kvm_main.c 58 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "iodev.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <linux/bitops.h>
  43. #include <linux/spinlock.h>
  44. #include <linux/compat.h>
  45. #include <linux/srcu.h>
  46. #include <linux/hugetlb.h>
  47. #include <linux/slab.h>
  48. #include <asm/processor.h>
  49. #include <asm/io.h>
  50. #include <asm/uaccess.h>
  51. #include <asm/pgtable.h>
  52. #include <asm-generic/bitops/le.h>
  53. #include "coalesced_mmio.h"
  54. #include "async_pf.h"
  55. #define CREATE_TRACE_POINTS
  56. #include <trace/events/kvm.h>
  57. MODULE_AUTHOR("Qumranet");
  58. MODULE_LICENSE("GPL");
  59. /*
  60. * Ordering of locks:
  61. *
  62. * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  63. */
  64. DEFINE_RAW_SPINLOCK(kvm_lock);
  65. LIST_HEAD(vm_list);
  66. static cpumask_var_t cpus_hardware_enabled;
  67. static int kvm_usage_count = 0;
  68. static atomic_t hardware_enable_failed;
  69. struct kmem_cache *kvm_vcpu_cache;
  70. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  71. static __read_mostly struct preempt_ops kvm_preempt_ops;
  72. struct dentry *kvm_debugfs_dir;
  73. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  74. unsigned long arg);
  75. static int hardware_enable_all(void);
  76. static void hardware_disable_all(void);
  77. static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
  78. bool kvm_rebooting;
  79. EXPORT_SYMBOL_GPL(kvm_rebooting);
  80. static bool largepages_enabled = true;
  81. static struct page *hwpoison_page;
  82. static pfn_t hwpoison_pfn;
  83. static struct page *fault_page;
  84. static pfn_t fault_pfn;
  85. inline int kvm_is_mmio_pfn(pfn_t pfn)
  86. {
  87. if (pfn_valid(pfn)) {
  88. int reserved;
  89. struct page *tail = pfn_to_page(pfn);
  90. struct page *head = compound_trans_head(tail);
  91. reserved = PageReserved(head);
  92. if (head != tail) {
  93. /*
  94. * "head" is not a dangling pointer
  95. * (compound_trans_head takes care of that)
  96. * but the hugepage may have been splitted
  97. * from under us (and we may not hold a
  98. * reference count on the head page so it can
  99. * be reused before we run PageReferenced), so
  100. * we've to check PageTail before returning
  101. * what we just read.
  102. */
  103. smp_rmb();
  104. if (PageTail(tail))
  105. return reserved;
  106. }
  107. return PageReserved(tail);
  108. }
  109. return true;
  110. }
  111. /*
  112. * Switches to specified vcpu, until a matching vcpu_put()
  113. */
  114. void vcpu_load(struct kvm_vcpu *vcpu)
  115. {
  116. int cpu;
  117. mutex_lock(&vcpu->mutex);
  118. if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
  119. /* The thread running this VCPU changed. */
  120. struct pid *oldpid = vcpu->pid;
  121. struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
  122. rcu_assign_pointer(vcpu->pid, newpid);
  123. synchronize_rcu();
  124. put_pid(oldpid);
  125. }
  126. cpu = get_cpu();
  127. preempt_notifier_register(&vcpu->preempt_notifier);
  128. kvm_arch_vcpu_load(vcpu, cpu);
  129. put_cpu();
  130. }
  131. void vcpu_put(struct kvm_vcpu *vcpu)
  132. {
  133. preempt_disable();
  134. kvm_arch_vcpu_put(vcpu);
  135. preempt_notifier_unregister(&vcpu->preempt_notifier);
  136. preempt_enable();
  137. mutex_unlock(&vcpu->mutex);
  138. }
  139. static void ack_flush(void *_completed)
  140. {
  141. }
  142. static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
  143. {
  144. int i, cpu, me;
  145. cpumask_var_t cpus;
  146. bool called = true;
  147. struct kvm_vcpu *vcpu;
  148. zalloc_cpumask_var(&cpus, GFP_ATOMIC);
  149. me = get_cpu();
  150. kvm_for_each_vcpu(i, vcpu, kvm) {
  151. kvm_make_request(req, vcpu);
  152. cpu = vcpu->cpu;
  153. /* Set ->requests bit before we read ->mode */
  154. smp_mb();
  155. if (cpus != NULL && cpu != -1 && cpu != me &&
  156. kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
  157. cpumask_set_cpu(cpu, cpus);
  158. }
  159. if (unlikely(cpus == NULL))
  160. smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
  161. else if (!cpumask_empty(cpus))
  162. smp_call_function_many(cpus, ack_flush, NULL, 1);
  163. else
  164. called = false;
  165. put_cpu();
  166. free_cpumask_var(cpus);
  167. return called;
  168. }
  169. void kvm_flush_remote_tlbs(struct kvm *kvm)
  170. {
  171. int dirty_count = kvm->tlbs_dirty;
  172. smp_mb();
  173. if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
  174. ++kvm->stat.remote_tlb_flush;
  175. cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
  176. }
  177. void kvm_reload_remote_mmus(struct kvm *kvm)
  178. {
  179. make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
  180. }
  181. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  182. {
  183. struct page *page;
  184. int r;
  185. mutex_init(&vcpu->mutex);
  186. vcpu->cpu = -1;
  187. vcpu->kvm = kvm;
  188. vcpu->vcpu_id = id;
  189. vcpu->pid = NULL;
  190. init_waitqueue_head(&vcpu->wq);
  191. kvm_async_pf_vcpu_init(vcpu);
  192. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  193. if (!page) {
  194. r = -ENOMEM;
  195. goto fail;
  196. }
  197. vcpu->run = page_address(page);
  198. r = kvm_arch_vcpu_init(vcpu);
  199. if (r < 0)
  200. goto fail_free_run;
  201. return 0;
  202. fail_free_run:
  203. free_page((unsigned long)vcpu->run);
  204. fail:
  205. return r;
  206. }
  207. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  208. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  209. {
  210. put_pid(vcpu->pid);
  211. kvm_arch_vcpu_uninit(vcpu);
  212. free_page((unsigned long)vcpu->run);
  213. }
  214. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  215. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  216. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  217. {
  218. return container_of(mn, struct kvm, mmu_notifier);
  219. }
  220. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  221. struct mm_struct *mm,
  222. unsigned long address)
  223. {
  224. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  225. int need_tlb_flush, idx;
  226. /*
  227. * When ->invalidate_page runs, the linux pte has been zapped
  228. * already but the page is still allocated until
  229. * ->invalidate_page returns. So if we increase the sequence
  230. * here the kvm page fault will notice if the spte can't be
  231. * established because the page is going to be freed. If
  232. * instead the kvm page fault establishes the spte before
  233. * ->invalidate_page runs, kvm_unmap_hva will release it
  234. * before returning.
  235. *
  236. * The sequence increase only need to be seen at spin_unlock
  237. * time, and not at spin_lock time.
  238. *
  239. * Increasing the sequence after the spin_unlock would be
  240. * unsafe because the kvm page fault could then establish the
  241. * pte after kvm_unmap_hva returned, without noticing the page
  242. * is going to be freed.
  243. */
  244. idx = srcu_read_lock(&kvm->srcu);
  245. spin_lock(&kvm->mmu_lock);
  246. kvm->mmu_notifier_seq++;
  247. need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
  248. spin_unlock(&kvm->mmu_lock);
  249. srcu_read_unlock(&kvm->srcu, idx);
  250. /* we've to flush the tlb before the pages can be freed */
  251. if (need_tlb_flush)
  252. kvm_flush_remote_tlbs(kvm);
  253. }
  254. static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
  255. struct mm_struct *mm,
  256. unsigned long address,
  257. pte_t pte)
  258. {
  259. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  260. int idx;
  261. idx = srcu_read_lock(&kvm->srcu);
  262. spin_lock(&kvm->mmu_lock);
  263. kvm->mmu_notifier_seq++;
  264. kvm_set_spte_hva(kvm, address, pte);
  265. spin_unlock(&kvm->mmu_lock);
  266. srcu_read_unlock(&kvm->srcu, idx);
  267. }
  268. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  269. struct mm_struct *mm,
  270. unsigned long start,
  271. unsigned long end)
  272. {
  273. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  274. int need_tlb_flush = 0, idx;
  275. idx = srcu_read_lock(&kvm->srcu);
  276. spin_lock(&kvm->mmu_lock);
  277. /*
  278. * The count increase must become visible at unlock time as no
  279. * spte can be established without taking the mmu_lock and
  280. * count is also read inside the mmu_lock critical section.
