched_debug.c"
  1189. #endif
  1190. #define sched_class_highest (&rt_sched_class)
  1191. static inline void inc_load(struct rq *rq, const struct task_struct *p)
  1192. {
  1193. update_load_add(&rq->load, p->se.load.weight);
  1194. }
  1195. static inline void dec_load(struct rq *rq, const struct task_struct *p)
  1196. {
  1197. update_load_sub(&rq->load, p->se.load.weight);
  1198. }
  1199. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  1200. {
  1201. rq->nr_running++;
  1202. inc_load(rq, p);
  1203. }
  1204. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  1205. {
  1206. rq->nr_running--;
  1207. dec_load(rq, p);
  1208. }
  1209. static void set_load_weight(struct task_struct *p)
  1210. {
  1211. if (task_has_rt_policy(p)) {
  1212. p->se.load.weight = prio_to_weight[0] * 2;
  1213. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1214. return;
  1215. }
  1216. /*
  1217. * SCHED_IDLE tasks get minimal weight:
  1218. */
  1219. if (p->policy == SCHED_IDLE) {
  1220. p->se.load.weight = WEIGHT_IDLEPRIO;
  1221. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1222. return;
  1223. }
  1224. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1225. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1226. }
  1227. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1228. {
  1229. sched_info_queued(p);
  1230. p->sched_class->enqueue_task(rq, p, wakeup);
  1231. p->se.on_rq = 1;
  1232. }
  1233. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1234. {
  1235. p->sched_class->dequeue_task(rq, p, sleep);
  1236. p->se.on_rq = 0;
  1237. }
  1238. /*
  1239. * __normal_prio - return the priority that is based on the static prio
  1240. */
  1241. static inline int __normal_prio(struct task_struct *p)
  1242. {
  1243. return p->static_prio;
  1244. }
  1245. /*
  1246. * Calculate the expected normal priority: i.e. priority
  1247. * without taking RT-inheritance into account. Might be
  1248. * boosted by interactivity modifiers. Changes upon fork,
  1249. * setprio syscalls, and whenever the interactivity
  1250. * estimator recalculates.
  1251. */
  1252. static inline int normal_prio(struct task_struct *p)
  1253. {
  1254. int prio;
  1255. if (task_has_rt_policy(p))
  1256. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1257. else
  1258. prio = __normal_prio(p);
  1259. return prio;
  1260. }
  1261. /*
  1262. * Calculate the current priority, i.e. the priority
  1263. * taken into account by the scheduler. This value might
  1264. * be boosted by RT tasks, or might be boosted by
  1265. * interactivity modifiers. Will be RT if the task got
  1266. * RT-boosted. If not then it returns p->normal_prio.
  1267. */
  1268. static int effective_prio(struct task_struct *p)
  1269. {
  1270. p->normal_prio = normal_prio(p);
  1271. /*
  1272. * If we are RT tasks or we were boosted to RT priority,
  1273. * keep the priority unchanged. Otherwise, update priority
  1274. * to the normal priority:
  1275. */
  1276. if (!rt_prio(p->prio))
  1277. return p->normal_prio;
  1278. return p->prio;
  1279. }
  1280. /*
  1281. * activate_task - move a task to the runqueue.
  1282. */
  1283. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1284. {
  1285. if (task_contributes_to_load(p))
  1286. rq->nr_uninterruptible--;
  1287. enqueue_task(rq, p, wakeup);
  1288. inc_nr_running(p, rq);
  1289. }
  1290. /*
  1291. * deactivate_task - remove a task from the runqueue.
  1292. */
  1293. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1294. {
  1295. if (task_contributes_to_load(p))
  1296. rq->nr_uninterruptible++;
  1297. dequeue_task(rq, p, sleep);
  1298. dec_nr_running(p, rq);
  1299. }
  1300. /**
  1301. * task_curr - is this task currently executing on a CPU?
  1302. * @p: the task in question.
  1303. */
  1304. inline int task_curr(const struct task_struct *p)
  1305. {
  1306. return cpu_curr(task_cpu(p)) == p;
  1307. }
  1308. /* Used instead of source_load when we know the type == 0 */
  1309. unsigned long weighted_cpuload(const int cpu)
  1310. {
  1311. return cpu_rq(cpu)->load.weight;
  1312. }
  1313. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1314. {
  1315. set_task_rq(p, cpu);
  1316. #ifdef CONFIG_SMP
  1317. /*
  1318. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1319. * successfuly executed on another CPU. We must ensure that updates of
  1320. * per-task data have been completed by this moment.
  1321. */
  1322. smp_wmb();
  1323. task_thread_info(p)->cpu = cpu;
  1324. #endif
  1325. }
  1326. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1327. const struct sched_class *prev_class,
  1328. int oldprio, int running)
  1329. {
  1330. if (prev_class != p->sched_class) {
  1331. if (prev_class->switched_from)
  1332. prev_class->switched_from(rq, p, running);
  1333. p->sched_class->switched_to(rq, p, running);
  1334. } else
  1335. p->sched_class->prio_changed(rq, p, oldprio, running);
  1336. }
  1337. #ifdef CONFIG_SMP
  1338. /*
  1339. * Is this task likely cache-hot:
  1340. */
  1341. static int
  1342. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1343. {
  1344. s64 delta;
  1345. /*
  1346. * Buddy candidates are cache hot:
  1347. */
  1348. if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
  1349. return 1;
  1350. if (p->sched_class != &fair_sched_class)
  1351. return 0;
  1352. if (sysctl_sched_migration_cost == -1)
  1353. return 1;
  1354. if (sysctl_sched_migration_cost == 0)
  1355. return 0;
  1356. delta = now - p->se.exec_start;
  1357. return delta < (s64)sysctl_sched_migration_cost;
  1358. }
  1359. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1360. {
  1361. int old_cpu = task_cpu(p);
  1362. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1363. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1364. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1365. u64 clock_offset;
  1366. clock_offset = old_rq->clock - new_rq->clock;
  1367. #ifdef CONFIG_SCHEDSTATS
  1368. if (p->se.wait_start)
  1369. p->se.wait_start -= clock_offset;
  1370. if (p->se.sleep_start)
  1371. p->se.sleep_start -= clock_offset;
  1372. if (p->se.block_start)
  1373. p->se.block_start -= clock_offset;
  1374. if (old_cpu != new_cpu) {
  1375. schedstat_inc(p, se.nr_migrations);
  1376. if (task_hot(p, old_rq->clock, NULL))
  1377. schedstat_inc(p, se.nr_forced2_migrations);
  1378. }
  1379. #endif
  1380. p->se.vruntime -= old_cfsrq->min_vruntime -
  1381. new_cfsrq->min_vruntime;
  1382. __set_task_cpu(p, new_cpu);
  1383. }
  1384. struct migration_req {
  1385. struct list_head list;
  1386. struct task_struct *task;
  1387. int dest_cpu;
  1388. struct completion done;
  1389. };
  1390. /*
  1391. * The task's runqueue lock must be held.
  1392. * Returns true if you have to wait for migration thread.
  1393. */
  1394. static int
  1395. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1396. {
  1397. struct rq *rq = task_rq(p);
  1398. /*
  1399. * If the task is not on a runqueue (and not running), then
  1400. * it is sufficient to simply update the task's cpu field.
  1401. */
  1402. if (!p->se.on_rq && !task_running(rq, p)) {
  1403. set_task_cpu(p, dest_cpu);
  1404. return 0;
  1405. }
  1406. init_completion(&req->done);
  1407. req->task = p;
  1408. req->dest_cpu = dest_cpu;
  1409. list_add(&req->list, &rq->migration_queue);
  1410. return 1;
  1411. }
  1412. /*
  1413. * wait_task_inactive - wait for a thread to unschedule.
  1414. *
  1415. * The caller must ensure that the task *will* unschedule sometime soon,
  1416. * else this function might spin for a *long* time. This function can't
  1417. * be called with interrupts off, or it may introduce deadlock with
  1418. * smp_call_function() if an IPI is sent by the same process we are
  1419. * waiting to become inactive.
  1420. */
  1421. void wait_task_inactive(struct task_struct *p)
  1422. {
  1423. unsigned long flags;
  1424. int running, on_rq;
  1425. struct rq *rq;
  1426. for (;;) {
  1427. /*
  1428. * We do the initial early heuristics without holding
  1429. * any task-queue locks at all. We'll only try to get
  1430. * the runqueue lock when things look like they will
  1431. * work out!
  1432. */
  1433. rq = task_rq(p);
  1434. /*
  1435. * If the task is actively running on another CPU
  1436. * still, just relax and busy-wait without holding
  1437. * any locks.
  1438. *
  1439. * NOTE! Since we don't hold any locks, it's not
  1440. * even sure that "rq" stays as the right runqueue!
  1441. * But we don't care, since "task_running()" will
  1442. * return false if the runqueue has changed and p
  1443. * is actually now running somewhere else!
  1444. */
  1445. while (task_running(rq, p))
  1446. cpu_relax();
  1447. /*
  1448. * Ok, time to look more closely! We need the rq
  1449. * lock now, to be *sure*. If we're wrong, we'll
  1450. * just go back and repeat.
  1451. */
  1452. rq = task_rq_lock(p, &flags);
  1453. running = task_running(rq, p);
  1454. on_rq = p->se.on_rq;
  1455. task_rq_unlock(rq, &flags);
  1456. /*
  1457. * Was it really running after all now that we
  1458. * checked with the proper locks actually held?
  1459. *
  1460. * Oops. Go back and try again..
  1461. */
  1462. if (unlikely(running)) {
  1463. cpu_relax();
  1464. continue;
  1465. }
  1466. /*
  1467. * It's not enough that it's not actively running,
  1468. * it must be off the runqueue _entirely_, and not
  1469. * preempted!
  1470. *
  1471. * So if it wa still runnable (but just not actively
  1472. * running right now), it's preempted, and we should
  1473. * yield - it could be a while.
  1474. */
  1475. if (unlikely(on_rq)) {
  1476. schedule_timeout_uninterruptible(1);
  1477. continue;
  1478. }
  1479. /*
  1480. * Ahh, all good. It wasn't running, and it wasn't
  1481. * runnable, which means that it will never become
  1482. * running in the future either. We're all done!
  1483. */
  1484. break;
  1485. }
  1486. }
  1487. /***
  1488. * kick_process - kick a running thread to enter/exit the kernel
  1489. * @p: the to-be-kicked thread
  1490. *
  1491. * Cause a process which is running on another CPU to enter
  1492. * kernel-mode, without any delay. (to get signals handled.)
  1493. *
  1494. * NOTE: this function doesnt have to take the runqueue lock,
  1495. * because all it wants to ensure is that the remote task enters
  1496. * the kernel. If the IPI races and the task has been migrated
  1497. * to another CPU then no harm is done and the purpose has been
  1498. * achieved as well.
  1499. */
  1500. void kick_process(struct task_struct *p)
  1501. {
  1502. int cpu;
  1503. preempt_disable();
  1504. cpu = task_cpu(p);
  1505. if ((cpu != smp_processor_id()) && task_curr(p))
  1506. smp_send_reschedule(cpu);
  1507. preempt_enable();
  1508. }
  1509. /*
  1510. * Return a low guess at the load of a migration-source cpu weighted
  1511. * according to the scheduling class and "nice" value.
  1512. *
  1513. * We want to under-estimate the load of migration sources, to
  1514. * balance conservatively.
  1515. */
  1516. static unsigned long source_load(int cpu, int type)
  1517. {
  1518. struct rq *rq = cpu_rq(cpu);
  1519. unsigned long total = weighted_cpuload(cpu);
  1520. if (type == 0)
  1521. return total;
  1522. return min(rq->cpu_load[type-1], total);
  1523. }
  1524. /*
  1525. * Return a high guess at the load of a migration-target cpu weighted
  1526. * according to the scheduling class and "nice" value.
  1527. */
  1528. static unsigned long target_load(int cpu, int type)
  1529. {
  1530. struct rq *rq = cpu_rq(cpu);
  1531. unsigned long total = weighted_cpuload(cpu);
  1532. if (type == 0)
  1533. return total;
  1534. return max(rq->cpu_load[type-1], total);
  1535. }
  1536. /*
  1537. * Return the average load per task on the cpu's run queue
  1538. */
  1539. static unsigned long cpu_avg_load_per_task(int cpu)
  1540. {
  1541. struct rq *rq = cpu_rq(cpu);
  1542. unsigned long total = weighted_cpuload(cpu);
  1543. unsigned long n = rq->nr_running;
  1544. return n ? total / n : SCHED_LOAD_SCALE;
  1545. }
  1546. /*
  1547. * find_idlest_group finds and returns the least busy CPU group within the
  1548. * domain.
  1549. */
  1550. static struct sched_group *
  1551. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1552. {
  1553. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1554. unsigned long min_load = ULONG_MAX, this_load = 0;
  1555. int load_idx = sd->forkexec_idx;
  1556. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1557. do {
  1558. unsigned long load, avg_load;
  1559. int local_group;
  1560. int i;
  1561. /* Skip over this group if it has no CPUs allowed */
  1562. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1563. continue;
  1564. local_group = cpu_isset(this_cpu, group->cpumask);
  1565. /* Tally up the load of all CPUs in the group */
  1566. avg_load = 0;
  1567. for_each_cpu_mask(i, group->cpumask) {
  1568. /* Bias balancing toward cpus of our domain */
  1569. if (local_group)
  1570. load = source_load(i, load_idx);
  1571. else
  1572. load = target_load(i, load_idx);
  1573. avg_load += load;
  1574. }
  1575. /* Adjust by relative CPU power of the group */
  1576. avg_load = sg_div_cpu_power(group,
  1577. avg_load * SCHED_LOAD_SCALE);
  1578. if (local_group) {
  1579. this_load = avg_load;
  1580. this = group;
  1581. } else if (avg_load < min_load) {
  1582. min_load = avg_load;
  1583. idlest = group;
  1584. }
  1585. } while (group = group->next, group != sd->groups);
  1586. if (!idlest || 100*this_load < imbalance*min_load)
  1587. return NULL;
  1588. return idlest;
  1589. }
  1590. /*
  1591. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1592. */
  1593. static int
  1594. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
  1595. cpumask_t *tmp)
  1596. {
  1597. unsigned long load, min_load = ULONG_MAX;
  1598. int idlest = -1;
  1599. int i;
  1600. /* Traverse only the allowed CPUs */
  1601. cpus_and(*tmp, group->cpumask, p->cpus_allowed);
  1602. for_each_cpu_mask(i, *tmp) {
  1603. load = weighted_cpuload(i);
  1604. if (load < min_load || (load == min_load && i == this_cpu)) {
  1605. min_load = load;
  1606. idlest = i;
  1607. }
  1608. }
  1609. return idlest;
  1610. }
  1611. /*
  1612. * sched_balance_self: balance the current task (running on cpu) in domains
  1613. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1614. * SD_BALANCE_EXEC.
  1615. *
  1616. * Balance, ie. select the least loaded group.
  1617. *
  1618. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1619. *
  1620. * preempt must be disabled.
  1621. */
  1622. static int sched_balance_self(int cpu, int flag)
  1623. {
  1624. struct task_struct *t = current;
  1625. struct sched_domain *tmp, *sd = NULL;
  1626. for_each_domain(cpu, tmp) {
  1627. /*
  1628. * If power savings logic is enabled for a domain, stop there.
  1629. */
  1630. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1631. break;
  1632. if (tmp->flags & flag)
  1633. sd = tmp;
  1634. }
  1635. while (sd) {
  1636. cpumask_t span, tmpmask;
  1637. struct sched_group *group;
  1638. int new_cpu, weight;
  1639. if (!(sd->flags & flag)) {
  1640. sd = sd->child;
  1641. continue;
  1642. }
  1643. span = sd->span;
  1644. group = find_idlest_group(sd, t, cpu);
  1645. if (!group) {
  1646. sd = sd->child;
  1647. continue;
  1648. }
  1649. new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
  1650. if (new_cpu == -1 || new_cpu == cpu) {
  1651. /* Now try balancing at a lower domain level of cpu */
  1652. sd = sd->child;
  1653. continue;
  1654. }
  1655. /* Now try balancing at a lower domain level of new_cpu */
  1656. cpu = new_cpu;
  1657. sd = NULL;
  1658. weight = cpus_weight(span);
  1659. for_each_domain(cpu, tmp) {
  1660. if (weight <= cpus_weight(tmp->span))
  1661. break;
  1662. if (tmp->flags & flag)
  1663. sd = tmp;
  1664. }
  1665. /* while loop will break here if sd == NULL */
  1666. }
  1667. return cpu;
  1668. }
  1669. #endif /* CONFIG_SMP */
  1670. /***
  1671. * try_to_wake_up - wake up a thread
  1672. * @p: the to-be-woken-up thread
  1673. * @state: the mask of task states that can be woken
  1674. * @sync: do a synchronous wakeup?
  1675. *
  1676. * Put it on the run-queue if it's not already there. The "current"
  1677. * thread is always on the run-queue (except when the actual
  1678. * re-schedule is in progress), and as such you're allowed to do
  1679. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1680. * runnable without the overhead of this.
  1681. *
  1682. * returns failure only if the task is already active.
  1683. */
  1684. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1685. {
  1686. int cpu, orig_cpu, this_cpu, success = 0;
  1687. unsigned long flags;
  1688. long old_state;
  1689. struct rq *rq;
  1690. if (!sched_feat(SYNC_WAKEUPS))
  1691. sync = 0;
  1692. smp_wmb();
  1693. rq = task_rq_lock(p, &flags);
  1694. old_state = p->state;
  1695. if (!(old_state & state))
  1696. goto out;
  1697. if (p->se.on_rq)
  1698. goto out_running;
  1699. cpu = task_cpu(p);
  1700. orig_cpu = cpu;
  1701. this_cpu = smp_processor_id();
  1702. #ifdef CONFIG_SMP
  1703. if (unlikely(task_running(rq, p)))
  1704. goto out_activate;
  1705. cpu = p->sched_class->select_task_rq(p, sync);
  1706. if (cpu != orig_cpu) {
  1707. set_task_cpu(p, cpu);
  1708. task_rq_unlock(rq, &flags);
  1709. /* might preempt at this point */
  1710. rq = task_rq_lock(p, &flags);
  1711. old_state = p->state;
  1712. if (!(old_state & state))
  1713. goto out;
  1714. if (p->se.on_rq)
  1715. goto out_running;
  1716. this_cpu = smp_processor_id();
  1717. cpu = task_cpu(p);
  1718. }
  1719. #ifdef CONFIG_SCHEDSTATS
  1720. schedstat_inc(rq, ttwu_count);
  1721. if (cpu == this_cpu)
  1722. schedstat_inc(rq, ttwu_local);
  1723. else {
  1724. struct sched_domain *sd;
  1725. for_each_domain(this_cpu, sd) {
  1726. if (cpu_isset(cpu, sd->span)) {
  1727. schedstat_inc(sd, ttwu_wake_remote);
  1728. break;
  1729. }
  1730. }
  1731. }
  1732. #endif
  1733. out_activate:
  1734. #endif /* CONFIG_SMP */
  1735. schedstat_inc(p, se.nr_wakeups);
  1736. if (sync)
  1737. schedstat_inc(p, se.nr_wakeups_sync);
  1738. if (orig_cpu != cpu)
  1739. schedstat_inc(p, se.nr_wakeups_migrate);
  1740. if (cpu == this_cpu)
  1741. schedstat_inc(p, se.nr_wakeups_local);
  1742. else
  1743. schedstat_inc(p, se.nr_wakeups_remote);
  1744. update_rq_clock(rq);
  1745. activate_task(rq, p, 1);
  1746. success = 1;
  1747. out_running:
  1748. check_preempt_curr(rq, p);
  1749. p->state = TASK_RUNNING;
  1750. #ifdef CONFIG_SMP
  1751. if (p->sched_class->task_wake_up)
  1752. p->sched_class->task_wake_up(rq, p);
  1753. #endif
  1754. out:
  1755. task_rq_unlock(rq, &flags);
  1756. return success;
  1757. }
  1758. int wake_up_process(struct task_struct *p)
  1759. {
  1760. return try_to_wake_up(p, TASK_ALL, 0);
  1761. }
  1762. EXPORT_SYMBOL(wake_up_process);
  1763. int wake_up_state(struct task_struct *p, unsigned int state)
  1764. {
  1765. return try_to_wake_up(p, state, 0);
  1766. }
  1767. /*
  1768. * Perform scheduler related setup for a newly forked process p.
  1769. * p is forked by current.
  1770. *
  1771. * __sched_fork() is basic setup used by init_idle() too:
  1772. */
  1773. static void __sched_fork(struct task_struct *p)
  1774. {
  1775. p->se.exec_start = 0;
  1776. p->se.sum_exec_runtime = 0;
  1777. p->se.prev_sum_exec_runtime = 0;
  1778. p->se.last_wakeup = 0;
  1779. p->se.avg_overlap = 0;
  1780. #ifdef CONFIG_SCHEDSTATS
  1781. p->se.wait_start = 0;
  1782. p->se.sum_sleep_runtime = 0;
  1783. p->se.sleep_start = 0;
  1784. p->se.block_start = 0;
  1785. p->se.sleep_max = 0;
  1786. p->se.block_max = 0;
  1787. p->se.exec_max = 0;
  1788. p->se.slice_max = 0;
  1789. p->se.wait_max = 0;
  1790. #endif
  1791. INIT_LIST_HEAD(&p->rt.run_list);
  1792. p->se.on_rq = 0;
  1793. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1794. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1795. #endif
  1796. /*
  1797. * We mark the process as running here, but have not actually
  1798. * inserted it onto the runqueue yet. This guarantees that
  1799. * nobody will actually run it, and a signal or other external
  1800. * event cannot wake it up and insert it on the runqueue either.
  1801. */
  1802. p->state = TASK_RUNNING;
  1803. }
  1804. /*
  1805. * fork()/clone()-time setup:
  1806. */
  1807. void sched_fork(struct task_struct *p, int clone_flags)
  1808. {
  1809. int cpu = get_cpu();
  1810. __sched_fork(p);
  1811. #ifdef CONFIG_SMP
  1812. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1813. #endif
  1814. set_task_cpu(p, cpu);
  1815. /*
  1816. * Make sure we do not leak PI boosting priority to the child:
  1817. */
  1818. p->prio = current->normal_prio;
  1819. if (!rt_prio(p->prio))
  1820. p->sched_class = &fair_sched_class;
  1821. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1822. if (likely(sched_info_on()))
  1823. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1824. #endif
  1825. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1826. p->oncpu = 0;
  1827. #endif
  1828. #ifdef CONFIG_PREEMPT
  1829. /* Want to start with kernel preemption disabled. */
  1830. task_thread_info(p)->preempt_count = 1;
  1831. #endif
  1832. put_cpu();
  1833. }
  1834. /*
  1835. * wake_up_new_task - wake up a newly created task for the first time.
  1836. *
  1837. * This function will do some initial scheduler statistics housekeeping
  1838. * that must be done for every newly created context, then puts the task
  1839. * on the runqueue and wakes it.
  1840. */
  1841. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1842. {
  1843. unsigned long flags;
  1844. struct rq *rq;
  1845. rq = task_rq_lock(p, &flags);
  1846. BUG_ON(p->state != TASK_RUNNING);
  1847. update_rq_clock(rq);
  1848. p->prio = effective_prio(p);
  1849. if (!p->sched_class->task_new || !current->se.on_rq) {
  1850. activate_task(rq, p, 0);
  1851. } else {
  1852. /*
  1853. * Let the scheduling class do new task startup
  1854. * management (if any):
  1855. */
  1856. p->sched_class->task_new(rq, p);
  1857. inc_nr_running(p, rq);
  1858. }
  1859. check_preempt_curr(rq, p);
  1860. #ifdef CONFIG_SMP
  1861. if (p->sched_class->task_wake_up)
  1862. p->sched_class->task_wake_up(rq, p);
  1863. #endif
  1864. task_rq_unlock(rq, &flags);
  1865. }
  1866. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1867. /**
  1868. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1869. * @notifier: notifier struct to register
  1870. */
  1871. void preempt_notifier_register(struct preempt_notifier *notifier)
  1872. {
  1873. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1874. }
  1875. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1876. /**
  1877. * preempt_notifier_unregister - no longer interested in preemption notifications
  1878. * @notifier: notifier struct to unregister
  1879. *
  1880. * This is safe to call from within a preemption notifier.
  1881. */
  1882. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1883. {
  1884. hlist_del(&notifier->link);
  1885. }
  1886. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1887. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1888. {
  1889. struct preempt_notifier *notifier;
  1890. struct hlist_node *node;
  1891. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1892. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1893. }
  1894. static void
  1895. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1896. struct task_struct *next)
  1897. {
  1898. struct preempt_notifier *notifier;
  1899. struct hlist_node *node;
  1900. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1901. notifier->ops->sched_out(notifier, next);
  1902. }
  1903. #else
  1904. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1905. {
  1906. }
  1907. static void
  1908. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1909. struct task_struct *next)
  1910. {
  1911. }
  1912. #endif
  1913. /**
  1914. * prepare_task_switch - prepare to switch tasks
  1915. * @rq: the runqueue preparing to switch
  1916. * @prev: the current task that is being switched out
  1917. * @next: the task we are going to switch to.
  1918. *
  1919. * This is called with the rq lock held and interrupts off. It must
  1920. * be paired with a subsequent finish_task_switch after the context
  1921. * switch.
  1922. *
  1923. * prepare_task_switch sets up locking and calls architecture specific
  1924. * hooks.
  1925. */
  1926. static inline void
  1927. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1928. struct task_struct *next)
  1929. {
  1930. fire_sched_out_preempt_notifiers(prev, next);
  1931. prepare_lock_switch(rq, next);
  1932. prepare_arch_switch(next);
  1933. }
  1934. /**
  1935. * finish_task_switch - clean up after a task-switch
  1936. * @rq: runqueue associated with task-switch
  1937. * @prev: the thread we just switched away from.
  1938. *
  1939. * finish_task_switch must be called after the context switch, paired
  1940. * with a prepare_task_switch call before the context switch.
  1941. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1942. * and do any other architecture-specific cleanup actions.
  1943. *
  1944. * Note that we may have delayed dropping an mm in context_switch(). If
  1945. * so, we finish that here outside of the runqueue lock. (Doing it
  1946. * with the lock held can cause deadlocks; see schedule() for
  1947. * details.)
  1948. */
  1949. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1950. __releases(rq->lock)
  1951. {
  1952. struct mm_struct *mm = rq->prev_mm;
  1953. long prev_state;
  1954. rq->prev_mm = NULL;
  1955. /*
  1956. * A task struct has one reference for the use as "current".
  1957. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1958. * schedule one last time. The schedule call will never return, and
  1959. * the scheduled task must drop that reference.
  1960. * The test for TASK_DEAD must occur while the runqueue locks are
  1961. * still held, otherwise prev could be scheduled on another cpu, die
  1962. * there before we look at prev->state, and then the reference would
  1963. * be dropped twice.
  1964. * Manfred Spraul <manfred@colorfullife.com>
  1965. */
  1966. prev_state = prev->state;
  1967. finish_arch_switch(prev);
  1968. finish_lock_switch(rq, prev);
  1969. #ifdef CONFIG_SMP
  1970. if (current->sched_class->post_schedule)
  1971. current->sched_class->post_schedule(rq);
  1972. #endif
  1973. fire_sched_in_preempt_notifiers(current);
  1974. if (mm)
  1975. mmdrop(mm);
  1976. if (unlikely(prev_state == TASK_DEAD)) {
  1977. /*
  1978. * Remove function-return probe instances associated with this
  1979. * task and put them back on the free list.
