amd_iommu.c 63 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795
  1. /*
  2. * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
  3. * Author: Joerg Roedel <joerg.roedel@amd.com>
  4. * Leo Duran <leo.duran@amd.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/pci.h>
  20. #include <linux/pci-ats.h>
  21. #include <linux/bitmap.h>
  22. #include <linux/slab.h>
  23. #include <linux/debugfs.h>
  24. #include <linux/scatterlist.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/iommu-helper.h>
  27. #include <linux/iommu.h>
  28. #include <linux/delay.h>
  29. #include <asm/proto.h>
  30. #include <asm/iommu.h>
  31. #include <asm/gart.h>
  32. #include <asm/dma.h>
  33. #include <asm/amd_iommu_proto.h>
  34. #include <asm/amd_iommu_types.h>
  35. #include <asm/amd_iommu.h>
  36. #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
  37. #define LOOP_TIMEOUT 100000
  38. static DEFINE_RWLOCK(amd_iommu_devtable_lock);
  39. /* A list of preallocated protection domains */
  40. static LIST_HEAD(iommu_pd_list);
  41. static DEFINE_SPINLOCK(iommu_pd_list_lock);
  42. /* List of all available dev_data structures */
  43. static LIST_HEAD(dev_data_list);
  44. static DEFINE_SPINLOCK(dev_data_list_lock);
  45. /*
  46. * Domain for untranslated devices - only allocated
  47. * if iommu=pt passed on kernel cmd line.
  48. */
  49. static struct protection_domain *pt_domain;
  50. static struct iommu_ops amd_iommu_ops;
  51. /*
  52. * general struct to manage commands send to an IOMMU
  53. */
  54. struct iommu_cmd {
  55. u32 data[4];
  56. };
  57. static void update_domain(struct protection_domain *domain);
  58. /****************************************************************************
  59. *
  60. * Helper functions
  61. *
  62. ****************************************************************************/
  63. static struct iommu_dev_data *alloc_dev_data(u16 devid)
  64. {
  65. struct iommu_dev_data *dev_data;
  66. unsigned long flags;
  67. dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
  68. if (!dev_data)
  69. return NULL;
  70. dev_data->devid = devid;
  71. atomic_set(&dev_data->bind, 0);
  72. spin_lock_irqsave(&dev_data_list_lock, flags);
  73. list_add_tail(&dev_data->dev_data_list, &dev_data_list);
  74. spin_unlock_irqrestore(&dev_data_list_lock, flags);
  75. return dev_data;
  76. }
  77. static void free_dev_data(struct iommu_dev_data *dev_data)
  78. {
  79. unsigned long flags;
  80. spin_lock_irqsave(&dev_data_list_lock, flags);
  81. list_del(&dev_data->dev_data_list);
  82. spin_unlock_irqrestore(&dev_data_list_lock, flags);
  83. kfree(dev_data);
  84. }
  85. static inline u16 get_device_id(struct device *dev)
  86. {
  87. struct pci_dev *pdev = to_pci_dev(dev);
  88. return calc_devid(pdev->bus->number, pdev->devfn);
  89. }
  90. static struct iommu_dev_data *get_dev_data(struct device *dev)
  91. {
  92. return dev->archdata.iommu;
  93. }
  94. /*
  95. * In this function the list of preallocated protection domains is traversed to
  96. * find the domain for a specific device
  97. */
  98. static struct dma_ops_domain *find_protection_domain(u16 devid)
  99. {
  100. struct dma_ops_domain *entry, *ret = NULL;
  101. unsigned long flags;
  102. u16 alias = amd_iommu_alias_table[devid];
  103. if (list_empty(&iommu_pd_list))
  104. return NULL;
  105. spin_lock_irqsave(&iommu_pd_list_lock, flags);
  106. list_for_each_entry(entry, &iommu_pd_list, list) {
  107. if (entry->target_dev == devid ||
  108. entry->target_dev == alias) {
  109. ret = entry;
  110. break;
  111. }
  112. }
  113. spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
  114. return ret;
  115. }
  116. /*
  117. * This function checks if the driver got a valid device from the caller to
  118. * avoid dereferencing invalid pointers.
  119. */
  120. static bool check_device(struct device *dev)
  121. {
  122. u16 devid;
  123. if (!dev || !dev->dma_mask)
  124. return false;
  125. /* No device or no PCI device */
  126. if (dev->bus != &pci_bus_type)
  127. return false;
  128. devid = get_device_id(dev);
  129. /* Out of our scope? */
  130. if (devid > amd_iommu_last_bdf)
  131. return false;
  132. if (amd_iommu_rlookup_table[devid] == NULL)
  133. return false;
  134. return true;
  135. }
  136. static int iommu_init_device(struct device *dev)
  137. {
  138. struct iommu_dev_data *dev_data;
  139. struct pci_dev *pdev;
  140. u16 alias;
  141. if (dev->archdata.iommu)
  142. return 0;
  143. dev_data = alloc_dev_data(get_device_id(dev));
  144. if (!dev_data)
  145. return -ENOMEM;
  146. dev_data->dev = dev;
  147. alias = amd_iommu_alias_table[dev_data->devid];
  148. pdev = pci_get_bus_and_slot(PCI_BUS(alias), alias & 0xff);
  149. if (pdev)
  150. dev_data->alias = &pdev->dev;
  151. else {
  152. free_dev_data(dev_data);
  153. return -ENOTSUPP;
  154. }
  155. dev->archdata.iommu = dev_data;
  156. return 0;
  157. }
  158. static void iommu_ignore_device(struct device *dev)
  159. {
  160. u16 devid, alias;
  161. devid = get_device_id(dev);
  162. alias = amd_iommu_alias_table[devid];
  163. memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
  164. memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
  165. amd_iommu_rlookup_table[devid] = NULL;
  166. amd_iommu_rlookup_table[alias] = NULL;
  167. }
  168. static void iommu_uninit_device(struct device *dev)
  169. {
  170. /*
  171. * Nothing to do here - we keep dev_data around for unplugged devices
  172. * and reuse it when the device is re-plugged - not doing so would
  173. * introduce a ton of races.
  174. */
  175. }
  176. void __init amd_iommu_uninit_devices(void)
  177. {
  178. struct iommu_dev_data *dev_data, *n;
  179. struct pci_dev *pdev = NULL;
  180. for_each_pci_dev(pdev) {
  181. if (!check_device(&pdev->dev))
  182. continue;
  183. iommu_uninit_device(&pdev->dev);
  184. }
  185. /* Free all of our dev_data structures */
  186. list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
  187. free_dev_data(dev_data);
  188. }
  189. int __init amd_iommu_init_devices(void)
  190. {
  191. struct pci_dev *pdev = NULL;
  192. int ret = 0;
  193. for_each_pci_dev(pdev) {
  194. if (!check_device(&pdev->dev))
  195. continue;
  196. ret = iommu_init_device(&pdev->dev);
  197. if (ret == -ENOTSUPP)
  198. iommu_ignore_device(&pdev->dev);
  199. else if (ret)
  200. goto out_free;
  201. }
  202. return 0;
  203. out_free:
  204. amd_iommu_uninit_devices();
  205. return ret;
  206. }
  207. #ifdef CONFIG_AMD_IOMMU_STATS
  208. /*
  209. * Initialization code for statistics collection
  210. */
  211. DECLARE_STATS_COUNTER(compl_wait);
  212. DECLARE_STATS_COUNTER(cnt_map_single);
  213. DECLARE_STATS_COUNTER(cnt_unmap_single);
  214. DECLARE_STATS_COUNTER(cnt_map_sg);
  215. DECLARE_STATS_COUNTER(cnt_unmap_sg);
  216. DECLARE_STATS_COUNTER(cnt_alloc_coherent);
  217. DECLARE_STATS_COUNTER(cnt_free_coherent);
  218. DECLARE_STATS_COUNTER(cross_page);
  219. DECLARE_STATS_COUNTER(domain_flush_single);
  220. DECLARE_STATS_COUNTER(domain_flush_all);
  221. DECLARE_STATS_COUNTER(alloced_io_mem);
  222. DECLARE_STATS_COUNTER(total_map_requests);
  223. static struct dentry *stats_dir;
  224. static struct dentry *de_fflush;
  225. static void amd_iommu_stats_add(struct __iommu_counter *cnt)
  226. {
  227. if (stats_dir == NULL)
  228. return;
  229. cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
  230. &cnt->value);
  231. }
  232. static void amd_iommu_stats_init(void)
  233. {
  234. stats_dir = debugfs_create_dir("amd-iommu", NULL);
  235. if (stats_dir == NULL)
  236. return;
  237. de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
  238. (u32 *)&amd_iommu_unmap_flush);
  239. amd_iommu_stats_add(&compl_wait);
  240. amd_iommu_stats_add(&cnt_map_single);
  241. amd_iommu_stats_add(&cnt_unmap_single);
  242. amd_iommu_stats_add(&cnt_map_sg);
  243. amd_iommu_stats_add(&cnt_unmap_sg);
  244. amd_iommu_stats_add(&cnt_alloc_coherent);
  245. amd_iommu_stats_add(&cnt_free_coherent);
  246. amd_iommu_stats_add(&cross_page);
  247. amd_iommu_stats_add(&domain_flush_single);
  248. amd_iommu_stats_add(&domain_flush_all);
  249. amd_iommu_stats_add(&alloced_io_mem);
  250. amd_iommu_stats_add(&total_map_requests);
  251. }
  252. #endif
  253. /****************************************************************************
  254. *
  255. * Interrupt handling functions
  256. *
  257. ****************************************************************************/
  258. static void dump_dte_entry(u16 devid)
  259. {
  260. int i;
  261. for (i = 0; i < 8; ++i)
  262. pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
  263. amd_iommu_dev_table[devid].data[i]);
  264. }
  265. static void dump_command(unsigned long phys_addr)
  266. {
  267. struct iommu_cmd *cmd = phys_to_virt(phys_addr);
  268. int i;
  269. for (i = 0; i < 4; ++i)
  270. pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
  271. }
  272. static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
  273. {
  274. u32 *event = __evt;
  275. int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
  276. int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
  277. int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
  278. int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
  279. u64 address = (u64)(((u64)event[3]) << 32) | event[2];
  280. printk(KERN_ERR "AMD-Vi: Event logged [");
  281. switch (type) {
  282. case EVENT_TYPE_ILL_DEV:
  283. printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
  284. "address=0x%016llx flags=0x%04x]\n",
  285. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  286. address, flags);
  287. dump_dte_entry(devid);
  288. break;
  289. case EVENT_TYPE_IO_FAULT:
  290. printk("IO_PAGE_FAULT device=%02x:%02x.%x "
  291. "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
  292. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  293. domid, address, flags);
  294. break;
  295. case EVENT_TYPE_DEV_TAB_ERR:
  296. printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
  297. "address=0x%016llx flags=0x%04x]\n",