  281. */
  282. kvm->mmu_notifier_count++;
  283. for (; start < end; start += PAGE_SIZE)
  284. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  285. need_tlb_flush |= kvm->tlbs_dirty;
  286. spin_unlock(&kvm->mmu_lock);
  287. srcu_read_unlock(&kvm->srcu, idx);
  288. /* we've to flush the tlb before the pages can be freed */
  289. if (need_tlb_flush)
  290. kvm_flush_remote_tlbs(kvm);
  291. }
  292. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  293. struct mm_struct *mm,
  294. unsigned long start,
  295. unsigned long end)
  296. {
  297. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  298. spin_lock(&kvm->mmu_lock);
  299. /*
  300. * This sequence increase will notify the kvm page fault that
  301. * the page that is going to be mapped in the spte could have
  302. * been freed.
  303. */
  304. kvm->mmu_notifier_seq++;
  305. /*
  306. * The above sequence increase must be visible before the
  307. * below count decrease but both values are read by the kvm
  308. * page fault under mmu_lock spinlock so we don't need to add
  309. * a smb_wmb() here in between the two.
  310. */
  311. kvm->mmu_notifier_count--;
  312. spin_unlock(&kvm->mmu_lock);
  313. BUG_ON(kvm->mmu_notifier_count < 0);
  314. }
  315. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  316. struct mm_struct *mm,
  317. unsigned long address)
  318. {
  319. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  320. int young, idx;
  321. idx = srcu_read_lock(&kvm->srcu);
  322. spin_lock(&kvm->mmu_lock);
  323. young = kvm_age_hva(kvm, address);
  324. spin_unlock(&kvm->mmu_lock);
  325. srcu_read_unlock(&kvm->srcu, idx);
  326. if (young)
  327. kvm_flush_remote_tlbs(kvm);
  328. return young;
  329. }
  330. static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
  331. struct mm_struct *mm,
  332. unsigned long address)
  333. {
  334. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  335. int young, idx;
  336. idx = srcu_read_lock(&kvm->srcu);
  337. spin_lock(&kvm->mmu_lock);
  338. young = kvm_test_age_hva(kvm, address);
  339. spin_unlock(&kvm->mmu_lock);
  340. srcu_read_unlock(&kvm->srcu, idx);
  341. return young;
  342. }
  343. static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
  344. struct mm_struct *mm)
  345. {
  346. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  347. int idx;
  348. idx = srcu_read_lock(&kvm->srcu);
  349. kvm_arch_flush_shadow(kvm);
  350. srcu_read_unlock(&kvm->srcu, idx);
  351. }
  352. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  353. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  354. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  355. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  356. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  357. .test_young = kvm_mmu_notifier_test_young,
  358. .change_pte = kvm_mmu_notifier_change_pte,
  359. .release = kvm_mmu_notifier_release,
  360. };
  361. static int kvm_init_mmu_notifier(struct kvm *kvm)
  362. {
  363. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  364. return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  365. }
  366. #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
  367. static int kvm_init_mmu_notifier(struct kvm *kvm)
  368. {
  369. return 0;
  370. }
  371. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  372. static struct kvm *kvm_create_vm(void)
  373. {
  374. int r, i;
  375. struct kvm *kvm = kvm_arch_alloc_vm();
  376. if (!kvm)
  377. return ERR_PTR(-ENOMEM);
  378. r = kvm_arch_init_vm(kvm);
  379. if (r)
  380. goto out_err_nodisable;
  381. r = hardware_enable_all();
  382. if (r)
  383. goto out_err_nodisable;
  384. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  385. INIT_HLIST_HEAD(&kvm->mask_notifier_list);
  386. INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
  387. #endif
  388. r = -ENOMEM;
  389. kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  390. if (!kvm->memslots)
  391. goto out_err_nosrcu;
  392. if (init_srcu_struct(&kvm->srcu))
  393. goto out_err_nosrcu;
  394. for (i = 0; i < KVM_NR_BUSES; i++) {
  395. kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
  396. GFP_KERNEL);
  397. if (!kvm->buses[i])
  398. goto out_err;
  399. }
  400. r = kvm_init_mmu_notifier(kvm);
  401. if (r)
  402. goto out_err;
  403. kvm->mm = current->mm;
  404. atomic_inc(&kvm->mm->mm_count);
  405. spin_lock_init(&kvm->mmu_lock);
  406. kvm_eventfd_init(kvm);
  407. mutex_init(&kvm->lock);
  408. mutex_init(&kvm->irq_lock);
  409. mutex_init(&kvm->slots_lock);
  410. atomic_set(&kvm->users_count, 1);
  411. raw_spin_lock(&kvm_lock);
  412. list_add(&kvm->vm_list, &vm_list);
  413. raw_spin_unlock(&kvm_lock);
  414. return kvm;
  415. out_err:
  416. cleanup_srcu_struct(&kvm->srcu);
  417. out_err_nosrcu:
  418. hardware_disable_all();
  419. out_err_nodisable:
  420. for (i = 0; i < KVM_NR_BUSES; i++)
  421. kfree(kvm->buses[i]);
  422. kfree(kvm->memslots);
  423. kvm_arch_free_vm(kvm);
  424. return ERR_PTR(r);
  425. }
  426. static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
  427. {
  428. if (!memslot->dirty_bitmap)
  429. return;
  430. if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
  431. vfree(memslot->dirty_bitmap_head);
  432. else
  433. kfree(memslot->dirty_bitmap_head);
  434. memslot->dirty_bitmap = NULL;
  435. memslot->dirty_bitmap_head = NULL;
  436. }
  437. /*
  438. * Free any memory in @free but not in @dont.
  439. */
  440. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  441. struct kvm_memory_slot *dont)
  442. {
  443. int i;
  444. if (!dont || free->rmap != dont->rmap)
  445. vfree(free->rmap);
  446. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  447. kvm_destroy_dirty_bitmap(free);
  448. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  449. if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
  450. vfree(free->lpage_info[i]);
  451. free->lpage_info[i] = NULL;
  452. }
  453. }
  454. free->npages = 0;
  455. free->rmap = NULL;
  456. }
  457. void kvm_free_physmem(struct kvm *kvm)
  458. {
  459. int i;
  460. struct kvm_memslots *slots = kvm->memslots;
  461. for (i = 0; i < slots->nmemslots; ++i)
  462. kvm_free_physmem_slot(&slots->memslots[i], NULL);
  463. kfree(kvm->memslots);
  464. }
  465. static void kvm_destroy_vm(struct kvm *kvm)
  466. {
  467. int i;
  468. struct mm_struct *mm = kvm->mm;
  469. kvm_arch_sync_events(kvm);
  470. raw_spin_lock(&kvm_lock);
  471. list_del(&kvm->vm_list);
  472. raw_spin_unlock(&kvm_lock);
  473. kvm_free_irq_routing(kvm);
  474. for (i = 0; i < KVM_NR_BUSES; i++)
  475. kvm_io_bus_destroy(kvm->buses[i]);
  476. kvm_coalesced_mmio_free(kvm);
  477. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  478. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  479. #else
  480. kvm_arch_flush_shadow(kvm);
  481. #endif
  482. kvm_arch_destroy_vm(kvm);
  483. kvm_free_physmem(kvm);
  484. cleanup_srcu_struct(&kvm->srcu);
  485. kvm_arch_free_vm(kvm);
  486. hardware_disable_all();
  487. mmdrop(mm);
  488. }
  489. void kvm_get_kvm(struct kvm *kvm)
  490. {
  491. atomic_inc(&kvm->users_count);
  492. }
  493. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  494. void kvm_put_kvm(struct kvm *kvm)
  495. {
  496. if (atomic_dec_and_test(&kvm->users_count))
  497. kvm_destroy_vm(kvm);
  498. }
  499. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  500. static int kvm_vm_release(struct inode *inode, struct file *filp)
  501. {
  502. struct kvm *kvm = filp->private_data;
  503. kvm_irqfd_release(kvm);
  504. kvm_put_kvm(kvm);
  505. return 0;
  506. }
  507. #ifndef CONFIG_S390
  508. /*
  509. * Allocation size is twice as large as the actual dirty bitmap size.