  1980. */
  1981. kprobe_flush_task(prev);
  1982. put_task_struct(prev);
  1983. }
  1984. }
  1985. /**
  1986. * schedule_tail - first thing a freshly forked thread must call.
  1987. * @prev: the thread we just switched away from.
  1988. */
  1989. asmlinkage void schedule_tail(struct task_struct *prev)
  1990. __releases(rq->lock)
  1991. {
  1992. struct rq *rq = this_rq();
  1993. finish_task_switch(rq, prev);
  1994. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1995. /* In this case, finish_task_switch does not reenable preemption */
  1996. preempt_enable();
  1997. #endif
  1998. if (current->set_child_tid)
  1999. put_user(task_pid_vnr(current), current->set_child_tid);
  2000. }
  2001. /*
  2002. * context_switch - switch to the new MM and the new
  2003. * thread's register state.
  2004. */
  2005. static inline void
  2006. context_switch(struct rq *rq, struct task_struct *prev,
  2007. struct task_struct *next)
  2008. {
  2009. struct mm_struct *mm, *oldmm;
  2010. prepare_task_switch(rq, prev, next);
  2011. mm = next->mm;
  2012. oldmm = prev->active_mm;
  2013. /*
  2014. * For paravirt, this is coupled with an exit in switch_to to
  2015. * combine the page table reload and the switch backend into
  2016. * one hypercall.
  2017. */
  2018. arch_enter_lazy_cpu_mode();
  2019. if (unlikely(!mm)) {
  2020. next->active_mm = oldmm;
  2021. atomic_inc(&oldmm->mm_count);
  2022. enter_lazy_tlb(oldmm, next);
  2023. } else
  2024. switch_mm(oldmm, mm, next);
  2025. if (unlikely(!prev->mm)) {
  2026. prev->active_mm = NULL;
  2027. rq->prev_mm = oldmm;
  2028. }
  2029. /*
  2030. * Since the runqueue lock will be released by the next
  2031. * task (which is an invalid locking op but in the case
  2032. * of the scheduler it's an obvious special-case), so we
  2033. * do an early lockdep release here:
  2034. */
  2035. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2036. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2037. #endif
  2038. /* Here we just switch the register state and the stack. */
  2039. switch_to(prev, next, prev);
  2040. barrier();
  2041. /*
  2042. * this_rq must be evaluated again because prev may have moved
  2043. * CPUs since it called schedule(), thus the 'rq' on its stack
  2044. * frame will be invalid.
  2045. */
  2046. finish_task_switch(this_rq(), prev);
  2047. }
  2048. /*
  2049. * nr_running, nr_uninterruptible and nr_context_switches:
  2050. *
  2051. * externally visible scheduler statistics: current number of runnable
  2052. * threads, current number of uninterruptible-sleeping threads, total
  2053. * number of context switches performed since bootup.
  2054. */
  2055. unsigned long nr_running(void)
  2056. {
  2057. unsigned long i, sum = 0;
  2058. for_each_online_cpu(i)
  2059. sum += cpu_rq(i)->nr_running;
  2060. return sum;
  2061. }
  2062. unsigned long nr_uninterruptible(void)
  2063. {
  2064. unsigned long i, sum = 0;
  2065. for_each_possible_cpu(i)
  2066. sum += cpu_rq(i)->nr_uninterruptible;
  2067. /*
  2068. * Since we read the counters lockless, it might be slightly
  2069. * inaccurate. Do not allow it to go below zero though:
  2070. */
  2071. if (unlikely((long)sum < 0))
  2072. sum = 0;
  2073. return sum;
  2074. }
  2075. unsigned long long nr_context_switches(void)
  2076. {
  2077. int i;
  2078. unsigned long long sum = 0;
  2079. for_each_possible_cpu(i)
  2080. sum += cpu_rq(i)->nr_switches;
  2081. return sum;
  2082. }
  2083. unsigned long nr_iowait(void)
  2084. {
  2085. unsigned long i, sum = 0;
  2086. for_each_possible_cpu(i)
  2087. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2088. return sum;
  2089. }
  2090. unsigned long nr_active(void)
  2091. {
  2092. unsigned long i, running = 0, uninterruptible = 0;
  2093. for_each_online_cpu(i) {
  2094. running += cpu_rq(i)->nr_running;
  2095. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2096. }
  2097. if (unlikely((long)uninterruptible < 0))
  2098. uninterruptible = 0;
  2099. return running + uninterruptible;
  2100. }
  2101. /*
  2102. * Update rq->cpu_load[] statistics. This function is usually called every
  2103. * scheduler tick (TICK_NSEC).
  2104. */
  2105. static void update_cpu_load(struct rq *this_rq)
  2106. {
  2107. unsigned long this_load = this_rq->load.weight;
  2108. int i, scale;
  2109. this_rq->nr_load_updates++;
  2110. /* Update our load: */
  2111. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2112. unsigned long old_load, new_load;
  2113. /* scale is effectively 1 << i now, and >> i divides by scale */
  2114. old_load = this_rq->cpu_load[i];
  2115. new_load = this_load;
  2116. /*
  2117. * Round up the averaging division if load is increasing. This
  2118. * prevents us from getting stuck on 9 if the load is 10, for
  2119. * example.
  2120. */
  2121. if (new_load > old_load)
  2122. new_load += scale-1;
  2123. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2124. }
  2125. }
  2126. #ifdef CONFIG_SMP
  2127. /*
  2128. * double_rq_lock - safely lock two runqueues
  2129. *
  2130. * Note this does not disable interrupts like task_rq_lock,
  2131. * you need to do so manually before calling.
  2132. */
  2133. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2134. __acquires(rq1->lock)
  2135. __acquires(rq2->lock)
  2136. {
  2137. BUG_ON(!irqs_disabled());
  2138. if (rq1 == rq2) {
  2139. spin_lock(&rq1->lock);
  2140. __acquire(rq2->lock); /* Fake it out ;) */
  2141. } else {
  2142. if (rq1 < rq2) {
  2143. spin_lock(&rq1->lock);
  2144. spin_lock(&rq2->lock);
  2145. } else {
  2146. spin_lock(&rq2->lock);
  2147. spin_lock(&rq1->lock);
  2148. }
  2149. }
  2150. update_rq_clock(rq1);
  2151. update_rq_clock(rq2);
  2152. }
  2153. /*
  2154. * double_rq_unlock - safely unlock two runqueues
  2155. *
  2156. * Note this does not restore interrupts like task_rq_unlock,
  2157. * you need to do so manually after calling.
  2158. */
  2159. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2160. __releases(rq1->lock)
  2161. __releases(rq2->lock)
  2162. {
  2163. spin_unlock(&rq1->lock);
  2164. if (rq1 != rq2)
  2165. spin_unlock(&rq2->lock);
  2166. else
  2167. __release(rq2->lock);
  2168. }
  2169. /*
  2170. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2171. */
  2172. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2173. __releases(this_rq->lock)
  2174. __acquires(busiest->lock)
  2175. __acquires(this_rq->lock)
  2176. {
  2177. int ret = 0;
  2178. if (unlikely(!irqs_disabled())) {
  2179. /* printk() doesn't work good under rq->lock */
  2180. spin_unlock(&this_rq->lock);
  2181. BUG_ON(1);
  2182. }
  2183. if (unlikely(!spin_trylock(&busiest->lock))) {
  2184. if (busiest < this_rq) {
  2185. spin_unlock(&this_rq->lock);
  2186. spin_lock(&busiest->lock);
  2187. spin_lock(&this_rq->lock);
  2188. ret = 1;
  2189. } else
  2190. spin_lock(&busiest->lock);
  2191. }
  2192. return ret;
  2193. }
  2194. /*
  2195. * If dest_cpu is allowed for this process, migrate the task to it.
  2196. * This is accomplished by forcing the cpu_allowed mask to only
  2197. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2198. * the cpu_allowed mask is restored.
  2199. */
  2200. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2201. {
  2202. struct migration_req req;
  2203. unsigned long flags;
  2204. struct rq *rq;
  2205. rq = task_rq_lock(p, &flags);
  2206. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2207. || unlikely(cpu_is_offline(dest_cpu)))
  2208. goto out;
  2209. /* force the process onto the specified CPU */
  2210. if (migrate_task(p, dest_cpu, &req)) {
  2211. /* Need to wait for migration thread (might exit: take ref). */
  2212. struct task_struct *mt = rq->migration_thread;
  2213. get_task_struct(mt);
  2214. task_rq_unlock(rq, &flags);
  2215. wake_up_process(mt);
  2216. put_task_struct(mt);
  2217. wait_for_completion(&req.done);
  2218. return;
  2219. }
  2220. out:
  2221. task_rq_unlock(rq, &flags);
  2222. }
  2223. /*
  2224. * sched_exec - execve() is a valuable balancing opportunity, because at
  2225. * this point the task has the smallest effective memory and cache footprint.
  2226. */
  2227. void sched_exec(void)
  2228. {
  2229. int new_cpu, this_cpu = get_cpu();
  2230. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2231. put_cpu();
  2232. if (new_cpu != this_cpu)
  2233. sched_migrate_task(current, new_cpu);
  2234. }
  2235. /*
  2236. * pull_task - move a task from a remote runqueue to the local runqueue.
  2237. * Both runqueues must be locked.
  2238. */
  2239. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2240. struct rq *this_rq, int this_cpu)
  2241. {
  2242. deactivate_task(src_rq, p, 0);
  2243. set_task_cpu(p, this_cpu);
  2244. activate_task(this_rq, p, 0);
  2245. /*
  2246. * Note that idle threads have a prio of MAX_PRIO, for this test
  2247. * to be always true for them.
  2248. */
  2249. check_preempt_curr(this_rq, p);
  2250. }
  2251. /*
  2252. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2253. */
  2254. static
  2255. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2256. struct sched_domain *sd, enum cpu_idle_type idle,
  2257. int *all_pinned)
  2258. {
  2259. /*
  2260. * We do not migrate tasks that are:
  2261. * 1) running (obviously), or
  2262. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2263. * 3) are cache-hot on their current CPU.
  2264. */
  2265. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2266. schedstat_inc(p, se.nr_failed_migrations_affine);
  2267. return 0;
  2268. }
  2269. *all_pinned = 0;
  2270. if (task_running(rq, p)) {
  2271. schedstat_inc(p, se.nr_failed_migrations_running);
  2272. return 0;
  2273. }
  2274. /*
  2275. * Aggressive migration if:
  2276. * 1) task is cache cold, or
  2277. * 2) too many balance attempts have failed.
  2278. */
  2279. if (!task_hot(p, rq->clock, sd) ||
  2280. sd->nr_balance_failed > sd->cache_nice_tries) {
  2281. #ifdef CONFIG_SCHEDSTATS
  2282. if (task_hot(p, rq->clock, sd)) {
  2283. schedstat_inc(sd, lb_hot_gained[idle]);
  2284. schedstat_inc(p, se.nr_forced_migrations);
  2285. }
  2286. #endif
  2287. return 1;
  2288. }
  2289. if (task_hot(p, rq->clock, sd)) {
  2290. schedstat_inc(p, se.nr_failed_migrations_hot);
  2291. return 0;
  2292. }
  2293. return 1;
  2294. }
  2295. static unsigned long
  2296. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2297. unsigned long max_load_move, struct sched_domain *sd,
  2298. enum cpu_idle_type idle, int *all_pinned,
  2299. int *this_best_prio, struct rq_iterator *iterator)
  2300. {
  2301. int loops = 0, pulled = 0, pinned = 0, skip_for_load;
  2302. struct task_struct *p;
  2303. long rem_load_move = max_load_move;
  2304. if (max_load_move == 0)
  2305. goto out;
  2306. pinned = 1;
  2307. /*
  2308. * Start the load-balancing iterator:
  2309. */
  2310. p = iterator->start(iterator->arg);
  2311. next:
  2312. if (!p || loops++ > sysctl_sched_nr_migrate)
  2313. goto out;
  2314. /*
  2315. * To help distribute high priority tasks across CPUs we don't
  2316. * skip a task if it will be the highest priority task (i.e. smallest
  2317. * prio value) on its new queue regardless of its load weight
  2318. */
  2319. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  2320. SCHED_LOAD_SCALE_FUZZ;
  2321. if ((skip_for_load && p->prio >= *this_best_prio) ||
  2322. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2323. p = iterator->next(iterator->arg);
  2324. goto next;
  2325. }
  2326. pull_task(busiest, p, this_rq, this_cpu);
  2327. pulled++;
  2328. rem_load_move -= p->se.load.weight;
  2329. /*
  2330. * We only want to steal up to the prescribed amount of weighted load.
  2331. */
  2332. if (rem_load_move > 0) {
  2333. if (p->prio < *this_best_prio)
  2334. *this_best_prio = p->prio;
  2335. p = iterator->next(iterator->arg);
  2336. goto next;
  2337. }
  2338. out:
  2339. /*
  2340. * Right now, this is one of only two places pull_task() is called,
  2341. * so we can safely collect pull_task() stats here rather than
  2342. * inside pull_task().
  2343. */
  2344. schedstat_add(sd, lb_gained[idle], pulled);
  2345. if (all_pinned)
  2346. *all_pinned = pinned;
  2347. return max_load_move - rem_load_move;
  2348. }
  2349. /*
  2350. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2351. * this_rq, as part of a balancing operation within domain "sd".
  2352. * Returns 1 if successful and 0 otherwise.
  2353. *
  2354. * Called with both runqueues locked.
  2355. */
  2356. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2357. unsigned long max_load_move,
  2358. struct sched_domain *sd, enum cpu_idle_type idle,
  2359. int *all_pinned)
  2360. {
  2361. const struct sched_class *class = sched_class_highest;
  2362. unsigned long total_load_moved = 0;
  2363. int this_best_prio = this_rq->curr->prio;
  2364. do {
  2365. total_load_moved +=
  2366. class->load_balance(this_rq, this_cpu, busiest,
  2367. max_load_move - total_load_moved,
  2368. sd, idle, all_pinned, &this_best_prio);
  2369. class = class->next;
  2370. } while (class && max_load_move > total_load_moved);
  2371. return total_load_moved > 0;
  2372. }
  2373. static int
  2374. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2375. struct sched_domain *sd, enum cpu_idle_type idle,
  2376. struct rq_iterator *iterator)
  2377. {
  2378. struct task_struct *p = iterator->start(iterator->arg);
  2379. int pinned = 0;
  2380. while (p) {
  2381. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2382. pull_task(busiest, p, this_rq, this_cpu);
  2383. /*
  2384. * Right now, this is only the second place pull_task()
  2385. * is called, so we can safely collect pull_task()
  2386. * stats here rather than inside pull_task().
  2387. */
  2388. schedstat_inc(sd, lb_gained[idle]);
  2389. return 1;
  2390. }
  2391. p = iterator->next(iterator->arg);
  2392. }
  2393. return 0;
  2394. }
  2395. /*
  2396. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2397. * part of active balancing operations within "domain".
  2398. * Returns 1 if successful and 0 otherwise.
  2399. *
  2400. * Called with both runqueues locked.
  2401. */
  2402. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2403. struct sched_domain *sd, enum cpu_idle_type idle)
  2404. {
  2405. const struct sched_class *class;
  2406. for (class = sched_class_highest; class; class = class->next)
  2407. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2408. return 1;
  2409. return 0;
  2410. }
  2411. /*
  2412. * find_busiest_group finds and returns the busiest CPU group within the
  2413. * domain. It calculates and returns the amount of weighted load which
  2414. * should be moved to restore balance via the imbalance parameter.
  2415. */
  2416. static struct sched_group *
  2417. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2418. unsigned long *imbalance, enum cpu_idle_type idle,
  2419. int *sd_idle, const cpumask_t *cpus, int *balance)
  2420. {
  2421. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2422. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2423. unsigned long max_pull;
  2424. unsigned long busiest_load_per_task, busiest_nr_running;
  2425. unsigned long this_load_per_task, this_nr_running;
  2426. int load_idx, group_imb = 0;
  2427. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2428. int power_savings_balance = 1;
  2429. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2430. unsigned long min_nr_running = ULONG_MAX;
  2431. struct sched_group *group_min = NULL, *group_leader = NULL;
  2432. #endif
  2433. max_load = this_load = total_load = total_pwr = 0;
  2434. busiest_load_per_task = busiest_nr_running = 0;
  2435. this_load_per_task = this_nr_running = 0;
  2436. if (idle == CPU_NOT_IDLE)
  2437. load_idx = sd->busy_idx;
  2438. else if (idle == CPU_NEWLY_IDLE)
  2439. load_idx = sd->newidle_idx;
  2440. else
  2441. load_idx = sd->idle_idx;
  2442. do {
  2443. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2444. int local_group;
  2445. int i;
  2446. int __group_imb = 0;
  2447. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2448. unsigned long sum_nr_running, sum_weighted_load;
  2449. local_group = cpu_isset(this_cpu, group->cpumask);
  2450. if (local_group)
  2451. balance_cpu = first_cpu(group->cpumask);
  2452. /* Tally up the load of all CPUs in the group */
  2453. sum_weighted_load = sum_nr_running = avg_load = 0;
  2454. max_cpu_load = 0;
  2455. min_cpu_load = ~0UL;
  2456. for_each_cpu_mask(i, group->cpumask) {
  2457. struct rq *rq;
  2458. if (!cpu_isset(i, *cpus))
  2459. continue;
  2460. rq = cpu_rq(i);
  2461. if (*sd_idle && rq->nr_running)
  2462. *sd_idle = 0;
  2463. /* Bias balancing toward cpus of our domain */
  2464. if (local_group) {
  2465. if (idle_cpu(i) && !first_idle_cpu) {
  2466. first_idle_cpu = 1;
  2467. balance_cpu = i;
  2468. }
  2469. load = target_load(i, load_idx);
  2470. } else {
  2471. load = source_load(i, load_idx);
  2472. if (load > max_cpu_load)
  2473. max_cpu_load = load;
  2474. if (min_cpu_load > load)
  2475. min_cpu_load = load;
  2476. }
  2477. avg_load += load;
  2478. sum_nr_running += rq->nr_running;
  2479. sum_weighted_load += weighted_cpuload(i);
  2480. }
  2481. /*
  2482. * First idle cpu or the first cpu(busiest) in this sched group
  2483. * is eligible for doing load balancing at this and above
  2484. * domains. In the newly idle case, we will allow all the cpu's
  2485. * to do the newly idle load balance.
  2486. */
  2487. if (idle != CPU_NEWLY_IDLE && local_group &&
  2488. balance_cpu != this_cpu && balance) {
  2489. *balance = 0;
  2490. goto ret;
  2491. }
  2492. total_load += avg_load;
  2493. total_pwr += group->__cpu_power;
  2494. /* Adjust by relative CPU power of the group */
  2495. avg_load = sg_div_cpu_power(group,
  2496. avg_load * SCHED_LOAD_SCALE);
  2497. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2498. __group_imb = 1;
  2499. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2500. if (local_group) {
  2501. this_load = avg_load;
  2502. this = group;
  2503. this_nr_running = sum_nr_running;
  2504. this_load_per_task = sum_weighted_load;
  2505. } else if (avg_load > max_load &&
  2506. (sum_nr_running > group_capacity || __group_imb)) {
  2507. max_load = avg_load;
  2508. busiest = group;
  2509. busiest_nr_running = sum_nr_running;
  2510. busiest_load_per_task = sum_weighted_load;
  2511. group_imb = __group_imb;
  2512. }
  2513. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2514. /*
  2515. * Busy processors will not participate in power savings
  2516. * balance.
  2517. */
  2518. if (idle == CPU_NOT_IDLE ||
  2519. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2520. goto group_next;
  2521. /*
  2522. * If the local group is idle or completely loaded
  2523. * no need to do power savings balance at this domain
  2524. */
  2525. if (local_group && (this_nr_running >= group_capacity ||
  2526. !this_nr_running))
  2527. power_savings_balance = 0;
  2528. /*
  2529. * If a group is already running at full capacity or idle,
  2530. * don't include that group in power savings calculations
  2531. */
  2532. if (!power_savings_balance || sum_nr_running >= group_capacity
  2533. || !sum_nr_running)
  2534. goto group_next;
  2535. /*
  2536. * Calculate the group which has the least non-idle load.
  2537. * This is the group from where we need to pick up the load
  2538. * for saving power
  2539. */
  2540. if ((sum_nr_running < min_nr_running) ||
  2541. (sum_nr_running == min_nr_running &&
  2542. first_cpu(group->cpumask) <
  2543. first_cpu(group_min->cpumask))) {
  2544. group_min = group;
  2545. min_nr_running = sum_nr_running;
  2546. min_load_per_task = sum_weighted_load /
  2547. sum_nr_running;
  2548. }
  2549. /*
  2550. * Calculate the group which is almost near its
  2551. * capacity but still has some space to pick up some load
  2552. * from other group and save more power
  2553. */
  2554. if (sum_nr_running <= group_capacity - 1) {
  2555. if (sum_nr_running > leader_nr_running ||
  2556. (sum_nr_running == leader_nr_running &&
  2557. first_cpu(group->cpumask) >
  2558. first_cpu(group_leader->cpumask))) {
  2559. group_leader = group;
  2560. leader_nr_running = sum_nr_running;
  2561. }
  2562. }
  2563. group_next:
  2564. #endif
  2565. group = group->next;
  2566. } while (group != sd->groups);
  2567. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2568. goto out_balanced;
  2569. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2570. if (this_load >= avg_load ||
  2571. 100*max_load <= sd->imbalance_pct*this_load)
  2572. goto out_balanced;
  2573. busiest_load_per_task /= busiest_nr_running;
  2574. if (group_imb)
  2575. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2576. /*
  2577. * We're trying to get all the cpus to the average_load, so we don't
  2578. * want to push ourselves above the average load, nor do we wish to
  2579. * reduce the max loaded cpu below the average load, as either of these
  2580. * actions would just result in more rebalancing later, and ping-pong
  2581. * tasks around. Thus we look for the minimum possible imbalance.
  2582. * Negative imbalances (*we* are more loaded than anyone else) will
  2583. * be counted as no imbalance for these purposes -- we can't fix that
  2584. * by pulling tasks to us. Be careful of negative numbers as they'll
  2585. * appear as very large values with unsigned longs.
  2586. */
  2587. if (max_load <= busiest_load_per_task)
  2588. goto out_balanced;
  2589. /*
  2590. * In the presence of smp nice balancing, certain scenarios can have
  2591. * max load less than avg load(as we skip the groups at or below
  2592. * its cpu_power, while calculating max_load..)
  2593. */
  2594. if (max_load < avg_load) {
  2595. *imbalance = 0;
  2596. goto small_imbalance;
  2597. }
  2598. /* Don't want to pull so many tasks that a group would go idle */
  2599. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2600. /* How much load to actually move to equalise the imbalance */
  2601. *imbalance = min(max_pull * busiest->__cpu_power,
  2602. (avg_load - this_load) * this->__cpu_power)
  2603. / SCHED_LOAD_SCALE;
  2604. /*
  2605. * if *imbalance is less than the average load per runnable task
  2606. * there is no gaurantee that any tasks will be moved so we'll have
  2607. * a think about bumping its value to force at least one task to be
  2608. * moved
  2609. */
  2610. if (*imbalance < busiest_load_per_task) {
  2611. unsigned long tmp, pwr_now, pwr_move;
  2612. unsigned int imbn;
  2613. small_imbalance:
  2614. pwr_move = pwr_now = 0;
  2615. imbn = 2;
  2616. if (this_nr_running) {
  2617. this_load_per_task /= this_nr_running;
  2618. if (busiest_load_per_task > this_load_per_task)
  2619. imbn = 1;
  2620. } else
  2621. this_load_per_task = SCHED_LOAD_SCALE;
  2622. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2623. busiest_load_per_task * imbn) {
  2624. *imbalance = busiest_load_per_task;
  2625. return busiest;
  2626. }
  2627. /*
  2628. * OK, we don't have enough imbalance to justify moving tasks,
  2629. * however we may be able to increase total CPU power used by
  2630. * moving them.
  2631. */
  2632. pwr_now += busiest->__cpu_power *
  2633. min(busiest_load_per_task, max_load);
  2634. pwr_now += this->__cpu_power *
  2635. min(this_load_per_task, this_load);
  2636. pwr_now /= SCHED_LOAD_SCALE;
  2637. /* Amount of load we'd subtract */
  2638. tmp = sg_div_cpu_power(busiest,
  2639. busiest_load_per_task * SCHED_LOAD_SCALE);
  2640. if (max_load > tmp)
  2641. pwr_move += busiest->__cpu_power *
  2642. min(busiest_load_per_task, max_load - tmp);
  2643. /* Amount of load we'd add */
  2644. if (max_load * busiest->__cpu_power <
  2645. busiest_load_per_task * SCHED_LOAD_SCALE)
  2646. tmp = sg_div_cpu_power(this,
  2647. max_load * busiest->__cpu_power);
  2648. else
  2649. tmp = sg_div_cpu_power(this,
  2650. busiest_load_per_task * SCHED_LOAD_SCALE);
  2651. pwr_move += this->__cpu_power *
  2652. min(this_load_per_task, this_load + tmp);
  2653. pwr_move /= SCHED_LOAD_SCALE;
  2654. /* Move if we gain throughput */
  2655. if (pwr_move > pwr_now)
  2656. *imbalance = busiest_load_per_task;
  2657. }
  2658. return busiest;
  2659. out_balanced:
  2660. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2661. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2662. goto ret;
  2663. if (this == group_leader && group_leader != group_min) {
  2664. *imbalance = min_load_per_task;
  2665. return group_min;
  2666. }
  2667. #endif
  2668. ret:
  2669. *imbalance = 0;
  2670. return NULL;
  2671. }
  2672. /*
  2673. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2674. */
  2675. static struct rq *
  2676. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2677. unsigned long imbalance, const cpumask_t *cpus)
  2678. {
  2679. struct rq *busiest = NULL, *rq;
  2680. unsigned long max_load = 0;
  2681. int i;
  2682. for_each_cpu_mask(i, group->cpumask) {
  2683. unsigned long wl;
  2684. if (!cpu_isset(i, *cpus))
  2685. continue;
  2686. rq = cpu_rq(i);
  2687. wl = weighted_cpuload(i);
  2688. if (rq->nr_running == 1 && wl > imbalance)
  2689. continue;
  2690. if (wl > max_load) {
  2691. max_load = wl;
  2692. busiest = rq;
  2693. }
  2694. }
  2695. return busiest;
  2696. }
  2697. /*
  2698. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2699. * so long as it is large enough.
  2700. */
  2701. #define MAX_PINNED_INTERVAL 512
  2702. /*
  2703. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2704. * tasks if there is an imbalance.
  2705. */
  2706. static int load_balance(int this_cpu, struct rq *this_rq,
  2707. struct sched_domain *sd, enum cpu_idle_type idle,
  2708. int *balance, cpumask_t *cpus)
  2709. {
  2710. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2711. struct sched_group *group;
  2712. unsigned long imbalance;
  2713. struct rq *busiest;
  2714. unsigned long flags;
  2715. cpus_setall(*cpus);
  2716. /*
  2717. * When power savings policy is enabled for the parent domain, idle
  2718. * sibling can pick up load irrespective of busy siblings. In this case,
  2719. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2720. * portraying it as CPU_NOT_IDLE.