  298. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  299. address, flags);
  300. break;
  301. case EVENT_TYPE_PAGE_TAB_ERR:
  302. printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
  303. "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
  304. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  305. domid, address, flags);
  306. break;
  307. case EVENT_TYPE_ILL_CMD:
  308. printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
  309. dump_command(address);
  310. break;
  311. case EVENT_TYPE_CMD_HARD_ERR:
  312. printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
  313. "flags=0x%04x]\n", address, flags);
  314. break;
  315. case EVENT_TYPE_IOTLB_INV_TO:
  316. printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
  317. "address=0x%016llx]\n",
  318. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  319. address);
  320. break;
  321. case EVENT_TYPE_INV_DEV_REQ:
  322. printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
  323. "address=0x%016llx flags=0x%04x]\n",
  324. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  325. address, flags);
  326. break;
  327. default:
  328. printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
  329. }
  330. }
  331. static void iommu_poll_events(struct amd_iommu *iommu)
  332. {
  333. u32 head, tail;
  334. unsigned long flags;
  335. spin_lock_irqsave(&iommu->lock, flags);
  336. head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
  337. tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
  338. while (head != tail) {
  339. iommu_print_event(iommu, iommu->evt_buf + head);
  340. head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
  341. }
  342. writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
  343. spin_unlock_irqrestore(&iommu->lock, flags);
  344. }
  345. irqreturn_t amd_iommu_int_thread(int irq, void *data)
  346. {
  347. struct amd_iommu *iommu;
  348. for_each_iommu(iommu)
  349. iommu_poll_events(iommu);
  350. return IRQ_HANDLED;
  351. }
  352. irqreturn_t amd_iommu_int_handler(int irq, void *data)
  353. {
  354. return IRQ_WAKE_THREAD;
  355. }
  356. /****************************************************************************
  357. *
  358. * IOMMU command queuing functions
  359. *
  360. ****************************************************************************/
  361. static int wait_on_sem(volatile u64 *sem)
  362. {
  363. int i = 0;
  364. while (*sem == 0 && i < LOOP_TIMEOUT) {
  365. udelay(1);
  366. i += 1;
  367. }
  368. if (i == LOOP_TIMEOUT) {
  369. pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
  370. return -EIO;
  371. }
  372. return 0;
  373. }
  374. static void copy_cmd_to_buffer(struct amd_iommu *iommu,
  375. struct iommu_cmd *cmd,
  376. u32 tail)
  377. {
  378. u8 *target;
  379. target = iommu->cmd_buf + tail;
  380. tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
  381. /* Copy command to buffer */
  382. memcpy(target, cmd, sizeof(*cmd));
  383. /* Tell the IOMMU about it */
  384. writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
  385. }
  386. static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
  387. {
  388. WARN_ON(address & 0x7ULL);
  389. memset(cmd, 0, sizeof(*cmd));
  390. cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
  391. cmd->data[1] = upper_32_bits(__pa(address));
  392. cmd->data[2] = 1;
  393. CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
  394. }
  395. static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
  396. {
  397. memset(cmd, 0, sizeof(*cmd));
  398. cmd->data[0] = devid;
  399. CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
  400. }
  401. static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
  402. size_t size, u16 domid, int pde)
  403. {
  404. u64 pages;
  405. int s;
  406. pages = iommu_num_pages(address, size, PAGE_SIZE);
  407. s = 0;
  408. if (pages > 1) {
  409. /*
  410. * If we have to flush more than one page, flush all
  411. * TLB entries for this domain
  412. */
  413. address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
  414. s = 1;
  415. }
  416. address &= PAGE_MASK;
  417. memset(cmd, 0, sizeof(*cmd));
  418. cmd->data[1] |= domid;
  419. cmd->data[2] = lower_32_bits(address);
  420. cmd->data[3] = upper_32_bits(address);
  421. CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
  422. if (s) /* size bit - we flush more than one 4kb page */
  423. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  424. if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
  425. cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
  426. }
  427. static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
  428. u64 address, size_t size)
  429. {
  430. u64 pages;
  431. int s;
  432. pages = iommu_num_pages(address, size, PAGE_SIZE);
  433. s = 0;
  434. if (pages > 1) {
  435. /*
  436. * If we have to flush more than one page, flush all
  437. * TLB entries for this domain
  438. */
  439. address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
  440. s = 1;
  441. }
  442. address &= PAGE_MASK;
  443. memset(cmd, 0, sizeof(*cmd));
  444. cmd->data[0] = devid;
  445. cmd->data[0] |= (qdep & 0xff) << 24;
  446. cmd->data[1] = devid;
  447. cmd->data[2] = lower_32_bits(address);
  448. cmd->data[3] = upper_32_bits(address);
  449. CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
  450. if (s)
  451. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  452. }
  453. static void build_inv_all(struct iommu_cmd *cmd)
  454. {
  455. memset(cmd, 0, sizeof(*cmd));
  456. CMD_SET_TYPE(cmd, CMD_INV_ALL);
  457. }
  458. /*
  459. * Writes the command to the IOMMUs command buffer and informs the
  460. * hardware about the new command.
  461. */
  462. static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
  463. {
  464. u32 left, tail, head, next_tail;
  465. unsigned long flags;
  466. WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
  467. again:
  468. spin_lock_irqsave(&iommu->lock, flags);
  469. head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
  470. tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
  471. next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
  472. left = (head - next_tail) % iommu->cmd_buf_size;
  473. if (left <= 2) {
  474. struct iommu_cmd sync_cmd;
  475. volatile u64 sem = 0;
  476. int ret;
  477. build_completion_wait(&sync_cmd, (u64)&sem);
  478. copy_cmd_to_buffer(iommu, &sync_cmd, tail);
  479. spin_unlock_irqrestore(&iommu->lock, flags);
  480. if ((ret = wait_on_sem(&sem)) != 0)
  481. return ret;
  482. goto again;
  483. }
  484. copy_cmd_to_buffer(iommu, cmd, tail);
  485. /* We need to sync now to make sure all commands are processed */
  486. iommu->need_sync = true;
  487. spin_unlock_irqrestore(&iommu->lock, flags);
  488. return 0;
  489. }
  490. /*
  491. * This function queues a completion wait command into the command
  492. * buffer of an IOMMU
  493. */
  494. static int iommu_completion_wait(struct amd_iommu *iommu)
  495. {
  496. struct iommu_cmd cmd;
  497. volatile u64 sem = 0;
  498. int ret;
  499. if (!iommu->need_sync)
  500. return 0;
  501. build_completion_wait(&cmd, (u64)&sem);
  502. ret = iommu_queue_command(iommu, &cmd);
  503. if (ret)
  504. return ret;
  505. return wait_on_sem(&sem);
  506. }
  507. static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
  508. {
  509. struct iommu_cmd cmd;
  510. build_inv_dte(&cmd, devid);
  511. return iommu_queue_command(iommu, &cmd);
  512. }
  513. static void iommu_flush_dte_all(struct amd_iommu *iommu)
  514. {
  515. u32 devid;
  516. for (devid = 0; devid <= 0xffff; ++devid)
  517. iommu_flush_dte(iommu, devid);
  518. iommu_completion_wait(iommu);
  519. }
  520. /*
  521. * This function uses heavy locking and may disable irqs for some time. But
  522. * this is no issue because it is only called during resume.
  523. */
  524. static void iommu_flush_tlb_all(struct amd_iommu *iommu)
  525. {
  526. u32 dom_id;
  527. for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
  528. struct iommu_cmd cmd;
  529. build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
  530. dom_id, 1);
  531. iommu_queue_command(iommu, &cmd);
  532. }
  533. iommu_completion_wait(iommu);
  534. }
  535. static void iommu_flush_all(struct amd_iommu *iommu)
  536. {
  537. struct iommu_cmd cmd;
  538. build_inv_all(&cmd);
  539. iommu_queue_command(iommu, &cmd);
  540. iommu_completion_wait(iommu);
  541. }
  542. void iommu_flush_all_caches(struct amd_iommu *iommu)
  543. {
  544. if (iommu_feature(iommu, FEATURE_IA)) {
  545. iommu_flush_all(iommu);
  546. } else {
  547. iommu_flush_dte_all(iommu);
  548. iommu_flush_tlb_all(iommu);
  549. }
  550. }
  551. /*
  552. * Command send function for flushing on-device TLB
  553. */
  554. static int device_flush_iotlb(struct device *dev, u64 address, size_t size)
  555. {
  556. struct iommu_dev_data *dev_data;
  557. struct amd_iommu *iommu;
  558. struct iommu_cmd cmd;
  559. int qdep;
  560. dev_data = get_dev_data(dev);
  561. qdep = dev_data->ats.qdep;
  562. iommu = amd_iommu_rlookup_table[dev_data->devid];
  563. build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
  564. return iommu_queue_command(iommu, &cmd);
  565. }
  566. /*
  567. * Command send function for invalidating a device table entry
  568. */
  569. static int device_flush_dte(struct device *dev)
  570. {
  571. struct iommu_dev_data *dev_data;
  572. struct amd_iommu *iommu;
  573. struct pci_dev *pdev;
  574. int ret;
  575. pdev = to_pci_dev(dev);
  576. dev_data = get_dev_data(dev);
  577. iommu = amd_iommu_rlookup_table[dev_data->devid];
  578. ret = iommu_flush_dte(iommu, dev_data->devid);
  579. if (ret)
  580. return ret;
  581. if (dev_data->ats.enabled)
  582. ret = device_flush_iotlb(dev, 0, ~0UL);
  583. return ret;
  584. }
  585. /*
  586. * TLB invalidation function which is called from the mapping functions.
  587. * It invalidates a single PTE if the range to flush is within a single
  588. * page. Otherwise it flushes the whole TLB of the IOMMU.