  510. * This makes it possible to do double buffering: see x86's
  511. * kvm_vm_ioctl_get_dirty_log().
  512. */
  513. static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
  514. {
  515. unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
  516. if (dirty_bytes > PAGE_SIZE)
  517. memslot->dirty_bitmap = vzalloc(dirty_bytes);
  518. else
  519. memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
  520. if (!memslot->dirty_bitmap)
  521. return -ENOMEM;
  522. memslot->dirty_bitmap_head = memslot->dirty_bitmap;
  523. return 0;
  524. }
  525. #endif /* !CONFIG_S390 */
  526. /*
  527. * Allocate some memory and give it an address in the guest physical address
  528. * space.
  529. *
  530. * Discontiguous memory is allowed, mostly for framebuffers.
  531. *
  532. * Must be called holding mmap_sem for write.
  533. */
  534. int __kvm_set_memory_region(struct kvm *kvm,
  535. struct kvm_userspace_memory_region *mem,
  536. int user_alloc)
  537. {
  538. int r;
  539. gfn_t base_gfn;
  540. unsigned long npages;
  541. unsigned long i;
  542. struct kvm_memory_slot *memslot;
  543. struct kvm_memory_slot old, new;
  544. struct kvm_memslots *slots, *old_memslots;
  545. r = -EINVAL;
  546. /* General sanity checks */
  547. if (mem->memory_size & (PAGE_SIZE - 1))
  548. goto out;
  549. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  550. goto out;
  551. if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
  552. goto out;
  553. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  554. goto out;
  555. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  556. goto out;
  557. memslot = &kvm->memslots->memslots[mem->slot];
  558. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  559. npages = mem->memory_size >> PAGE_SHIFT;
  560. r = -EINVAL;
  561. if (npages > KVM_MEM_MAX_NR_PAGES)
  562. goto out;
  563. if (!npages)
  564. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  565. new = old = *memslot;
  566. new.id = mem->slot;
  567. new.base_gfn = base_gfn;
  568. new.npages = npages;
  569. new.flags = mem->flags;
  570. /* Disallow changing a memory slot's size. */
  571. r = -EINVAL;
  572. if (npages && old.npages && npages != old.npages)
  573. goto out_free;
  574. /* Check for overlaps */
  575. r = -EEXIST;
  576. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  577. struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
  578. if (s == memslot || !s->npages)
  579. continue;
  580. if (!((base_gfn + npages <= s->base_gfn) ||
  581. (base_gfn >= s->base_gfn + s->npages)))
  582. goto out_free;
  583. }
  584. /* Free page dirty bitmap if unneeded */
  585. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  586. new.dirty_bitmap = NULL;
  587. r = -ENOMEM;
  588. /* Allocate if a slot is being created */
  589. #ifndef CONFIG_S390
  590. if (npages && !new.rmap) {
  591. new.rmap = vzalloc(npages * sizeof(*new.rmap));
  592. if (!new.rmap)
  593. goto out_free;
  594. new.user_alloc = user_alloc;
  595. new.userspace_addr = mem->userspace_addr;
  596. }
  597. if (!npages)
  598. goto skip_lpage;
  599. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  600. unsigned long ugfn;
  601. unsigned long j;
  602. int lpages;
  603. int level = i + 2;
  604. /* Avoid unused variable warning if no large pages */
  605. (void)level;
  606. if (new.lpage_info[i])
  607. continue;
  608. lpages = 1 + ((base_gfn + npages - 1)
  609. >> KVM_HPAGE_GFN_SHIFT(level));
  610. lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
  611. new.lpage_info[i] = vzalloc(lpages * sizeof(*new.lpage_info[i]));
  612. if (!new.lpage_info[i])
  613. goto out_free;
  614. if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
  615. new.lpage_info[i][0].write_count = 1;
  616. if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
  617. new.lpage_info[i][lpages - 1].write_count = 1;
  618. ugfn = new.userspace_addr >> PAGE_SHIFT;
  619. /*
  620. * If the gfn and userspace address are not aligned wrt each
  621. * other, or if explicitly asked to, disable large page
  622. * support for this slot
  623. */
  624. if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
  625. !largepages_enabled)
  626. for (j = 0; j < lpages; ++j)
  627. new.lpage_info[i][j].write_count = 1;
  628. }
  629. skip_lpage:
  630. /* Allocate page dirty bitmap if needed */
  631. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  632. if (kvm_create_dirty_bitmap(&new) < 0)
  633. goto out_free;
  634. /* destroy any largepage mappings for dirty tracking */
  635. }
  636. #else /* not defined CONFIG_S390 */
  637. new.user_alloc = user_alloc;
  638. if (user_alloc)
  639. new.userspace_addr = mem->userspace_addr;
  640. #endif /* not defined CONFIG_S390 */
  641. if (!npages) {
  642. r = -ENOMEM;
  643. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  644. if (!slots)
  645. goto out_free;
  646. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  647. if (mem->slot >= slots->nmemslots)
  648. slots->nmemslots = mem->slot + 1;
  649. slots->generation++;
  650. slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
  651. old_memslots = kvm->memslots;
  652. rcu_assign_pointer(kvm->memslots, slots);
  653. synchronize_srcu_expedited(&kvm->srcu);
  654. /* From this point no new shadow pages pointing to a deleted
  655. * memslot will be created.
  656. *
  657. * validation of sp->gfn happens in:
  658. * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
  659. * - kvm_is_visible_gfn (mmu_check_roots)
  660. */
  661. kvm_arch_flush_shadow(kvm);
  662. kfree(old_memslots);
  663. }
  664. r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
  665. if (r)
  666. goto out_free;
  667. /* map the pages in iommu page table */
  668. if (npages) {
  669. r = kvm_iommu_map_pages(kvm, &new);
  670. if (r)
  671. goto out_free;
  672. }
  673. r = -ENOMEM;
  674. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  675. if (!slots)
  676. goto out_free;
  677. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  678. if (mem->slot >= slots->nmemslots)
  679. slots->nmemslots = mem->slot + 1;
  680. slots->generation++;
  681. /* actual memory is freed via old in kvm_free_physmem_slot below */
  682. if (!npages) {
  683. new.rmap = NULL;
  684. new.dirty_bitmap = NULL;
  685. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
  686. new.lpage_info[i] = NULL;
  687. }
  688. slots->memslots[mem->slot] = new;
  689. old_memslots = kvm->memslots;
  690. rcu_assign_pointer(kvm->memslots, slots);
  691. synchronize_srcu_expedited(&kvm->srcu);
  692. kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
  693. kvm_free_physmem_slot(&old, &new);
  694. kfree(old_memslots);
  695. return 0;
  696. out_free:
  697. kvm_free_physmem_slot(&new, &old);
  698. out:
  699. return r;
  700. }
  701. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  702. int kvm_set_memory_region(struct kvm *kvm,
  703. struct kvm_userspace_memory_region *mem,
  704. int user_alloc)
  705. {
  706. int r;
  707. mutex_lock(&kvm->slots_lock);
  708. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  709. mutex_unlock(&kvm->slots_lock);
  710. return r;
  711. }
  712. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  713. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  714. struct
  715. kvm_userspace_memory_region *mem,
  716. int user_alloc)
  717. {
  718. if (mem->slot >= KVM_MEMORY_SLOTS)
  719. return -EINVAL;
  720. return kvm_set_memory_region(kvm, mem, user_alloc);
  721. }
  722. int kvm_get_dirty_log(struct kvm *kvm,
  723. struct kvm_dirty_log *log, int *is_dirty)
  724. {
  725. struct kvm_memory_slot *memslot;
  726. int r, i;
  727. unsigned long n;
  728. unsigned long any = 0;
  729. r = -EINVAL;
  730. if (log->slot >= KVM_MEMORY_SLOTS)
  731. goto out;
  732. memslot = &kvm->memslots->memslots[log->slot];
  733. r = -ENOENT;
  734. if (!memslot->dirty_bitmap)
  735. goto out;
  736. n = kvm_dirty_bitmap_bytes(memslot);
  737. for (i = 0; !any && i < n/sizeof(long); ++i)
  738. any = memslot->dirty_bitmap[i];
  739. r = -EFAULT;
  740. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  741. goto out;