  2721. */
  2722. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2723. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2724. sd_idle = 1;
  2725. schedstat_inc(sd, lb_count[idle]);
  2726. redo:
  2727. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2728. cpus, balance);
  2729. if (*balance == 0)
  2730. goto out_balanced;
  2731. if (!group) {
  2732. schedstat_inc(sd, lb_nobusyg[idle]);
  2733. goto out_balanced;
  2734. }
  2735. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  2736. if (!busiest) {
  2737. schedstat_inc(sd, lb_nobusyq[idle]);
  2738. goto out_balanced;
  2739. }
  2740. BUG_ON(busiest == this_rq);
  2741. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2742. ld_moved = 0;
  2743. if (busiest->nr_running > 1) {
  2744. /*
  2745. * Attempt to move tasks. If find_busiest_group has found
  2746. * an imbalance but busiest->nr_running <= 1, the group is
  2747. * still unbalanced. ld_moved simply stays zero, so it is
  2748. * correctly treated as an imbalance.
  2749. */
  2750. local_irq_save(flags);
  2751. double_rq_lock(this_rq, busiest);
  2752. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2753. imbalance, sd, idle, &all_pinned);
  2754. double_rq_unlock(this_rq, busiest);
  2755. local_irq_restore(flags);
  2756. /*
  2757. * some other cpu did the load balance for us.
  2758. */
  2759. if (ld_moved && this_cpu != smp_processor_id())
  2760. resched_cpu(this_cpu);
  2761. /* All tasks on this runqueue were pinned by CPU affinity */
  2762. if (unlikely(all_pinned)) {
  2763. cpu_clear(cpu_of(busiest), *cpus);
  2764. if (!cpus_empty(*cpus))
  2765. goto redo;
  2766. goto out_balanced;
  2767. }
  2768. }
  2769. if (!ld_moved) {
  2770. schedstat_inc(sd, lb_failed[idle]);
  2771. sd->nr_balance_failed++;
  2772. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2773. spin_lock_irqsave(&busiest->lock, flags);
  2774. /* don't kick the migration_thread, if the curr
  2775. * task on busiest cpu can't be moved to this_cpu
  2776. */
  2777. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2778. spin_unlock_irqrestore(&busiest->lock, flags);
  2779. all_pinned = 1;
  2780. goto out_one_pinned;
  2781. }
  2782. if (!busiest->active_balance) {
  2783. busiest->active_balance = 1;
  2784. busiest->push_cpu = this_cpu;
  2785. active_balance = 1;
  2786. }
  2787. spin_unlock_irqrestore(&busiest->lock, flags);
  2788. if (active_balance)
  2789. wake_up_process(busiest->migration_thread);
  2790. /*
  2791. * We've kicked active balancing, reset the failure
  2792. * counter.
  2793. */
  2794. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2795. }
  2796. } else
  2797. sd->nr_balance_failed = 0;
  2798. if (likely(!active_balance)) {
  2799. /* We were unbalanced, so reset the balancing interval */
  2800. sd->balance_interval = sd->min_interval;
  2801. } else {
  2802. /*
  2803. * If we've begun active balancing, start to back off. This
  2804. * case may not be covered by the all_pinned logic if there
  2805. * is only 1 task on the busy runqueue (because we don't call
  2806. * move_tasks).
  2807. */
  2808. if (sd->balance_interval < sd->max_interval)
  2809. sd->balance_interval *= 2;
  2810. }
  2811. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2812. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2813. return -1;
  2814. return ld_moved;
  2815. out_balanced:
  2816. schedstat_inc(sd, lb_balanced[idle]);
  2817. sd->nr_balance_failed = 0;
  2818. out_one_pinned:
  2819. /* tune up the balancing interval */
  2820. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2821. (sd->balance_interval < sd->max_interval))
  2822. sd->balance_interval *= 2;
  2823. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2824. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2825. return -1;
  2826. return 0;
  2827. }
  2828. /*
  2829. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2830. * tasks if there is an imbalance.
  2831. *
  2832. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2833. * this_rq is locked.
  2834. */
  2835. static int
  2836. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  2837. cpumask_t *cpus)
  2838. {
  2839. struct sched_group *group;
  2840. struct rq *busiest = NULL;
  2841. unsigned long imbalance;
  2842. int ld_moved = 0;
  2843. int sd_idle = 0;
  2844. int all_pinned = 0;
  2845. cpus_setall(*cpus);
  2846. /*
  2847. * When power savings policy is enabled for the parent domain, idle
  2848. * sibling can pick up load irrespective of busy siblings. In this case,
  2849. * let the state of idle sibling percolate up as IDLE, instead of
  2850. * portraying it as CPU_NOT_IDLE.
  2851. */
  2852. if (sd->flags & SD_SHARE_CPUPOWER &&
  2853. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2854. sd_idle = 1;
  2855. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  2856. redo:
  2857. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2858. &sd_idle, cpus, NULL);
  2859. if (!group) {
  2860. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2861. goto out_balanced;
  2862. }
  2863. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  2864. if (!busiest) {
  2865. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2866. goto out_balanced;
  2867. }
  2868. BUG_ON(busiest == this_rq);
  2869. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2870. ld_moved = 0;
  2871. if (busiest->nr_running > 1) {
  2872. /* Attempt to move tasks */
  2873. double_lock_balance(this_rq, busiest);
  2874. /* this_rq->clock is already updated */
  2875. update_rq_clock(busiest);
  2876. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2877. imbalance, sd, CPU_NEWLY_IDLE,
  2878. &all_pinned);
  2879. spin_unlock(&busiest->lock);
  2880. if (unlikely(all_pinned)) {
  2881. cpu_clear(cpu_of(busiest), *cpus);
  2882. if (!cpus_empty(*cpus))
  2883. goto redo;
  2884. }
  2885. }
  2886. if (!ld_moved) {
  2887. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2888. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2889. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2890. return -1;
  2891. } else
  2892. sd->nr_balance_failed = 0;
  2893. return ld_moved;
  2894. out_balanced:
  2895. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2896. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2897. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2898. return -1;
  2899. sd->nr_balance_failed = 0;
  2900. return 0;
  2901. }
  2902. /*
  2903. * idle_balance is called by schedule() if this_cpu is about to become
  2904. * idle. Attempts to pull tasks from other CPUs.
  2905. */
  2906. static void idle_balance(int this_cpu, struct rq *this_rq)
  2907. {
  2908. struct sched_domain *sd;
  2909. int pulled_task = -1;
  2910. unsigned long next_balance = jiffies + HZ;
  2911. cpumask_t tmpmask;
  2912. for_each_domain(this_cpu, sd) {
  2913. unsigned long interval;
  2914. if (!(sd->flags & SD_LOAD_BALANCE))
  2915. continue;
  2916. if (sd->flags & SD_BALANCE_NEWIDLE)
  2917. /* If we've pulled tasks over stop searching: */
  2918. pulled_task = load_balance_newidle(this_cpu, this_rq,
  2919. sd, &tmpmask);
  2920. interval = msecs_to_jiffies(sd->balance_interval);
  2921. if (time_after(next_balance, sd->last_balance + interval))
  2922. next_balance = sd->last_balance + interval;
  2923. if (pulled_task)
  2924. break;
  2925. }
  2926. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2927. /*
  2928. * We are going idle. next_balance may be set based on
  2929. * a busy processor. So reset next_balance.
  2930. */
  2931. this_rq->next_balance = next_balance;
  2932. }
  2933. }
  2934. /*
  2935. * active_load_balance is run by migration threads. It pushes running tasks
  2936. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2937. * running on each physical CPU where possible, and avoids physical /
  2938. * logical imbalances.
  2939. *
  2940. * Called with busiest_rq locked.
  2941. */
  2942. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2943. {
  2944. int target_cpu = busiest_rq->push_cpu;
  2945. struct sched_domain *sd;
  2946. struct rq *target_rq;
  2947. /* Is there any task to move? */
  2948. if (busiest_rq->nr_running <= 1)
  2949. return;
  2950. target_rq = cpu_rq(target_cpu);
  2951. /*
  2952. * This condition is "impossible", if it occurs
  2953. * we need to fix it. Originally reported by
  2954. * Bjorn Helgaas on a 128-cpu setup.
  2955. */
  2956. BUG_ON(busiest_rq == target_rq);
  2957. /* move a task from busiest_rq to target_rq */
  2958. double_lock_balance(busiest_rq, target_rq);
  2959. update_rq_clock(busiest_rq);
  2960. update_rq_clock(target_rq);
  2961. /* Search for an sd spanning us and the target CPU. */
  2962. for_each_domain(target_cpu, sd) {
  2963. if ((sd->flags & SD_LOAD_BALANCE) &&
  2964. cpu_isset(busiest_cpu, sd->span))
  2965. break;
  2966. }
  2967. if (likely(sd)) {
  2968. schedstat_inc(sd, alb_count);
  2969. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2970. sd, CPU_IDLE))
  2971. schedstat_inc(sd, alb_pushed);
  2972. else
  2973. schedstat_inc(sd, alb_failed);
  2974. }
  2975. spin_unlock(&target_rq->lock);
  2976. }
  2977. #ifdef CONFIG_NO_HZ
  2978. static struct {
  2979. atomic_t load_balancer;
  2980. cpumask_t cpu_mask;
  2981. } nohz ____cacheline_aligned = {
  2982. .load_balancer = ATOMIC_INIT(-1),
  2983. .cpu_mask = CPU_MASK_NONE,
  2984. };
  2985. /*
  2986. * This routine will try to nominate the ilb (idle load balancing)
  2987. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2988. * load balancing on behalf of all those cpus. If all the cpus in the system
  2989. * go into this tickless mode, then there will be no ilb owner (as there is
  2990. * no need for one) and all the cpus will sleep till the next wakeup event
  2991. * arrives...
  2992. *
  2993. * For the ilb owner, tick is not stopped. And this tick will be used
  2994. * for idle load balancing. ilb owner will still be part of
  2995. * nohz.cpu_mask..
  2996. *
  2997. * While stopping the tick, this cpu will become the ilb owner if there
  2998. * is no other owner. And will be the owner till that cpu becomes busy
  2999. * or if all cpus in the system stop their ticks at which point
  3000. * there is no need for ilb owner.
  3001. *
  3002. * When the ilb owner becomes busy, it nominates another owner, during the
  3003. * next busy scheduler_tick()
  3004. */
  3005. int select_nohz_load_balancer(int stop_tick)
  3006. {
  3007. int cpu = smp_processor_id();
  3008. if (stop_tick) {
  3009. cpu_set(cpu, nohz.cpu_mask);
  3010. cpu_rq(cpu)->in_nohz_recently = 1;
  3011. /*
  3012. * If we are going offline and still the leader, give up!
  3013. */
  3014. if (cpu_is_offline(cpu) &&
  3015. atomic_read(&nohz.load_balancer) == cpu) {
  3016. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3017. BUG();
  3018. return 0;
  3019. }
  3020. /* time for ilb owner also to sleep */
  3021. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3022. if (atomic_read(&nohz.load_balancer) == cpu)
  3023. atomic_set(&nohz.load_balancer, -1);
  3024. return 0;
  3025. }
  3026. if (atomic_read(&nohz.load_balancer) == -1) {
  3027. /* make me the ilb owner */
  3028. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3029. return 1;
  3030. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3031. return 1;
  3032. } else {
  3033. if (!cpu_isset(cpu, nohz.cpu_mask))
  3034. return 0;
  3035. cpu_clear(cpu, nohz.cpu_mask);
  3036. if (atomic_read(&nohz.load_balancer) == cpu)
  3037. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3038. BUG();
  3039. }
  3040. return 0;
  3041. }
  3042. #endif
  3043. static DEFINE_SPINLOCK(balancing);
  3044. /*
  3045. * It checks each scheduling domain to see if it is due to be balanced,
  3046. * and initiates a balancing operation if so.
  3047. *
  3048. * Balancing parameters are set up in arch_init_sched_domains.
  3049. */
  3050. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3051. {
  3052. int balance = 1;
  3053. struct rq *rq = cpu_rq(cpu);
  3054. unsigned long interval;
  3055. struct sched_domain *sd;
  3056. /* Earliest time when we have to do rebalance again */
  3057. unsigned long next_balance = jiffies + 60*HZ;
  3058. int update_next_balance = 0;
  3059. cpumask_t tmp;
  3060. for_each_domain(cpu, sd) {
  3061. if (!(sd->flags & SD_LOAD_BALANCE))
  3062. continue;
  3063. interval = sd->balance_interval;
  3064. if (idle != CPU_IDLE)
  3065. interval *= sd->busy_factor;
  3066. /* scale ms to jiffies */
  3067. interval = msecs_to_jiffies(interval);
  3068. if (unlikely(!interval))
  3069. interval = 1;
  3070. if (interval > HZ*NR_CPUS/10)
  3071. interval = HZ*NR_CPUS/10;
  3072. if (sd->flags & SD_SERIALIZE) {
  3073. if (!spin_trylock(&balancing))
  3074. goto out;
  3075. }
  3076. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3077. if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
  3078. /*
  3079. * We've pulled tasks over so either we're no
  3080. * longer idle, or one of our SMT siblings is
  3081. * not idle.
  3082. */
  3083. idle = CPU_NOT_IDLE;
  3084. }
  3085. sd->last_balance = jiffies;
  3086. }
  3087. if (sd->flags & SD_SERIALIZE)
  3088. spin_unlock(&balancing);
  3089. out:
  3090. if (time_after(next_balance, sd->last_balance + interval)) {
  3091. next_balance = sd->last_balance + interval;
  3092. update_next_balance = 1;
  3093. }
  3094. /*
  3095. * Stop the load balance at this level. There is another
  3096. * CPU in our sched group which is doing load balancing more
  3097. * actively.
  3098. */
  3099. if (!balance)
  3100. break;
  3101. }
  3102. /*
  3103. * next_balance will be updated only when there is a need.
  3104. * When the cpu is attached to null domain for ex, it will not be
  3105. * updated.
  3106. */
  3107. if (likely(update_next_balance))
  3108. rq->next_balance = next_balance;
  3109. }
  3110. /*
  3111. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3112. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3113. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3114. */
  3115. static void run_rebalance_domains(struct softirq_action *h)
  3116. {
  3117. int this_cpu = smp_processor_id();
  3118. struct rq *this_rq = cpu_rq(this_cpu);
  3119. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3120. CPU_IDLE : CPU_NOT_IDLE;
  3121. rebalance_domains(this_cpu, idle);
  3122. #ifdef CONFIG_NO_HZ
  3123. /*
  3124. * If this cpu is the owner for idle load balancing, then do the
  3125. * balancing on behalf of the other idle cpus whose ticks are
  3126. * stopped.
  3127. */
  3128. if (this_rq->idle_at_tick &&
  3129. atomic_read(&nohz.load_balancer) == this_cpu) {
  3130. cpumask_t cpus = nohz.cpu_mask;
  3131. struct rq *rq;
  3132. int balance_cpu;
  3133. cpu_clear(this_cpu, cpus);
  3134. for_each_cpu_mask(balance_cpu, cpus) {
  3135. /*
  3136. * If this cpu gets work to do, stop the load balancing
  3137. * work being done for other cpus. Next load
  3138. * balancing owner will pick it up.
  3139. */
  3140. if (need_resched())
  3141. break;
  3142. rebalance_domains(balance_cpu, CPU_IDLE);
  3143. rq = cpu_rq(balance_cpu);
  3144. if (time_after(this_rq->next_balance, rq->next_balance))
  3145. this_rq->next_balance = rq->next_balance;
  3146. }
  3147. }
  3148. #endif
  3149. }
  3150. /*
  3151. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3152. *
  3153. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3154. * idle load balancing owner or decide to stop the periodic load balancing,
  3155. * if the whole system is idle.
  3156. */
  3157. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3158. {
  3159. #ifdef CONFIG_NO_HZ
  3160. /*
  3161. * If we were in the nohz mode recently and busy at the current
  3162. * scheduler tick, then check if we need to nominate new idle
  3163. * load balancer.
  3164. */
  3165. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3166. rq->in_nohz_recently = 0;
  3167. if (atomic_read(&nohz.load_balancer) == cpu) {
  3168. cpu_clear(cpu, nohz.cpu_mask);
  3169. atomic_set(&nohz.load_balancer, -1);
  3170. }
  3171. if (atomic_read(&nohz.load_balancer) == -1) {
  3172. /*
  3173. * simple selection for now: Nominate the
  3174. * first cpu in the nohz list to be the next
  3175. * ilb owner.
  3176. *
  3177. * TBD: Traverse the sched domains and nominate
  3178. * the nearest cpu in the nohz.cpu_mask.
  3179. */
  3180. int ilb = first_cpu(nohz.cpu_mask);
  3181. if (ilb < nr_cpu_ids)
  3182. resched_cpu(ilb);
  3183. }
  3184. }
  3185. /*
  3186. * If this cpu is idle and doing idle load balancing for all the
  3187. * cpus with ticks stopped, is it time for that to stop?
  3188. */
  3189. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3190. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3191. resched_cpu(cpu);
  3192. return;
  3193. }
  3194. /*
  3195. * If this cpu is idle and the idle load balancing is done by
  3196. * someone else, then no need raise the SCHED_SOFTIRQ
  3197. */
  3198. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3199. cpu_isset(cpu, nohz.cpu_mask))
  3200. return;
  3201. #endif
  3202. if (time_after_eq(jiffies, rq->next_balance))
  3203. raise_softirq(SCHED_SOFTIRQ);
  3204. }
  3205. #else /* CONFIG_SMP */
  3206. /*
  3207. * on UP we do not need to balance between CPUs:
  3208. */
  3209. static inline void idle_balance(int cpu, struct rq *rq)
  3210. {
  3211. }
  3212. #endif
  3213. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3214. EXPORT_PER_CPU_SYMBOL(kstat);
  3215. /*
  3216. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  3217. * that have not yet been banked in case the task is currently running.
  3218. */
  3219. unsigned long long task_sched_runtime(struct task_struct *p)
  3220. {
  3221. unsigned long flags;
  3222. u64 ns, delta_exec;
  3223. struct rq *rq;
  3224. rq = task_rq_lock(p, &flags);
  3225. ns = p->se.sum_exec_runtime;
  3226. if (task_current(rq, p)) {
  3227. update_rq_clock(rq);
  3228. delta_exec = rq->clock - p->se.exec_start;
  3229. if ((s64)delta_exec > 0)
  3230. ns += delta_exec;
  3231. }
  3232. task_rq_unlock(rq, &flags);
  3233. return ns;
  3234. }
  3235. /*
  3236. * Account user cpu time to a process.
  3237. * @p: the process that the cpu time gets accounted to
  3238. * @cputime: the cpu time spent in user space since the last update
  3239. */
  3240. void account_user_time(struct task_struct *p, cputime_t cputime)
  3241. {
  3242. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3243. cputime64_t tmp;
  3244. p->utime = cputime_add(p->utime, cputime);
  3245. /* Add user time to cpustat. */
  3246. tmp = cputime_to_cputime64(cputime);
  3247. if (TASK_NICE(p) > 0)
  3248. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3249. else
  3250. cpustat->user = cputime64_add(cpustat->user, tmp);
  3251. }
  3252. /*
  3253. * Account guest cpu time to a process.
  3254. * @p: the process that the cpu time gets accounted to
  3255. * @cputime: the cpu time spent in virtual machine since the last update
  3256. */
  3257. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3258. {
  3259. cputime64_t tmp;
  3260. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3261. tmp = cputime_to_cputime64(cputime);
  3262. p->utime = cputime_add(p->utime, cputime);
  3263. p->gtime = cputime_add(p->gtime, cputime);
  3264. cpustat->user = cputime64_add(cpustat->user, tmp);
  3265. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3266. }
  3267. /*
  3268. * Account scaled user cpu time to a process.
  3269. * @p: the process that the cpu time gets accounted to
  3270. * @cputime: the cpu time spent in user space since the last update
  3271. */
  3272. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3273. {
  3274. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3275. }
  3276. /*
  3277. * Account system cpu time to a process.
  3278. * @p: the process that the cpu time gets accounted to
  3279. * @hardirq_offset: the offset to subtract from hardirq_count()
  3280. * @cputime: the cpu time spent in kernel space since the last update
  3281. */
  3282. void account_system_time(struct task_struct *p, int hardirq_offset,
  3283. cputime_t cputime)
  3284. {
  3285. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3286. struct rq *rq = this_rq();
  3287. cputime64_t tmp;
  3288. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
  3289. return account_guest_time(p, cputime);
  3290. p->stime = cputime_add(p->stime, cputime);
  3291. /* Add system time to cpustat. */
  3292. tmp = cputime_to_cputime64(cputime);
  3293. if (hardirq_count() - hardirq_offset)
  3294. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3295. else if (softirq_count())
  3296. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3297. else if (p != rq->idle)
  3298. cpustat->system = cputime64_add(cpustat->system, tmp);
  3299. else if (atomic_read(&rq->nr_iowait) > 0)
  3300. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3301. else
  3302. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3303. /* Account for system time used */
  3304. acct_update_integrals(p);
  3305. }
  3306. /*
  3307. * Account scaled system cpu time to a process.
  3308. * @p: the process that the cpu time gets accounted to
  3309. * @hardirq_offset: the offset to subtract from hardirq_count()
  3310. * @cputime: the cpu time spent in kernel space since the last update
  3311. */
  3312. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3313. {
  3314. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3315. }
  3316. /*
  3317. * Account for involuntary wait time.
  3318. * @p: the process from which the cpu time has been stolen
  3319. * @steal: the cpu time spent in involuntary wait
  3320. */
  3321. void account_steal_time(struct task_struct *p, cputime_t steal)
  3322. {
  3323. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3324. cputime64_t tmp = cputime_to_cputime64(steal);
  3325. struct rq *rq = this_rq();
  3326. if (p == rq->idle) {
  3327. p->stime = cputime_add(p->stime, steal);
  3328. if (atomic_read(&rq->nr_iowait) > 0)
  3329. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3330. else
  3331. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3332. } else
  3333. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3334. }
  3335. /*
  3336. * This function gets called by the timer code, with HZ frequency.
  3337. * We call it with interrupts disabled.
  3338. *
  3339. * It also gets called by the fork code, when changing the parent's
  3340. * timeslices.
  3341. */
  3342. void scheduler_tick(void)
  3343. {
  3344. int cpu = smp_processor_id();
  3345. struct rq *rq = cpu_rq(cpu);
  3346. struct task_struct *curr = rq->curr;
  3347. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  3348. spin_lock(&rq->lock);
  3349. __update_rq_clock(rq);
  3350. /*
  3351. * Let rq->clock advance by at least TICK_NSEC:
  3352. */
  3353. if (unlikely(rq->clock < next_tick)) {
  3354. rq->clock = next_tick;
  3355. rq->clock_underflows++;
  3356. }
  3357. rq->tick_timestamp = rq->clock;
  3358. update_last_tick_seen(rq);
  3359. update_cpu_load(rq);
  3360. curr->sched_class->task_tick(rq, curr, 0);
  3361. spin_unlock(&rq->lock);
  3362. #ifdef CONFIG_SMP
  3363. rq->idle_at_tick = idle_cpu(cpu);
  3364. trigger_load_balance(rq, cpu);
  3365. #endif
  3366. }
  3367. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3368. void __kprobes add_preempt_count(int val)
  3369. {
  3370. /*
  3371. * Underflow?
  3372. */
  3373. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3374. return;
  3375. preempt_count() += val;
  3376. /*
  3377. * Spinlock count overflowing soon?
  3378. */
  3379. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3380. PREEMPT_MASK - 10);
  3381. }
  3382. EXPORT_SYMBOL(add_preempt_count);
  3383. void __kprobes sub_preempt_count(int val)
  3384. {
  3385. /*
  3386. * Underflow?
  3387. */
  3388. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3389. return;
  3390. /*
  3391. * Is the spinlock portion underflowing?
  3392. */
  3393. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3394. !(preempt_count() & PREEMPT_MASK)))
  3395. return;
  3396. preempt_count() -= val;
  3397. }
  3398. EXPORT_SYMBOL(sub_preempt_count);
  3399. #endif
  3400. /*
  3401. * Print scheduling while atomic bug:
  3402. */
  3403. static noinline void __schedule_bug(struct task_struct *prev)
  3404. {
  3405. struct pt_regs *regs = get_irq_regs();
  3406. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3407. prev->comm, prev->pid, preempt_count());
  3408. debug_show_held_locks(prev);
  3409. if (irqs_disabled())
  3410. print_irqtrace_events(prev);
  3411. if (regs)
  3412. show_regs(regs);
  3413. else
  3414. dump_stack();
  3415. }
  3416. /*
  3417. * Various schedule()-time debugging checks and statistics:
  3418. */
  3419. static inline void schedule_debug(struct task_struct *prev)
  3420. {
  3421. /*
  3422. * Test if we are atomic. Since do_exit() needs to call into
  3423. * schedule() atomically, we ignore that path for now.
  3424. * Otherwise, whine if we are scheduling when we should not be.
  3425. */
  3426. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  3427. __schedule_bug(prev);
  3428. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3429. schedstat_inc(this_rq(), sched_count);
  3430. #ifdef CONFIG_SCHEDSTATS
  3431. if (unlikely(prev->lock_depth >= 0)) {
  3432. schedstat_inc(this_rq(), bkl_count);
  3433. schedstat_inc(prev, sched_info.bkl_count);
  3434. }
  3435. #endif
  3436. }
  3437. /*
  3438. * Pick up the highest-prio task:
  3439. */
  3440. static inline struct task_struct *
  3441. pick_next_task(struct rq *rq, struct task_struct *prev)
  3442. {
  3443. const struct sched_class *class;
  3444. struct task_struct *p;
  3445. /*
  3446. * Optimization: we know that if all tasks are in
  3447. * the fair class we can call that function directly:
  3448. */
  3449. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3450. p = fair_sched_class.pick_next_task(rq);
  3451. if (likely(p))
  3452. return p;
  3453. }
  3454. class = sched_class_highest;
  3455. for ( ; ; ) {
  3456. p = class->pick_next_task(rq);
  3457. if (p)
  3458. return p;
  3459. /*
  3460. * Will never be NULL as the idle class always
  3461. * returns a non-NULL p:
  3462. */
  3463. class = class->next;
  3464. }
  3465. }
  3466. /*
  3467. * schedule() is the main scheduler function.