  589. */
  590. static void __domain_flush_pages(struct protection_domain *domain,
  591. u64 address, size_t size, int pde)
  592. {
  593. struct iommu_dev_data *dev_data;
  594. struct iommu_cmd cmd;
  595. int ret = 0, i;
  596. build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
  597. for (i = 0; i < amd_iommus_present; ++i) {
  598. if (!domain->dev_iommu[i])
  599. continue;
  600. /*
  601. * Devices of this domain are behind this IOMMU
  602. * We need a TLB flush
  603. */
  604. ret |= iommu_queue_command(amd_iommus[i], &cmd);
  605. }
  606. list_for_each_entry(dev_data, &domain->dev_list, list) {
  607. if (!dev_data->ats.enabled)
  608. continue;
  609. ret |= device_flush_iotlb(dev_data->dev, address, size);
  610. }
  611. WARN_ON(ret);
  612. }
  613. static void domain_flush_pages(struct protection_domain *domain,
  614. u64 address, size_t size)
  615. {
  616. __domain_flush_pages(domain, address, size, 0);
  617. }
  618. /* Flush the whole IO/TLB for a given protection domain */
  619. static void domain_flush_tlb(struct protection_domain *domain)
  620. {
  621. __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
  622. }
  623. /* Flush the whole IO/TLB for a given protection domain - including PDE */
  624. static void domain_flush_tlb_pde(struct protection_domain *domain)
  625. {
  626. __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
  627. }
  628. static void domain_flush_complete(struct protection_domain *domain)
  629. {
  630. int i;
  631. for (i = 0; i < amd_iommus_present; ++i) {
  632. if (!domain->dev_iommu[i])
  633. continue;
  634. /*
  635. * Devices of this domain are behind this IOMMU
  636. * We need to wait for completion of all commands.
  637. */
  638. iommu_completion_wait(amd_iommus[i]);
  639. }
  640. }
  641. /*
  642. * This function flushes the DTEs for all devices in domain
  643. */
  644. static void domain_flush_devices(struct protection_domain *domain)
  645. {
  646. struct iommu_dev_data *dev_data;
  647. unsigned long flags;
  648. spin_lock_irqsave(&domain->lock, flags);
  649. list_for_each_entry(dev_data, &domain->dev_list, list)
  650. device_flush_dte(dev_data->dev);
  651. spin_unlock_irqrestore(&domain->lock, flags);
  652. }
  653. /****************************************************************************
  654. *
  655. * The functions below are used the create the page table mappings for
  656. * unity mapped regions.
  657. *
  658. ****************************************************************************/
  659. /*
  660. * This function is used to add another level to an IO page table. Adding
  661. * another level increases the size of the address space by 9 bits to a size up
  662. * to 64 bits.
  663. */
  664. static bool increase_address_space(struct protection_domain *domain,
  665. gfp_t gfp)
  666. {
  667. u64 *pte;
  668. if (domain->mode == PAGE_MODE_6_LEVEL)
  669. /* address space already 64 bit large */
  670. return false;
  671. pte = (void *)get_zeroed_page(gfp);
  672. if (!pte)
  673. return false;
  674. *pte = PM_LEVEL_PDE(domain->mode,
  675. virt_to_phys(domain->pt_root));
  676. domain->pt_root = pte;
  677. domain->mode += 1;
  678. domain->updated = true;
  679. return true;
  680. }
  681. static u64 *alloc_pte(struct protection_domain *domain,
  682. unsigned long address,
  683. unsigned long page_size,
  684. u64 **pte_page,
  685. gfp_t gfp)
  686. {
  687. int level, end_lvl;
  688. u64 *pte, *page;
  689. BUG_ON(!is_power_of_2(page_size));
  690. while (address > PM_LEVEL_SIZE(domain->mode))
  691. increase_address_space(domain, gfp);
  692. level = domain->mode - 1;
  693. pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
  694. address = PAGE_SIZE_ALIGN(address, page_size);
  695. end_lvl = PAGE_SIZE_LEVEL(page_size);
  696. while (level > end_lvl) {
  697. if (!IOMMU_PTE_PRESENT(*pte)) {
  698. page = (u64 *)get_zeroed_page(gfp);
  699. if (!page)
  700. return NULL;
  701. *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
  702. }
  703. /* No level skipping support yet */
  704. if (PM_PTE_LEVEL(*pte) != level)
  705. return NULL;
  706. level -= 1;
  707. pte = IOMMU_PTE_PAGE(*pte);
  708. if (pte_page && level == end_lvl)
  709. *pte_page = pte;
  710. pte = &pte[PM_LEVEL_INDEX(level, address)];
  711. }
  712. return pte;
  713. }
  714. /*
  715. * This function checks if there is a PTE for a given dma address. If
  716. * there is one, it returns the pointer to it.
  717. */
  718. static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
  719. {
  720. int level;
  721. u64 *pte;
  722. if (address > PM_LEVEL_SIZE(domain->mode))
  723. return NULL;
  724. level = domain->mode - 1;
  725. pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
  726. while (level > 0) {
  727. /* Not Present */
  728. if (!IOMMU_PTE_PRESENT(*pte))
  729. return NULL;
  730. /* Large PTE */
  731. if (PM_PTE_LEVEL(*pte) == 0x07) {
  732. unsigned long pte_mask, __pte;
  733. /*
  734. * If we have a series of large PTEs, make
  735. * sure to return a pointer to the first one.
  736. */
  737. pte_mask = PTE_PAGE_SIZE(*pte);
  738. pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
  739. __pte = ((unsigned long)pte) & pte_mask;
  740. return (u64 *)__pte;
  741. }
  742. /* No level skipping support yet */
  743. if (PM_PTE_LEVEL(*pte) != level)
  744. return NULL;
  745. level -= 1;
  746. /* Walk to the next level */
  747. pte = IOMMU_PTE_PAGE(*pte);
  748. pte = &pte[PM_LEVEL_INDEX(level, address)];
  749. }
  750. return pte;
  751. }
  752. /*
  753. * Generic mapping functions. It maps a physical address into a DMA
  754. * address space. It allocates the page table pages if necessary.
  755. * In the future it can be extended to a generic mapping function
  756. * supporting all features of AMD IOMMU page tables like level skipping
  757. * and full 64 bit address spaces.
  758. */
  759. static int iommu_map_page(struct protection_domain *dom,
  760. unsigned long bus_addr,
  761. unsigned long phys_addr,
  762. int prot,
  763. unsigned long page_size)
  764. {
  765. u64 __pte, *pte;
  766. int i, count;
  767. if (!(prot & IOMMU_PROT_MASK))
  768. return -EINVAL;
  769. bus_addr = PAGE_ALIGN(bus_addr);
  770. phys_addr = PAGE_ALIGN(phys_addr);
  771. count = PAGE_SIZE_PTE_COUNT(page_size);
  772. pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
  773. for (i = 0; i < count; ++i)
  774. if (IOMMU_PTE_PRESENT(pte[i]))
  775. return -EBUSY;
  776. if (page_size > PAGE_SIZE) {
  777. __pte = PAGE_SIZE_PTE(phys_addr, page_size);
  778. __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
  779. } else
  780. __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
  781. if (prot & IOMMU_PROT_IR)
  782. __pte |= IOMMU_PTE_IR;
  783. if (prot & IOMMU_PROT_IW)
  784. __pte |= IOMMU_PTE_IW;
  785. for (i = 0; i < count; ++i)
  786. pte[i] = __pte;
  787. update_domain(dom);
  788. return 0;
  789. }
  790. static unsigned long iommu_unmap_page(struct protection_domain *dom,
  791. unsigned long bus_addr,
  792. unsigned long page_size)
  793. {
  794. unsigned long long unmap_size, unmapped;
  795. u64 *pte;
  796. BUG_ON(!is_power_of_2(page_size));
  797. unmapped = 0;
  798. while (unmapped < page_size) {
  799. pte = fetch_pte(dom, bus_addr);
  800. if (!pte) {
  801. /*
  802. * No PTE for this address
  803. * move forward in 4kb steps
  804. */
  805. unmap_size = PAGE_SIZE;
  806. } else if (PM_PTE_LEVEL(*pte) == 0) {
  807. /* 4kb PTE found for this address */
  808. unmap_size = PAGE_SIZE;
  809. *pte = 0ULL;
  810. } else {
  811. int count, i;
  812. /* Large PTE found which maps this address */
  813. unmap_size = PTE_PAGE_SIZE(*pte);
  814. count = PAGE_SIZE_PTE_COUNT(unmap_size);
  815. for (i = 0; i < count; i++)
  816. pte[i] = 0ULL;
  817. }
  818. bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
  819. unmapped += unmap_size;
  820. }
  821. BUG_ON(!is_power_of_2(unmapped));
  822. return unmapped;
  823. }
  824. /*
  825. * This function checks if a specific unity mapping entry is needed for
  826. * this specific IOMMU.
  827. */
  828. static int iommu_for_unity_map(struct amd_iommu *iommu,
  829. struct unity_map_entry *entry)
  830. {
  831. u16 bdf, i;
  832. for (i = entry->devid_start; i <= entry->devid_end; ++i) {
  833. bdf = amd_iommu_alias_table[i];
  834. if (amd_iommu_rlookup_table[bdf] == iommu)
  835. return 1;
  836. }
  837. return 0;
  838. }
  839. /*
  840. * This function actually applies the mapping to the page table of the
  841. * dma_ops domain.
  842. */
  843. static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
  844. struct unity_map_entry *e)
  845. {
  846. u64 addr;
  847. int ret;
  848. for (addr = e->address_start; addr < e->address_end;
  849. addr += PAGE_SIZE) {
  850. ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
  851. PAGE_SIZE);
  852. if (ret)
  853. return ret;
  854. /*
  855. * if unity mapping is in aperture range mark the page
  856. * as allocated in the aperture
  857. */
  858. if (addr < dma_dom->aperture_size)
  859. __set_bit(addr >> PAGE_SHIFT,
  860. dma_dom->aperture[0]->bitmap);
  861. }
  862. return 0;
  863. }
  864. /*
  865. * Init the unity mappings for a specific IOMMU in the system
  866. *
  867. * Basically iterates over all unity mapping entries and applies them to
  868. * the default domain DMA of that IOMMU if necessary.