  742. if (any)
  743. *is_dirty = 1;
  744. r = 0;
  745. out:
  746. return r;
  747. }
  748. void kvm_disable_largepages(void)
  749. {
  750. largepages_enabled = false;
  751. }
  752. EXPORT_SYMBOL_GPL(kvm_disable_largepages);
  753. int is_error_page(struct page *page)
  754. {
  755. return page == bad_page || page == hwpoison_page || page == fault_page;
  756. }
  757. EXPORT_SYMBOL_GPL(is_error_page);
  758. int is_error_pfn(pfn_t pfn)
  759. {
  760. return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
  761. }
  762. EXPORT_SYMBOL_GPL(is_error_pfn);
  763. int is_hwpoison_pfn(pfn_t pfn)
  764. {
  765. return pfn == hwpoison_pfn;
  766. }
  767. EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
  768. int is_fault_pfn(pfn_t pfn)
  769. {
  770. return pfn == fault_pfn;
  771. }
  772. EXPORT_SYMBOL_GPL(is_fault_pfn);
  773. static inline unsigned long bad_hva(void)
  774. {
  775. return PAGE_OFFSET;
  776. }
  777. int kvm_is_error_hva(unsigned long addr)
  778. {
  779. return addr == bad_hva();
  780. }
  781. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  782. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm_memslots *slots,
  783. gfn_t gfn)
  784. {
  785. int i;
  786. for (i = 0; i < slots->nmemslots; ++i) {
  787. struct kvm_memory_slot *memslot = &slots->memslots[i];
  788. if (gfn >= memslot->base_gfn
  789. && gfn < memslot->base_gfn + memslot->npages)
  790. return memslot;
  791. }
  792. return NULL;
  793. }
  794. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  795. {
  796. return __gfn_to_memslot(kvm_memslots(kvm), gfn);
  797. }
  798. EXPORT_SYMBOL_GPL(gfn_to_memslot);
  799. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  800. {
  801. int i;
  802. struct kvm_memslots *slots = kvm_memslots(kvm);
  803. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  804. struct kvm_memory_slot *memslot = &slots->memslots[i];
  805. if (memslot->flags & KVM_MEMSLOT_INVALID)
  806. continue;
  807. if (gfn >= memslot->base_gfn
  808. && gfn < memslot->base_gfn + memslot->npages)
  809. return 1;
  810. }
  811. return 0;
  812. }
  813. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  814. unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
  815. {
  816. struct vm_area_struct *vma;
  817. unsigned long addr, size;
  818. size = PAGE_SIZE;
  819. addr = gfn_to_hva(kvm, gfn);
  820. if (kvm_is_error_hva(addr))
  821. return PAGE_SIZE;
  822. down_read(&current->mm->mmap_sem);
  823. vma = find_vma(current->mm, addr);
  824. if (!vma)
  825. goto out;
  826. size = vma_kernel_pagesize(vma);
  827. out:
  828. up_read(&current->mm->mmap_sem);
  829. return size;
  830. }
  831. int memslot_id(struct kvm *kvm, gfn_t gfn)
  832. {
  833. int i;
  834. struct kvm_memslots *slots = kvm_memslots(kvm);
  835. struct kvm_memory_slot *memslot = NULL;
  836. for (i = 0; i < slots->nmemslots; ++i) {
  837. memslot = &slots->memslots[i];
  838. if (gfn >= memslot->base_gfn
  839. && gfn < memslot->base_gfn + memslot->npages)
  840. break;
  841. }
  842. return memslot - slots->memslots;
  843. }
  844. static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
  845. gfn_t *nr_pages)
  846. {
  847. if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
  848. return bad_hva();
  849. if (nr_pages)
  850. *nr_pages = slot->npages - (gfn - slot->base_gfn);
  851. return gfn_to_hva_memslot(slot, gfn);
  852. }
  853. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  854. {
  855. return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
  856. }
  857. EXPORT_SYMBOL_GPL(gfn_to_hva);
  858. static pfn_t get_fault_pfn(void)
  859. {
  860. get_page(fault_page);
  861. return fault_pfn;
  862. }
  863. static inline int check_user_page_hwpoison(unsigned long addr)
  864. {
  865. int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
  866. rc = __get_user_pages(current, current->mm, addr, 1,
  867. flags, NULL, NULL, NULL);
  868. return rc == -EHWPOISON;
  869. }
  870. static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
  871. bool *async, bool write_fault, bool *writable)
  872. {
  873. struct page *page[1];
  874. int npages = 0;
  875. pfn_t pfn;
  876. /* we can do it either atomically or asynchronously, not both */
  877. BUG_ON(atomic && async);
  878. BUG_ON(!write_fault && !writable);
  879. if (writable)
  880. *writable = true;
  881. if (atomic || async)
  882. npages = __get_user_pages_fast(addr, 1, 1, page);
  883. if (unlikely(npages != 1) && !atomic) {
  884. might_sleep();
  885. if (writable)
  886. *writable = write_fault;
  887. npages = get_user_pages_fast(addr, 1, write_fault, page);
  888. /* map read fault as writable if possible */
  889. if (unlikely(!write_fault) && npages == 1) {
  890. struct page *wpage[1];
  891. npages = __get_user_pages_fast(addr, 1, 1, wpage);
  892. if (npages == 1) {
  893. *writable = true;
  894. put_page(page[0]);
  895. page[0] = wpage[0];
  896. }
  897. npages = 1;
  898. }
  899. }
  900. if (unlikely(npages != 1)) {
  901. struct vm_area_struct *vma;
  902. if (atomic)
  903. return get_fault_pfn();
  904. down_read(&current->mm->mmap_sem);
  905. if (check_user_page_hwpoison(addr)) {
  906. up_read(&current->mm->mmap_sem);
  907. get_page(hwpoison_page);
  908. return page_to_pfn(hwpoison_page);
  909. }
  910. vma = find_vma_intersection(current->mm, addr, addr+1);
  911. if (vma == NULL)
  912. pfn = get_fault_pfn();
  913. else if ((vma->vm_flags & VM_PFNMAP)) {
  914. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
  915. vma->vm_pgoff;
  916. BUG_ON(!kvm_is_mmio_pfn(pfn));
  917. } else {
  918. if (async && (vma->vm_flags & VM_WRITE))
  919. *async = true;
  920. pfn = get_fault_pfn();
  921. }
  922. up_read(&current->mm->mmap_sem);
  923. } else
  924. pfn = page_to_pfn(page[0]);
  925. return pfn;
  926. }
  927. pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
  928. {
  929. return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
  930. }
  931. EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
  932. static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
  933. bool write_fault, bool *writable)
  934. {
  935. unsigned long addr;
  936. if (async)
  937. *async = false;
  938. addr = gfn_to_hva(kvm, gfn);
  939. if (kvm_is_error_hva(addr)) {
  940. get_page(bad_page);
  941. return page_to_pfn(bad_page);
  942. }
  943. return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
  944. }
  945. pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
  946. {
  947. return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
  948. }
  949. EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
  950. pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
  951. bool write_fault, bool *writable)
  952. {
  953. return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
  954. }
  955. EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
  956. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  957. {
  958. return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
  959. }
  960. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  961. pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
  962. bool *writable)
  963. {
  964. return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
  965. }
  966. EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
  967. pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
  968. struct kvm_memory_slot *slot, gfn_t gfn)
  969. {
  970. unsigned long addr = gfn_to_hva_memslot(slot, gfn);
  971. return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
  972. }
  973. int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
  974. int nr_pages)
  975. {
  976. unsigned long addr;
  977. gfn_t entry;
  978. addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
  979. if (kvm_is_error_hva(addr))
  980. return -1;
  981. if (entry < nr_pages)
  982. return 0;
  983. return __get_user_pages_fast(addr, nr_pages, 1, pages);
  984. }
  985. EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
  986. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  987. {
  988. pfn_t pfn;
  989. pfn = gfn_to_pfn(kvm, gfn);