  3468. */
  3469. asmlinkage void __sched schedule(void)
  3470. {
  3471. struct task_struct *prev, *next;
  3472. unsigned long *switch_count;
  3473. struct rq *rq;
  3474. int cpu;
  3475. need_resched:
  3476. preempt_disable();
  3477. cpu = smp_processor_id();
  3478. rq = cpu_rq(cpu);
  3479. rcu_qsctr_inc(cpu);
  3480. prev = rq->curr;
  3481. switch_count = &prev->nivcsw;
  3482. release_kernel_lock(prev);
  3483. need_resched_nonpreemptible:
  3484. schedule_debug(prev);
  3485. hrtick_clear(rq);
  3486. /*
  3487. * Do the rq-clock update outside the rq lock:
  3488. */
  3489. local_irq_disable();
  3490. __update_rq_clock(rq);
  3491. spin_lock(&rq->lock);
  3492. clear_tsk_need_resched(prev);
  3493. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3494. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3495. signal_pending(prev))) {
  3496. prev->state = TASK_RUNNING;
  3497. } else {
  3498. deactivate_task(rq, prev, 1);
  3499. }
  3500. switch_count = &prev->nvcsw;
  3501. }
  3502. #ifdef CONFIG_SMP
  3503. if (prev->sched_class->pre_schedule)
  3504. prev->sched_class->pre_schedule(rq, prev);
  3505. #endif
  3506. if (unlikely(!rq->nr_running))
  3507. idle_balance(cpu, rq);
  3508. prev->sched_class->put_prev_task(rq, prev);
  3509. next = pick_next_task(rq, prev);
  3510. sched_info_switch(prev, next);
  3511. if (likely(prev != next)) {
  3512. rq->nr_switches++;
  3513. rq->curr = next;
  3514. ++*switch_count;
  3515. context_switch(rq, prev, next); /* unlocks the rq */
  3516. /*
  3517. * the context switch might have flipped the stack from under
  3518. * us, hence refresh the local variables.
  3519. */
  3520. cpu = smp_processor_id();
  3521. rq = cpu_rq(cpu);
  3522. } else
  3523. spin_unlock_irq(&rq->lock);
  3524. hrtick_set(rq);
  3525. if (unlikely(reacquire_kernel_lock(current) < 0))
  3526. goto need_resched_nonpreemptible;
  3527. preempt_enable_no_resched();
  3528. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3529. goto need_resched;
  3530. }
  3531. EXPORT_SYMBOL(schedule);
  3532. #ifdef CONFIG_PREEMPT
  3533. /*
  3534. * this is the entry point to schedule() from in-kernel preemption
  3535. * off of preempt_enable. Kernel preemptions off return from interrupt
  3536. * occur there and call schedule directly.
  3537. */
  3538. asmlinkage void __sched preempt_schedule(void)
  3539. {
  3540. struct thread_info *ti = current_thread_info();
  3541. struct task_struct *task = current;
  3542. int saved_lock_depth;
  3543. /*
  3544. * If there is a non-zero preempt_count or interrupts are disabled,
  3545. * we do not want to preempt the current task. Just return..
  3546. */
  3547. if (likely(ti->preempt_count || irqs_disabled()))
  3548. return;
  3549. do {
  3550. add_preempt_count(PREEMPT_ACTIVE);
  3551. /*
  3552. * We keep the big kernel semaphore locked, but we
  3553. * clear ->lock_depth so that schedule() doesnt
  3554. * auto-release the semaphore:
  3555. */
  3556. saved_lock_depth = task->lock_depth;
  3557. task->lock_depth = -1;
  3558. schedule();
  3559. task->lock_depth = saved_lock_depth;
  3560. sub_preempt_count(PREEMPT_ACTIVE);
  3561. /*
  3562. * Check again in case we missed a preemption opportunity
  3563. * between schedule and now.
  3564. */
  3565. barrier();
  3566. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3567. }
  3568. EXPORT_SYMBOL(preempt_schedule);
  3569. /*
  3570. * this is the entry point to schedule() from kernel preemption
  3571. * off of irq context.
  3572. * Note, that this is called and return with irqs disabled. This will
  3573. * protect us against recursive calling from irq.
  3574. */
  3575. asmlinkage void __sched preempt_schedule_irq(void)
  3576. {
  3577. struct thread_info *ti = current_thread_info();
  3578. struct task_struct *task = current;
  3579. int saved_lock_depth;
  3580. /* Catch callers which need to be fixed */
  3581. BUG_ON(ti->preempt_count || !irqs_disabled());
  3582. do {
  3583. add_preempt_count(PREEMPT_ACTIVE);
  3584. /*
  3585. * We keep the big kernel semaphore locked, but we
  3586. * clear ->lock_depth so that schedule() doesnt
  3587. * auto-release the semaphore:
  3588. */
  3589. saved_lock_depth = task->lock_depth;
  3590. task->lock_depth = -1;
  3591. local_irq_enable();
  3592. schedule();
  3593. local_irq_disable();
  3594. task->lock_depth = saved_lock_depth;
  3595. sub_preempt_count(PREEMPT_ACTIVE);
  3596. /*
  3597. * Check again in case we missed a preemption opportunity
  3598. * between schedule and now.
  3599. */
  3600. barrier();
  3601. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3602. }
  3603. #endif /* CONFIG_PREEMPT */
  3604. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3605. void *key)
  3606. {
  3607. return try_to_wake_up(curr->private, mode, sync);
  3608. }
  3609. EXPORT_SYMBOL(default_wake_function);
  3610. /*
  3611. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3612. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3613. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3614. *
  3615. * There are circumstances in which we can try to wake a task which has already
  3616. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3617. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3618. */
  3619. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3620. int nr_exclusive, int sync, void *key)
  3621. {
  3622. wait_queue_t *curr, *next;
  3623. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3624. unsigned flags = curr->flags;
  3625. if (curr->func(curr, mode, sync, key) &&
  3626. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3627. break;
  3628. }
  3629. }
  3630. /**
  3631. * __wake_up - wake up threads blocked on a waitqueue.
  3632. * @q: the waitqueue
  3633. * @mode: which threads
  3634. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3635. * @key: is directly passed to the wakeup function
  3636. */
  3637. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3638. int nr_exclusive, void *key)
  3639. {
  3640. unsigned long flags;
  3641. spin_lock_irqsave(&q->lock, flags);
  3642. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3643. spin_unlock_irqrestore(&q->lock, flags);
  3644. }
  3645. EXPORT_SYMBOL(__wake_up);
  3646. /*
  3647. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3648. */
  3649. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3650. {
  3651. __wake_up_common(q, mode, 1, 0, NULL);
  3652. }
  3653. /**
  3654. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3655. * @q: the waitqueue
  3656. * @mode: which threads
  3657. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3658. *
  3659. * The sync wakeup differs that the waker knows that it will schedule
  3660. * away soon, so while the target thread will be woken up, it will not
  3661. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3662. * with each other. This can prevent needless bouncing between CPUs.
  3663. *
  3664. * On UP it can prevent extra preemption.
  3665. */
  3666. void
  3667. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3668. {
  3669. unsigned long flags;
  3670. int sync = 1;
  3671. if (unlikely(!q))
  3672. return;
  3673. if (unlikely(!nr_exclusive))
  3674. sync = 0;
  3675. spin_lock_irqsave(&q->lock, flags);
  3676. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3677. spin_unlock_irqrestore(&q->lock, flags);
  3678. }
  3679. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3680. void complete(struct completion *x)
  3681. {
  3682. unsigned long flags;
  3683. spin_lock_irqsave(&x->wait.lock, flags);
  3684. x->done++;
  3685. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3686. spin_unlock_irqrestore(&x->wait.lock, flags);
  3687. }
  3688. EXPORT_SYMBOL(complete);
  3689. void complete_all(struct completion *x)
  3690. {
  3691. unsigned long flags;
  3692. spin_lock_irqsave(&x->wait.lock, flags);
  3693. x->done += UINT_MAX/2;
  3694. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3695. spin_unlock_irqrestore(&x->wait.lock, flags);
  3696. }
  3697. EXPORT_SYMBOL(complete_all);
  3698. static inline long __sched
  3699. do_wait_for_common(struct completion *x, long timeout, int state)
  3700. {
  3701. if (!x->done) {
  3702. DECLARE_WAITQUEUE(wait, current);
  3703. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3704. __add_wait_queue_tail(&x->wait, &wait);
  3705. do {
  3706. if ((state == TASK_INTERRUPTIBLE &&
  3707. signal_pending(current)) ||
  3708. (state == TASK_KILLABLE &&
  3709. fatal_signal_pending(current))) {
  3710. __remove_wait_queue(&x->wait, &wait);
  3711. return -ERESTARTSYS;
  3712. }
  3713. __set_current_state(state);
  3714. spin_unlock_irq(&x->wait.lock);
  3715. timeout = schedule_timeout(timeout);
  3716. spin_lock_irq(&x->wait.lock);
  3717. if (!timeout) {
  3718. __remove_wait_queue(&x->wait, &wait);
  3719. return timeout;
  3720. }
  3721. } while (!x->done);
  3722. __remove_wait_queue(&x->wait, &wait);
  3723. }
  3724. x->done--;
  3725. return timeout;
  3726. }
  3727. static long __sched
  3728. wait_for_common(struct completion *x, long timeout, int state)
  3729. {
  3730. might_sleep();
  3731. spin_lock_irq(&x->wait.lock);
  3732. timeout = do_wait_for_common(x, timeout, state);
  3733. spin_unlock_irq(&x->wait.lock);
  3734. return timeout;
  3735. }
  3736. void __sched wait_for_completion(struct completion *x)
  3737. {
  3738. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3739. }
  3740. EXPORT_SYMBOL(wait_for_completion);
  3741. unsigned long __sched
  3742. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3743. {
  3744. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3745. }
  3746. EXPORT_SYMBOL(wait_for_completion_timeout);
  3747. int __sched wait_for_completion_interruptible(struct completion *x)
  3748. {
  3749. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3750. if (t == -ERESTARTSYS)
  3751. return t;
  3752. return 0;
  3753. }
  3754. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3755. unsigned long __sched
  3756. wait_for_completion_interruptible_timeout(struct completion *x,
  3757. unsigned long timeout)
  3758. {
  3759. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3760. }
  3761. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3762. int __sched wait_for_completion_killable(struct completion *x)
  3763. {
  3764. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3765. if (t == -ERESTARTSYS)
  3766. return t;
  3767. return 0;
  3768. }
  3769. EXPORT_SYMBOL(wait_for_completion_killable);
  3770. static long __sched
  3771. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3772. {
  3773. unsigned long flags;
  3774. wait_queue_t wait;
  3775. init_waitqueue_entry(&wait, current);
  3776. __set_current_state(state);
  3777. spin_lock_irqsave(&q->lock, flags);
  3778. __add_wait_queue(q, &wait);
  3779. spin_unlock(&q->lock);
  3780. timeout = schedule_timeout(timeout);
  3781. spin_lock_irq(&q->lock);
  3782. __remove_wait_queue(q, &wait);
  3783. spin_unlock_irqrestore(&q->lock, flags);
  3784. return timeout;
  3785. }
  3786. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3787. {
  3788. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3789. }
  3790. EXPORT_SYMBOL(interruptible_sleep_on);
  3791. long __sched
  3792. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3793. {
  3794. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3795. }
  3796. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3797. void __sched sleep_on(wait_queue_head_t *q)
  3798. {
  3799. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3800. }
  3801. EXPORT_SYMBOL(sleep_on);
  3802. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3803. {
  3804. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3805. }
  3806. EXPORT_SYMBOL(sleep_on_timeout);
  3807. #ifdef CONFIG_RT_MUTEXES
  3808. /*
  3809. * rt_mutex_setprio - set the current priority of a task
  3810. * @p: task
  3811. * @prio: prio value (kernel-internal form)
  3812. *
  3813. * This function changes the 'effective' priority of a task. It does
  3814. * not touch ->normal_prio like __setscheduler().
  3815. *
  3816. * Used by the rt_mutex code to implement priority inheritance logic.
  3817. */
  3818. void rt_mutex_setprio(struct task_struct *p, int prio)
  3819. {
  3820. unsigned long flags;
  3821. int oldprio, on_rq, running;
  3822. struct rq *rq;
  3823. const struct sched_class *prev_class = p->sched_class;
  3824. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3825. rq = task_rq_lock(p, &flags);
  3826. update_rq_clock(rq);
  3827. oldprio = p->prio;
  3828. on_rq = p->se.on_rq;
  3829. running = task_current(rq, p);
  3830. if (on_rq)
  3831. dequeue_task(rq, p, 0);
  3832. if (running)
  3833. p->sched_class->put_prev_task(rq, p);
  3834. if (rt_prio(prio))
  3835. p->sched_class = &rt_sched_class;
  3836. else
  3837. p->sched_class = &fair_sched_class;
  3838. p->prio = prio;
  3839. if (running)
  3840. p->sched_class->set_curr_task(rq);
  3841. if (on_rq) {
  3842. enqueue_task(rq, p, 0);
  3843. check_class_changed(rq, p, prev_class, oldprio, running);
  3844. }
  3845. task_rq_unlock(rq, &flags);
  3846. }
  3847. #endif
  3848. void set_user_nice(struct task_struct *p, long nice)
  3849. {
  3850. int old_prio, delta, on_rq;
  3851. unsigned long flags;
  3852. struct rq *rq;
  3853. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3854. return;
  3855. /*
  3856. * We have to be careful, if called from sys_setpriority(),
  3857. * the task might be in the middle of scheduling on another CPU.
  3858. */
  3859. rq = task_rq_lock(p, &flags);
  3860. update_rq_clock(rq);
  3861. /*
  3862. * The RT priorities are set via sched_setscheduler(), but we still
  3863. * allow the 'normal' nice value to be set - but as expected
  3864. * it wont have any effect on scheduling until the task is
  3865. * SCHED_FIFO/SCHED_RR:
  3866. */
  3867. if (task_has_rt_policy(p)) {
  3868. p->static_prio = NICE_TO_PRIO(nice);
  3869. goto out_unlock;
  3870. }
  3871. on_rq = p->se.on_rq;
  3872. if (on_rq) {
  3873. dequeue_task(rq, p, 0);
  3874. dec_load(rq, p);
  3875. }
  3876. p->static_prio = NICE_TO_PRIO(nice);
  3877. set_load_weight(p);
  3878. old_prio = p->prio;
  3879. p->prio = effective_prio(p);
  3880. delta = p->prio - old_prio;
  3881. if (on_rq) {
  3882. enqueue_task(rq, p, 0);
  3883. inc_load(rq, p);
  3884. /*
  3885. * If the task increased its priority or is running and
  3886. * lowered its priority, then reschedule its CPU:
  3887. */
  3888. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3889. resched_task(rq->curr);
  3890. }
  3891. out_unlock:
  3892. task_rq_unlock(rq, &flags);
  3893. }
  3894. EXPORT_SYMBOL(set_user_nice);
  3895. /*
  3896. * can_nice - check if a task can reduce its nice value
  3897. * @p: task
  3898. * @nice: nice value
  3899. */
  3900. int can_nice(const struct task_struct *p, const int nice)
  3901. {
  3902. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3903. int nice_rlim = 20 - nice;
  3904. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3905. capable(CAP_SYS_NICE));
  3906. }
  3907. #ifdef __ARCH_WANT_SYS_NICE
  3908. /*
  3909. * sys_nice - change the priority of the current process.
  3910. * @increment: priority increment
  3911. *
  3912. * sys_setpriority is a more generic, but much slower function that
  3913. * does similar things.
  3914. */
  3915. asmlinkage long sys_nice(int increment)
  3916. {
  3917. long nice, retval;
  3918. /*
  3919. * Setpriority might change our priority at the same moment.
  3920. * We don't have to worry. Conceptually one call occurs first
  3921. * and we have a single winner.
  3922. */
  3923. if (increment < -40)
  3924. increment = -40;
  3925. if (increment > 40)
  3926. increment = 40;
  3927. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3928. if (nice < -20)
  3929. nice = -20;
  3930. if (nice > 19)
  3931. nice = 19;
  3932. if (increment < 0 && !can_nice(current, nice))
  3933. return -EPERM;
  3934. retval = security_task_setnice(current, nice);
  3935. if (retval)
  3936. return retval;
  3937. set_user_nice(current, nice);
  3938. return 0;
  3939. }
  3940. #endif
  3941. /**
  3942. * task_prio - return the priority value of a given task.
  3943. * @p: the task in question.
  3944. *
  3945. * This is the priority value as seen by users in /proc.
  3946. * RT tasks are offset by -200. Normal tasks are centered
  3947. * around 0, value goes from -16 to +15.
  3948. */
  3949. int task_prio(const struct task_struct *p)
  3950. {
  3951. return p->prio - MAX_RT_PRIO;
  3952. }
  3953. /**
  3954. * task_nice - return the nice value of a given task.
  3955. * @p: the task in question.
  3956. */
  3957. int task_nice(const struct task_struct *p)
  3958. {
  3959. return TASK_NICE(p);
  3960. }
  3961. EXPORT_SYMBOL(task_nice);
  3962. /**
  3963. * idle_cpu - is a given cpu idle currently?
  3964. * @cpu: the processor in question.
  3965. */
  3966. int idle_cpu(int cpu)
  3967. {
  3968. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3969. }
  3970. /**
  3971. * idle_task - return the idle task for a given cpu.
  3972. * @cpu: the processor in question.
  3973. */
  3974. struct task_struct *idle_task(int cpu)
  3975. {
  3976. return cpu_rq(cpu)->idle;
  3977. }
  3978. /**
  3979. * find_process_by_pid - find a process with a matching PID value.
  3980. * @pid: the pid in question.
  3981. */
  3982. static struct task_struct *find_process_by_pid(pid_t pid)
  3983. {
  3984. return pid ? find_task_by_vpid(pid) : current;
  3985. }
  3986. /* Actually do priority change: must hold rq lock. */
  3987. static void
  3988. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3989. {
  3990. BUG_ON(p->se.on_rq);
  3991. p->policy = policy;
  3992. switch (p->policy) {
  3993. case SCHED_NORMAL:
  3994. case SCHED_BATCH:
  3995. case SCHED_IDLE:
  3996. p->sched_class = &fair_sched_class;
  3997. break;
  3998. case SCHED_FIFO:
  3999. case SCHED_RR:
  4000. p->sched_class = &rt_sched_class;
  4001. break;
  4002. }
  4003. p->rt_priority = prio;
  4004. p->normal_prio = normal_prio(p);
  4005. /* we are holding p->pi_lock already */
  4006. p->prio = rt_mutex_getprio(p);
  4007. set_load_weight(p);
  4008. }
  4009. /**
  4010. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4011. * @p: the task in question.
  4012. * @policy: new policy.
  4013. * @param: structure containing the new RT priority.
  4014. *
  4015. * NOTE that the task may be already dead.
  4016. */
  4017. int sched_setscheduler(struct task_struct *p, int policy,
  4018. struct sched_param *param)
  4019. {
  4020. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4021. unsigned long flags;
  4022. const struct sched_class *prev_class = p->sched_class;
  4023. struct rq *rq;
  4024. /* may grab non-irq protected spin_locks */
  4025. BUG_ON(in_interrupt());
  4026. recheck:
  4027. /* double check policy once rq lock held */
  4028. if (policy < 0)
  4029. policy = oldpolicy = p->policy;
  4030. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4031. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4032. policy != SCHED_IDLE)
  4033. return -EINVAL;
  4034. /*
  4035. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4036. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4037. * SCHED_BATCH and SCHED_IDLE is 0.
  4038. */
  4039. if (param->sched_priority < 0 ||
  4040. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4041. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4042. return -EINVAL;
  4043. if (rt_policy(policy) != (param->sched_priority != 0))
  4044. return -EINVAL;
  4045. /*
  4046. * Allow unprivileged RT tasks to decrease priority:
  4047. */
  4048. if (!capable(CAP_SYS_NICE)) {
  4049. if (rt_policy(policy)) {
  4050. unsigned long rlim_rtprio;
  4051. if (!lock_task_sighand(p, &flags))
  4052. return -ESRCH;
  4053. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4054. unlock_task_sighand(p, &flags);
  4055. /* can't set/change the rt policy */
  4056. if (policy != p->policy && !rlim_rtprio)
  4057. return -EPERM;
  4058. /* can't increase priority */
  4059. if (param->sched_priority > p->rt_priority &&
  4060. param->sched_priority > rlim_rtprio)
  4061. return -EPERM;
  4062. }
  4063. /*
  4064. * Like positive nice levels, dont allow tasks to
  4065. * move out of SCHED_IDLE either:
  4066. */
  4067. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4068. return -EPERM;
  4069. /* can't change other user's priorities */
  4070. if ((current->euid != p->euid) &&
  4071. (current->euid != p->uid))
  4072. return -EPERM;
  4073. }
  4074. #ifdef CONFIG_RT_GROUP_SCHED
  4075. /*
  4076. * Do not allow realtime tasks into groups that have no runtime
  4077. * assigned.
  4078. */
  4079. if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
  4080. return -EPERM;
  4081. #endif
  4082. retval = security_task_setscheduler(p, policy, param);
  4083. if (retval)
  4084. return retval;
  4085. /*
  4086. * make sure no PI-waiters arrive (or leave) while we are
  4087. * changing the priority of the task:
  4088. */
  4089. spin_lock_irqsave(&p->pi_lock, flags);
  4090. /*
  4091. * To be able to change p->policy safely, the apropriate
  4092. * runqueue lock must be held.
  4093. */
  4094. rq = __task_rq_lock(p);
  4095. /* recheck policy now with rq lock held */
  4096. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4097. policy = oldpolicy = -1;
  4098. __task_rq_unlock(rq);
  4099. spin_unlock_irqrestore(&p->pi_lock, flags);
  4100. goto recheck;
  4101. }
  4102. update_rq_clock(rq);
  4103. on_rq = p->se.on_rq;
  4104. running = task_current(rq, p);
  4105. if (on_rq)
  4106. deactivate_task(rq, p, 0);
  4107. if (running)
  4108. p->sched_class->put_prev_task(rq, p);
  4109. oldprio = p->prio;
  4110. __setscheduler(rq, p, policy, param->sched_priority);
  4111. if (running)
  4112. p->sched_class->set_curr_task(rq);
  4113. if (on_rq) {
  4114. activate_task(rq, p, 0);
  4115. check_class_changed(rq, p, prev_class, oldprio, running);
  4116. }
  4117. __task_rq_unlock(rq);
  4118. spin_unlock_irqrestore(&p->pi_lock, flags);
  4119. rt_mutex_adjust_pi(p);
  4120. return 0;
  4121. }
  4122. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4123. static int
  4124. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4125. {
  4126. struct sched_param lparam;
  4127. struct task_struct *p;
  4128. int retval;
  4129. if (!param || pid < 0)
  4130. return -EINVAL;
  4131. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4132. return -EFAULT;
  4133. rcu_read_lock();
  4134. retval = -ESRCH;
  4135. p = find_process_by_pid(pid);
  4136. if (p != NULL)
  4137. retval = sched_setscheduler(p, policy, &lparam);
  4138. rcu_read_unlock();
  4139. return retval;
  4140. }
  4141. /**
  4142. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4143. * @pid: the pid in question.
  4144. * @policy: new policy.
  4145. * @param: structure containing the new RT priority.
  4146. */
  4147. asmlinkage long
  4148. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4149. {
  4150. /* negative values for policy are not valid */
  4151. if (policy < 0)
  4152. return -EINVAL;
  4153. return do_sched_setscheduler(pid, policy, param);
  4154. }
  4155. /**
  4156. * sys_sched_setparam - set/change the RT priority of a thread
  4157. * @pid: the pid in question.
  4158. * @param: structure containing the new RT priority.
  4159. */
  4160. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4161. {
  4162. return do_sched_setscheduler(pid, -1, param);
  4163. }
  4164. /**
  4165. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4166. * @pid: the pid in question.
  4167. */
  4168. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4169. {
  4170. struct task_struct *p;
  4171. int retval;
  4172. if (pid < 0)
  4173. return -EINVAL;
  4174. retval = -ESRCH;
  4175. read_lock(&tasklist_lock);
  4176. p = find_process_by_pid(pid);
  4177. if (p) {
  4178. retval = security_task_getscheduler(p);
  4179. if (!retval)
  4180. retval = p->policy;
  4181. }
  4182. read_unlock(&tasklist_lock);
  4183. return retval;
  4184. }
  4185. /**
  4186. * sys_sched_getscheduler - get the RT priority of a thread
  4187. * @pid: the pid in question.
  4188. * @param: structure containing the RT priority.
  4189. */
  4190. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4191. {
  4192. struct sched_param lp;
  4193. struct task_struct *p;
  4194. int retval;
  4195. if (!param || pid < 0)
  4196. return -EINVAL;
  4197. read_lock(&tasklist_lock);
  4198. p = find_process_by_pid(pid);
  4199. retval = -ESRCH;
  4200. if (!p)
  4201. goto out_unlock;
  4202. retval = security_task_getscheduler(p);
  4203. if (retval)
  4204. goto out_unlock;
  4205. lp.sched_priority = p->rt_priority;
  4206. read_unlock(&tasklist_lock);
  4207. /*
  4208. * This one might sleep, we cannot do it with a spinlock held ...
  4209. */
  4210. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4211. return retval;
  4212. out_unlock:
  4213. read_unlock(&tasklist_lock);
  4214. return retval;
  4215. }
  4216. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4217. {
  4218. cpumask_t cpus_allowed;
  4219. cpumask_t new_mask = *in_mask;
  4220. struct task_struct *p;
  4221. int retval;
  4222. get_online_cpus();
  4223. read_lock(&tasklist_lock);
  4224. p = find_process_by_pid(pid);
  4225. if (!p) {
  4226. read_unlock(&tasklist_lock);
  4227. put_online_cpus();
  4228. return -ESRCH;
  4229. }
  4230. /*
  4231. * It is not safe to call set_cpus_allowed with the
  4232. * tasklist_lock held. We will bump the task_struct's
  4233. * usage count and then drop tasklist_lock.
  4234. */
  4235. get_task_struct(p);
  4236. read_unlock(&tasklist_lock);
  4237. retval = -EPERM;
  4238. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4239. !capable(CAP_SYS_NICE))
  4240. goto out_unlock;
  4241. retval = security_task_setscheduler(p, 0, NULL);
  4242. if (retval)
  4243. goto out_unlock;
  4244. cpuset_cpus_allowed(p, &cpus_allowed);
  4245. cpus_and(new_mask, new_mask, cpus_allowed);
  4246. again:
  4247. retval = set_cpus_allowed_ptr(p, &new_mask);
  4248. if (!retval) {
  4249. cpuset_cpus_allowed(p, &cpus_allowed);
  4250. if (!cpus_subset(new_mask, cpus_allowed)) {
  4251. /*
  4252. * We must have raced with a concurrent cpuset
  4253. * update. Just reset the cpus_allowed to the
  4254. * cpuset's cpus_allowed
  4255. */
  4256. new_mask = cpus_allowed;
  4257. goto again;
  4258. }
  4259. }
  4260. out_unlock:
  4261. put_task_struct(p);
  4262. put_online_cpus();
  4263. return retval;
  4264. }
  4265. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4266. cpumask_t *new_mask)
  4267. {
  4268. if (len < sizeof(cpumask_t)) {
  4269. memset(new_mask, 0, sizeof(cpumask_t));
  4270. } else if (len > sizeof(cpumask_t)) {
  4271. len = sizeof(cpumask_t);
  4272. }
  4273. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4274. }
  4275. /**
  4276. * sys_sched_setaffinity - set the cpu affinity of a process
  4277. * @pid: pid of the process
  4278. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4279. * @user_mask_ptr: user-space pointer to the new cpu mask
  4280. */
  4281. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4282. unsigned long __user *user_mask_ptr)
  4283. {
  4284. cpumask_t new_mask;
  4285. int retval;
  4286. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4287. if (retval)
  4288. return retval;
  4289. return sched_setaffinity(pid, &new_mask);
  4290. }
  4291. /*
  4292. * Represents all cpu's present in the system
  4293. * In systems capable of hotplug, this map could dynamically grow
  4294. * as new cpu's are detected in the system via any platform specific
  4295. * method, such as ACPI for e.g.