  869. */
  870. static int iommu_init_unity_mappings(struct amd_iommu *iommu)
  871. {
  872. struct unity_map_entry *entry;
  873. int ret;
  874. list_for_each_entry(entry, &amd_iommu_unity_map, list) {
  875. if (!iommu_for_unity_map(iommu, entry))
  876. continue;
  877. ret = dma_ops_unity_map(iommu->default_dom, entry);
  878. if (ret)
  879. return ret;
  880. }
  881. return 0;
  882. }
  883. /*
  884. * Inits the unity mappings required for a specific device
  885. */
  886. static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
  887. u16 devid)
  888. {
  889. struct unity_map_entry *e;
  890. int ret;
  891. list_for_each_entry(e, &amd_iommu_unity_map, list) {
  892. if (!(devid >= e->devid_start && devid <= e->devid_end))
  893. continue;
  894. ret = dma_ops_unity_map(dma_dom, e);
  895. if (ret)
  896. return ret;
  897. }
  898. return 0;
  899. }
  900. /****************************************************************************
  901. *
  902. * The next functions belong to the address allocator for the dma_ops
  903. * interface functions. They work like the allocators in the other IOMMU
  904. * drivers. Its basically a bitmap which marks the allocated pages in
  905. * the aperture. Maybe it could be enhanced in the future to a more
  906. * efficient allocator.
  907. *
  908. ****************************************************************************/
  909. /*
  910. * The address allocator core functions.
  911. *
  912. * called with domain->lock held
  913. */
  914. /*
  915. * Used to reserve address ranges in the aperture (e.g. for exclusion
  916. * ranges.
  917. */
  918. static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
  919. unsigned long start_page,
  920. unsigned int pages)
  921. {
  922. unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
  923. if (start_page + pages > last_page)
  924. pages = last_page - start_page;
  925. for (i = start_page; i < start_page + pages; ++i) {
  926. int index = i / APERTURE_RANGE_PAGES;
  927. int page = i % APERTURE_RANGE_PAGES;
  928. __set_bit(page, dom->aperture[index]->bitmap);
  929. }
  930. }
  931. /*
  932. * This function is used to add a new aperture range to an existing
  933. * aperture in case of dma_ops domain allocation or address allocation
  934. * failure.
  935. */
  936. static int alloc_new_range(struct dma_ops_domain *dma_dom,
  937. bool populate, gfp_t gfp)
  938. {
  939. int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
  940. struct amd_iommu *iommu;
  941. unsigned long i;
  942. #ifdef CONFIG_IOMMU_STRESS
  943. populate = false;
  944. #endif
  945. if (index >= APERTURE_MAX_RANGES)
  946. return -ENOMEM;
  947. dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
  948. if (!dma_dom->aperture[index])
  949. return -ENOMEM;
  950. dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
  951. if (!dma_dom->aperture[index]->bitmap)
  952. goto out_free;
  953. dma_dom->aperture[index]->offset = dma_dom->aperture_size;
  954. if (populate) {
  955. unsigned long address = dma_dom->aperture_size;
  956. int i, num_ptes = APERTURE_RANGE_PAGES / 512;
  957. u64 *pte, *pte_page;
  958. for (i = 0; i < num_ptes; ++i) {
  959. pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
  960. &pte_page, gfp);
  961. if (!pte)
  962. goto out_free;
  963. dma_dom->aperture[index]->pte_pages[i] = pte_page;
  964. address += APERTURE_RANGE_SIZE / 64;
  965. }
  966. }
  967. dma_dom->aperture_size += APERTURE_RANGE_SIZE;
  968. /* Initialize the exclusion range if necessary */
  969. for_each_iommu(iommu) {
  970. if (iommu->exclusion_start &&
  971. iommu->exclusion_start >= dma_dom->aperture[index]->offset
  972. && iommu->exclusion_start < dma_dom->aperture_size) {
  973. unsigned long startpage;
  974. int pages = iommu_num_pages(iommu->exclusion_start,
  975. iommu->exclusion_length,
  976. PAGE_SIZE);
  977. startpage = iommu->exclusion_start >> PAGE_SHIFT;
  978. dma_ops_reserve_addresses(dma_dom, startpage, pages);
  979. }
  980. }
  981. /*
  982. * Check for areas already mapped as present in the new aperture
  983. * range and mark those pages as reserved in the allocator. Such
  984. * mappings may already exist as a result of requested unity
  985. * mappings for devices.
  986. */
  987. for (i = dma_dom->aperture[index]->offset;
  988. i < dma_dom->aperture_size;
  989. i += PAGE_SIZE) {
  990. u64 *pte = fetch_pte(&dma_dom->domain, i);
  991. if (!pte || !IOMMU_PTE_PRESENT(*pte))
  992. continue;
  993. dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
  994. }
  995. update_domain(&dma_dom->domain);
  996. return 0;
  997. out_free:
  998. update_domain(&dma_dom->domain);
  999. free_page((unsigned long)dma_dom->aperture[index]->bitmap);
  1000. kfree(dma_dom->aperture[index]);
  1001. dma_dom->aperture[index] = NULL;
  1002. return -ENOMEM;
  1003. }
  1004. static unsigned long dma_ops_area_alloc(struct device *dev,
  1005. struct dma_ops_domain *dom,
  1006. unsigned int pages,
  1007. unsigned long align_mask,
  1008. u64 dma_mask,
  1009. unsigned long start)
  1010. {
  1011. unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
  1012. int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
  1013. int i = start >> APERTURE_RANGE_SHIFT;
  1014. unsigned long boundary_size;
  1015. unsigned long address = -1;
  1016. unsigned long limit;
  1017. next_bit >>= PAGE_SHIFT;
  1018. boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
  1019. PAGE_SIZE) >> PAGE_SHIFT;
  1020. for (;i < max_index; ++i) {
  1021. unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
  1022. if (dom->aperture[i]->offset >= dma_mask)
  1023. break;
  1024. limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
  1025. dma_mask >> PAGE_SHIFT);
  1026. address = iommu_area_alloc(dom->aperture[i]->bitmap,
  1027. limit, next_bit, pages, 0,
  1028. boundary_size, align_mask);
  1029. if (address != -1) {
  1030. address = dom->aperture[i]->offset +
  1031. (address << PAGE_SHIFT);
  1032. dom->next_address = address + (pages << PAGE_SHIFT);
  1033. break;
  1034. }
  1035. next_bit = 0;
  1036. }
  1037. return address;
  1038. }
  1039. static unsigned long dma_ops_alloc_addresses(struct device *dev,
  1040. struct dma_ops_domain *dom,
  1041. unsigned int pages,
  1042. unsigned long align_mask,
  1043. u64 dma_mask)
  1044. {
  1045. unsigned long address;
  1046. #ifdef CONFIG_IOMMU_STRESS
  1047. dom->next_address = 0;
  1048. dom->need_flush = true;
  1049. #endif
  1050. address = dma_ops_area_alloc(dev, dom, pages, align_mask,
  1051. dma_mask, dom->next_address);
  1052. if (address == -1) {
  1053. dom->next_address = 0;
  1054. address = dma_ops_area_alloc(dev, dom, pages, align_mask,
  1055. dma_mask, 0);
  1056. dom->need_flush = true;
  1057. }
  1058. if (unlikely(address == -1))
  1059. address = DMA_ERROR_CODE;
  1060. WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
  1061. return address;
  1062. }
  1063. /*
  1064. * The address free function.
  1065. *
  1066. * called with domain->lock held
  1067. */
  1068. static void dma_ops_free_addresses(struct dma_ops_domain *dom,
  1069. unsigned long address,
  1070. unsigned int pages)
  1071. {
  1072. unsigned i = address >> APERTURE_RANGE_SHIFT;
  1073. struct aperture_range *range = dom->aperture[i];
  1074. BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
  1075. #ifdef CONFIG_IOMMU_STRESS
  1076. if (i < 4)
  1077. return;
  1078. #endif
  1079. if (address >= dom->next_address)
  1080. dom->need_flush = true;
  1081. address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
  1082. bitmap_clear(range->bitmap, address, pages);
  1083. }
  1084. /****************************************************************************
  1085. *
  1086. * The next functions belong to the domain allocation. A domain is
  1087. * allocated for every IOMMU as the default domain. If device isolation
  1088. * is enabled, every device get its own domain. The most important thing
  1089. * about domains is the page table mapping the DMA address space they
  1090. * contain.
  1091. *
  1092. ****************************************************************************/
  1093. /*
  1094. * This function adds a protection domain to the global protection domain list
  1095. */
  1096. static void add_domain_to_list(struct protection_domain *domain)
  1097. {
  1098. unsigned long flags;
  1099. spin_lock_irqsave(&amd_iommu_pd_lock, flags);
  1100. list_add(&domain->list, &amd_iommu_pd_list);
  1101. spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
  1102. }
  1103. /*
  1104. * This function removes a protection domain to the global
  1105. * protection domain list
  1106. */
  1107. static void del_domain_from_list(struct protection_domain *domain)
  1108. {
  1109. unsigned long flags;
  1110. spin_lock_irqsave(&amd_iommu_pd_lock, flags);
  1111. list_del(&domain->list);
  1112. spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
  1113. }
  1114. static u16 domain_id_alloc(void)
  1115. {
  1116. unsigned long flags;
  1117. int id;
  1118. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1119. id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
  1120. BUG_ON(id == 0);
  1121. if (id > 0 && id < MAX_DOMAIN_ID)
  1122. __set_bit(id, amd_iommu_pd_alloc_bitmap);
  1123. else
  1124. id = 0;
  1125. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1126. return id;
  1127. }
  1128. static void domain_id_free(int id)
  1129. {
  1130. unsigned long flags;
  1131. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1132. if (id > 0 && id < MAX_DOMAIN_ID)
  1133. __clear_bit(id, amd_iommu_pd_alloc_bitmap);
  1134. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1135. }
  1136. static void free_pagetable(struct protection_domain *domain)
  1137. {
  1138. int i, j;
  1139. u64 *p1, *p2, *p3;
  1140. p1 = domain->pt_root;
  1141. if (!p1)
  1142. return;
  1143. for (i = 0; i < 512; ++i) {
  1144. if (!IOMMU_PTE_PRESENT(p1[i]))
  1145. continue;
  1146. p2 = IOMMU_PTE_PAGE(p1[i]);
  1147. for (j = 0; j < 512; ++j) {
  1148. if (!IOMMU_PTE_PRESENT(p2[j]))
  1149. continue;
  1150. p3 = IOMMU_PTE_PAGE(p2[j]);
  1151. free_page((unsigned long)p3);
  1152. }
  1153. free_page((unsigned long)p2);
  1154. }
  1155. free_page((unsigned long)p1);
  1156. domain->pt_root = NULL;
  1157. }
  1158. /*
  1159. * Free a domain, only used if something went wrong in the
  1160. * allocation path and we need to free an already allocated page table
  1161. */
  1162. static void dma_ops_domain_free(struct dma_ops_domain *dom)
  1163. {
  1164. int i;
  1165. if (!dom)
  1166. return;
  1167. del_domain_from_list(&dom->domain);
  1168. free_pagetable(&dom->domain);
  1169. for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
  1170. if (!dom->aperture[i])
  1171. continue;
  1172. free_page((unsigned long)dom->aperture[i]->bitmap);
  1173. kfree(dom->aperture[i]);
  1174. }
  1175. kfree(dom);
  1176. }
  1177. /*
  1178. * Allocates a new protection domain usable for the dma_ops functions.