  990. if (!kvm_is_mmio_pfn(pfn))
  991. return pfn_to_page(pfn);
  992. WARN_ON(kvm_is_mmio_pfn(pfn));
  993. get_page(bad_page);
  994. return bad_page;
  995. }
  996. EXPORT_SYMBOL_GPL(gfn_to_page);
  997. void kvm_release_page_clean(struct page *page)
  998. {
  999. kvm_release_pfn_clean(page_to_pfn(page));
  1000. }
  1001. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  1002. void kvm_release_pfn_clean(pfn_t pfn)
  1003. {
  1004. if (!kvm_is_mmio_pfn(pfn))
  1005. put_page(pfn_to_page(pfn));
  1006. }
  1007. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  1008. void kvm_release_page_dirty(struct page *page)
  1009. {
  1010. kvm_release_pfn_dirty(page_to_pfn(page));
  1011. }
  1012. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  1013. void kvm_release_pfn_dirty(pfn_t pfn)
  1014. {
  1015. kvm_set_pfn_dirty(pfn);
  1016. kvm_release_pfn_clean(pfn);
  1017. }
  1018. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  1019. void kvm_set_page_dirty(struct page *page)
  1020. {
  1021. kvm_set_pfn_dirty(page_to_pfn(page));
  1022. }
  1023. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  1024. void kvm_set_pfn_dirty(pfn_t pfn)
  1025. {
  1026. if (!kvm_is_mmio_pfn(pfn)) {
  1027. struct page *page = pfn_to_page(pfn);
  1028. if (!PageReserved(page))
  1029. SetPageDirty(page);
  1030. }
  1031. }
  1032. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  1033. void kvm_set_pfn_accessed(pfn_t pfn)
  1034. {
  1035. if (!kvm_is_mmio_pfn(pfn))
  1036. mark_page_accessed(pfn_to_page(pfn));
  1037. }
  1038. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  1039. void kvm_get_pfn(pfn_t pfn)
  1040. {
  1041. if (!kvm_is_mmio_pfn(pfn))
  1042. get_page(pfn_to_page(pfn));
  1043. }
  1044. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  1045. static int next_segment(unsigned long len, int offset)
  1046. {
  1047. if (len > PAGE_SIZE - offset)
  1048. return PAGE_SIZE - offset;
  1049. else
  1050. return len;
  1051. }
  1052. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  1053. int len)
  1054. {
  1055. int r;
  1056. unsigned long addr;
  1057. addr = gfn_to_hva(kvm, gfn);
  1058. if (kvm_is_error_hva(addr))
  1059. return -EFAULT;
  1060. r = copy_from_user(data, (void __user *)addr + offset, len);
  1061. if (r)
  1062. return -EFAULT;
  1063. return 0;
  1064. }
  1065. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  1066. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  1067. {
  1068. gfn_t gfn = gpa >> PAGE_SHIFT;
  1069. int seg;
  1070. int offset = offset_in_page(gpa);
  1071. int ret;
  1072. while ((seg = next_segment(len, offset)) != 0) {
  1073. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  1074. if (ret < 0)
  1075. return ret;
  1076. offset = 0;
  1077. len -= seg;
  1078. data += seg;
  1079. ++gfn;
  1080. }
  1081. return 0;
  1082. }
  1083. EXPORT_SYMBOL_GPL(kvm_read_guest);
  1084. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  1085. unsigned long len)
  1086. {
  1087. int r;
  1088. unsigned long addr;
  1089. gfn_t gfn = gpa >> PAGE_SHIFT;
  1090. int offset = offset_in_page(gpa);
  1091. addr = gfn_to_hva(kvm, gfn);
  1092. if (kvm_is_error_hva(addr))
  1093. return -EFAULT;
  1094. pagefault_disable();
  1095. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  1096. pagefault_enable();
  1097. if (r)
  1098. return -EFAULT;
  1099. return 0;
  1100. }
  1101. EXPORT_SYMBOL(kvm_read_guest_atomic);
  1102. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  1103. int offset, int len)
  1104. {
  1105. int r;
  1106. unsigned long addr;
  1107. addr = gfn_to_hva(kvm, gfn);
  1108. if (kvm_is_error_hva(addr))
  1109. return -EFAULT;
  1110. r = copy_to_user((void __user *)addr + offset, data, len);
  1111. if (r)
  1112. return -EFAULT;
  1113. mark_page_dirty(kvm, gfn);
  1114. return 0;
  1115. }
  1116. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  1117. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  1118. unsigned long len)
  1119. {
  1120. gfn_t gfn = gpa >> PAGE_SHIFT;
  1121. int seg;
  1122. int offset = offset_in_page(gpa);
  1123. int ret;
  1124. while ((seg = next_segment(len, offset)) != 0) {
  1125. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  1126. if (ret < 0)
  1127. return ret;
  1128. offset = 0;
  1129. len -= seg;
  1130. data += seg;
  1131. ++gfn;
  1132. }
  1133. return 0;
  1134. }
  1135. int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1136. gpa_t gpa)
  1137. {
  1138. struct kvm_memslots *slots = kvm_memslots(kvm);
  1139. int offset = offset_in_page(gpa);
  1140. gfn_t gfn = gpa >> PAGE_SHIFT;
  1141. ghc->gpa = gpa;
  1142. ghc->generation = slots->generation;
  1143. ghc->memslot = __gfn_to_memslot(slots, gfn);
  1144. ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
  1145. if (!kvm_is_error_hva(ghc->hva))
  1146. ghc->hva += offset;
  1147. else
  1148. return -EFAULT;
  1149. return 0;
  1150. }
  1151. EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
  1152. int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1153. void *data, unsigned long len)
  1154. {
  1155. struct kvm_memslots *slots = kvm_memslots(kvm);
  1156. int r;
  1157. if (slots->generation != ghc->generation)
  1158. kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
  1159. if (kvm_is_error_hva(ghc->hva))
  1160. return -EFAULT;
  1161. r = copy_to_user((void __user *)ghc->hva, data, len);
  1162. if (r)
  1163. return -EFAULT;
  1164. mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
  1165. return 0;
  1166. }
  1167. EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
  1168. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  1169. {
  1170. return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
  1171. offset, len);
  1172. }
  1173. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1174. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1175. {
  1176. gfn_t gfn = gpa >> PAGE_SHIFT;
  1177. int seg;
  1178. int offset = offset_in_page(gpa);
  1179. int ret;
  1180. while ((seg = next_segment(len, offset)) != 0) {
  1181. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1182. if (ret < 0)
  1183. return ret;
  1184. offset = 0;
  1185. len -= seg;
  1186. ++gfn;
  1187. }
  1188. return 0;
  1189. }
  1190. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1191. void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
  1192. gfn_t gfn)
  1193. {
  1194. if (memslot && memslot->dirty_bitmap) {
  1195. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1196. generic___set_le_bit(rel_gfn, memslot->dirty_bitmap);
  1197. }
  1198. }
  1199. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1200. {
  1201. struct kvm_memory_slot *memslot;
  1202. memslot = gfn_to_memslot(kvm, gfn);
  1203. mark_page_dirty_in_slot(kvm, memslot, gfn);
  1204. }
  1205. /*
  1206. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1207. */
  1208. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1209. {
  1210. DEFINE_WAIT(wait);
  1211. for (;;) {
  1212. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1213. if (kvm_arch_vcpu_runnable(vcpu)) {
  1214. kvm_make_request(KVM_REQ_UNHALT, vcpu);
  1215. break;
  1216. }
  1217. if (kvm_cpu_has_pending_timer(vcpu))
  1218. break;
  1219. if (signal_pending(current))
  1220. break;
  1221. schedule();
  1222. }
  1223. finish_wait(&vcpu->wq, &wait);
  1224. }
  1225. void kvm_resched(struct kvm_vcpu *vcpu)
  1226. {
  1227. if (!need_resched())
  1228. return;
  1229. cond_resched();
  1230. }
  1231. EXPORT_SYMBOL_GPL(kvm_resched);
  1232. void kvm_vcpu_on_spin(struct kvm_vcpu *me)
  1233. {
  1234. struct kvm *kvm = me->kvm;
  1235. struct kvm_vcpu *vcpu;
  1236. int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
  1237. int yielded = 0;
  1238. int pass;
  1239. int i;
  1240. /*
  1241. * We boost the priority of a VCPU that is runnable but not
  1242. * currently running, because it got preempted by something
  1243. * else and called schedule in __vcpu_run. Hopefully that
  1244. * VCPU is holding the lock that we need and will release it.
  1245. * We approximate round-robin by starting at the last boosted VCPU.