  4296. */
  4297. cpumask_t cpu_present_map __read_mostly;
  4298. EXPORT_SYMBOL(cpu_present_map);
  4299. #ifndef CONFIG_SMP
  4300. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  4301. EXPORT_SYMBOL(cpu_online_map);
  4302. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  4303. EXPORT_SYMBOL(cpu_possible_map);
  4304. #endif
  4305. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4306. {
  4307. struct task_struct *p;
  4308. int retval;
  4309. get_online_cpus();
  4310. read_lock(&tasklist_lock);
  4311. retval = -ESRCH;
  4312. p = find_process_by_pid(pid);
  4313. if (!p)
  4314. goto out_unlock;
  4315. retval = security_task_getscheduler(p);
  4316. if (retval)
  4317. goto out_unlock;
  4318. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4319. out_unlock:
  4320. read_unlock(&tasklist_lock);
  4321. put_online_cpus();
  4322. return retval;
  4323. }
  4324. /**
  4325. * sys_sched_getaffinity - get the cpu affinity of a process
  4326. * @pid: pid of the process
  4327. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4328. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4329. */
  4330. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4331. unsigned long __user *user_mask_ptr)
  4332. {
  4333. int ret;
  4334. cpumask_t mask;
  4335. if (len < sizeof(cpumask_t))
  4336. return -EINVAL;
  4337. ret = sched_getaffinity(pid, &mask);
  4338. if (ret < 0)
  4339. return ret;
  4340. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4341. return -EFAULT;
  4342. return sizeof(cpumask_t);
  4343. }
  4344. /**
  4345. * sys_sched_yield - yield the current processor to other threads.
  4346. *
  4347. * This function yields the current CPU to other tasks. If there are no
  4348. * other threads running on this CPU then this function will return.
  4349. */
  4350. asmlinkage long sys_sched_yield(void)
  4351. {
  4352. struct rq *rq = this_rq_lock();
  4353. schedstat_inc(rq, yld_count);
  4354. current->sched_class->yield_task(rq);
  4355. /*
  4356. * Since we are going to call schedule() anyway, there's
  4357. * no need to preempt or enable interrupts:
  4358. */
  4359. __release(rq->lock);
  4360. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4361. _raw_spin_unlock(&rq->lock);
  4362. preempt_enable_no_resched();
  4363. schedule();
  4364. return 0;
  4365. }
  4366. static void __cond_resched(void)
  4367. {
  4368. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4369. __might_sleep(__FILE__, __LINE__);
  4370. #endif
  4371. /*
  4372. * The BKS might be reacquired before we have dropped
  4373. * PREEMPT_ACTIVE, which could trigger a second
  4374. * cond_resched() call.
  4375. */
  4376. do {
  4377. add_preempt_count(PREEMPT_ACTIVE);
  4378. schedule();
  4379. sub_preempt_count(PREEMPT_ACTIVE);
  4380. } while (need_resched());
  4381. }
  4382. #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
  4383. int __sched _cond_resched(void)
  4384. {
  4385. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4386. system_state == SYSTEM_RUNNING) {
  4387. __cond_resched();
  4388. return 1;
  4389. }
  4390. return 0;
  4391. }
  4392. EXPORT_SYMBOL(_cond_resched);
  4393. #endif
  4394. /*
  4395. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4396. * call schedule, and on return reacquire the lock.
  4397. *
  4398. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4399. * operations here to prevent schedule() from being called twice (once via
  4400. * spin_unlock(), once by hand).
  4401. */
  4402. int cond_resched_lock(spinlock_t *lock)
  4403. {
  4404. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4405. int ret = 0;
  4406. if (spin_needbreak(lock) || resched) {
  4407. spin_unlock(lock);
  4408. if (resched && need_resched())
  4409. __cond_resched();
  4410. else
  4411. cpu_relax();
  4412. ret = 1;
  4413. spin_lock(lock);
  4414. }
  4415. return ret;
  4416. }
  4417. EXPORT_SYMBOL(cond_resched_lock);
  4418. int __sched cond_resched_softirq(void)
  4419. {
  4420. BUG_ON(!in_softirq());
  4421. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4422. local_bh_enable();
  4423. __cond_resched();
  4424. local_bh_disable();
  4425. return 1;
  4426. }
  4427. return 0;
  4428. }
  4429. EXPORT_SYMBOL(cond_resched_softirq);
  4430. /**
  4431. * yield - yield the current processor to other threads.
  4432. *
  4433. * This is a shortcut for kernel-space yielding - it marks the
  4434. * thread runnable and calls sys_sched_yield().
  4435. */
  4436. void __sched yield(void)
  4437. {
  4438. set_current_state(TASK_RUNNING);
  4439. sys_sched_yield();
  4440. }
  4441. EXPORT_SYMBOL(yield);
  4442. /*
  4443. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4444. * that process accounting knows that this is a task in IO wait state.
  4445. *
  4446. * But don't do that if it is a deliberate, throttling IO wait (this task
  4447. * has set its backing_dev_info: the queue against which it should throttle)
  4448. */
  4449. void __sched io_schedule(void)
  4450. {
  4451. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4452. delayacct_blkio_start();
  4453. atomic_inc(&rq->nr_iowait);
  4454. schedule();
  4455. atomic_dec(&rq->nr_iowait);
  4456. delayacct_blkio_end();
  4457. }
  4458. EXPORT_SYMBOL(io_schedule);
  4459. long __sched io_schedule_timeout(long timeout)
  4460. {
  4461. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4462. long ret;
  4463. delayacct_blkio_start();
  4464. atomic_inc(&rq->nr_iowait);
  4465. ret = schedule_timeout(timeout);
  4466. atomic_dec(&rq->nr_iowait);
  4467. delayacct_blkio_end();
  4468. return ret;
  4469. }
  4470. /**
  4471. * sys_sched_get_priority_max - return maximum RT priority.
  4472. * @policy: scheduling class.
  4473. *
  4474. * this syscall returns the maximum rt_priority that can be used
  4475. * by a given scheduling class.
  4476. */
  4477. asmlinkage long sys_sched_get_priority_max(int policy)
  4478. {
  4479. int ret = -EINVAL;
  4480. switch (policy) {
  4481. case SCHED_FIFO:
  4482. case SCHED_RR:
  4483. ret = MAX_USER_RT_PRIO-1;
  4484. break;
  4485. case SCHED_NORMAL:
  4486. case SCHED_BATCH:
  4487. case SCHED_IDLE:
  4488. ret = 0;
  4489. break;
  4490. }
  4491. return ret;
  4492. }
  4493. /**
  4494. * sys_sched_get_priority_min - return minimum RT priority.
  4495. * @policy: scheduling class.
  4496. *
  4497. * this syscall returns the minimum rt_priority that can be used
  4498. * by a given scheduling class.
  4499. */
  4500. asmlinkage long sys_sched_get_priority_min(int policy)
  4501. {
  4502. int ret = -EINVAL;
  4503. switch (policy) {
  4504. case SCHED_FIFO:
  4505. case SCHED_RR:
  4506. ret = 1;
  4507. break;
  4508. case SCHED_NORMAL:
  4509. case SCHED_BATCH:
  4510. case SCHED_IDLE:
  4511. ret = 0;
  4512. }
  4513. return ret;
  4514. }
  4515. /**
  4516. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4517. * @pid: pid of the process.
  4518. * @interval: userspace pointer to the timeslice value.
  4519. *
  4520. * this syscall writes the default timeslice value of a given process
  4521. * into the user-space timespec buffer. A value of '0' means infinity.
  4522. */
  4523. asmlinkage
  4524. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4525. {
  4526. struct task_struct *p;
  4527. unsigned int time_slice;
  4528. int retval;
  4529. struct timespec t;
  4530. if (pid < 0)
  4531. return -EINVAL;
  4532. retval = -ESRCH;
  4533. read_lock(&tasklist_lock);
  4534. p = find_process_by_pid(pid);
  4535. if (!p)
  4536. goto out_unlock;
  4537. retval = security_task_getscheduler(p);
  4538. if (retval)
  4539. goto out_unlock;
  4540. /*
  4541. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4542. * tasks that are on an otherwise idle runqueue:
  4543. */
  4544. time_slice = 0;
  4545. if (p->policy == SCHED_RR) {
  4546. time_slice = DEF_TIMESLICE;
  4547. } else if (p->policy != SCHED_FIFO) {
  4548. struct sched_entity *se = &p->se;
  4549. unsigned long flags;
  4550. struct rq *rq;
  4551. rq = task_rq_lock(p, &flags);
  4552. if (rq->cfs.load.weight)
  4553. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4554. task_rq_unlock(rq, &flags);
  4555. }
  4556. read_unlock(&tasklist_lock);
  4557. jiffies_to_timespec(time_slice, &t);
  4558. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4559. return retval;
  4560. out_unlock:
  4561. read_unlock(&tasklist_lock);
  4562. return retval;
  4563. }
  4564. static const char stat_nam[] = "RSDTtZX";
  4565. void sched_show_task(struct task_struct *p)
  4566. {
  4567. unsigned long free = 0;
  4568. unsigned state;
  4569. state = p->state ? __ffs(p->state) + 1 : 0;
  4570. printk(KERN_INFO "%-13.13s %c", p->comm,
  4571. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4572. #if BITS_PER_LONG == 32
  4573. if (state == TASK_RUNNING)
  4574. printk(KERN_CONT " running ");
  4575. else
  4576. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4577. #else
  4578. if (state == TASK_RUNNING)
  4579. printk(KERN_CONT " running task ");
  4580. else
  4581. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4582. #endif
  4583. #ifdef CONFIG_DEBUG_STACK_USAGE
  4584. {
  4585. unsigned long *n = end_of_stack(p);
  4586. while (!*n)
  4587. n++;
  4588. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4589. }
  4590. #endif
  4591. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4592. task_pid_nr(p), task_pid_nr(p->real_parent));
  4593. show_stack(p, NULL);
  4594. }
  4595. void show_state_filter(unsigned long state_filter)
  4596. {
  4597. struct task_struct *g, *p;
  4598. #if BITS_PER_LONG == 32
  4599. printk(KERN_INFO
  4600. " task PC stack pid father\n");
  4601. #else
  4602. printk(KERN_INFO
  4603. " task PC stack pid father\n");
  4604. #endif
  4605. read_lock(&tasklist_lock);
  4606. do_each_thread(g, p) {
  4607. /*
  4608. * reset the NMI-timeout, listing all files on a slow
  4609. * console might take alot of time:
  4610. */
  4611. touch_nmi_watchdog();
  4612. if (!state_filter || (p->state & state_filter))
  4613. sched_show_task(p);
  4614. } while_each_thread(g, p);
  4615. touch_all_softlockup_watchdogs();
  4616. #ifdef CONFIG_SCHED_DEBUG
  4617. sysrq_sched_debug_show();
  4618. #endif
  4619. read_unlock(&tasklist_lock);
  4620. /*
  4621. * Only show locks if all tasks are dumped:
  4622. */
  4623. if (state_filter == -1)
  4624. debug_show_all_locks();
  4625. }
  4626. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4627. {
  4628. idle->sched_class = &idle_sched_class;
  4629. }
  4630. /**
  4631. * init_idle - set up an idle thread for a given CPU
  4632. * @idle: task in question
  4633. * @cpu: cpu the idle task belongs to
  4634. *
  4635. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4636. * flag, to make booting more robust.
  4637. */
  4638. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4639. {
  4640. struct rq *rq = cpu_rq(cpu);
  4641. unsigned long flags;
  4642. __sched_fork(idle);
  4643. idle->se.exec_start = sched_clock();
  4644. idle->prio = idle->normal_prio = MAX_PRIO;
  4645. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4646. __set_task_cpu(idle, cpu);
  4647. spin_lock_irqsave(&rq->lock, flags);
  4648. rq->curr = rq->idle = idle;
  4649. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4650. idle->oncpu = 1;
  4651. #endif
  4652. spin_unlock_irqrestore(&rq->lock, flags);
  4653. /* Set the preempt count _outside_ the spinlocks! */
  4654. task_thread_info(idle)->preempt_count = 0;
  4655. /*
  4656. * The idle tasks have their own, simple scheduling class:
  4657. */
  4658. idle->sched_class = &idle_sched_class;
  4659. }
  4660. /*
  4661. * In a system that switches off the HZ timer nohz_cpu_mask
  4662. * indicates which cpus entered this state. This is used
  4663. * in the rcu update to wait only for active cpus. For system
  4664. * which do not switch off the HZ timer nohz_cpu_mask should
  4665. * always be CPU_MASK_NONE.
  4666. */
  4667. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4668. /*
  4669. * Increase the granularity value when there are more CPUs,
  4670. * because with more CPUs the 'effective latency' as visible
  4671. * to users decreases. But the relationship is not linear,
  4672. * so pick a second-best guess by going with the log2 of the
  4673. * number of CPUs.
  4674. *
  4675. * This idea comes from the SD scheduler of Con Kolivas:
  4676. */
  4677. static inline void sched_init_granularity(void)
  4678. {
  4679. unsigned int factor = 1 + ilog2(num_online_cpus());
  4680. const unsigned long limit = 200000000;
  4681. sysctl_sched_min_granularity *= factor;
  4682. if (sysctl_sched_min_granularity > limit)
  4683. sysctl_sched_min_granularity = limit;
  4684. sysctl_sched_latency *= factor;
  4685. if (sysctl_sched_latency > limit)
  4686. sysctl_sched_latency = limit;
  4687. sysctl_sched_wakeup_granularity *= factor;
  4688. }
  4689. #ifdef CONFIG_SMP
  4690. /*
  4691. * This is how migration works:
  4692. *
  4693. * 1) we queue a struct migration_req structure in the source CPU's
  4694. * runqueue and wake up that CPU's migration thread.
  4695. * 2) we down() the locked semaphore => thread blocks.
  4696. * 3) migration thread wakes up (implicitly it forces the migrated
  4697. * thread off the CPU)
  4698. * 4) it gets the migration request and checks whether the migrated
  4699. * task is still in the wrong runqueue.
  4700. * 5) if it's in the wrong runqueue then the migration thread removes
  4701. * it and puts it into the right queue.
  4702. * 6) migration thread up()s the semaphore.
  4703. * 7) we wake up and the migration is done.
  4704. */
  4705. /*
  4706. * Change a given task's CPU affinity. Migrate the thread to a
  4707. * proper CPU and schedule it away if the CPU it's executing on
  4708. * is removed from the allowed bitmask.
  4709. *
  4710. * NOTE: the caller must have a valid reference to the task, the
  4711. * task must not exit() & deallocate itself prematurely. The
  4712. * call is not atomic; no spinlocks may be held.
  4713. */
  4714. int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
  4715. {
  4716. struct migration_req req;
  4717. unsigned long flags;
  4718. struct rq *rq;
  4719. int ret = 0;
  4720. rq = task_rq_lock(p, &flags);
  4721. if (!cpus_intersects(*new_mask, cpu_online_map)) {
  4722. ret = -EINVAL;
  4723. goto out;
  4724. }
  4725. if (p->sched_class->set_cpus_allowed)
  4726. p->sched_class->set_cpus_allowed(p, new_mask);
  4727. else {
  4728. p->cpus_allowed = *new_mask;
  4729. p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
  4730. }
  4731. /* Can the task run on the task's current CPU? If so, we're done */
  4732. if (cpu_isset(task_cpu(p), *new_mask))
  4733. goto out;
  4734. if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
  4735. /* Need help from migration thread: drop lock and wait. */
  4736. task_rq_unlock(rq, &flags);
  4737. wake_up_process(rq->migration_thread);
  4738. wait_for_completion(&req.done);
  4739. tlb_migrate_finish(p->mm);
  4740. return 0;
  4741. }
  4742. out:
  4743. task_rq_unlock(rq, &flags);
  4744. return ret;
  4745. }
  4746. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4747. /*
  4748. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4749. * this because either it can't run here any more (set_cpus_allowed()
  4750. * away from this CPU, or CPU going down), or because we're
  4751. * attempting to rebalance this task on exec (sched_exec).
  4752. *
  4753. * So we race with normal scheduler movements, but that's OK, as long
  4754. * as the task is no longer on this CPU.
  4755. *
  4756. * Returns non-zero if task was successfully migrated.
  4757. */
  4758. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4759. {
  4760. struct rq *rq_dest, *rq_src;
  4761. int ret = 0, on_rq;
  4762. if (unlikely(cpu_is_offline(dest_cpu)))
  4763. return ret;
  4764. rq_src = cpu_rq(src_cpu);
  4765. rq_dest = cpu_rq(dest_cpu);
  4766. double_rq_lock(rq_src, rq_dest);
  4767. /* Already moved. */
  4768. if (task_cpu(p) != src_cpu)
  4769. goto out;
  4770. /* Affinity changed (again). */
  4771. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4772. goto out;
  4773. on_rq = p->se.on_rq;
  4774. if (on_rq)
  4775. deactivate_task(rq_src, p, 0);
  4776. set_task_cpu(p, dest_cpu);
  4777. if (on_rq) {
  4778. activate_task(rq_dest, p, 0);
  4779. check_preempt_curr(rq_dest, p);
  4780. }
  4781. ret = 1;
  4782. out:
  4783. double_rq_unlock(rq_src, rq_dest);
  4784. return ret;
  4785. }
  4786. /*
  4787. * migration_thread - this is a highprio system thread that performs
  4788. * thread migration by bumping thread off CPU then 'pushing' onto
  4789. * another runqueue.
  4790. */
  4791. static int migration_thread(void *data)
  4792. {
  4793. int cpu = (long)data;
  4794. struct rq *rq;
  4795. rq = cpu_rq(cpu);
  4796. BUG_ON(rq->migration_thread != current);
  4797. set_current_state(TASK_INTERRUPTIBLE);
  4798. while (!kthread_should_stop()) {
  4799. struct migration_req *req;
  4800. struct list_head *head;
  4801. spin_lock_irq(&rq->lock);
  4802. if (cpu_is_offline(cpu)) {
  4803. spin_unlock_irq(&rq->lock);
  4804. goto wait_to_die;
  4805. }
  4806. if (rq->active_balance) {
  4807. active_load_balance(rq, cpu);
  4808. rq->active_balance = 0;
  4809. }
  4810. head = &rq->migration_queue;
  4811. if (list_empty(head)) {
  4812. spin_unlock_irq(&rq->lock);
  4813. schedule();
  4814. set_current_state(TASK_INTERRUPTIBLE);
  4815. continue;
  4816. }
  4817. req = list_entry(head->next, struct migration_req, list);
  4818. list_del_init(head->next);
  4819. spin_unlock(&rq->lock);
  4820. __migrate_task(req->task, cpu, req->dest_cpu);
  4821. local_irq_enable();
  4822. complete(&req->done);
  4823. }
  4824. __set_current_state(TASK_RUNNING);
  4825. return 0;
  4826. wait_to_die:
  4827. /* Wait for kthread_stop */
  4828. set_current_state(TASK_INTERRUPTIBLE);
  4829. while (!kthread_should_stop()) {
  4830. schedule();
  4831. set_current_state(TASK_INTERRUPTIBLE);
  4832. }
  4833. __set_current_state(TASK_RUNNING);
  4834. return 0;
  4835. }
  4836. #ifdef CONFIG_HOTPLUG_CPU
  4837. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4838. {
  4839. int ret;
  4840. local_irq_disable();
  4841. ret = __migrate_task(p, src_cpu, dest_cpu);
  4842. local_irq_enable();
  4843. return ret;
  4844. }
  4845. /*
  4846. * Figure out where task on dead CPU should go, use force if necessary.
  4847. * NOTE: interrupts should be disabled by the caller
  4848. */
  4849. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4850. {
  4851. unsigned long flags;
  4852. cpumask_t mask;
  4853. struct rq *rq;
  4854. int dest_cpu;
  4855. do {
  4856. /* On same node? */
  4857. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4858. cpus_and(mask, mask, p->cpus_allowed);
  4859. dest_cpu = any_online_cpu(mask);
  4860. /* On any allowed CPU? */
  4861. if (dest_cpu >= nr_cpu_ids)
  4862. dest_cpu = any_online_cpu(p->cpus_allowed);
  4863. /* No more Mr. Nice Guy. */
  4864. if (dest_cpu >= nr_cpu_ids) {
  4865. cpumask_t cpus_allowed;
  4866. cpuset_cpus_allowed_locked(p, &cpus_allowed);
  4867. /*
  4868. * Try to stay on the same cpuset, where the
  4869. * current cpuset may be a subset of all cpus.
  4870. * The cpuset_cpus_allowed_locked() variant of
  4871. * cpuset_cpus_allowed() will not block. It must be
  4872. * called within calls to cpuset_lock/cpuset_unlock.
  4873. */
  4874. rq = task_rq_lock(p, &flags);
  4875. p->cpus_allowed = cpus_allowed;
  4876. dest_cpu = any_online_cpu(p->cpus_allowed);
  4877. task_rq_unlock(rq, &flags);
  4878. /*
  4879. * Don't tell them about moving exiting tasks or
  4880. * kernel threads (both mm NULL), since they never
  4881. * leave kernel.
  4882. */
  4883. if (p->mm && printk_ratelimit()) {
  4884. printk(KERN_INFO "process %d (%s) no "
  4885. "longer affine to cpu%d\n",
  4886. task_pid_nr(p), p->comm, dead_cpu);
  4887. }
  4888. }
  4889. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  4890. }
  4891. /*
  4892. * While a dead CPU has no uninterruptible tasks queued at this point,
  4893. * it might still have a nonzero ->nr_uninterruptible counter, because
  4894. * for performance reasons the counter is not stricly tracking tasks to
  4895. * their home CPUs. So we just add the counter to another CPU's counter,
  4896. * to keep the global sum constant after CPU-down:
  4897. */
  4898. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4899. {
  4900. struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
  4901. unsigned long flags;
  4902. local_irq_save(flags);
  4903. double_rq_lock(rq_src, rq_dest);
  4904. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4905. rq_src->nr_uninterruptible = 0;
  4906. double_rq_unlock(rq_src, rq_dest);
  4907. local_irq_restore(flags);
  4908. }
  4909. /* Run through task list and migrate tasks from the dead cpu. */
  4910. static void migrate_live_tasks(int src_cpu)
  4911. {
  4912. struct task_struct *p, *t;
  4913. read_lock(&tasklist_lock);
  4914. do_each_thread(t, p) {
  4915. if (p == current)
  4916. continue;
  4917. if (task_cpu(p) == src_cpu)
  4918. move_task_off_dead_cpu(src_cpu, p);
  4919. } while_each_thread(t, p);
  4920. read_unlock(&tasklist_lock);
  4921. }
  4922. /*
  4923. * Schedules idle task to be the next runnable task on current CPU.
  4924. * It does so by boosting its priority to highest possible.
  4925. * Used by CPU offline code.
  4926. */
  4927. void sched_idle_next(void)
  4928. {
  4929. int this_cpu = smp_processor_id();
  4930. struct rq *rq = cpu_rq(this_cpu);
  4931. struct task_struct *p = rq->idle;
  4932. unsigned long flags;
  4933. /* cpu has to be offline */
  4934. BUG_ON(cpu_online(this_cpu));
  4935. /*
  4936. * Strictly not necessary since rest of the CPUs are stopped by now
  4937. * and interrupts disabled on the current cpu.
  4938. */
  4939. spin_lock_irqsave(&rq->lock, flags);
  4940. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4941. update_rq_clock(rq);
  4942. activate_task(rq, p, 0);
  4943. spin_unlock_irqrestore(&rq->lock, flags);
  4944. }
  4945. /*
  4946. * Ensures that the idle task is using init_mm right before its cpu goes
  4947. * offline.
  4948. */
  4949. void idle_task_exit(void)
  4950. {
  4951. struct mm_struct *mm = current->active_mm;
  4952. BUG_ON(cpu_online(smp_processor_id()));
  4953. if (mm != &init_mm)
  4954. switch_mm(mm, &init_mm, current);
  4955. mmdrop(mm);
  4956. }
  4957. /* called under rq->lock with disabled interrupts */
  4958. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4959. {
  4960. struct rq *rq = cpu_rq(dead_cpu);
  4961. /* Must be exiting, otherwise would be on tasklist. */
  4962. BUG_ON(!p->exit_state);
  4963. /* Cannot have done final schedule yet: would have vanished. */
  4964. BUG_ON(p->state == TASK_DEAD);
  4965. get_task_struct(p);
  4966. /*
  4967. * Drop lock around migration; if someone else moves it,
  4968. * that's OK. No task can be added to this CPU, so iteration is
  4969. * fine.
  4970. */
  4971. spin_unlock_irq(&rq->lock);
  4972. move_task_off_dead_cpu(dead_cpu, p);
  4973. spin_lock_irq(&rq->lock);
  4974. put_task_struct(p);
  4975. }
  4976. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4977. static void migrate_dead_tasks(unsigned int dead_cpu)
  4978. {
  4979. struct rq *rq = cpu_rq(dead_cpu);
  4980. struct task_struct *next;
  4981. for ( ; ; ) {
  4982. if (!rq->nr_running)
  4983. break;
  4984. update_rq_clock(rq);
  4985. next = pick_next_task(rq, rq->curr);
  4986. if (!next)
  4987. break;
  4988. migrate_dead(dead_cpu, next);
  4989. }
  4990. }
  4991. #endif /* CONFIG_HOTPLUG_CPU */
  4992. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4993. static struct ctl_table sd_ctl_dir[] = {
  4994. {
  4995. .procname = "sched_domain",
  4996. .mode = 0555,
  4997. },
  4998. {0, },
  4999. };
  5000. static struct ctl_table sd_ctl_root[] = {
  5001. {
  5002. .ctl_name = CTL_KERN,
  5003. .procname = "kernel",
  5004. .mode = 0555,
  5005. .child = sd_ctl_dir,
  5006. },
  5007. {0, },
  5008. };
  5009. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5010. {
  5011. struct ctl_table *entry =
  5012. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5013. return entry;
  5014. }
  5015. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5016. {
  5017. struct ctl_table *entry;
  5018. /*
  5019. * In the intermediate directories, both the child directory and
  5020. * procname are dynamically allocated and could fail but the mode
  5021. * will always be set. In the lowest directory the names are
  5022. * static strings and all have proc handlers.