  1179. * It also initializes the page table and the address allocator data
  1180. * structures required for the dma_ops interface
  1181. */
  1182. static struct dma_ops_domain *dma_ops_domain_alloc(void)
  1183. {
  1184. struct dma_ops_domain *dma_dom;
  1185. dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
  1186. if (!dma_dom)
  1187. return NULL;
  1188. spin_lock_init(&dma_dom->domain.lock);
  1189. dma_dom->domain.id = domain_id_alloc();
  1190. if (dma_dom->domain.id == 0)
  1191. goto free_dma_dom;
  1192. INIT_LIST_HEAD(&dma_dom->domain.dev_list);
  1193. dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
  1194. dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
  1195. dma_dom->domain.flags = PD_DMA_OPS_MASK;
  1196. dma_dom->domain.priv = dma_dom;
  1197. if (!dma_dom->domain.pt_root)
  1198. goto free_dma_dom;
  1199. dma_dom->need_flush = false;
  1200. dma_dom->target_dev = 0xffff;
  1201. add_domain_to_list(&dma_dom->domain);
  1202. if (alloc_new_range(dma_dom, true, GFP_KERNEL))
  1203. goto free_dma_dom;
  1204. /*
  1205. * mark the first page as allocated so we never return 0 as
  1206. * a valid dma-address. So we can use 0 as error value
  1207. */
  1208. dma_dom->aperture[0]->bitmap[0] = 1;
  1209. dma_dom->next_address = 0;
  1210. return dma_dom;
  1211. free_dma_dom:
  1212. dma_ops_domain_free(dma_dom);
  1213. return NULL;
  1214. }
  1215. /*
  1216. * little helper function to check whether a given protection domain is a
  1217. * dma_ops domain
  1218. */
  1219. static bool dma_ops_domain(struct protection_domain *domain)
  1220. {
  1221. return domain->flags & PD_DMA_OPS_MASK;
  1222. }
  1223. static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
  1224. {
  1225. u64 pte_root = virt_to_phys(domain->pt_root);
  1226. u32 flags = 0;
  1227. pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
  1228. << DEV_ENTRY_MODE_SHIFT;
  1229. pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
  1230. if (ats)
  1231. flags |= DTE_FLAG_IOTLB;
  1232. amd_iommu_dev_table[devid].data[3] |= flags;
  1233. amd_iommu_dev_table[devid].data[2] = domain->id;
  1234. amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
  1235. amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
  1236. }
  1237. static void clear_dte_entry(u16 devid)
  1238. {
  1239. /* remove entry from the device table seen by the hardware */
  1240. amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
  1241. amd_iommu_dev_table[devid].data[1] = 0;
  1242. amd_iommu_dev_table[devid].data[2] = 0;
  1243. amd_iommu_apply_erratum_63(devid);
  1244. }
  1245. static void do_attach(struct device *dev, struct protection_domain *domain)
  1246. {
  1247. struct iommu_dev_data *dev_data;
  1248. struct amd_iommu *iommu;
  1249. struct pci_dev *pdev;
  1250. bool ats = false;
  1251. dev_data = get_dev_data(dev);
  1252. iommu = amd_iommu_rlookup_table[dev_data->devid];
  1253. pdev = to_pci_dev(dev);
  1254. ats = dev_data->ats.enabled;
  1255. /* Update data structures */
  1256. dev_data->domain = domain;
  1257. list_add(&dev_data->list, &domain->dev_list);
  1258. set_dte_entry(dev_data->devid, domain, ats);
  1259. /* Do reference counting */
  1260. domain->dev_iommu[iommu->index] += 1;
  1261. domain->dev_cnt += 1;
  1262. /* Flush the DTE entry */
  1263. device_flush_dte(dev);
  1264. }
  1265. static void do_detach(struct device *dev)
  1266. {
  1267. struct iommu_dev_data *dev_data;
  1268. struct amd_iommu *iommu;
  1269. dev_data = get_dev_data(dev);
  1270. iommu = amd_iommu_rlookup_table[dev_data->devid];
  1271. /* decrease reference counters */
  1272. dev_data->domain->dev_iommu[iommu->index] -= 1;
  1273. dev_data->domain->dev_cnt -= 1;
  1274. /* Update data structures */
  1275. dev_data->domain = NULL;
  1276. list_del(&dev_data->list);
  1277. clear_dte_entry(dev_data->devid);
  1278. /* Flush the DTE entry */
  1279. device_flush_dte(dev);
  1280. }
  1281. /*
  1282. * If a device is not yet associated with a domain, this function does
  1283. * assigns it visible for the hardware
  1284. */
  1285. static int __attach_device(struct device *dev,
  1286. struct protection_domain *domain)
  1287. {
  1288. struct iommu_dev_data *dev_data, *alias_data;
  1289. int ret;
  1290. dev_data = get_dev_data(dev);
  1291. alias_data = get_dev_data(dev_data->alias);
  1292. if (!alias_data)
  1293. return -EINVAL;
  1294. /* lock domain */
  1295. spin_lock(&domain->lock);
  1296. /* Some sanity checks */
  1297. ret = -EBUSY;
  1298. if (alias_data->domain != NULL &&
  1299. alias_data->domain != domain)
  1300. goto out_unlock;
  1301. if (dev_data->domain != NULL &&
  1302. dev_data->domain != domain)
  1303. goto out_unlock;
  1304. /* Do real assignment */
  1305. if (dev_data->alias != dev) {
  1306. alias_data = get_dev_data(dev_data->alias);
  1307. if (alias_data->domain == NULL)
  1308. do_attach(dev_data->alias, domain);
  1309. atomic_inc(&alias_data->bind);
  1310. }
  1311. if (dev_data->domain == NULL)
  1312. do_attach(dev, domain);
  1313. atomic_inc(&dev_data->bind);
  1314. ret = 0;
  1315. out_unlock:
  1316. /* ready */
  1317. spin_unlock(&domain->lock);
  1318. return ret;
  1319. }
  1320. /*
  1321. * If a device is not yet associated with a domain, this function does
  1322. * assigns it visible for the hardware
  1323. */
  1324. static int attach_device(struct device *dev,
  1325. struct protection_domain *domain)
  1326. {
  1327. struct pci_dev *pdev = to_pci_dev(dev);
  1328. struct iommu_dev_data *dev_data;
  1329. unsigned long flags;
  1330. int ret;
  1331. dev_data = get_dev_data(dev);
  1332. if (amd_iommu_iotlb_sup && pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
  1333. dev_data->ats.enabled = true;
  1334. dev_data->ats.qdep = pci_ats_queue_depth(pdev);
  1335. }
  1336. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1337. ret = __attach_device(dev, domain);
  1338. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1339. /*
  1340. * We might boot into a crash-kernel here. The crashed kernel
  1341. * left the caches in the IOMMU dirty. So we have to flush
  1342. * here to evict all dirty stuff.
  1343. */
  1344. domain_flush_tlb_pde(domain);
  1345. return ret;
  1346. }
  1347. /*
  1348. * Removes a device from a protection domain (unlocked)
  1349. */
  1350. static void __detach_device(struct device *dev)
  1351. {
  1352. struct iommu_dev_data *dev_data = get_dev_data(dev);
  1353. struct iommu_dev_data *alias_data;
  1354. struct protection_domain *domain;
  1355. unsigned long flags;
  1356. BUG_ON(!dev_data->domain);
  1357. domain = dev_data->domain;
  1358. spin_lock_irqsave(&domain->lock, flags);
  1359. if (dev_data->alias != dev) {
  1360. alias_data = get_dev_data(dev_data->alias);
  1361. if (atomic_dec_and_test(&alias_data->bind))
  1362. do_detach(dev_data->alias);
  1363. }
  1364. if (atomic_dec_and_test(&dev_data->bind))
  1365. do_detach(dev);
  1366. spin_unlock_irqrestore(&domain->lock, flags);
  1367. /*
  1368. * If we run in passthrough mode the device must be assigned to the
  1369. * passthrough domain if it is detached from any other domain.
  1370. * Make sure we can deassign from the pt_domain itself.
  1371. */
  1372. if (iommu_pass_through &&
  1373. (dev_data->domain == NULL && domain != pt_domain))
  1374. __attach_device(dev, pt_domain);
  1375. }
  1376. /*
  1377. * Removes a device from a protection domain (with devtable_lock held)
  1378. */
  1379. static void detach_device(struct device *dev)
  1380. {
  1381. struct iommu_dev_data *dev_data;
  1382. unsigned long flags;
  1383. /* lock device table */
  1384. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1385. __detach_device(dev);
  1386. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1387. dev_data = get_dev_data(dev);
  1388. if (dev_data->ats.enabled) {
  1389. pci_disable_ats(to_pci_dev(dev));
  1390. dev_data->ats.enabled = false;
  1391. }
  1392. }
  1393. /*
  1394. * Find out the protection domain structure for a given PCI device. This
  1395. * will give us the pointer to the page table root for example.