  1246. */
  1247. for (pass = 0; pass < 2 && !yielded; pass++) {
  1248. kvm_for_each_vcpu(i, vcpu, kvm) {
  1249. struct task_struct *task = NULL;
  1250. struct pid *pid;
  1251. if (!pass && i < last_boosted_vcpu) {
  1252. i = last_boosted_vcpu;
  1253. continue;
  1254. } else if (pass && i > last_boosted_vcpu)
  1255. break;
  1256. if (vcpu == me)
  1257. continue;
  1258. if (waitqueue_active(&vcpu->wq))
  1259. continue;
  1260. rcu_read_lock();
  1261. pid = rcu_dereference(vcpu->pid);
  1262. if (pid)
  1263. task = get_pid_task(vcpu->pid, PIDTYPE_PID);
  1264. rcu_read_unlock();
  1265. if (!task)
  1266. continue;
  1267. if (task->flags & PF_VCPU) {
  1268. put_task_struct(task);
  1269. continue;
  1270. }
  1271. if (yield_to(task, 1)) {
  1272. put_task_struct(task);
  1273. kvm->last_boosted_vcpu = i;
  1274. yielded = 1;
  1275. break;
  1276. }
  1277. put_task_struct(task);
  1278. }
  1279. }
  1280. }
  1281. EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
  1282. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1283. {
  1284. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1285. struct page *page;
  1286. if (vmf->pgoff == 0)
  1287. page = virt_to_page(vcpu->run);
  1288. #ifdef CONFIG_X86
  1289. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1290. page = virt_to_page(vcpu->arch.pio_data);
  1291. #endif
  1292. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1293. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1294. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1295. #endif
  1296. else
  1297. return VM_FAULT_SIGBUS;
  1298. get_page(page);
  1299. vmf->page = page;
  1300. return 0;
  1301. }
  1302. static const struct vm_operations_struct kvm_vcpu_vm_ops = {
  1303. .fault = kvm_vcpu_fault,
  1304. };
  1305. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1306. {
  1307. vma->vm_ops = &kvm_vcpu_vm_ops;
  1308. return 0;
  1309. }
  1310. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1311. {
  1312. struct kvm_vcpu *vcpu = filp->private_data;
  1313. kvm_put_kvm(vcpu->kvm);
  1314. return 0;
  1315. }
  1316. static struct file_operations kvm_vcpu_fops = {
  1317. .release = kvm_vcpu_release,
  1318. .unlocked_ioctl = kvm_vcpu_ioctl,
  1319. .compat_ioctl = kvm_vcpu_ioctl,
  1320. .mmap = kvm_vcpu_mmap,
  1321. .llseek = noop_llseek,
  1322. };
  1323. /*
  1324. * Allocates an inode for the vcpu.
  1325. */
  1326. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1327. {
  1328. return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
  1329. }
  1330. /*
  1331. * Creates some virtual cpus. Good luck creating more than one.
  1332. */
  1333. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
  1334. {
  1335. int r;
  1336. struct kvm_vcpu *vcpu, *v;
  1337. vcpu = kvm_arch_vcpu_create(kvm, id);
  1338. if (IS_ERR(vcpu))
  1339. return PTR_ERR(vcpu);
  1340. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1341. r = kvm_arch_vcpu_setup(vcpu);
  1342. if (r)
  1343. return r;
  1344. mutex_lock(&kvm->lock);
  1345. if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
  1346. r = -EINVAL;
  1347. goto vcpu_destroy;
  1348. }
  1349. kvm_for_each_vcpu(r, v, kvm)
  1350. if (v->vcpu_id == id) {
  1351. r = -EEXIST;
  1352. goto vcpu_destroy;
  1353. }
  1354. BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
  1355. /* Now it's all set up, let userspace reach it */
  1356. kvm_get_kvm(kvm);
  1357. r = create_vcpu_fd(vcpu);
  1358. if (r < 0) {
  1359. kvm_put_kvm(kvm);
  1360. goto vcpu_destroy;
  1361. }
  1362. kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
  1363. smp_wmb();
  1364. atomic_inc(&kvm->online_vcpus);
  1365. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1366. if (kvm->bsp_vcpu_id == id)
  1367. kvm->bsp_vcpu = vcpu;
  1368. #endif
  1369. mutex_unlock(&kvm->lock);
  1370. return r;
  1371. vcpu_destroy:
  1372. mutex_unlock(&kvm->lock);
  1373. kvm_arch_vcpu_destroy(vcpu);
  1374. return r;
  1375. }
  1376. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1377. {
  1378. if (sigset) {
  1379. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1380. vcpu->sigset_active = 1;
  1381. vcpu->sigset = *sigset;
  1382. } else
  1383. vcpu->sigset_active = 0;
  1384. return 0;
  1385. }
  1386. static long kvm_vcpu_ioctl(struct file *filp,
  1387. unsigned int ioctl, unsigned long arg)
  1388. {
  1389. struct kvm_vcpu *vcpu = filp->private_data;
  1390. void __user *argp = (void __user *)arg;
  1391. int r;
  1392. struct kvm_fpu *fpu = NULL;
  1393. struct kvm_sregs *kvm_sregs = NULL;
  1394. if (vcpu->kvm->mm != current->mm)
  1395. return -EIO;
  1396. #if defined(CONFIG_S390) || defined(CONFIG_PPC)
  1397. /*
  1398. * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
  1399. * so vcpu_load() would break it.
  1400. */
  1401. if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
  1402. return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1403. #endif
  1404. vcpu_load(vcpu);
  1405. switch (ioctl) {
  1406. case KVM_RUN:
  1407. r = -EINVAL;
  1408. if (arg)
  1409. goto out;
  1410. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1411. trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
  1412. break;
  1413. case KVM_GET_REGS: {
  1414. struct kvm_regs *kvm_regs;
  1415. r = -ENOMEM;
  1416. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1417. if (!kvm_regs)
  1418. goto out;
  1419. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1420. if (r)
  1421. goto out_free1;
  1422. r = -EFAULT;
  1423. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1424. goto out_free1;
  1425. r = 0;
  1426. out_free1:
  1427. kfree(kvm_regs);
  1428. break;
  1429. }
  1430. case KVM_SET_REGS: {
  1431. struct kvm_regs *kvm_regs;
  1432. r = -ENOMEM;
  1433. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1434. if (!kvm_regs)
  1435. goto out;
  1436. r = -EFAULT;
  1437. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  1438. goto out_free2;
  1439. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1440. if (r)
  1441. goto out_free2;
  1442. r = 0;
  1443. out_free2:
  1444. kfree(kvm_regs);
  1445. break;
  1446. }
  1447. case KVM_GET_SREGS: {
  1448. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1449. r = -ENOMEM;
  1450. if (!kvm_sregs)
  1451. goto out;
  1452. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1453. if (r)
  1454. goto out;
  1455. r = -EFAULT;
  1456. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1457. goto out;
  1458. r = 0;
  1459. break;
  1460. }
  1461. case KVM_SET_SREGS: {
  1462. kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1463. r = -ENOMEM;
  1464. if (!kvm_sregs)
  1465. goto out;
  1466. r = -EFAULT;
  1467. if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
  1468. goto out;
  1469. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1470. if (r)
  1471. goto out;
  1472. r = 0;
  1473. break;
  1474. }
  1475. case KVM_GET_MP_STATE: {
  1476. struct kvm_mp_state mp_state;
  1477. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1478. if (r)
  1479. goto out;
  1480. r = -EFAULT;
  1481. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1482. goto out;
  1483. r = 0;
  1484. break;
  1485. }
  1486. case KVM_SET_MP_STATE: {
  1487. struct kvm_mp_state mp_state;
  1488. r = -EFAULT;
  1489. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1490. goto out;
  1491. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1492. if (r)
  1493. goto out;
  1494. r = 0;
  1495. break;
  1496. }
  1497. case KVM_TRANSLATE: {
  1498. struct kvm_translation tr;
  1499. r = -EFAULT;
  1500. if (copy_from_user(&tr, argp, sizeof tr))
  1501. goto out;