  5023. */
  5024. for (entry = *tablep; entry->mode; entry++) {
  5025. if (entry->child)
  5026. sd_free_ctl_entry(&entry->child);
  5027. if (entry->proc_handler == NULL)
  5028. kfree(entry->procname);
  5029. }
  5030. kfree(*tablep);
  5031. *tablep = NULL;
  5032. }
  5033. static void
  5034. set_table_entry(struct ctl_table *entry,
  5035. const char *procname, void *data, int maxlen,
  5036. mode_t mode, proc_handler *proc_handler)
  5037. {
  5038. entry->procname = procname;
  5039. entry->data = data;
  5040. entry->maxlen = maxlen;
  5041. entry->mode = mode;
  5042. entry->proc_handler = proc_handler;
  5043. }
  5044. static struct ctl_table *
  5045. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5046. {
  5047. struct ctl_table *table = sd_alloc_ctl_entry(12);
  5048. if (table == NULL)
  5049. return NULL;
  5050. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5051. sizeof(long), 0644, proc_doulongvec_minmax);
  5052. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5053. sizeof(long), 0644, proc_doulongvec_minmax);
  5054. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5055. sizeof(int), 0644, proc_dointvec_minmax);
  5056. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5057. sizeof(int), 0644, proc_dointvec_minmax);
  5058. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5059. sizeof(int), 0644, proc_dointvec_minmax);
  5060. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5061. sizeof(int), 0644, proc_dointvec_minmax);
  5062. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5063. sizeof(int), 0644, proc_dointvec_minmax);
  5064. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5065. sizeof(int), 0644, proc_dointvec_minmax);
  5066. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5067. sizeof(int), 0644, proc_dointvec_minmax);
  5068. set_table_entry(&table[9], "cache_nice_tries",
  5069. &sd->cache_nice_tries,
  5070. sizeof(int), 0644, proc_dointvec_minmax);
  5071. set_table_entry(&table[10], "flags", &sd->flags,
  5072. sizeof(int), 0644, proc_dointvec_minmax);
  5073. /* &table[11] is terminator */
  5074. return table;
  5075. }
  5076. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5077. {
  5078. struct ctl_table *entry, *table;
  5079. struct sched_domain *sd;
  5080. int domain_num = 0, i;
  5081. char buf[32];
  5082. for_each_domain(cpu, sd)
  5083. domain_num++;
  5084. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5085. if (table == NULL)
  5086. return NULL;
  5087. i = 0;
  5088. for_each_domain(cpu, sd) {
  5089. snprintf(buf, 32, "domain%d", i);
  5090. entry->procname = kstrdup(buf, GFP_KERNEL);
  5091. entry->mode = 0555;
  5092. entry->child = sd_alloc_ctl_domain_table(sd);
  5093. entry++;
  5094. i++;
  5095. }
  5096. return table;
  5097. }
  5098. static struct ctl_table_header *sd_sysctl_header;
  5099. static void register_sched_domain_sysctl(void)
  5100. {
  5101. int i, cpu_num = num_online_cpus();
  5102. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5103. char buf[32];
  5104. WARN_ON(sd_ctl_dir[0].child);
  5105. sd_ctl_dir[0].child = entry;
  5106. if (entry == NULL)
  5107. return;
  5108. for_each_online_cpu(i) {
  5109. snprintf(buf, 32, "cpu%d", i);
  5110. entry->procname = kstrdup(buf, GFP_KERNEL);
  5111. entry->mode = 0555;
  5112. entry->child = sd_alloc_ctl_cpu_table(i);
  5113. entry++;
  5114. }
  5115. WARN_ON(sd_sysctl_header);
  5116. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5117. }
  5118. /* may be called multiple times per register */
  5119. static void unregister_sched_domain_sysctl(void)
  5120. {
  5121. if (sd_sysctl_header)
  5122. unregister_sysctl_table(sd_sysctl_header);
  5123. sd_sysctl_header = NULL;
  5124. if (sd_ctl_dir[0].child)
  5125. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5126. }
  5127. #else
  5128. static void register_sched_domain_sysctl(void)
  5129. {
  5130. }
  5131. static void unregister_sched_domain_sysctl(void)
  5132. {
  5133. }
  5134. #endif
  5135. /*
  5136. * migration_call - callback that gets triggered when a CPU is added.
  5137. * Here we can start up the necessary migration thread for the new CPU.
  5138. */
  5139. static int __cpuinit
  5140. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5141. {
  5142. struct task_struct *p;
  5143. int cpu = (long)hcpu;
  5144. unsigned long flags;
  5145. struct rq *rq;
  5146. switch (action) {
  5147. case CPU_UP_PREPARE:
  5148. case CPU_UP_PREPARE_FROZEN:
  5149. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5150. if (IS_ERR(p))
  5151. return NOTIFY_BAD;
  5152. kthread_bind(p, cpu);
  5153. /* Must be high prio: stop_machine expects to yield to it. */
  5154. rq = task_rq_lock(p, &flags);
  5155. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5156. task_rq_unlock(rq, &flags);
  5157. cpu_rq(cpu)->migration_thread = p;
  5158. break;
  5159. case CPU_ONLINE:
  5160. case CPU_ONLINE_FROZEN:
  5161. /* Strictly unnecessary, as first user will wake it. */
  5162. wake_up_process(cpu_rq(cpu)->migration_thread);
  5163. /* Update our root-domain */
  5164. rq = cpu_rq(cpu);
  5165. spin_lock_irqsave(&rq->lock, flags);
  5166. if (rq->rd) {
  5167. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5168. cpu_set(cpu, rq->rd->online);
  5169. }
  5170. spin_unlock_irqrestore(&rq->lock, flags);
  5171. break;
  5172. #ifdef CONFIG_HOTPLUG_CPU
  5173. case CPU_UP_CANCELED:
  5174. case CPU_UP_CANCELED_FROZEN:
  5175. if (!cpu_rq(cpu)->migration_thread)
  5176. break;
  5177. /* Unbind it from offline cpu so it can run. Fall thru. */
  5178. kthread_bind(cpu_rq(cpu)->migration_thread,
  5179. any_online_cpu(cpu_online_map));
  5180. kthread_stop(cpu_rq(cpu)->migration_thread);
  5181. cpu_rq(cpu)->migration_thread = NULL;
  5182. break;
  5183. case CPU_DEAD:
  5184. case CPU_DEAD_FROZEN:
  5185. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5186. migrate_live_tasks(cpu);
  5187. rq = cpu_rq(cpu);
  5188. kthread_stop(rq->migration_thread);
  5189. rq->migration_thread = NULL;
  5190. /* Idle task back to normal (off runqueue, low prio) */
  5191. spin_lock_irq(&rq->lock);
  5192. update_rq_clock(rq);
  5193. deactivate_task(rq, rq->idle, 0);
  5194. rq->idle->static_prio = MAX_PRIO;
  5195. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5196. rq->idle->sched_class = &idle_sched_class;
  5197. migrate_dead_tasks(cpu);
  5198. spin_unlock_irq(&rq->lock);
  5199. cpuset_unlock();
  5200. migrate_nr_uninterruptible(rq);
  5201. BUG_ON(rq->nr_running != 0);
  5202. /*
  5203. * No need to migrate the tasks: it was best-effort if
  5204. * they didn't take sched_hotcpu_mutex. Just wake up
  5205. * the requestors.
  5206. */
  5207. spin_lock_irq(&rq->lock);
  5208. while (!list_empty(&rq->migration_queue)) {
  5209. struct migration_req *req;
  5210. req = list_entry(rq->migration_queue.next,
  5211. struct migration_req, list);
  5212. list_del_init(&req->list);
  5213. complete(&req->done);
  5214. }
  5215. spin_unlock_irq(&rq->lock);
  5216. break;
  5217. case CPU_DYING:
  5218. case CPU_DYING_FROZEN:
  5219. /* Update our root-domain */
  5220. rq = cpu_rq(cpu);
  5221. spin_lock_irqsave(&rq->lock, flags);
  5222. if (rq->rd) {
  5223. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5224. cpu_clear(cpu, rq->rd->online);
  5225. }
  5226. spin_unlock_irqrestore(&rq->lock, flags);
  5227. break;
  5228. #endif
  5229. }
  5230. return NOTIFY_OK;
  5231. }
  5232. /* Register at highest priority so that task migration (migrate_all_tasks)
  5233. * happens before everything else.
  5234. */
  5235. static struct notifier_block __cpuinitdata migration_notifier = {
  5236. .notifier_call = migration_call,
  5237. .priority = 10
  5238. };
  5239. void __init migration_init(void)
  5240. {
  5241. void *cpu = (void *)(long)smp_processor_id();
  5242. int err;
  5243. /* Start one for the boot CPU: */
  5244. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5245. BUG_ON(err == NOTIFY_BAD);
  5246. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5247. register_cpu_notifier(&migration_notifier);
  5248. }
  5249. #endif
  5250. #ifdef CONFIG_SMP
  5251. #ifdef CONFIG_SCHED_DEBUG
  5252. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5253. cpumask_t *groupmask)
  5254. {
  5255. struct sched_group *group = sd->groups;
  5256. char str[256];
  5257. cpulist_scnprintf(str, sizeof(str), sd->span);
  5258. cpus_clear(*groupmask);
  5259. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5260. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5261. printk("does not load-balance\n");
  5262. if (sd->parent)
  5263. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5264. " has parent");
  5265. return -1;
  5266. }
  5267. printk(KERN_CONT "span %s\n", str);
  5268. if (!cpu_isset(cpu, sd->span)) {
  5269. printk(KERN_ERR "ERROR: domain->span does not contain "
  5270. "CPU%d\n", cpu);
  5271. }
  5272. if (!cpu_isset(cpu, group->cpumask)) {
  5273. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5274. " CPU%d\n", cpu);
  5275. }
  5276. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5277. do {
  5278. if (!group) {
  5279. printk("\n");
  5280. printk(KERN_ERR "ERROR: group is NULL\n");
  5281. break;
  5282. }
  5283. if (!group->__cpu_power) {
  5284. printk(KERN_CONT "\n");
  5285. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5286. "set\n");
  5287. break;
  5288. }
  5289. if (!cpus_weight(group->cpumask)) {
  5290. printk(KERN_CONT "\n");
  5291. printk(KERN_ERR "ERROR: empty group\n");
  5292. break;
  5293. }
  5294. if (cpus_intersects(*groupmask, group->cpumask)) {
  5295. printk(KERN_CONT "\n");
  5296. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5297. break;
  5298. }
  5299. cpus_or(*groupmask, *groupmask, group->cpumask);
  5300. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5301. printk(KERN_CONT " %s", str);
  5302. group = group->next;
  5303. } while (group != sd->groups);
  5304. printk(KERN_CONT "\n");
  5305. if (!cpus_equal(sd->span, *groupmask))
  5306. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5307. if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
  5308. printk(KERN_ERR "ERROR: parent span is not a superset "
  5309. "of domain->span\n");
  5310. return 0;
  5311. }
  5312. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5313. {
  5314. cpumask_t *groupmask;
  5315. int level = 0;
  5316. if (!sd) {
  5317. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5318. return;
  5319. }
  5320. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5321. groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5322. if (!groupmask) {
  5323. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5324. return;
  5325. }
  5326. for (;;) {
  5327. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5328. break;
  5329. level++;
  5330. sd = sd->parent;
  5331. if (!sd)
  5332. break;
  5333. }
  5334. kfree(groupmask);
  5335. }
  5336. #else
  5337. # define sched_domain_debug(sd, cpu) do { } while (0)
  5338. #endif
  5339. static int sd_degenerate(struct sched_domain *sd)
  5340. {
  5341. if (cpus_weight(sd->span) == 1)
  5342. return 1;
  5343. /* Following flags need at least 2 groups */
  5344. if (sd->flags & (SD_LOAD_BALANCE |
  5345. SD_BALANCE_NEWIDLE |
  5346. SD_BALANCE_FORK |
  5347. SD_BALANCE_EXEC |
  5348. SD_SHARE_CPUPOWER |
  5349. SD_SHARE_PKG_RESOURCES)) {
  5350. if (sd->groups != sd->groups->next)
  5351. return 0;
  5352. }
  5353. /* Following flags don't use groups */
  5354. if (sd->flags & (SD_WAKE_IDLE |
  5355. SD_WAKE_AFFINE |
  5356. SD_WAKE_BALANCE))
  5357. return 0;
  5358. return 1;
  5359. }
  5360. static int
  5361. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5362. {
  5363. unsigned long cflags = sd->flags, pflags = parent->flags;
  5364. if (sd_degenerate(parent))
  5365. return 1;
  5366. if (!cpus_equal(sd->span, parent->span))
  5367. return 0;
  5368. /* Does parent contain flags not in child? */
  5369. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5370. if (cflags & SD_WAKE_AFFINE)
  5371. pflags &= ~SD_WAKE_BALANCE;
  5372. /* Flags needing groups don't count if only 1 group in parent */
  5373. if (parent->groups == parent->groups->next) {
  5374. pflags &= ~(SD_LOAD_BALANCE |
  5375. SD_BALANCE_NEWIDLE |
  5376. SD_BALANCE_FORK |
  5377. SD_BALANCE_EXEC |
  5378. SD_SHARE_CPUPOWER |
  5379. SD_SHARE_PKG_RESOURCES);
  5380. }
  5381. if (~cflags & pflags)
  5382. return 0;
  5383. return 1;
  5384. }
  5385. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5386. {
  5387. unsigned long flags;
  5388. const struct sched_class *class;
  5389. spin_lock_irqsave(&rq->lock, flags);
  5390. if (rq->rd) {
  5391. struct root_domain *old_rd = rq->rd;
  5392. for (class = sched_class_highest; class; class = class->next) {
  5393. if (class->leave_domain)
  5394. class->leave_domain(rq);
  5395. }
  5396. cpu_clear(rq->cpu, old_rd->span);
  5397. cpu_clear(rq->cpu, old_rd->online);
  5398. if (atomic_dec_and_test(&old_rd->refcount))
  5399. kfree(old_rd);
  5400. }
  5401. atomic_inc(&rd->refcount);
  5402. rq->rd = rd;
  5403. cpu_set(rq->cpu, rd->span);
  5404. if (cpu_isset(rq->cpu, cpu_online_map))
  5405. cpu_set(rq->cpu, rd->online);
  5406. for (class = sched_class_highest; class; class = class->next) {
  5407. if (class->join_domain)
  5408. class->join_domain(rq);
  5409. }
  5410. spin_unlock_irqrestore(&rq->lock, flags);
  5411. }
  5412. static void init_rootdomain(struct root_domain *rd)
  5413. {
  5414. memset(rd, 0, sizeof(*rd));
  5415. cpus_clear(rd->span);
  5416. cpus_clear(rd->online);
  5417. }
  5418. static void init_defrootdomain(void)
  5419. {
  5420. init_rootdomain(&def_root_domain);
  5421. atomic_set(&def_root_domain.refcount, 1);
  5422. }
  5423. static struct root_domain *alloc_rootdomain(void)
  5424. {
  5425. struct root_domain *rd;
  5426. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5427. if (!rd)
  5428. return NULL;
  5429. init_rootdomain(rd);
  5430. return rd;
  5431. }
  5432. /*
  5433. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5434. * hold the hotplug lock.
  5435. */
  5436. static void
  5437. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5438. {
  5439. struct rq *rq = cpu_rq(cpu);
  5440. struct sched_domain *tmp;
  5441. /* Remove the sched domains which do not contribute to scheduling. */
  5442. for (tmp = sd; tmp; tmp = tmp->parent) {
  5443. struct sched_domain *parent = tmp->parent;
  5444. if (!parent)
  5445. break;
  5446. if (sd_parent_degenerate(tmp, parent)) {
  5447. tmp->parent = parent->parent;
  5448. if (parent->parent)
  5449. parent->parent->child = tmp;
  5450. }
  5451. }
  5452. if (sd && sd_degenerate(sd)) {
  5453. sd = sd->parent;
  5454. if (sd)
  5455. sd->child = NULL;
  5456. }
  5457. sched_domain_debug(sd, cpu);
  5458. rq_attach_root(rq, rd);
  5459. rcu_assign_pointer(rq->sd, sd);
  5460. }
  5461. /* cpus with isolated domains */
  5462. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5463. /* Setup the mask of cpus configured for isolated domains */
  5464. static int __init isolated_cpu_setup(char *str)
  5465. {
  5466. int ints[NR_CPUS], i;
  5467. str = get_options(str, ARRAY_SIZE(ints), ints);
  5468. cpus_clear(cpu_isolated_map);
  5469. for (i = 1; i <= ints[0]; i++)
  5470. if (ints[i] < NR_CPUS)
  5471. cpu_set(ints[i], cpu_isolated_map);
  5472. return 1;
  5473. }
  5474. __setup("isolcpus=", isolated_cpu_setup);
  5475. /*
  5476. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5477. * to a function which identifies what group(along with sched group) a CPU
  5478. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5479. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5480. *
  5481. * init_sched_build_groups will build a circular linked list of the groups
  5482. * covered by the given span, and will set each group's ->cpumask correctly,
  5483. * and ->cpu_power to 0.
  5484. */
  5485. static void
  5486. init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
  5487. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5488. struct sched_group **sg,
  5489. cpumask_t *tmpmask),
  5490. cpumask_t *covered, cpumask_t *tmpmask)
  5491. {
  5492. struct sched_group *first = NULL, *last = NULL;
  5493. int i;
  5494. cpus_clear(*covered);
  5495. for_each_cpu_mask(i, *span) {
  5496. struct sched_group *sg;
  5497. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5498. int j;
  5499. if (cpu_isset(i, *covered))
  5500. continue;
  5501. cpus_clear(sg->cpumask);
  5502. sg->__cpu_power = 0;
  5503. for_each_cpu_mask(j, *span) {
  5504. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5505. continue;
  5506. cpu_set(j, *covered);
  5507. cpu_set(j, sg->cpumask);
  5508. }
  5509. if (!first)
  5510. first = sg;
  5511. if (last)
  5512. last->next = sg;
  5513. last = sg;
  5514. }
  5515. last->next = first;
  5516. }
  5517. #define SD_NODES_PER_DOMAIN 16
  5518. #ifdef CONFIG_NUMA
  5519. /**
  5520. * find_next_best_node - find the next node to include in a sched_domain
  5521. * @node: node whose sched_domain we're building
  5522. * @used_nodes: nodes already in the sched_domain
  5523. *
  5524. * Find the next node to include in a given scheduling domain. Simply
  5525. * finds the closest node not already in the @used_nodes map.
  5526. *
  5527. * Should use nodemask_t.
  5528. */
  5529. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5530. {
  5531. int i, n, val, min_val, best_node = 0;
  5532. min_val = INT_MAX;
  5533. for (i = 0; i < MAX_NUMNODES; i++) {
  5534. /* Start at @node */
  5535. n = (node + i) % MAX_NUMNODES;
  5536. if (!nr_cpus_node(n))
  5537. continue;
  5538. /* Skip already used nodes */
  5539. if (node_isset(n, *used_nodes))
  5540. continue;
  5541. /* Simple min distance search */
  5542. val = node_distance(node, n);
  5543. if (val < min_val) {
  5544. min_val = val;
  5545. best_node = n;
  5546. }
  5547. }
  5548. node_set(best_node, *used_nodes);
  5549. return best_node;
  5550. }
  5551. /**
  5552. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5553. * @node: node whose cpumask we're constructing
  5554. *
  5555. * Given a node, construct a good cpumask for its sched_domain to span. It
  5556. * should be one that prevents unnecessary balancing, but also spreads tasks
  5557. * out optimally.
  5558. */
  5559. static void sched_domain_node_span(int node, cpumask_t *span)
  5560. {
  5561. nodemask_t used_nodes;
  5562. node_to_cpumask_ptr(nodemask, node);
  5563. int i;
  5564. cpus_clear(*span);
  5565. nodes_clear(used_nodes);
  5566. cpus_or(*span, *span, *nodemask);
  5567. node_set(node, used_nodes);
  5568. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5569. int next_node = find_next_best_node(node, &used_nodes);
  5570. node_to_cpumask_ptr_next(nodemask, next_node);
  5571. cpus_or(*span, *span, *nodemask);
  5572. }
  5573. }
  5574. #endif
  5575. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5576. /*
  5577. * SMT sched-domains:
  5578. */
  5579. #ifdef CONFIG_SCHED_SMT
  5580. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5581. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5582. static int
  5583. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5584. cpumask_t *unused)
  5585. {
  5586. if (sg)
  5587. *sg = &per_cpu(sched_group_cpus, cpu);
  5588. return cpu;
  5589. }
  5590. #endif
  5591. /*
  5592. * multi-core sched-domains:
  5593. */
  5594. #ifdef CONFIG_SCHED_MC
  5595. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5596. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5597. #endif
  5598. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5599. static int
  5600. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5601. cpumask_t *mask)
  5602. {
  5603. int group;
  5604. *mask = per_cpu(cpu_sibling_map, cpu);
  5605. cpus_and(*mask, *mask, *cpu_map);
  5606. group = first_cpu(*mask);
  5607. if (sg)
  5608. *sg = &per_cpu(sched_group_core, group);
  5609. return group;
  5610. }
  5611. #elif defined(CONFIG_SCHED_MC)
  5612. static int
  5613. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5614. cpumask_t *unused)
  5615. {
  5616. if (sg)
  5617. *sg = &per_cpu(sched_group_core, cpu);
  5618. return cpu;
  5619. }
  5620. #endif
  5621. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5622. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5623. static int
  5624. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5625. cpumask_t *mask)
  5626. {
  5627. int group;
  5628. #ifdef CONFIG_SCHED_MC
  5629. *mask = cpu_coregroup_map(cpu);
  5630. cpus_and(*mask, *mask, *cpu_map);
  5631. group = first_cpu(*mask);
  5632. #elif defined(CONFIG_SCHED_SMT)
  5633. *mask = per_cpu(cpu_sibling_map, cpu);
  5634. cpus_and(*mask, *mask, *cpu_map);
  5635. group = first_cpu(*mask);
  5636. #else
  5637. group = cpu;
  5638. #endif
  5639. if (sg)
  5640. *sg = &per_cpu(sched_group_phys, group);
  5641. return group;
  5642. }
  5643. #ifdef CONFIG_NUMA
  5644. /*
  5645. * The init_sched_build_groups can't handle what we want to do with node
  5646. * groups, so roll our own. Now each node has its own list of groups which
  5647. * gets dynamically allocated.
  5648. */
  5649. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5650. static struct sched_group ***sched_group_nodes_bycpu;
  5651. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5652. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5653. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5654. struct sched_group **sg, cpumask_t *nodemask)
  5655. {
  5656. int group;
  5657. *nodemask = node_to_cpumask(cpu_to_node(cpu));
  5658. cpus_and(*nodemask, *nodemask, *cpu_map);
  5659. group = first_cpu(*nodemask);
  5660. if (sg)
  5661. *sg = &per_cpu(sched_group_allnodes, group);
  5662. return group;
  5663. }
  5664. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5665. {
  5666. struct sched_group *sg = group_head;
  5667. int j;
  5668. if (!sg)
  5669. return;
  5670. do {
  5671. for_each_cpu_mask(j, sg->cpumask) {
  5672. struct sched_domain *sd;
  5673. sd = &per_cpu(phys_domains, j);
  5674. if (j != first_cpu(sd->groups->cpumask)) {
  5675. /*
  5676. * Only add "power" once for each
  5677. * physical package.
  5678. */
  5679. continue;
  5680. }
  5681. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5682. }
  5683. sg = sg->next;
  5684. } while (sg != group_head);
  5685. }
  5686. #endif
  5687. #ifdef CONFIG_NUMA
  5688. /* Free memory allocated for various sched_group structures */
  5689. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  5690. {
  5691. int cpu, i;
  5692. for_each_cpu_mask(cpu, *cpu_map) {
  5693. struct sched_group **sched_group_nodes
  5694. = sched_group_nodes_bycpu[cpu];
  5695. if (!sched_group_nodes)
  5696. continue;
  5697. for (i = 0; i < MAX_NUMNODES; i++) {
  5698. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5699. *nodemask = node_to_cpumask(i);
  5700. cpus_and(*nodemask, *nodemask, *cpu_map);
  5701. if (cpus_empty(*nodemask))
  5702. continue;
  5703. if (sg == NULL)
  5704. continue;
  5705. sg = sg->next;
  5706. next_sg:
  5707. oldsg = sg;
  5708. sg = sg->next;
  5709. kfree(oldsg);
  5710. if (oldsg != sched_group_nodes[i])
  5711. goto next_sg;
  5712. }
  5713. kfree(sched_group_nodes);
  5714. sched_group_nodes_bycpu[cpu] = NULL;
  5715. }
  5716. }
  5717. #else
  5718. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  5719. {
  5720. }
  5721. #endif
  5722. /*
  5723. * Initialize sched groups cpu_power.
  5724. *
  5725. * cpu_power indicates the capacity of sched group, which is used while
  5726. * distributing the load between different sched groups in a sched domain.
  5727. * Typically cpu_power for all the groups in a sched domain will be same unless
  5728. * there are asymmetries in the topology. If there are asymmetries, group
  5729. * having more cpu_power will pickup more load compared to the group having
  5730. * less cpu_power.
  5731. *
  5732. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5733. * the maximum number of tasks a group can handle in the presence of other idle
  5734. * or lightly loaded groups in the same sched domain.
  5735. */
  5736. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5737. {
  5738. struct sched_domain *child;
  5739. struct sched_group *group;
  5740. WARN_ON(!sd || !sd->groups);
  5741. if (cpu != first_cpu(sd->groups->cpumask))
  5742. return;
  5743. child = sd->child;
  5744. sd->groups->__cpu_power = 0;
  5745. /*
  5746. * For perf policy, if the groups in child domain share resources
  5747. * (for example cores sharing some portions of the cache hierarchy
  5748. * or SMT), then set this domain groups cpu_power such that each group
  5749. * can handle only one task, when there are other idle groups in the
  5750. * same sched domain.
  5751. */
  5752. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5753. (child->flags &
  5754. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5755. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5756. return;
  5757. }
  5758. /*
  5759. * add cpu_power of each child group to this groups cpu_power
  5760. */
  5761. group = child->groups;
  5762. do {
  5763. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5764. group = group->next;
  5765. } while (group != child->groups);
  5766. }
  5767. /*
  5768. * Initializers for schedule domains
  5769. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5770. */
  5771. #define SD_INIT(sd, type) sd_init_##type(sd)
  5772. #define SD_INIT_FUNC(type) \
  5773. static noinline void sd_init_##type(struct sched_domain *sd) \
  5774. { \
  5775. memset(sd, 0, sizeof(*sd)); \
  5776. *sd = SD_##type##_INIT; \
  5777. }
  5778. SD_INIT_FUNC(CPU)
  5779. #ifdef CONFIG_NUMA
  5780. SD_INIT_FUNC(ALLNODES)
  5781. SD_INIT_FUNC(NODE)
  5782. #endif
  5783. #ifdef CONFIG_SCHED_SMT
  5784. SD_INIT_FUNC(SIBLING)
  5785. #endif
  5786. #ifdef CONFIG_SCHED_MC
  5787. SD_INIT_FUNC(MC)
  5788. #endif
  5789. /*
  5790. * To minimize stack usage kmalloc room for cpumasks and share the
  5791. * space as the usage in build_sched_domains() dictates. Used only
  5792. * if the amount of space is significant.