  1396. */
  1397. static struct protection_domain *domain_for_device(struct device *dev)
  1398. {
  1399. struct protection_domain *dom;
  1400. struct iommu_dev_data *dev_data, *alias_data;
  1401. unsigned long flags;
  1402. dev_data = get_dev_data(dev);
  1403. alias_data = get_dev_data(dev_data->alias);
  1404. if (!alias_data)
  1405. return NULL;
  1406. read_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1407. dom = dev_data->domain;
  1408. if (dom == NULL &&
  1409. alias_data->domain != NULL) {
  1410. __attach_device(dev, alias_data->domain);
  1411. dom = alias_data->domain;
  1412. }
  1413. read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1414. return dom;
  1415. }
  1416. static int device_change_notifier(struct notifier_block *nb,
  1417. unsigned long action, void *data)
  1418. {
  1419. struct device *dev = data;
  1420. u16 devid;
  1421. struct protection_domain *domain;
  1422. struct dma_ops_domain *dma_domain;
  1423. struct amd_iommu *iommu;
  1424. unsigned long flags;
  1425. if (!check_device(dev))
  1426. return 0;
  1427. devid = get_device_id(dev);
  1428. iommu = amd_iommu_rlookup_table[devid];
  1429. switch (action) {
  1430. case BUS_NOTIFY_UNBOUND_DRIVER:
  1431. domain = domain_for_device(dev);
  1432. if (!domain)
  1433. goto out;
  1434. if (iommu_pass_through)
  1435. break;
  1436. detach_device(dev);
  1437. break;
  1438. case BUS_NOTIFY_ADD_DEVICE:
  1439. iommu_init_device(dev);
  1440. domain = domain_for_device(dev);
  1441. /* allocate a protection domain if a device is added */
  1442. dma_domain = find_protection_domain(devid);
  1443. if (dma_domain)
  1444. goto out;
  1445. dma_domain = dma_ops_domain_alloc();
  1446. if (!dma_domain)
  1447. goto out;
  1448. dma_domain->target_dev = devid;
  1449. spin_lock_irqsave(&iommu_pd_list_lock, flags);
  1450. list_add_tail(&dma_domain->list, &iommu_pd_list);
  1451. spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
  1452. break;
  1453. case BUS_NOTIFY_DEL_DEVICE:
  1454. iommu_uninit_device(dev);
  1455. default:
  1456. goto out;
  1457. }
  1458. iommu_completion_wait(iommu);
  1459. out:
  1460. return 0;
  1461. }
  1462. static struct notifier_block device_nb = {
  1463. .notifier_call = device_change_notifier,
  1464. };
  1465. void amd_iommu_init_notifier(void)
  1466. {
  1467. bus_register_notifier(&pci_bus_type, &device_nb);
  1468. }
  1469. /*****************************************************************************
  1470. *
  1471. * The next functions belong to the dma_ops mapping/unmapping code.
  1472. *
  1473. *****************************************************************************/
  1474. /*
  1475. * In the dma_ops path we only have the struct device. This function
  1476. * finds the corresponding IOMMU, the protection domain and the
  1477. * requestor id for a given device.
  1478. * If the device is not yet associated with a domain this is also done
  1479. * in this function.
  1480. */
  1481. static struct protection_domain *get_domain(struct device *dev)
  1482. {
  1483. struct protection_domain *domain;
  1484. struct dma_ops_domain *dma_dom;
  1485. u16 devid = get_device_id(dev);
  1486. if (!check_device(dev))
  1487. return ERR_PTR(-EINVAL);
  1488. domain = domain_for_device(dev);
  1489. if (domain != NULL && !dma_ops_domain(domain))
  1490. return ERR_PTR(-EBUSY);
  1491. if (domain != NULL)
  1492. return domain;
  1493. /* Device not bount yet - bind it */
  1494. dma_dom = find_protection_domain(devid);
  1495. if (!dma_dom)
  1496. dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
  1497. attach_device(dev, &dma_dom->domain);
  1498. DUMP_printk("Using protection domain %d for device %s\n",
  1499. dma_dom->domain.id, dev_name(dev));
  1500. return &dma_dom->domain;
  1501. }
  1502. static void update_device_table(struct protection_domain *domain)
  1503. {
  1504. struct iommu_dev_data *dev_data;
  1505. list_for_each_entry(dev_data, &domain->dev_list, list)
  1506. set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
  1507. }
  1508. static void update_domain(struct protection_domain *domain)
  1509. {
  1510. if (!domain->updated)
  1511. return;
  1512. update_device_table(domain);
  1513. domain_flush_devices(domain);
  1514. domain_flush_tlb_pde(domain);
  1515. domain->updated = false;
  1516. }
  1517. /*
  1518. * This function fetches the PTE for a given address in the aperture
  1519. */
  1520. static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
  1521. unsigned long address)
  1522. {
  1523. struct aperture_range *aperture;
  1524. u64 *pte, *pte_page;
  1525. aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
  1526. if (!aperture)
  1527. return NULL;
  1528. pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
  1529. if (!pte) {
  1530. pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
  1531. GFP_ATOMIC);
  1532. aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
  1533. } else
  1534. pte += PM_LEVEL_INDEX(0, address);
  1535. update_domain(&dom->domain);
  1536. return pte;
  1537. }
  1538. /*
  1539. * This is the generic map function. It maps one 4kb page at paddr to
  1540. * the given address in the DMA address space for the domain.
  1541. */
  1542. static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
  1543. unsigned long address,
  1544. phys_addr_t paddr,
  1545. int direction)
  1546. {
  1547. u64 *pte, __pte;
  1548. WARN_ON(address > dom->aperture_size);
  1549. paddr &= PAGE_MASK;
  1550. pte = dma_ops_get_pte(dom, address);
  1551. if (!pte)
  1552. return DMA_ERROR_CODE;
  1553. __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
  1554. if (direction == DMA_TO_DEVICE)
  1555. __pte |= IOMMU_PTE_IR;
  1556. else if (direction == DMA_FROM_DEVICE)
  1557. __pte |= IOMMU_PTE_IW;
  1558. else if (direction == DMA_BIDIRECTIONAL)
  1559. __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
  1560. WARN_ON(*pte);
  1561. *pte = __pte;
  1562. return (dma_addr_t)address;
  1563. }
  1564. /*
  1565. * The generic unmapping function for on page in the DMA address space.
  1566. */
  1567. static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
  1568. unsigned long address)
  1569. {
  1570. struct aperture_range *aperture;
  1571. u64 *pte;
  1572. if (address >= dom->aperture_size)
  1573. return;
  1574. aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
  1575. if (!aperture)
  1576. return;
  1577. pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
  1578. if (!pte)
  1579. return;
  1580. pte += PM_LEVEL_INDEX(0, address);
  1581. WARN_ON(!*pte);
  1582. *pte = 0ULL;
  1583. }
  1584. /*
  1585. * This function contains common code for mapping of a physically
  1586. * contiguous memory region into DMA address space. It is used by all
  1587. * mapping functions provided with this IOMMU driver.
  1588. * Must be called with the domain lock held.
  1589. */
  1590. static dma_addr_t __map_single(struct device *dev,
  1591. struct dma_ops_domain *dma_dom,
  1592. phys_addr_t paddr,
  1593. size_t size,
  1594. int dir,
  1595. bool align,
  1596. u64 dma_mask)
  1597. {
  1598. dma_addr_t offset = paddr & ~PAGE_MASK;
  1599. dma_addr_t address, start, ret;
  1600. unsigned int pages;
  1601. unsigned long align_mask = 0;
  1602. int i;
  1603. pages = iommu_num_pages(paddr, size, PAGE_SIZE);
  1604. paddr &= PAGE_MASK;
  1605. INC_STATS_COUNTER(total_map_requests);
  1606. if (pages > 1)
  1607. INC_STATS_COUNTER(cross_page);
  1608. if (align)
  1609. align_mask = (1UL << get_order(size)) - 1;
  1610. retry:
  1611. address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
  1612. dma_mask);
  1613. if (unlikely(address == DMA_ERROR_CODE)) {
  1614. /*
  1615. * setting next_address here will let the address
  1616. * allocator only scan the new allocated range in the
  1617. * first run. This is a small optimization.
  1618. */
  1619. dma_dom->next_address = dma_dom->aperture_size;
  1620. if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
  1621. goto out;
  1622. /*
  1623. * aperture was successfully enlarged by 128 MB, try
  1624. * allocation again
  1625. */
  1626. goto retry;
  1627. }
  1628. start = address;
  1629. for (i = 0; i < pages; ++i) {
  1630. ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
  1631. if (ret == DMA_ERROR_CODE)
  1632. goto out_unmap;
  1633. paddr += PAGE_SIZE;
  1634. start += PAGE_SIZE;
  1635. }
  1636. address += offset;
  1637. ADD_STATS_COUNTER(alloced_io_mem, size);
  1638. if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
  1639. domain_flush_tlb(&dma_dom->domain);
  1640. dma_dom->need_flush = false;
  1641. } else if (unlikely(amd_iommu_np_cache))
  1642. domain_flush_pages(&dma_dom->domain, address, size);
  1643. out:
  1644. return address;
  1645. out_unmap:
  1646. for (--i; i >= 0; --i) {
  1647. start -= PAGE_SIZE;
  1648. dma_ops_domain_unmap(dma_dom, start);
  1649. }
  1650. dma_ops_free_addresses(dma_dom, address, pages);
  1651. return DMA_ERROR_CODE;
  1652. }
  1653. /*
  1654. * Does the reverse of the __map_single function. Must be called with
  1655. * the domain lock held too
  1656. */
  1657. static void __unmap_single(struct dma_ops_domain *dma_dom,
  1658. dma_addr_t dma_addr,
  1659. size_t size,
  1660. int dir)
  1661. {
  1662. dma_addr_t flush_addr;
  1663. dma_addr_t i, start;
  1664. unsigned int pages;
  1665. if ((dma_addr == DMA_ERROR_CODE) ||
  1666. (dma_addr + size > dma_dom->aperture_size))
  1667. return;
  1668. flush_addr = dma_addr;
  1669. pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
  1670. dma_addr &= PAGE_MASK;
  1671. start = dma_addr;
  1672. for (i = 0; i < pages; ++i) {
  1673. dma_ops_domain_unmap(dma_dom, start);
  1674. start += PAGE_SIZE;
  1675. }
  1676. SUB_STATS_COUNTER(alloced_io_mem, size);
  1677. dma_ops_free_addresses(dma_dom, dma_addr, pages);
  1678. if (amd_iommu_unmap_flush || dma_dom->need_flush) {
  1679. domain_flush_pages(&dma_dom->domain, flush_addr, size);
  1680. dma_dom->need_flush = false;
  1681. }
  1682. }
  1683. /*
  1684. * The exported map_single function for dma_ops.