  1502. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1503. if (r)
  1504. goto out;
  1505. r = -EFAULT;
  1506. if (copy_to_user(argp, &tr, sizeof tr))
  1507. goto out;
  1508. r = 0;
  1509. break;
  1510. }
  1511. case KVM_SET_GUEST_DEBUG: {
  1512. struct kvm_guest_debug dbg;
  1513. r = -EFAULT;
  1514. if (copy_from_user(&dbg, argp, sizeof dbg))
  1515. goto out;
  1516. r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
  1517. if (r)
  1518. goto out;
  1519. r = 0;
  1520. break;
  1521. }
  1522. case KVM_SET_SIGNAL_MASK: {
  1523. struct kvm_signal_mask __user *sigmask_arg = argp;
  1524. struct kvm_signal_mask kvm_sigmask;
  1525. sigset_t sigset, *p;
  1526. p = NULL;
  1527. if (argp) {
  1528. r = -EFAULT;
  1529. if (copy_from_user(&kvm_sigmask, argp,
  1530. sizeof kvm_sigmask))
  1531. goto out;
  1532. r = -EINVAL;
  1533. if (kvm_sigmask.len != sizeof sigset)
  1534. goto out;
  1535. r = -EFAULT;
  1536. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1537. sizeof sigset))
  1538. goto out;
  1539. p = &sigset;
  1540. }
  1541. r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
  1542. break;
  1543. }
  1544. case KVM_GET_FPU: {
  1545. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1546. r = -ENOMEM;
  1547. if (!fpu)
  1548. goto out;
  1549. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1550. if (r)
  1551. goto out;
  1552. r = -EFAULT;
  1553. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1554. goto out;
  1555. r = 0;
  1556. break;
  1557. }
  1558. case KVM_SET_FPU: {
  1559. fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1560. r = -ENOMEM;
  1561. if (!fpu)
  1562. goto out;
  1563. r = -EFAULT;
  1564. if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
  1565. goto out;
  1566. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1567. if (r)
  1568. goto out;
  1569. r = 0;
  1570. break;
  1571. }
  1572. default:
  1573. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1574. }
  1575. out:
  1576. vcpu_put(vcpu);
  1577. kfree(fpu);
  1578. kfree(kvm_sregs);
  1579. return r;
  1580. }
  1581. static long kvm_vm_ioctl(struct file *filp,
  1582. unsigned int ioctl, unsigned long arg)
  1583. {
  1584. struct kvm *kvm = filp->private_data;
  1585. void __user *argp = (void __user *)arg;
  1586. int r;
  1587. if (kvm->mm != current->mm)
  1588. return -EIO;
  1589. switch (ioctl) {
  1590. case KVM_CREATE_VCPU:
  1591. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1592. if (r < 0)
  1593. goto out;
  1594. break;
  1595. case KVM_SET_USER_MEMORY_REGION: {
  1596. struct kvm_userspace_memory_region kvm_userspace_mem;
  1597. r = -EFAULT;
  1598. if (copy_from_user(&kvm_userspace_mem, argp,
  1599. sizeof kvm_userspace_mem))
  1600. goto out;
  1601. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1602. if (r)
  1603. goto out;
  1604. break;
  1605. }
  1606. case KVM_GET_DIRTY_LOG: {
  1607. struct kvm_dirty_log log;
  1608. r = -EFAULT;
  1609. if (copy_from_user(&log, argp, sizeof log))
  1610. goto out;
  1611. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1612. if (r)
  1613. goto out;
  1614. break;
  1615. }
  1616. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1617. case KVM_REGISTER_COALESCED_MMIO: {
  1618. struct kvm_coalesced_mmio_zone zone;
  1619. r = -EFAULT;
  1620. if (copy_from_user(&zone, argp, sizeof zone))
  1621. goto out;
  1622. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1623. if (r)
  1624. goto out;
  1625. r = 0;
  1626. break;
  1627. }
  1628. case KVM_UNREGISTER_COALESCED_MMIO: {
  1629. struct kvm_coalesced_mmio_zone zone;
  1630. r = -EFAULT;
  1631. if (copy_from_user(&zone, argp, sizeof zone))
  1632. goto out;
  1633. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1634. if (r)
  1635. goto out;
  1636. r = 0;
  1637. break;
  1638. }
  1639. #endif
  1640. case KVM_IRQFD: {
  1641. struct kvm_irqfd data;
  1642. r = -EFAULT;
  1643. if (copy_from_user(&data, argp, sizeof data))
  1644. goto out;
  1645. r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
  1646. break;
  1647. }
  1648. case KVM_IOEVENTFD: {
  1649. struct kvm_ioeventfd data;
  1650. r = -EFAULT;
  1651. if (copy_from_user(&data, argp, sizeof data))
  1652. goto out;
  1653. r = kvm_ioeventfd(kvm, &data);
  1654. break;
  1655. }
  1656. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1657. case KVM_SET_BOOT_CPU_ID:
  1658. r = 0;
  1659. mutex_lock(&kvm->lock);
  1660. if (atomic_read(&kvm->online_vcpus) != 0)
  1661. r = -EBUSY;
  1662. else
  1663. kvm->bsp_vcpu_id = arg;
  1664. mutex_unlock(&kvm->lock);
  1665. break;
  1666. #endif
  1667. default:
  1668. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1669. if (r == -ENOTTY)
  1670. r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
  1671. }
  1672. out:
  1673. return r;
  1674. }
  1675. #ifdef CONFIG_COMPAT
  1676. struct compat_kvm_dirty_log {
  1677. __u32 slot;
  1678. __u32 padding1;
  1679. union {
  1680. compat_uptr_t dirty_bitmap; /* one bit per page */
  1681. __u64 padding2;
  1682. };
  1683. };
  1684. static long kvm_vm_compat_ioctl(struct file *filp,
  1685. unsigned int ioctl, unsigned long arg)
  1686. {
  1687. struct kvm *kvm = filp->private_data;
  1688. int r;
  1689. if (kvm->mm != current->mm)
  1690. return -EIO;
  1691. switch (ioctl) {
  1692. case KVM_GET_DIRTY_LOG: {
  1693. struct compat_kvm_dirty_log compat_log;
  1694. struct kvm_dirty_log log;
  1695. r = -EFAULT;
  1696. if (copy_from_user(&compat_log, (void __user *)arg,
  1697. sizeof(compat_log)))
  1698. goto out;
  1699. log.slot = compat_log.slot;
  1700. log.padding1 = compat_log.padding1;
  1701. log.padding2 = compat_log.padding2;
  1702. log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
  1703. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1704. if (r)
  1705. goto out;
  1706. break;
  1707. }
  1708. default:
  1709. r = kvm_vm_ioctl(filp, ioctl, arg);
  1710. }
  1711. out:
  1712. return r;
  1713. }
  1714. #endif
  1715. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1716. {
  1717. struct page *page[1];
  1718. unsigned long addr;
  1719. int npages;
  1720. gfn_t gfn = vmf->pgoff;
  1721. struct kvm *kvm = vma->vm_file->private_data;
  1722. addr = gfn_to_hva(kvm, gfn);
  1723. if (kvm_is_error_hva(addr))
  1724. return VM_FAULT_SIGBUS;
  1725. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1726. NULL);
  1727. if (unlikely(npages != 1))
  1728. return VM_FAULT_SIGBUS;
  1729. vmf->page = page[0];
  1730. return 0;
  1731. }
  1732. static const struct vm_operations_struct kvm_vm_vm_ops = {
  1733. .fault = kvm_vm_fault,
  1734. };
  1735. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1736. {
  1737. vma->vm_ops = &kvm_vm_vm_ops;
  1738. return 0;
  1739. }
  1740. static struct file_operations kvm_vm_fops = {
  1741. .release = kvm_vm_release,
  1742. .unlocked_ioctl = kvm_vm_ioctl,
  1743. #ifdef CONFIG_COMPAT
  1744. .compat_ioctl = kvm_vm_compat_ioctl,
  1745. #endif
  1746. .mmap = kvm_vm_mmap,
  1747. .llseek = noop_llseek,
  1748. };
  1749. static int kvm_dev_ioctl_create_vm(void)
  1750. {
  1751. int r;
  1752. struct kvm *kvm;
  1753. kvm = kvm_create_vm();
  1754. if (IS_ERR(kvm))
  1755. return PTR_ERR(kvm);
  1756. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1757. r = kvm_coalesced_mmio_init(kvm);
  1758. if (r < 0) {
  1759. kvm_put_kvm(kvm);
  1760. return r;
  1761. }
  1762. #endif
  1763. r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
  1764. if (r < 0)
  1765. kvm_put_kvm(kvm);
  1766. return r;
  1767. }
  1768. static long kvm_dev_ioctl_check_extension_generic(long arg)
  1769. {