  5793. */
  5794. struct allmasks {
  5795. cpumask_t tmpmask; /* make this one first */
  5796. union {
  5797. cpumask_t nodemask;
  5798. cpumask_t this_sibling_map;
  5799. cpumask_t this_core_map;
  5800. };
  5801. cpumask_t send_covered;
  5802. #ifdef CONFIG_NUMA
  5803. cpumask_t domainspan;
  5804. cpumask_t covered;
  5805. cpumask_t notcovered;
  5806. #endif
  5807. };
  5808. #if NR_CPUS > 128
  5809. #define SCHED_CPUMASK_ALLOC 1
  5810. #define SCHED_CPUMASK_FREE(v) kfree(v)
  5811. #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
  5812. #else
  5813. #define SCHED_CPUMASK_ALLOC 0
  5814. #define SCHED_CPUMASK_FREE(v)
  5815. #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
  5816. #endif
  5817. #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
  5818. ((unsigned long)(a) + offsetof(struct allmasks, v))
  5819. /*
  5820. * Build sched domains for a given set of cpus and attach the sched domains
  5821. * to the individual cpus
  5822. */
  5823. static int build_sched_domains(const cpumask_t *cpu_map)
  5824. {
  5825. int i;
  5826. struct root_domain *rd;
  5827. SCHED_CPUMASK_DECLARE(allmasks);
  5828. cpumask_t *tmpmask;
  5829. #ifdef CONFIG_NUMA
  5830. struct sched_group **sched_group_nodes = NULL;
  5831. int sd_allnodes = 0;
  5832. /*
  5833. * Allocate the per-node list of sched groups
  5834. */
  5835. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  5836. GFP_KERNEL);
  5837. if (!sched_group_nodes) {
  5838. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5839. return -ENOMEM;
  5840. }
  5841. #endif
  5842. rd = alloc_rootdomain();
  5843. if (!rd) {
  5844. printk(KERN_WARNING "Cannot alloc root domain\n");
  5845. #ifdef CONFIG_NUMA
  5846. kfree(sched_group_nodes);
  5847. #endif
  5848. return -ENOMEM;
  5849. }
  5850. #if SCHED_CPUMASK_ALLOC
  5851. /* get space for all scratch cpumask variables */
  5852. allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
  5853. if (!allmasks) {
  5854. printk(KERN_WARNING "Cannot alloc cpumask array\n");
  5855. kfree(rd);
  5856. #ifdef CONFIG_NUMA
  5857. kfree(sched_group_nodes);
  5858. #endif
  5859. return -ENOMEM;
  5860. }
  5861. #endif
  5862. tmpmask = (cpumask_t *)allmasks;
  5863. #ifdef CONFIG_NUMA
  5864. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5865. #endif
  5866. /*
  5867. * Set up domains for cpus specified by the cpu_map.
  5868. */
  5869. for_each_cpu_mask(i, *cpu_map) {
  5870. struct sched_domain *sd = NULL, *p;
  5871. SCHED_CPUMASK_VAR(nodemask, allmasks);
  5872. *nodemask = node_to_cpumask(cpu_to_node(i));
  5873. cpus_and(*nodemask, *nodemask, *cpu_map);
  5874. #ifdef CONFIG_NUMA
  5875. if (cpus_weight(*cpu_map) >
  5876. SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
  5877. sd = &per_cpu(allnodes_domains, i);
  5878. SD_INIT(sd, ALLNODES);
  5879. sd->span = *cpu_map;
  5880. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  5881. p = sd;
  5882. sd_allnodes = 1;
  5883. } else
  5884. p = NULL;
  5885. sd = &per_cpu(node_domains, i);
  5886. SD_INIT(sd, NODE);
  5887. sched_domain_node_span(cpu_to_node(i), &sd->span);
  5888. sd->parent = p;
  5889. if (p)
  5890. p->child = sd;
  5891. cpus_and(sd->span, sd->span, *cpu_map);
  5892. #endif
  5893. p = sd;
  5894. sd = &per_cpu(phys_domains, i);
  5895. SD_INIT(sd, CPU);
  5896. sd->span = *nodemask;
  5897. sd->parent = p;
  5898. if (p)
  5899. p->child = sd;
  5900. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  5901. #ifdef CONFIG_SCHED_MC
  5902. p = sd;
  5903. sd = &per_cpu(core_domains, i);
  5904. SD_INIT(sd, MC);
  5905. sd->span = cpu_coregroup_map(i);
  5906. cpus_and(sd->span, sd->span, *cpu_map);
  5907. sd->parent = p;
  5908. p->child = sd;
  5909. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  5910. #endif
  5911. #ifdef CONFIG_SCHED_SMT
  5912. p = sd;
  5913. sd = &per_cpu(cpu_domains, i);
  5914. SD_INIT(sd, SIBLING);
  5915. sd->span = per_cpu(cpu_sibling_map, i);
  5916. cpus_and(sd->span, sd->span, *cpu_map);
  5917. sd->parent = p;
  5918. p->child = sd;
  5919. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  5920. #endif
  5921. }
  5922. #ifdef CONFIG_SCHED_SMT
  5923. /* Set up CPU (sibling) groups */
  5924. for_each_cpu_mask(i, *cpu_map) {
  5925. SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
  5926. SCHED_CPUMASK_VAR(send_covered, allmasks);
  5927. *this_sibling_map = per_cpu(cpu_sibling_map, i);
  5928. cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
  5929. if (i != first_cpu(*this_sibling_map))
  5930. continue;
  5931. init_sched_build_groups(this_sibling_map, cpu_map,
  5932. &cpu_to_cpu_group,
  5933. send_covered, tmpmask);
  5934. }
  5935. #endif
  5936. #ifdef CONFIG_SCHED_MC
  5937. /* Set up multi-core groups */
  5938. for_each_cpu_mask(i, *cpu_map) {
  5939. SCHED_CPUMASK_VAR(this_core_map, allmasks);
  5940. SCHED_CPUMASK_VAR(send_covered, allmasks);
  5941. *this_core_map = cpu_coregroup_map(i);
  5942. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  5943. if (i != first_cpu(*this_core_map))
  5944. continue;
  5945. init_sched_build_groups(this_core_map, cpu_map,
  5946. &cpu_to_core_group,
  5947. send_covered, tmpmask);
  5948. }
  5949. #endif
  5950. /* Set up physical groups */
  5951. for (i = 0; i < MAX_NUMNODES; i++) {
  5952. SCHED_CPUMASK_VAR(nodemask, allmasks);
  5953. SCHED_CPUMASK_VAR(send_covered, allmasks);
  5954. *nodemask = node_to_cpumask(i);
  5955. cpus_and(*nodemask, *nodemask, *cpu_map);
  5956. if (cpus_empty(*nodemask))
  5957. continue;
  5958. init_sched_build_groups(nodemask, cpu_map,
  5959. &cpu_to_phys_group,
  5960. send_covered, tmpmask);
  5961. }
  5962. #ifdef CONFIG_NUMA
  5963. /* Set up node groups */
  5964. if (sd_allnodes) {
  5965. SCHED_CPUMASK_VAR(send_covered, allmasks);
  5966. init_sched_build_groups(cpu_map, cpu_map,
  5967. &cpu_to_allnodes_group,
  5968. send_covered, tmpmask);
  5969. }
  5970. for (i = 0; i < MAX_NUMNODES; i++) {
  5971. /* Set up node groups */
  5972. struct sched_group *sg, *prev;
  5973. SCHED_CPUMASK_VAR(nodemask, allmasks);
  5974. SCHED_CPUMASK_VAR(domainspan, allmasks);
  5975. SCHED_CPUMASK_VAR(covered, allmasks);
  5976. int j;
  5977. *nodemask = node_to_cpumask(i);
  5978. cpus_clear(*covered);
  5979. cpus_and(*nodemask, *nodemask, *cpu_map);
  5980. if (cpus_empty(*nodemask)) {
  5981. sched_group_nodes[i] = NULL;
  5982. continue;
  5983. }
  5984. sched_domain_node_span(i, domainspan);
  5985. cpus_and(*domainspan, *domainspan, *cpu_map);
  5986. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5987. if (!sg) {
  5988. printk(KERN_WARNING "Can not alloc domain group for "
  5989. "node %d\n", i);
  5990. goto error;
  5991. }
  5992. sched_group_nodes[i] = sg;
  5993. for_each_cpu_mask(j, *nodemask) {
  5994. struct sched_domain *sd;
  5995. sd = &per_cpu(node_domains, j);
  5996. sd->groups = sg;
  5997. }
  5998. sg->__cpu_power = 0;
  5999. sg->cpumask = *nodemask;
  6000. sg->next = sg;
  6001. cpus_or(*covered, *covered, *nodemask);
  6002. prev = sg;
  6003. for (j = 0; j < MAX_NUMNODES; j++) {
  6004. SCHED_CPUMASK_VAR(notcovered, allmasks);
  6005. int n = (i + j) % MAX_NUMNODES;
  6006. node_to_cpumask_ptr(pnodemask, n);
  6007. cpus_complement(*notcovered, *covered);
  6008. cpus_and(*tmpmask, *notcovered, *cpu_map);
  6009. cpus_and(*tmpmask, *tmpmask, *domainspan);
  6010. if (cpus_empty(*tmpmask))
  6011. break;
  6012. cpus_and(*tmpmask, *tmpmask, *pnodemask);
  6013. if (cpus_empty(*tmpmask))
  6014. continue;
  6015. sg = kmalloc_node(sizeof(struct sched_group),
  6016. GFP_KERNEL, i);
  6017. if (!sg) {
  6018. printk(KERN_WARNING
  6019. "Can not alloc domain group for node %d\n", j);
  6020. goto error;
  6021. }
  6022. sg->__cpu_power = 0;
  6023. sg->cpumask = *tmpmask;
  6024. sg->next = prev->next;
  6025. cpus_or(*covered, *covered, *tmpmask);
  6026. prev->next = sg;
  6027. prev = sg;
  6028. }
  6029. }
  6030. #endif
  6031. /* Calculate CPU power for physical packages and nodes */
  6032. #ifdef CONFIG_SCHED_SMT
  6033. for_each_cpu_mask(i, *cpu_map) {
  6034. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  6035. init_sched_groups_power(i, sd);
  6036. }
  6037. #endif
  6038. #ifdef CONFIG_SCHED_MC
  6039. for_each_cpu_mask(i, *cpu_map) {
  6040. struct sched_domain *sd = &per_cpu(core_domains, i);
  6041. init_sched_groups_power(i, sd);
  6042. }
  6043. #endif
  6044. for_each_cpu_mask(i, *cpu_map) {
  6045. struct sched_domain *sd = &per_cpu(phys_domains, i);
  6046. init_sched_groups_power(i, sd);
  6047. }
  6048. #ifdef CONFIG_NUMA
  6049. for (i = 0; i < MAX_NUMNODES; i++)
  6050. init_numa_sched_groups_power(sched_group_nodes[i]);
  6051. if (sd_allnodes) {
  6052. struct sched_group *sg;
  6053. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
  6054. tmpmask);
  6055. init_numa_sched_groups_power(sg);
  6056. }
  6057. #endif
  6058. /* Attach the domains */
  6059. for_each_cpu_mask(i, *cpu_map) {
  6060. struct sched_domain *sd;
  6061. #ifdef CONFIG_SCHED_SMT
  6062. sd = &per_cpu(cpu_domains, i);
  6063. #elif defined(CONFIG_SCHED_MC)
  6064. sd = &per_cpu(core_domains, i);
  6065. #else
  6066. sd = &per_cpu(phys_domains, i);
  6067. #endif
  6068. cpu_attach_domain(sd, rd, i);
  6069. }
  6070. SCHED_CPUMASK_FREE((void *)allmasks);
  6071. return 0;
  6072. #ifdef CONFIG_NUMA
  6073. error:
  6074. free_sched_groups(cpu_map, tmpmask);
  6075. SCHED_CPUMASK_FREE((void *)allmasks);
  6076. return -ENOMEM;
  6077. #endif
  6078. }
  6079. static cpumask_t *doms_cur; /* current sched domains */
  6080. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6081. /*
  6082. * Special case: If a kmalloc of a doms_cur partition (array of
  6083. * cpumask_t) fails, then fallback to a single sched domain,
  6084. * as determined by the single cpumask_t fallback_doms.
  6085. */
  6086. static cpumask_t fallback_doms;
  6087. void __attribute__((weak)) arch_update_cpu_topology(void)
  6088. {
  6089. }
  6090. /*
  6091. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6092. * For now this just excludes isolated cpus, but could be used to
  6093. * exclude other special cases in the future.
  6094. */
  6095. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6096. {
  6097. int err;
  6098. arch_update_cpu_topology();
  6099. ndoms_cur = 1;
  6100. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6101. if (!doms_cur)
  6102. doms_cur = &fallback_doms;
  6103. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  6104. err = build_sched_domains(doms_cur);
  6105. register_sched_domain_sysctl();
  6106. return err;
  6107. }
  6108. static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
  6109. cpumask_t *tmpmask)
  6110. {
  6111. free_sched_groups(cpu_map, tmpmask);
  6112. }
  6113. /*
  6114. * Detach sched domains from a group of cpus specified in cpu_map
  6115. * These cpus will now be attached to the NULL domain
  6116. */
  6117. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6118. {
  6119. cpumask_t tmpmask;
  6120. int i;
  6121. unregister_sched_domain_sysctl();
  6122. for_each_cpu_mask(i, *cpu_map)
  6123. cpu_attach_domain(NULL, &def_root_domain, i);
  6124. synchronize_sched();
  6125. arch_destroy_sched_domains(cpu_map, &tmpmask);
  6126. }
  6127. /*
  6128. * Partition sched domains as specified by the 'ndoms_new'
  6129. * cpumasks in the array doms_new[] of cpumasks. This compares
  6130. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6131. * It destroys each deleted domain and builds each new domain.
  6132. *
  6133. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6134. * The masks don't intersect (don't overlap.) We should setup one
  6135. * sched domain for each mask. CPUs not in any of the cpumasks will
  6136. * not be load balanced. If the same cpumask appears both in the
  6137. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6138. * it as it is.
  6139. *
  6140. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6141. * ownership of it and will kfree it when done with it. If the caller
  6142. * failed the kmalloc call, then it can pass in doms_new == NULL,
  6143. * and partition_sched_domains() will fallback to the single partition
  6144. * 'fallback_doms'.
  6145. *
  6146. * Call with hotplug lock held
  6147. */
  6148. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
  6149. {
  6150. int i, j;
  6151. lock_doms_cur();
  6152. /* always unregister in case we don't destroy any domains */
  6153. unregister_sched_domain_sysctl();
  6154. if (doms_new == NULL) {
  6155. ndoms_new = 1;
  6156. doms_new = &fallback_doms;
  6157. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6158. }
  6159. /* Destroy deleted domains */
  6160. for (i = 0; i < ndoms_cur; i++) {
  6161. for (j = 0; j < ndoms_new; j++) {
  6162. if (cpus_equal(doms_cur[i], doms_new[j]))
  6163. goto match1;
  6164. }
  6165. /* no match - a current sched domain not in new doms_new[] */
  6166. detach_destroy_domains(doms_cur + i);
  6167. match1:
  6168. ;
  6169. }
  6170. /* Build new domains */
  6171. for (i = 0; i < ndoms_new; i++) {
  6172. for (j = 0; j < ndoms_cur; j++) {
  6173. if (cpus_equal(doms_new[i], doms_cur[j]))
  6174. goto match2;
  6175. }
  6176. /* no match - add a new doms_new */
  6177. build_sched_domains(doms_new + i);
  6178. match2:
  6179. ;
  6180. }
  6181. /* Remember the new sched domains */
  6182. if (doms_cur != &fallback_doms)
  6183. kfree(doms_cur);
  6184. doms_cur = doms_new;
  6185. ndoms_cur = ndoms_new;
  6186. register_sched_domain_sysctl();
  6187. unlock_doms_cur();
  6188. }
  6189. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6190. int arch_reinit_sched_domains(void)
  6191. {
  6192. int err;
  6193. get_online_cpus();
  6194. detach_destroy_domains(&cpu_online_map);
  6195. err = arch_init_sched_domains(&cpu_online_map);
  6196. put_online_cpus();
  6197. return err;
  6198. }
  6199. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6200. {
  6201. int ret;
  6202. if (buf[0] != '0' && buf[0] != '1')
  6203. return -EINVAL;
  6204. if (smt)
  6205. sched_smt_power_savings = (buf[0] == '1');
  6206. else
  6207. sched_mc_power_savings = (buf[0] == '1');
  6208. ret = arch_reinit_sched_domains();
  6209. return ret ? ret : count;
  6210. }
  6211. #ifdef CONFIG_SCHED_MC
  6212. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  6213. {
  6214. return sprintf(page, "%u\n", sched_mc_power_savings);
  6215. }
  6216. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  6217. const char *buf, size_t count)
  6218. {
  6219. return sched_power_savings_store(buf, count, 0);
  6220. }
  6221. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  6222. sched_mc_power_savings_store);
  6223. #endif
  6224. #ifdef CONFIG_SCHED_SMT
  6225. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  6226. {
  6227. return sprintf(page, "%u\n", sched_smt_power_savings);
  6228. }
  6229. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  6230. const char *buf, size_t count)
  6231. {
  6232. return sched_power_savings_store(buf, count, 1);
  6233. }
  6234. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  6235. sched_smt_power_savings_store);
  6236. #endif
  6237. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6238. {
  6239. int err = 0;
  6240. #ifdef CONFIG_SCHED_SMT
  6241. if (smt_capable())
  6242. err = sysfs_create_file(&cls->kset.kobj,
  6243. &attr_sched_smt_power_savings.attr);
  6244. #endif
  6245. #ifdef CONFIG_SCHED_MC
  6246. if (!err && mc_capable())
  6247. err = sysfs_create_file(&cls->kset.kobj,
  6248. &attr_sched_mc_power_savings.attr);
  6249. #endif
  6250. return err;
  6251. }
  6252. #endif
  6253. /*
  6254. * Force a reinitialization of the sched domains hierarchy. The domains
  6255. * and groups cannot be updated in place without racing with the balancing
  6256. * code, so we temporarily attach all running cpus to the NULL domain
  6257. * which will prevent rebalancing while the sched domains are recalculated.
  6258. */
  6259. static int update_sched_domains(struct notifier_block *nfb,
  6260. unsigned long action, void *hcpu)
  6261. {
  6262. switch (action) {
  6263. case CPU_UP_PREPARE:
  6264. case CPU_UP_PREPARE_FROZEN:
  6265. case CPU_DOWN_PREPARE:
  6266. case CPU_DOWN_PREPARE_FROZEN:
  6267. detach_destroy_domains(&cpu_online_map);
  6268. return NOTIFY_OK;
  6269. case CPU_UP_CANCELED:
  6270. case CPU_UP_CANCELED_FROZEN:
  6271. case CPU_DOWN_FAILED:
  6272. case CPU_DOWN_FAILED_FROZEN:
  6273. case CPU_ONLINE:
  6274. case CPU_ONLINE_FROZEN:
  6275. case CPU_DEAD:
  6276. case CPU_DEAD_FROZEN:
  6277. /*
  6278. * Fall through and re-initialise the domains.
  6279. */
  6280. break;
  6281. default:
  6282. return NOTIFY_DONE;
  6283. }
  6284. /* The hotplug lock is already held by cpu_up/cpu_down */
  6285. arch_init_sched_domains(&cpu_online_map);
  6286. return NOTIFY_OK;
  6287. }
  6288. void __init sched_init_smp(void)
  6289. {
  6290. cpumask_t non_isolated_cpus;
  6291. #if defined(CONFIG_NUMA)
  6292. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6293. GFP_KERNEL);
  6294. BUG_ON(sched_group_nodes_bycpu == NULL);
  6295. #endif
  6296. get_online_cpus();
  6297. arch_init_sched_domains(&cpu_online_map);
  6298. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6299. if (cpus_empty(non_isolated_cpus))
  6300. cpu_set(smp_processor_id(), non_isolated_cpus);
  6301. put_online_cpus();
  6302. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6303. hotcpu_notifier(update_sched_domains, 0);
  6304. /* Move init over to a non-isolated CPU */
  6305. if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
  6306. BUG();
  6307. sched_init_granularity();
  6308. }
  6309. #else
  6310. void __init sched_init_smp(void)
  6311. {
  6312. #if defined(CONFIG_NUMA)
  6313. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6314. GFP_KERNEL);
  6315. BUG_ON(sched_group_nodes_bycpu == NULL);
  6316. #endif
  6317. sched_init_granularity();
  6318. }
  6319. #endif /* CONFIG_SMP */
  6320. int in_sched_functions(unsigned long addr)
  6321. {
  6322. return in_lock_functions(addr) ||
  6323. (addr >= (unsigned long)__sched_text_start
  6324. && addr < (unsigned long)__sched_text_end);
  6325. }
  6326. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6327. {
  6328. cfs_rq->tasks_timeline = RB_ROOT;
  6329. #ifdef CONFIG_FAIR_GROUP_SCHED
  6330. cfs_rq->rq = rq;
  6331. #endif
  6332. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6333. }
  6334. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6335. {
  6336. struct rt_prio_array *array;
  6337. int i;
  6338. array = &rt_rq->active;
  6339. for (i = 0; i < MAX_RT_PRIO; i++) {
  6340. INIT_LIST_HEAD(array->queue + i);
  6341. __clear_bit(i, array->bitmap);
  6342. }
  6343. /* delimiter for bitsearch: */
  6344. __set_bit(MAX_RT_PRIO, array->bitmap);
  6345. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6346. rt_rq->highest_prio = MAX_RT_PRIO;
  6347. #endif
  6348. #ifdef CONFIG_SMP
  6349. rt_rq->rt_nr_migratory = 0;
  6350. rt_rq->overloaded = 0;
  6351. #endif
  6352. rt_rq->rt_time = 0;
  6353. rt_rq->rt_throttled = 0;
  6354. rt_rq->rt_runtime = 0;
  6355. spin_lock_init(&rt_rq->rt_runtime_lock);
  6356. #ifdef CONFIG_RT_GROUP_SCHED
  6357. rt_rq->rt_nr_boosted = 0;
  6358. rt_rq->rq = rq;
  6359. #endif
  6360. }
  6361. #ifdef CONFIG_FAIR_GROUP_SCHED
  6362. static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
  6363. struct cfs_rq *cfs_rq, struct sched_entity *se,
  6364. int cpu, int add)
  6365. {
  6366. tg->cfs_rq[cpu] = cfs_rq;
  6367. init_cfs_rq(cfs_rq, rq);
  6368. cfs_rq->tg = tg;
  6369. if (add)
  6370. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6371. tg->se[cpu] = se;
  6372. se->cfs_rq = &rq->cfs;
  6373. se->my_q = cfs_rq;
  6374. se->load.weight = tg->shares;
  6375. se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
  6376. se->parent = NULL;
  6377. }
  6378. #endif
  6379. #ifdef CONFIG_RT_GROUP_SCHED
  6380. static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
  6381. struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
  6382. int cpu, int add)
  6383. {
  6384. tg->rt_rq[cpu] = rt_rq;
  6385. init_rt_rq(rt_rq, rq);
  6386. rt_rq->tg = tg;
  6387. rt_rq->rt_se = rt_se;
  6388. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6389. if (add)
  6390. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6391. tg->rt_se[cpu] = rt_se;
  6392. rt_se->rt_rq = &rq->rt;
  6393. rt_se->my_q = rt_rq;
  6394. rt_se->parent = NULL;
  6395. INIT_LIST_HEAD(&rt_se->run_list);
  6396. }
  6397. #endif
  6398. void __init sched_init(void)
  6399. {
  6400. int i, j;
  6401. unsigned long alloc_size = 0, ptr;
  6402. #ifdef CONFIG_FAIR_GROUP_SCHED
  6403. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6404. #endif
  6405. #ifdef CONFIG_RT_GROUP_SCHED
  6406. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6407. #endif
  6408. /*
  6409. * As sched_init() is called before page_alloc is setup,
  6410. * we use alloc_bootmem().
  6411. */
  6412. if (alloc_size) {
  6413. ptr = (unsigned long)alloc_bootmem_low(alloc_size);
  6414. #ifdef CONFIG_FAIR_GROUP_SCHED
  6415. init_task_group.se = (struct sched_entity **)ptr;
  6416. ptr += nr_cpu_ids * sizeof(void **);
  6417. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6418. ptr += nr_cpu_ids * sizeof(void **);
  6419. #endif
  6420. #ifdef CONFIG_RT_GROUP_SCHED
  6421. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6422. ptr += nr_cpu_ids * sizeof(void **);
  6423. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6424. #endif
  6425. }
  6426. #ifdef CONFIG_SMP
  6427. init_defrootdomain();
  6428. #endif
  6429. init_rt_bandwidth(&def_rt_bandwidth,
  6430. global_rt_period(), global_rt_runtime());
  6431. #ifdef CONFIG_RT_GROUP_SCHED
  6432. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6433. global_rt_period(), global_rt_runtime());
  6434. #endif
  6435. #ifdef CONFIG_GROUP_SCHED
  6436. list_add(&init_task_group.list, &task_groups);
  6437. #endif
  6438. for_each_possible_cpu(i) {
  6439. struct rq *rq;
  6440. rq = cpu_rq(i);
  6441. spin_lock_init(&rq->lock);
  6442. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  6443. rq->nr_running = 0;
  6444. rq->clock = 1;
  6445. update_last_tick_seen(rq);
  6446. init_cfs_rq(&rq->cfs, rq);
  6447. init_rt_rq(&rq->rt, rq);
  6448. #ifdef CONFIG_FAIR_GROUP_SCHED
  6449. init_task_group.shares = init_task_group_load;
  6450. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6451. init_tg_cfs_entry(rq, &init_task_group,
  6452. &per_cpu(init_cfs_rq, i),
  6453. &per_cpu(init_sched_entity, i), i, 1);
  6454. #endif
  6455. #ifdef CONFIG_RT_GROUP_SCHED
  6456. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6457. init_tg_rt_entry(rq, &init_task_group,
  6458. &per_cpu(init_rt_rq, i),
  6459. &per_cpu(init_sched_rt_entity, i), i, 1);
  6460. #else
  6461. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6462. #endif
  6463. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6464. rq->cpu_load[j] = 0;
  6465. #ifdef CONFIG_SMP
  6466. rq->sd = NULL;
  6467. rq->rd = NULL;
  6468. rq->active_balance = 0;
  6469. rq->next_balance = jiffies;
  6470. rq->push_cpu = 0;
  6471. rq->cpu = i;
  6472. rq->migration_thread = NULL;
  6473. INIT_LIST_HEAD(&rq->migration_queue);
  6474. rq_attach_root(rq, &def_root_domain);
  6475. #endif
  6476. init_rq_hrtick(rq);
  6477. atomic_set(&rq->nr_iowait, 0);
  6478. }
  6479. set_load_weight(&init_task);
  6480. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6481. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6482. #endif
  6483. #ifdef CONFIG_SMP
  6484. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  6485. #endif
  6486. #ifdef CONFIG_RT_MUTEXES
  6487. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  6488. #endif
  6489. /*
  6490. * The boot idle thread does lazy MMU switching as well:
  6491. */
  6492. atomic_inc(&init_mm.mm_count);
  6493. enter_lazy_tlb(&init_mm, current);
  6494. /*
  6495. * Make us the idle thread. Technically, schedule() should not be
  6496. * called from this thread, however somewhere below it might be,
  6497. * but because we are the idle thread, we just pick up running again
  6498. * when this runqueue becomes "idle".