  1685. */
  1686. static dma_addr_t map_page(struct device *dev, struct page *page,
  1687. unsigned long offset, size_t size,
  1688. enum dma_data_direction dir,
  1689. struct dma_attrs *attrs)
  1690. {
  1691. unsigned long flags;
  1692. struct protection_domain *domain;
  1693. dma_addr_t addr;
  1694. u64 dma_mask;
  1695. phys_addr_t paddr = page_to_phys(page) + offset;
  1696. INC_STATS_COUNTER(cnt_map_single);
  1697. domain = get_domain(dev);
  1698. if (PTR_ERR(domain) == -EINVAL)
  1699. return (dma_addr_t)paddr;
  1700. else if (IS_ERR(domain))
  1701. return DMA_ERROR_CODE;
  1702. dma_mask = *dev->dma_mask;
  1703. spin_lock_irqsave(&domain->lock, flags);
  1704. addr = __map_single(dev, domain->priv, paddr, size, dir, false,
  1705. dma_mask);
  1706. if (addr == DMA_ERROR_CODE)
  1707. goto out;
  1708. domain_flush_complete(domain);
  1709. out:
  1710. spin_unlock_irqrestore(&domain->lock, flags);
  1711. return addr;
  1712. }
  1713. /*
  1714. * The exported unmap_single function for dma_ops.
  1715. */
  1716. static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
  1717. enum dma_data_direction dir, struct dma_attrs *attrs)
  1718. {
  1719. unsigned long flags;
  1720. struct protection_domain *domain;
  1721. INC_STATS_COUNTER(cnt_unmap_single);
  1722. domain = get_domain(dev);
  1723. if (IS_ERR(domain))
  1724. return;
  1725. spin_lock_irqsave(&domain->lock, flags);
  1726. __unmap_single(domain->priv, dma_addr, size, dir);
  1727. domain_flush_complete(domain);
  1728. spin_unlock_irqrestore(&domain->lock, flags);
  1729. }
  1730. /*
  1731. * This is a special map_sg function which is used if we should map a
  1732. * device which is not handled by an AMD IOMMU in the system.
  1733. */
  1734. static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
  1735. int nelems, int dir)
  1736. {
  1737. struct scatterlist *s;
  1738. int i;
  1739. for_each_sg(sglist, s, nelems, i) {
  1740. s->dma_address = (dma_addr_t)sg_phys(s);
  1741. s->dma_length = s->length;
  1742. }
  1743. return nelems;
  1744. }
  1745. /*
  1746. * The exported map_sg function for dma_ops (handles scatter-gather
  1747. * lists).
  1748. */
  1749. static int map_sg(struct device *dev, struct scatterlist *sglist,
  1750. int nelems, enum dma_data_direction dir,
  1751. struct dma_attrs *attrs)
  1752. {
  1753. unsigned long flags;
  1754. struct protection_domain *domain;
  1755. int i;
  1756. struct scatterlist *s;
  1757. phys_addr_t paddr;
  1758. int mapped_elems = 0;
  1759. u64 dma_mask;
  1760. INC_STATS_COUNTER(cnt_map_sg);
  1761. domain = get_domain(dev);
  1762. if (PTR_ERR(domain) == -EINVAL)
  1763. return map_sg_no_iommu(dev, sglist, nelems, dir);
  1764. else if (IS_ERR(domain))
  1765. return 0;
  1766. dma_mask = *dev->dma_mask;
  1767. spin_lock_irqsave(&domain->lock, flags);
  1768. for_each_sg(sglist, s, nelems, i) {
  1769. paddr = sg_phys(s);
  1770. s->dma_address = __map_single(dev, domain->priv,
  1771. paddr, s->length, dir, false,
  1772. dma_mask);
  1773. if (s->dma_address) {
  1774. s->dma_length = s->length;
  1775. mapped_elems++;
  1776. } else
  1777. goto unmap;
  1778. }
  1779. domain_flush_complete(domain);
  1780. out:
  1781. spin_unlock_irqrestore(&domain->lock, flags);
  1782. return mapped_elems;
  1783. unmap:
  1784. for_each_sg(sglist, s, mapped_elems, i) {
  1785. if (s->dma_address)
  1786. __unmap_single(domain->priv, s->dma_address,
  1787. s->dma_length, dir);
  1788. s->dma_address = s->dma_length = 0;
  1789. }
  1790. mapped_elems = 0;
  1791. goto out;
  1792. }
  1793. /*
  1794. * The exported map_sg function for dma_ops (handles scatter-gather
  1795. * lists).
  1796. */
  1797. static void unmap_sg(struct device *dev, struct scatterlist *sglist,
  1798. int nelems, enum dma_data_direction dir,
  1799. struct dma_attrs *attrs)
  1800. {
  1801. unsigned long flags;
  1802. struct protection_domain *domain;
  1803. struct scatterlist *s;
  1804. int i;
  1805. INC_STATS_COUNTER(cnt_unmap_sg);
  1806. domain = get_domain(dev);
  1807. if (IS_ERR(domain))
  1808. return;
  1809. spin_lock_irqsave(&domain->lock, flags);
  1810. for_each_sg(sglist, s, nelems, i) {
  1811. __unmap_single(domain->priv, s->dma_address,
  1812. s->dma_length, dir);
  1813. s->dma_address = s->dma_length = 0;
  1814. }
  1815. domain_flush_complete(domain);
  1816. spin_unlock_irqrestore(&domain->lock, flags);
  1817. }
  1818. /*
  1819. * The exported alloc_coherent function for dma_ops.
  1820. */
  1821. static void *alloc_coherent(struct device *dev, size_t size,
  1822. dma_addr_t *dma_addr, gfp_t flag)
  1823. {
  1824. unsigned long flags;
  1825. void *virt_addr;
  1826. struct protection_domain *domain;
  1827. phys_addr_t paddr;
  1828. u64 dma_mask = dev->coherent_dma_mask;
  1829. INC_STATS_COUNTER(cnt_alloc_coherent);
  1830. domain = get_domain(dev);
  1831. if (PTR_ERR(domain) == -EINVAL) {
  1832. virt_addr = (void *)__get_free_pages(flag, get_order(size));
  1833. *dma_addr = __pa(virt_addr);
  1834. return virt_addr;
  1835. } else if (IS_ERR(domain))
  1836. return NULL;
  1837. dma_mask = dev->coherent_dma_mask;
  1838. flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
  1839. flag |= __GFP_ZERO;
  1840. virt_addr = (void *)__get_free_pages(flag, get_order(size));
  1841. if (!virt_addr)
  1842. return NULL;
  1843. paddr = virt_to_phys(virt_addr);
  1844. if (!dma_mask)
  1845. dma_mask = *dev->dma_mask;
  1846. spin_lock_irqsave(&domain->lock, flags);
  1847. *dma_addr = __map_single(dev, domain->priv, paddr,
  1848. size, DMA_BIDIRECTIONAL, true, dma_mask);
  1849. if (*dma_addr == DMA_ERROR_CODE) {
  1850. spin_unlock_irqrestore(&domain->lock, flags);
  1851. goto out_free;
  1852. }
  1853. domain_flush_complete(domain);
  1854. spin_unlock_irqrestore(&domain->lock, flags);
  1855. return virt_addr;
  1856. out_free:
  1857. free_pages((unsigned long)virt_addr, get_order(size));
  1858. return NULL;
  1859. }
  1860. /*
  1861. * The exported free_coherent function for dma_ops.
  1862. */
  1863. static void free_coherent(struct device *dev, size_t size,
  1864. void *virt_addr, dma_addr_t dma_addr)
  1865. {
  1866. unsigned long flags;
  1867. struct protection_domain *domain;
  1868. INC_STATS_COUNTER(cnt_free_coherent);
  1869. domain = get_domain(dev);
  1870. if (IS_ERR(domain))
  1871. goto free_mem;
  1872. spin_lock_irqsave(&domain->lock, flags);
  1873. __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
  1874. domain_flush_complete(domain);
  1875. spin_unlock_irqrestore(&domain->lock, flags);
  1876. free_mem:
  1877. free_pages((unsigned long)virt_addr, get_order(size));
  1878. }
  1879. /*
  1880. * This function is called by the DMA layer to find out if we can handle a
  1881. * particular device. It is part of the dma_ops.
  1882. */
  1883. static int amd_iommu_dma_supported(struct device *dev, u64 mask)
  1884. {
  1885. return check_device(dev);
  1886. }
  1887. /*
  1888. * The function for pre-allocating protection domains.
  1889. *
  1890. * If the driver core informs the DMA layer if a driver grabs a device
  1891. * we don't need to preallocate the protection domains anymore.
  1892. * For now we have to.
  1893. */
  1894. static void prealloc_protection_domains(void)
  1895. {
  1896. struct pci_dev *dev = NULL;
  1897. struct dma_ops_domain *dma_dom;
  1898. u16 devid;
  1899. for_each_pci_dev(dev) {
  1900. /* Do we handle this device? */
  1901. if (!check_device(&dev->dev))
  1902. continue;
  1903. /* Is there already any domain for it? */
  1904. if (domain_for_device(&dev->dev))
  1905. continue;
  1906. devid = get_device_id(&dev->dev);
  1907. dma_dom = dma_ops_domain_alloc();
  1908. if (!dma_dom)
  1909. continue;
  1910. init_unity_mappings_for_device(dma_dom, devid);
  1911. dma_dom->target_dev = devid;
  1912. attach_device(&dev->dev, &dma_dom->domain);
  1913. list_add_tail(&dma_dom->list, &iommu_pd_list);
  1914. }
  1915. }
  1916. static struct dma_map_ops amd_iommu_dma_ops = {
  1917. .alloc_coherent = alloc_coherent,
  1918. .free_coherent = free_coherent,
  1919. .map_page = map_page,
  1920. .unmap_page = unmap_page,
  1921. .map_sg = map_sg,
  1922. .unmap_sg = unmap_sg,
  1923. .dma_supported = amd_iommu_dma_supported,
  1924. };
  1925. static unsigned device_dma_ops_init(void)
  1926. {
  1927. struct pci_dev *pdev = NULL;
  1928. unsigned unhandled = 0;
  1929. for_each_pci_dev(pdev) {
  1930. if (!check_device(&pdev->dev)) {
  1931. unhandled += 1;
  1932. continue;
  1933. }
  1934. pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
  1935. }
  1936. return unhandled;
  1937. }
  1938. /*
  1939. * The function which clues the AMD IOMMU driver into dma_ops.