  6499. */
  6500. init_idle(current, smp_processor_id());
  6501. /*
  6502. * During early bootup we pretend to be a normal task:
  6503. */
  6504. current->sched_class = &fair_sched_class;
  6505. scheduler_running = 1;
  6506. }
  6507. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6508. void __might_sleep(char *file, int line)
  6509. {
  6510. #ifdef in_atomic
  6511. static unsigned long prev_jiffy; /* ratelimiting */
  6512. if ((in_atomic() || irqs_disabled()) &&
  6513. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  6514. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6515. return;
  6516. prev_jiffy = jiffies;
  6517. printk(KERN_ERR "BUG: sleeping function called from invalid"
  6518. " context at %s:%d\n", file, line);
  6519. printk("in_atomic():%d, irqs_disabled():%d\n",
  6520. in_atomic(), irqs_disabled());
  6521. debug_show_held_locks(current);
  6522. if (irqs_disabled())
  6523. print_irqtrace_events(current);
  6524. dump_stack();
  6525. }
  6526. #endif
  6527. }
  6528. EXPORT_SYMBOL(__might_sleep);
  6529. #endif
  6530. #ifdef CONFIG_MAGIC_SYSRQ
  6531. static void normalize_task(struct rq *rq, struct task_struct *p)
  6532. {
  6533. int on_rq;
  6534. update_rq_clock(rq);
  6535. on_rq = p->se.on_rq;
  6536. if (on_rq)
  6537. deactivate_task(rq, p, 0);
  6538. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6539. if (on_rq) {
  6540. activate_task(rq, p, 0);
  6541. resched_task(rq->curr);
  6542. }
  6543. }
  6544. void normalize_rt_tasks(void)
  6545. {
  6546. struct task_struct *g, *p;
  6547. unsigned long flags;
  6548. struct rq *rq;
  6549. read_lock_irqsave(&tasklist_lock, flags);
  6550. do_each_thread(g, p) {
  6551. /*
  6552. * Only normalize user tasks:
  6553. */
  6554. if (!p->mm)
  6555. continue;
  6556. p->se.exec_start = 0;
  6557. #ifdef CONFIG_SCHEDSTATS
  6558. p->se.wait_start = 0;
  6559. p->se.sleep_start = 0;
  6560. p->se.block_start = 0;
  6561. #endif
  6562. task_rq(p)->clock = 0;
  6563. if (!rt_task(p)) {
  6564. /*
  6565. * Renice negative nice level userspace
  6566. * tasks back to 0:
  6567. */
  6568. if (TASK_NICE(p) < 0 && p->mm)
  6569. set_user_nice(p, 0);
  6570. continue;
  6571. }
  6572. spin_lock(&p->pi_lock);
  6573. rq = __task_rq_lock(p);
  6574. normalize_task(rq, p);
  6575. __task_rq_unlock(rq);
  6576. spin_unlock(&p->pi_lock);
  6577. } while_each_thread(g, p);
  6578. read_unlock_irqrestore(&tasklist_lock, flags);
  6579. }
  6580. #endif /* CONFIG_MAGIC_SYSRQ */
  6581. #ifdef CONFIG_IA64
  6582. /*
  6583. * These functions are only useful for the IA64 MCA handling.
  6584. *
  6585. * They can only be called when the whole system has been
  6586. * stopped - every CPU needs to be quiescent, and no scheduling
  6587. * activity can take place. Using them for anything else would
  6588. * be a serious bug, and as a result, they aren't even visible
  6589. * under any other configuration.
  6590. */
  6591. /**
  6592. * curr_task - return the current task for a given cpu.
  6593. * @cpu: the processor in question.
  6594. *
  6595. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6596. */
  6597. struct task_struct *curr_task(int cpu)
  6598. {
  6599. return cpu_curr(cpu);
  6600. }
  6601. /**
  6602. * set_curr_task - set the current task for a given cpu.
  6603. * @cpu: the processor in question.
  6604. * @p: the task pointer to set.
  6605. *
  6606. * Description: This function must only be used when non-maskable interrupts
  6607. * are serviced on a separate stack. It allows the architecture to switch the
  6608. * notion of the current task on a cpu in a non-blocking manner. This function
  6609. * must be called with all CPU's synchronized, and interrupts disabled, the
  6610. * and caller must save the original value of the current task (see
  6611. * curr_task() above) and restore that value before reenabling interrupts and
  6612. * re-starting the system.
  6613. *
  6614. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6615. */
  6616. void set_curr_task(int cpu, struct task_struct *p)
  6617. {
  6618. cpu_curr(cpu) = p;
  6619. }
  6620. #endif
  6621. #ifdef CONFIG_FAIR_GROUP_SCHED
  6622. static void free_fair_sched_group(struct task_group *tg)
  6623. {
  6624. int i;
  6625. for_each_possible_cpu(i) {
  6626. if (tg->cfs_rq)
  6627. kfree(tg->cfs_rq[i]);
  6628. if (tg->se)
  6629. kfree(tg->se[i]);
  6630. }
  6631. kfree(tg->cfs_rq);
  6632. kfree(tg->se);
  6633. }
  6634. static int alloc_fair_sched_group(struct task_group *tg)
  6635. {
  6636. struct cfs_rq *cfs_rq;
  6637. struct sched_entity *se;
  6638. struct rq *rq;
  6639. int i;
  6640. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  6641. if (!tg->cfs_rq)
  6642. goto err;
  6643. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  6644. if (!tg->se)
  6645. goto err;
  6646. tg->shares = NICE_0_LOAD;
  6647. for_each_possible_cpu(i) {
  6648. rq = cpu_rq(i);
  6649. cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
  6650. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6651. if (!cfs_rq)
  6652. goto err;
  6653. se = kmalloc_node(sizeof(struct sched_entity),
  6654. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6655. if (!se)
  6656. goto err;
  6657. init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
  6658. }
  6659. return 1;
  6660. err:
  6661. return 0;
  6662. }
  6663. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6664. {
  6665. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  6666. &cpu_rq(cpu)->leaf_cfs_rq_list);
  6667. }
  6668. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6669. {
  6670. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  6671. }
  6672. #else
  6673. static inline void free_fair_sched_group(struct task_group *tg)
  6674. {
  6675. }
  6676. static inline int alloc_fair_sched_group(struct task_group *tg)
  6677. {
  6678. return 1;
  6679. }
  6680. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6681. {
  6682. }
  6683. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6684. {
  6685. }
  6686. #endif
  6687. #ifdef CONFIG_RT_GROUP_SCHED
  6688. static void free_rt_sched_group(struct task_group *tg)
  6689. {
  6690. int i;
  6691. destroy_rt_bandwidth(&tg->rt_bandwidth);
  6692. for_each_possible_cpu(i) {
  6693. if (tg->rt_rq)
  6694. kfree(tg->rt_rq[i]);
  6695. if (tg->rt_se)
  6696. kfree(tg->rt_se[i]);
  6697. }
  6698. kfree(tg->rt_rq);
  6699. kfree(tg->rt_se);
  6700. }
  6701. static int alloc_rt_sched_group(struct task_group *tg)
  6702. {
  6703. struct rt_rq *rt_rq;
  6704. struct sched_rt_entity *rt_se;
  6705. struct rq *rq;
  6706. int i;
  6707. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  6708. if (!tg->rt_rq)
  6709. goto err;
  6710. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  6711. if (!tg->rt_se)
  6712. goto err;
  6713. init_rt_bandwidth(&tg->rt_bandwidth,
  6714. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  6715. for_each_possible_cpu(i) {
  6716. rq = cpu_rq(i);
  6717. rt_rq = kmalloc_node(sizeof(struct rt_rq),
  6718. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6719. if (!rt_rq)
  6720. goto err;
  6721. rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
  6722. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6723. if (!rt_se)
  6724. goto err;
  6725. init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
  6726. }
  6727. return 1;
  6728. err:
  6729. return 0;
  6730. }
  6731. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6732. {
  6733. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  6734. &cpu_rq(cpu)->leaf_rt_rq_list);
  6735. }
  6736. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6737. {
  6738. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  6739. }
  6740. #else
  6741. static inline void free_rt_sched_group(struct task_group *tg)
  6742. {
  6743. }
  6744. static inline int alloc_rt_sched_group(struct task_group *tg)
  6745. {
  6746. return 1;
  6747. }
  6748. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6749. {
  6750. }
  6751. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6752. {
  6753. }
  6754. #endif
  6755. #ifdef CONFIG_GROUP_SCHED
  6756. static void free_sched_group(struct task_group *tg)
  6757. {
  6758. free_fair_sched_group(tg);
  6759. free_rt_sched_group(tg);
  6760. kfree(tg);
  6761. }
  6762. /* allocate runqueue etc for a new task group */
  6763. struct task_group *sched_create_group(void)
  6764. {
  6765. struct task_group *tg;
  6766. unsigned long flags;
  6767. int i;
  6768. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6769. if (!tg)
  6770. return ERR_PTR(-ENOMEM);
  6771. if (!alloc_fair_sched_group(tg))
  6772. goto err;
  6773. if (!alloc_rt_sched_group(tg))
  6774. goto err;
  6775. spin_lock_irqsave(&task_group_lock, flags);
  6776. for_each_possible_cpu(i) {
  6777. register_fair_sched_group(tg, i);
  6778. register_rt_sched_group(tg, i);
  6779. }
  6780. list_add_rcu(&tg->list, &task_groups);
  6781. spin_unlock_irqrestore(&task_group_lock, flags);
  6782. return tg;
  6783. err:
  6784. free_sched_group(tg);
  6785. return ERR_PTR(-ENOMEM);
  6786. }
  6787. /* rcu callback to free various structures associated with a task group */
  6788. static void free_sched_group_rcu(struct rcu_head *rhp)
  6789. {
  6790. /* now it should be safe to free those cfs_rqs */
  6791. free_sched_group(container_of(rhp, struct task_group, rcu));
  6792. }
  6793. /* Destroy runqueue etc associated with a task group */
  6794. void sched_destroy_group(struct task_group *tg)
  6795. {
  6796. unsigned long flags;
  6797. int i;
  6798. spin_lock_irqsave(&task_group_lock, flags);
  6799. for_each_possible_cpu(i) {
  6800. unregister_fair_sched_group(tg, i);
  6801. unregister_rt_sched_group(tg, i);
  6802. }
  6803. list_del_rcu(&tg->list);
  6804. spin_unlock_irqrestore(&task_group_lock, flags);
  6805. /* wait for possible concurrent references to cfs_rqs complete */
  6806. call_rcu(&tg->rcu, free_sched_group_rcu);
  6807. }
  6808. /* change task's runqueue when it moves between groups.
  6809. * The caller of this function should have put the task in its new group
  6810. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6811. * reflect its new group.
  6812. */
  6813. void sched_move_task(struct task_struct *tsk)
  6814. {
  6815. int on_rq, running;
  6816. unsigned long flags;
  6817. struct rq *rq;
  6818. rq = task_rq_lock(tsk, &flags);
  6819. update_rq_clock(rq);
  6820. running = task_current(rq, tsk);
  6821. on_rq = tsk->se.on_rq;
  6822. if (on_rq)
  6823. dequeue_task(rq, tsk, 0);
  6824. if (unlikely(running))
  6825. tsk->sched_class->put_prev_task(rq, tsk);
  6826. set_task_rq(tsk, task_cpu(tsk));
  6827. #ifdef CONFIG_FAIR_GROUP_SCHED
  6828. if (tsk->sched_class->moved_group)
  6829. tsk->sched_class->moved_group(tsk);
  6830. #endif
  6831. if (unlikely(running))
  6832. tsk->sched_class->set_curr_task(rq);
  6833. if (on_rq)
  6834. enqueue_task(rq, tsk, 0);
  6835. task_rq_unlock(rq, &flags);
  6836. }
  6837. #endif
  6838. #ifdef CONFIG_FAIR_GROUP_SCHED
  6839. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  6840. {
  6841. struct cfs_rq *cfs_rq = se->cfs_rq;
  6842. struct rq *rq = cfs_rq->rq;
  6843. int on_rq;
  6844. spin_lock_irq(&rq->lock);
  6845. on_rq = se->on_rq;
  6846. if (on_rq)
  6847. dequeue_entity(cfs_rq, se, 0);
  6848. se->load.weight = shares;
  6849. se->load.inv_weight = div64_64((1ULL<<32), shares);
  6850. if (on_rq)
  6851. enqueue_entity(cfs_rq, se, 0);
  6852. spin_unlock_irq(&rq->lock);
  6853. }
  6854. static DEFINE_MUTEX(shares_mutex);
  6855. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  6856. {
  6857. int i;
  6858. unsigned long flags;
  6859. /*
  6860. * A weight of 0 or 1 can cause arithmetics problems.
  6861. * (The default weight is 1024 - so there's no practical
  6862. * limitation from this.)
  6863. */
  6864. if (shares < 2)
  6865. shares = 2;
  6866. mutex_lock(&shares_mutex);
  6867. if (tg->shares == shares)
  6868. goto done;
  6869. spin_lock_irqsave(&task_group_lock, flags);
  6870. for_each_possible_cpu(i)
  6871. unregister_fair_sched_group(tg, i);
  6872. spin_unlock_irqrestore(&task_group_lock, flags);
  6873. /* wait for any ongoing reference to this group to finish */
  6874. synchronize_sched();
  6875. /*
  6876. * Now we are free to modify the group's share on each cpu
  6877. * w/o tripping rebalance_share or load_balance_fair.
  6878. */
  6879. tg->shares = shares;
  6880. for_each_possible_cpu(i)
  6881. set_se_shares(tg->se[i], shares);
  6882. /*
  6883. * Enable load balance activity on this group, by inserting it back on
  6884. * each cpu's rq->leaf_cfs_rq_list.
  6885. */
  6886. spin_lock_irqsave(&task_group_lock, flags);
  6887. for_each_possible_cpu(i)
  6888. register_fair_sched_group(tg, i);
  6889. spin_unlock_irqrestore(&task_group_lock, flags);
  6890. done:
  6891. mutex_unlock(&shares_mutex);
  6892. return 0;
  6893. }
  6894. unsigned long sched_group_shares(struct task_group *tg)
  6895. {
  6896. return tg->shares;
  6897. }
  6898. #endif
  6899. #ifdef CONFIG_RT_GROUP_SCHED
  6900. /*
  6901. * Ensure that the real time constraints are schedulable.
  6902. */
  6903. static DEFINE_MUTEX(rt_constraints_mutex);
  6904. static unsigned long to_ratio(u64 period, u64 runtime)
  6905. {
  6906. if (runtime == RUNTIME_INF)
  6907. return 1ULL << 16;
  6908. return div64_64(runtime << 16, period);
  6909. }
  6910. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6911. {
  6912. struct task_group *tgi;
  6913. unsigned long total = 0;
  6914. unsigned long global_ratio =
  6915. to_ratio(global_rt_period(), global_rt_runtime());
  6916. rcu_read_lock();
  6917. list_for_each_entry_rcu(tgi, &task_groups, list) {
  6918. if (tgi == tg)
  6919. continue;
  6920. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  6921. tgi->rt_bandwidth.rt_runtime);
  6922. }
  6923. rcu_read_unlock();
  6924. return total + to_ratio(period, runtime) < global_ratio;
  6925. }
  6926. /* Must be called with tasklist_lock held */
  6927. static inline int tg_has_rt_tasks(struct task_group *tg)
  6928. {
  6929. struct task_struct *g, *p;
  6930. do_each_thread(g, p) {
  6931. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  6932. return 1;
  6933. } while_each_thread(g, p);
  6934. return 0;
  6935. }
  6936. static int tg_set_bandwidth(struct task_group *tg,
  6937. u64 rt_period, u64 rt_runtime)
  6938. {
  6939. int i, err = 0;
  6940. mutex_lock(&rt_constraints_mutex);
  6941. read_lock(&tasklist_lock);
  6942. if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
  6943. err = -EBUSY;
  6944. goto unlock;
  6945. }
  6946. if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
  6947. err = -EINVAL;
  6948. goto unlock;
  6949. }
  6950. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6951. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6952. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6953. for_each_possible_cpu(i) {
  6954. struct rt_rq *rt_rq = tg->rt_rq[i];
  6955. spin_lock(&rt_rq->rt_runtime_lock);
  6956. rt_rq->rt_runtime = rt_runtime;
  6957. spin_unlock(&rt_rq->rt_runtime_lock);
  6958. }
  6959. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6960. unlock:
  6961. read_unlock(&tasklist_lock);
  6962. mutex_unlock(&rt_constraints_mutex);
  6963. return err;
  6964. }
  6965. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6966. {
  6967. u64 rt_runtime, rt_period;
  6968. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6969. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6970. if (rt_runtime_us < 0)
  6971. rt_runtime = RUNTIME_INF;
  6972. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  6973. }
  6974. long sched_group_rt_runtime(struct task_group *tg)
  6975. {
  6976. u64 rt_runtime_us;
  6977. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6978. return -1;
  6979. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6980. do_div(rt_runtime_us, NSEC_PER_USEC);
  6981. return rt_runtime_us;
  6982. }
  6983. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  6984. {
  6985. u64 rt_runtime, rt_period;
  6986. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  6987. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6988. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  6989. }
  6990. long sched_group_rt_period(struct task_group *tg)
  6991. {
  6992. u64 rt_period_us;
  6993. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6994. do_div(rt_period_us, NSEC_PER_USEC);
  6995. return rt_period_us;
  6996. }
  6997. static int sched_rt_global_constraints(void)
  6998. {
  6999. int ret = 0;
  7000. mutex_lock(&rt_constraints_mutex);
  7001. if (!__rt_schedulable(NULL, 1, 0))
  7002. ret = -EINVAL;
  7003. mutex_unlock(&rt_constraints_mutex);
  7004. return ret;
  7005. }
  7006. #else
  7007. static int sched_rt_global_constraints(void)
  7008. {
  7009. unsigned long flags;
  7010. int i;
  7011. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7012. for_each_possible_cpu(i) {
  7013. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7014. spin_lock(&rt_rq->rt_runtime_lock);
  7015. rt_rq->rt_runtime = global_rt_runtime();
  7016. spin_unlock(&rt_rq->rt_runtime_lock);
  7017. }
  7018. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7019. return 0;
  7020. }
  7021. #endif
  7022. int sched_rt_handler(struct ctl_table *table, int write,
  7023. struct file *filp, void __user *buffer, size_t *lenp,
  7024. loff_t *ppos)
  7025. {
  7026. int ret;
  7027. int old_period, old_runtime;
  7028. static DEFINE_MUTEX(mutex);
  7029. mutex_lock(&mutex);
  7030. old_period = sysctl_sched_rt_period;
  7031. old_runtime = sysctl_sched_rt_runtime;
  7032. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7033. if (!ret && write) {
  7034. ret = sched_rt_global_constraints();
  7035. if (ret) {
  7036. sysctl_sched_rt_period = old_period;
  7037. sysctl_sched_rt_runtime = old_runtime;
  7038. } else {
  7039. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7040. def_rt_bandwidth.rt_period =
  7041. ns_to_ktime(global_rt_period());
  7042. }
  7043. }
  7044. mutex_unlock(&mutex);
  7045. return ret;
  7046. }
  7047. #ifdef CONFIG_CGROUP_SCHED
  7048. /* return corresponding task_group object of a cgroup */
  7049. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7050. {
  7051. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7052. struct task_group, css);
  7053. }
  7054. static struct cgroup_subsys_state *
  7055. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7056. {
  7057. struct task_group *tg;
  7058. if (!cgrp->parent) {
  7059. /* This is early initialization for the top cgroup */
  7060. init_task_group.css.cgroup = cgrp;
  7061. return &init_task_group.css;
  7062. }
  7063. /* we support only 1-level deep hierarchical scheduler atm */
  7064. if (cgrp->parent->parent)
  7065. return ERR_PTR(-EINVAL);
  7066. tg = sched_create_group();
  7067. if (IS_ERR(tg))
  7068. return ERR_PTR(-ENOMEM);
  7069. /* Bind the cgroup to task_group object we just created */
  7070. tg->css.cgroup = cgrp;
  7071. return &tg->css;
  7072. }
  7073. static void
  7074. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7075. {
  7076. struct task_group *tg = cgroup_tg(cgrp);
  7077. sched_destroy_group(tg);
  7078. }
  7079. static int
  7080. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7081. struct task_struct *tsk)
  7082. {
  7083. #ifdef CONFIG_RT_GROUP_SCHED
  7084. /* Don't accept realtime tasks when there is no way for them to run */
  7085. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7086. return -EINVAL;
  7087. #else
  7088. /* We don't support RT-tasks being in separate groups */
  7089. if (tsk->sched_class != &fair_sched_class)
  7090. return -EINVAL;
  7091. #endif
  7092. return 0;
  7093. }
  7094. static void
  7095. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7096. struct cgroup *old_cont, struct task_struct *tsk)
  7097. {
  7098. sched_move_task(tsk);
  7099. }
  7100. #ifdef CONFIG_FAIR_GROUP_SCHED
  7101. static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7102. u64 shareval)
  7103. {
  7104. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7105. }
  7106. static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7107. {
  7108. struct task_group *tg = cgroup_tg(cgrp);
  7109. return (u64) tg->shares;
  7110. }
  7111. #endif
  7112. #ifdef CONFIG_RT_GROUP_SCHED
  7113. static ssize_t cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7114. struct file *file,
  7115. const char __user *userbuf,
  7116. size_t nbytes, loff_t *unused_ppos)
  7117. {
  7118. char buffer[64];
  7119. int retval = 0;
  7120. s64 val;
  7121. char *end;
  7122. if (!nbytes)
  7123. return -EINVAL;
  7124. if (nbytes >= sizeof(buffer))
  7125. return -E2BIG;
  7126. if (copy_from_user(buffer, userbuf, nbytes))
  7127. return -EFAULT;
  7128. buffer[nbytes] = 0; /* nul-terminate */
  7129. /* strip newline if necessary */
  7130. if (nbytes && (buffer[nbytes-1] == '\n'))
  7131. buffer[nbytes-1] = 0;
  7132. val = simple_strtoll(buffer, &end, 0);
  7133. if (*end)
  7134. return -EINVAL;
  7135. /* Pass to subsystem */
  7136. retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7137. if (!retval)
  7138. retval = nbytes;
  7139. return retval;
  7140. }
  7141. static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
  7142. struct file *file,
  7143. char __user *buf, size_t nbytes,
  7144. loff_t *ppos)
  7145. {
  7146. char tmp[64];
  7147. long val = sched_group_rt_runtime(cgroup_tg(cgrp));
  7148. int len = sprintf(tmp, "%ld\n", val);
  7149. return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
  7150. }
  7151. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7152. u64 rt_period_us)
  7153. {
  7154. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7155. }
  7156. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7157. {
  7158. return sched_group_rt_period(cgroup_tg(cgrp));
  7159. }
  7160. #endif
  7161. static struct cftype cpu_files[] = {
  7162. #ifdef CONFIG_FAIR_GROUP_SCHED
  7163. {
  7164. .name = "shares",
  7165. .read_uint = cpu_shares_read_uint,
  7166. .write_uint = cpu_shares_write_uint,
  7167. },
  7168. #endif
  7169. #ifdef CONFIG_RT_GROUP_SCHED
  7170. {
  7171. .name = "rt_runtime_us",
  7172. .read = cpu_rt_runtime_read,
  7173. .write = cpu_rt_runtime_write,
  7174. },
  7175. {
  7176. .name = "rt_period_us",
  7177. .read_uint = cpu_rt_period_read_uint,
  7178. .write_uint = cpu_rt_period_write_uint,
  7179. },
  7180. #endif
  7181. };
  7182. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7183. {
  7184. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7185. }
  7186. struct cgroup_subsys cpu_cgroup_subsys = {
  7187. .name = "cpu",
  7188. .create = cpu_cgroup_create,
  7189. .destroy = cpu_cgroup_destroy,
  7190. .can_attach = cpu_cgroup_can_attach,
  7191. .attach = cpu_cgroup_attach,
  7192. .populate = cpu_cgroup_populate,
  7193. .subsys_id = cpu_cgroup_subsys_id,
  7194. .early_init = 1,
  7195. };
  7196. #endif /* CONFIG_CGROUP_SCHED */
  7197. #ifdef CONFIG_CGROUP_CPUACCT
  7198. /*
  7199. * CPU accounting code for task groups.
  7200. *
  7201. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7202. * (balbir@in.ibm.com).
  7203. */
  7204. /* track cpu usage of a group of tasks */
  7205. struct cpuacct {
  7206. struct cgroup_subsys_state css;
  7207. /* cpuusage holds pointer to a u64-type object on every cpu */
  7208. u64 *cpuusage;
  7209. };
  7210. struct cgroup_subsys cpuacct_subsys;
  7211. /* return cpu accounting group corresponding to this container */
  7212. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7213. {
  7214. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7215. struct cpuacct, css);
  7216. }
  7217. /* return cpu accounting group to which this task belongs */
  7218. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7219. {
  7220. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7221. struct cpuacct, css);
  7222. }
  7223. /* create a new cpu accounting group */
  7224. static struct cgroup_subsys_state *cpuacct_create(
  7225. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7226. {
  7227. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7228. if (!ca)
  7229. return ERR_PTR(-ENOMEM);
  7230. ca->cpuusage = alloc_percpu(u64);
  7231. if (!ca->cpuusage) {
  7232. kfree(ca);
  7233. return ERR_PTR(-ENOMEM);
  7234. }
  7235. return &ca->css;
  7236. }
  7237. /* destroy an existing cpu accounting group */
  7238. static void
  7239. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7240. {
  7241. struct cpuacct *ca = cgroup_ca(cgrp);
  7242. free_percpu(ca->cpuusage);
  7243. kfree(ca);
  7244. }
  7245. /* return total cpu usage (in nanoseconds) of a group */
  7246. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7247. {
  7248. struct cpuacct *ca = cgroup_ca(cgrp);
  7249. u64 totalcpuusage = 0;
  7250. int i;
  7251. for_each_possible_cpu(i) {
  7252. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7253. /*
  7254. * Take rq->lock to make 64-bit addition safe on 32-bit
  7255. * platforms.
  7256. */
  7257. spin_lock_irq(&cpu_rq(i)->lock);
  7258. totalcpuusage += *cpuusage;
  7259. spin_unlock_irq(&cpu_rq(i)->lock);
  7260. }
  7261. return totalcpuusage;
  7262. }
  7263. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7264. u64 reset)
  7265. {
  7266. struct cpuacct *ca = cgroup_ca(cgrp);
  7267. int err = 0;
  7268. int i;
  7269. if (reset) {
  7270. err = -EINVAL;
  7271. goto out;
  7272. }
  7273. for_each_possible_cpu(i) {
  7274. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7275. spin_lock_irq(&cpu_rq(i)->lock);
  7276. *cpuusage = 0;
  7277. spin_unlock_irq(&cpu_rq(i)->lock);
  7278. }
  7279. out:
  7280. return err;
  7281. }
  7282. static struct cftype files[] = {
  7283. {
  7284. .name = "usage",
  7285. .read_uint = cpuusage_read,
  7286. .write_uint = cpuusage_write,
  7287. },
  7288. };
  7289. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7290. {
  7291. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7292. }
  7293. /*
  7294. * charge this task's execution time to its accounting group.
  7295. *
  7296. * called with rq->lock held.
  7297. */
  7298. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7299. {
  7300. struct cpuacct *ca;
  7301. if (!cpuacct_subsys.active)
  7302. return;
  7303. ca = task_ca(tsk);
  7304. if (ca) {
  7305. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  7306. *cpuusage += cputime;
  7307. }
  7308. }
  7309. struct cgroup_subsys cpuacct_subsys = {
  7310. .name = "cpuacct",
  7311. .create = cpuacct_create,
  7312. .destroy = cpuacct_destroy,
  7313. .populate = cpuacct_populate,
  7314. .subsys_id = cpuacct_subsys_id,
  7315. };
  7316. #endif /* CONFIG_CGROUP_CPUACCT */