  1940. */
  1941. void __init amd_iommu_init_api(void)
  1942. {
  1943. register_iommu(&amd_iommu_ops);
  1944. }
  1945. int __init amd_iommu_init_dma_ops(void)
  1946. {
  1947. struct amd_iommu *iommu;
  1948. int ret, unhandled;
  1949. /*
  1950. * first allocate a default protection domain for every IOMMU we
  1951. * found in the system. Devices not assigned to any other
  1952. * protection domain will be assigned to the default one.
  1953. */
  1954. for_each_iommu(iommu) {
  1955. iommu->default_dom = dma_ops_domain_alloc();
  1956. if (iommu->default_dom == NULL)
  1957. return -ENOMEM;
  1958. iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
  1959. ret = iommu_init_unity_mappings(iommu);
  1960. if (ret)
  1961. goto free_domains;
  1962. }
  1963. /*
  1964. * Pre-allocate the protection domains for each device.
  1965. */
  1966. prealloc_protection_domains();
  1967. iommu_detected = 1;
  1968. swiotlb = 0;
  1969. /* Make the driver finally visible to the drivers */
  1970. unhandled = device_dma_ops_init();
  1971. if (unhandled && max_pfn > MAX_DMA32_PFN) {
  1972. /* There are unhandled devices - initialize swiotlb for them */
  1973. swiotlb = 1;
  1974. }
  1975. amd_iommu_stats_init();
  1976. return 0;
  1977. free_domains:
  1978. for_each_iommu(iommu) {
  1979. if (iommu->default_dom)
  1980. dma_ops_domain_free(iommu->default_dom);
  1981. }
  1982. return ret;
  1983. }
  1984. /*****************************************************************************
  1985. *
  1986. * The following functions belong to the exported interface of AMD IOMMU
  1987. *
  1988. * This interface allows access to lower level functions of the IOMMU
  1989. * like protection domain handling and assignement of devices to domains
  1990. * which is not possible with the dma_ops interface.
  1991. *
  1992. *****************************************************************************/
  1993. static void cleanup_domain(struct protection_domain *domain)
  1994. {
  1995. struct iommu_dev_data *dev_data, *next;
  1996. unsigned long flags;
  1997. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1998. list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
  1999. struct device *dev = dev_data->dev;
  2000. __detach_device(dev);
  2001. atomic_set(&dev_data->bind, 0);
  2002. }
  2003. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  2004. }
  2005. static void protection_domain_free(struct protection_domain *domain)
  2006. {
  2007. if (!domain)
  2008. return;
  2009. del_domain_from_list(domain);
  2010. if (domain->id)
  2011. domain_id_free(domain->id);
  2012. kfree(domain);
  2013. }
  2014. static struct protection_domain *protection_domain_alloc(void)
  2015. {
  2016. struct protection_domain *domain;
  2017. domain = kzalloc(sizeof(*domain), GFP_KERNEL);
  2018. if (!domain)
  2019. return NULL;
  2020. spin_lock_init(&domain->lock);
  2021. mutex_init(&domain->api_lock);
  2022. domain->id = domain_id_alloc();
  2023. if (!domain->id)
  2024. goto out_err;
  2025. INIT_LIST_HEAD(&domain->dev_list);
  2026. add_domain_to_list(domain);
  2027. return domain;
  2028. out_err:
  2029. kfree(domain);
  2030. return NULL;
  2031. }
  2032. static int amd_iommu_domain_init(struct iommu_domain *dom)
  2033. {
  2034. struct protection_domain *domain;
  2035. domain = protection_domain_alloc();
  2036. if (!domain)
  2037. goto out_free;
  2038. domain->mode = PAGE_MODE_3_LEVEL;
  2039. domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
  2040. if (!domain->pt_root)
  2041. goto out_free;
  2042. dom->priv = domain;
  2043. return 0;
  2044. out_free:
  2045. protection_domain_free(domain);
  2046. return -ENOMEM;
  2047. }
  2048. static void amd_iommu_domain_destroy(struct iommu_domain *dom)
  2049. {
  2050. struct protection_domain *domain = dom->priv;
  2051. if (!domain)
  2052. return;
  2053. if (domain->dev_cnt > 0)
  2054. cleanup_domain(domain);
  2055. BUG_ON(domain->dev_cnt != 0);
  2056. free_pagetable(domain);
  2057. protection_domain_free(domain);
  2058. dom->priv = NULL;
  2059. }
  2060. static void amd_iommu_detach_device(struct iommu_domain *dom,
  2061. struct device *dev)
  2062. {
  2063. struct iommu_dev_data *dev_data = dev->archdata.iommu;
  2064. struct amd_iommu *iommu;
  2065. u16 devid;
  2066. if (!check_device(dev))
  2067. return;
  2068. devid = get_device_id(dev);
  2069. if (dev_data->domain != NULL)
  2070. detach_device(dev);
  2071. iommu = amd_iommu_rlookup_table[devid];
  2072. if (!iommu)
  2073. return;
  2074. iommu_completion_wait(iommu);
  2075. }
  2076. static int amd_iommu_attach_device(struct iommu_domain *dom,
  2077. struct device *dev)
  2078. {
  2079. struct protection_domain *domain = dom->priv;
  2080. struct iommu_dev_data *dev_data;
  2081. struct amd_iommu *iommu;
  2082. int ret;
  2083. if (!check_device(dev))
  2084. return -EINVAL;
  2085. dev_data = dev->archdata.iommu;
  2086. iommu = amd_iommu_rlookup_table[dev_data->devid];
  2087. if (!iommu)
  2088. return -EINVAL;
  2089. if (dev_data->domain)
  2090. detach_device(dev);
  2091. ret = attach_device(dev, domain);
  2092. iommu_completion_wait(iommu);
  2093. return ret;
  2094. }
  2095. static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
  2096. phys_addr_t paddr, int gfp_order, int iommu_prot)
  2097. {
  2098. unsigned long page_size = 0x1000UL << gfp_order;
  2099. struct protection_domain *domain = dom->priv;
  2100. int prot = 0;
  2101. int ret;
  2102. if (iommu_prot & IOMMU_READ)
  2103. prot |= IOMMU_PROT_IR;
  2104. if (iommu_prot & IOMMU_WRITE)
  2105. prot |= IOMMU_PROT_IW;
  2106. mutex_lock(&domain->api_lock);
  2107. ret = iommu_map_page(domain, iova, paddr, prot, page_size);
  2108. mutex_unlock(&domain->api_lock);
  2109. return ret;
  2110. }
  2111. static int amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
  2112. int gfp_order)
  2113. {
  2114. struct protection_domain *domain = dom->priv;
  2115. unsigned long page_size, unmap_size;
  2116. page_size = 0x1000UL << gfp_order;
  2117. mutex_lock(&domain->api_lock);
  2118. unmap_size = iommu_unmap_page(domain, iova, page_size);
  2119. mutex_unlock(&domain->api_lock);
  2120. domain_flush_tlb_pde(domain);
  2121. return get_order(unmap_size);
  2122. }
  2123. static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
  2124. unsigned long iova)
  2125. {
  2126. struct protection_domain *domain = dom->priv;
  2127. unsigned long offset_mask;
  2128. phys_addr_t paddr;
  2129. u64 *pte, __pte;
  2130. pte = fetch_pte(domain, iova);
  2131. if (!pte || !IOMMU_PTE_PRESENT(*pte))
  2132. return 0;
  2133. if (PM_PTE_LEVEL(*pte) == 0)
  2134. offset_mask = PAGE_SIZE - 1;
  2135. else
  2136. offset_mask = PTE_PAGE_SIZE(*pte) - 1;
  2137. __pte = *pte & PM_ADDR_MASK;
  2138. paddr = (__pte & ~offset_mask) | (iova & offset_mask);
  2139. return paddr;
  2140. }
  2141. static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
  2142. unsigned long cap)
  2143. {
  2144. switch (cap) {
  2145. case IOMMU_CAP_CACHE_COHERENCY:
  2146. return 1;
  2147. }
  2148. return 0;
  2149. }
  2150. static struct iommu_ops amd_iommu_ops = {
  2151. .domain_init = amd_iommu_domain_init,
  2152. .domain_destroy = amd_iommu_domain_destroy,
  2153. .attach_dev = amd_iommu_attach_device,
  2154. .detach_dev = amd_iommu_detach_device,
  2155. .map = amd_iommu_map,
  2156. .unmap = amd_iommu_unmap,
  2157. .iova_to_phys = amd_iommu_iova_to_phys,
  2158. .domain_has_cap = amd_iommu_domain_has_cap,
  2159. };
  2160. /*****************************************************************************
  2161. *
  2162. * The next functions do a basic initialization of IOMMU for pass through
  2163. * mode
  2164. *
  2165. * In passthrough mode the IOMMU is initialized and enabled but not used for
  2166. * DMA-API translation.
  2167. *
  2168. *****************************************************************************/
  2169. int __init amd_iommu_init_passthrough(void)
  2170. {
  2171. struct amd_iommu *iommu;
  2172. struct pci_dev *dev = NULL;
  2173. u16 devid;
  2174. /* allocate passthrough domain */
  2175. pt_domain = protection_domain_alloc();
  2176. if (!pt_domain)
  2177. return -ENOMEM;
  2178. pt_domain->mode |= PAGE_MODE_NONE;
  2179. for_each_pci_dev(dev) {
  2180. if (!check_device(&dev->dev))
  2181. continue;
  2182. devid = get_device_id(&dev->dev);
  2183. iommu = amd_iommu_rlookup_table[devid];
  2184. if (!iommu)
  2185. continue;
  2186. attach_device(&dev->dev, pt_domain);
  2187. }
  2188. pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
  2189. return 0;
  2190. }