  1770. switch (arg) {
  1771. case KVM_CAP_USER_MEMORY:
  1772. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  1773. case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
  1774. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1775. case KVM_CAP_SET_BOOT_CPU_ID:
  1776. #endif
  1777. case KVM_CAP_INTERNAL_ERROR_DATA:
  1778. return 1;
  1779. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  1780. case KVM_CAP_IRQ_ROUTING:
  1781. return KVM_MAX_IRQ_ROUTES;
  1782. #endif
  1783. default:
  1784. break;
  1785. }
  1786. return kvm_dev_ioctl_check_extension(arg);
  1787. }
  1788. static long kvm_dev_ioctl(struct file *filp,
  1789. unsigned int ioctl, unsigned long arg)
  1790. {
  1791. long r = -EINVAL;
  1792. switch (ioctl) {
  1793. case KVM_GET_API_VERSION:
  1794. r = -EINVAL;
  1795. if (arg)
  1796. goto out;
  1797. r = KVM_API_VERSION;
  1798. break;
  1799. case KVM_CREATE_VM:
  1800. r = -EINVAL;
  1801. if (arg)
  1802. goto out;
  1803. r = kvm_dev_ioctl_create_vm();
  1804. break;
  1805. case KVM_CHECK_EXTENSION:
  1806. r = kvm_dev_ioctl_check_extension_generic(arg);
  1807. break;
  1808. case KVM_GET_VCPU_MMAP_SIZE:
  1809. r = -EINVAL;
  1810. if (arg)
  1811. goto out;
  1812. r = PAGE_SIZE; /* struct kvm_run */
  1813. #ifdef CONFIG_X86
  1814. r += PAGE_SIZE; /* pio data page */
  1815. #endif
  1816. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1817. r += PAGE_SIZE; /* coalesced mmio ring page */
  1818. #endif
  1819. break;
  1820. case KVM_TRACE_ENABLE:
  1821. case KVM_TRACE_PAUSE:
  1822. case KVM_TRACE_DISABLE:
  1823. r = -EOPNOTSUPP;
  1824. break;
  1825. default:
  1826. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1827. }
  1828. out:
  1829. return r;
  1830. }
  1831. static struct file_operations kvm_chardev_ops = {
  1832. .unlocked_ioctl = kvm_dev_ioctl,
  1833. .compat_ioctl = kvm_dev_ioctl,
  1834. .llseek = noop_llseek,
  1835. };
  1836. static struct miscdevice kvm_dev = {
  1837. KVM_MINOR,
  1838. "kvm",
  1839. &kvm_chardev_ops,
  1840. };
  1841. static void hardware_enable_nolock(void *junk)
  1842. {
  1843. int cpu = raw_smp_processor_id();
  1844. int r;
  1845. if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1846. return;
  1847. cpumask_set_cpu(cpu, cpus_hardware_enabled);
  1848. r = kvm_arch_hardware_enable(NULL);
  1849. if (r) {
  1850. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1851. atomic_inc(&hardware_enable_failed);
  1852. printk(KERN_INFO "kvm: enabling virtualization on "
  1853. "CPU%d failed\n", cpu);
  1854. }
  1855. }
  1856. static void hardware_enable(void *junk)
  1857. {
  1858. raw_spin_lock(&kvm_lock);
  1859. hardware_enable_nolock(junk);
  1860. raw_spin_unlock(&kvm_lock);
  1861. }
  1862. static void hardware_disable_nolock(void *junk)
  1863. {
  1864. int cpu = raw_smp_processor_id();
  1865. if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1866. return;
  1867. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1868. kvm_arch_hardware_disable(NULL);
  1869. }
  1870. static void hardware_disable(void *junk)
  1871. {
  1872. raw_spin_lock(&kvm_lock);
  1873. hardware_disable_nolock(junk);
  1874. raw_spin_unlock(&kvm_lock);
  1875. }
  1876. static void hardware_disable_all_nolock(void)
  1877. {
  1878. BUG_ON(!kvm_usage_count);
  1879. kvm_usage_count--;
  1880. if (!kvm_usage_count)
  1881. on_each_cpu(hardware_disable_nolock, NULL, 1);
  1882. }
  1883. static void hardware_disable_all(void)
  1884. {
  1885. raw_spin_lock(&kvm_lock);
  1886. hardware_disable_all_nolock();
  1887. raw_spin_unlock(&kvm_lock);
  1888. }
  1889. static int hardware_enable_all(void)
  1890. {
  1891. int r = 0;
  1892. raw_spin_lock(&kvm_lock);
  1893. kvm_usage_count++;
  1894. if (kvm_usage_count == 1) {
  1895. atomic_set(&hardware_enable_failed, 0);
  1896. on_each_cpu(hardware_enable_nolock, NULL, 1);
  1897. if (atomic_read(&hardware_enable_failed)) {
  1898. hardware_disable_all_nolock();
  1899. r = -EBUSY;
  1900. }
  1901. }
  1902. raw_spin_unlock(&kvm_lock);
  1903. return r;
  1904. }
  1905. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1906. void *v)
  1907. {
  1908. int cpu = (long)v;
  1909. if (!kvm_usage_count)
  1910. return NOTIFY_OK;
  1911. val &= ~CPU_TASKS_FROZEN;
  1912. switch (val) {
  1913. case CPU_DYING:
  1914. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1915. cpu);
  1916. hardware_disable(NULL);
  1917. break;
  1918. case CPU_STARTING:
  1919. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1920. cpu);
  1921. hardware_enable(NULL);
  1922. break;
  1923. }
  1924. return NOTIFY_OK;
  1925. }
  1926. asmlinkage void kvm_spurious_fault(void)
  1927. {
  1928. /* Fault while not rebooting. We want the trace. */
  1929. BUG();
  1930. }
  1931. EXPORT_SYMBOL_GPL(kvm_spurious_fault);
  1932. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1933. void *v)
  1934. {
  1935. /*
  1936. * Some (well, at least mine) BIOSes hang on reboot if
  1937. * in vmx root mode.
  1938. *
  1939. * And Intel TXT required VMX off for all cpu when system shutdown.
  1940. */
  1941. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1942. kvm_rebooting = true;
  1943. on_each_cpu(hardware_disable_nolock, NULL, 1);
  1944. return NOTIFY_OK;
  1945. }
  1946. static struct notifier_block kvm_reboot_notifier = {
  1947. .notifier_call = kvm_reboot,
  1948. .priority = 0,
  1949. };
  1950. static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1951. {
  1952. int i;
  1953. for (i = 0; i < bus->dev_count; i++) {
  1954. struct kvm_io_device *pos = bus->devs[i];
  1955. kvm_iodevice_destructor(pos);
  1956. }
  1957. kfree(bus);
  1958. }
  1959. /* kvm_io_bus_write - called under kvm->slots_lock */
  1960. int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  1961. int len, const void *val)
  1962. {
  1963. int i;
  1964. struct kvm_io_bus *bus;
  1965. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  1966. for (i = 0; i < bus->dev_count; i++)
  1967. if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
  1968. return 0;
  1969. return -EOPNOTSUPP;
  1970. }
  1971. /* kvm_io_bus_read - called under kvm->slots_lock */
  1972. int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  1973. int len, void *val)
  1974. {
  1975. int i;
  1976. struct kvm_io_bus *bus;
  1977. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  1978. for (i = 0; i < bus->dev_count; i++)
  1979. if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
  1980. return 0;
  1981. return -EOPNOTSUPP;
  1982. }
  1983. /* Caller must hold slots_lock. */
  1984. int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  1985. struct kvm_io_device *dev)
  1986. {
  1987. struct kvm_io_bus *new_bus, *bus;
  1988. bus = kvm->buses[bus_idx];
  1989. if (bus->dev_count > NR_IOBUS_DEVS-1)
  1990. return -ENOSPC;
  1991. new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
  1992. if (!new_bus)
  1993. return -ENOMEM;
  1994. memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
  1995. new_bus->devs[new_bus->dev_count++] = dev;
  1996. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  1997. synchronize_srcu_expedited(&kvm->srcu);
  1998. kfree(bus);
  1999. return 0;
  2000. }
  2001. /* Caller must hold slots_lock. */
  2002. int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  2003. struct kvm_io_device *dev)
  2004. {
  2005. int i, r;
  2006. struct kvm_io_bus *new_bus, *bus;
  2007. new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
  2008. if (!new_bus)
  2009. return -ENOMEM;
  2010. bus = kvm->buses[bus_idx];
  2011. memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
  2012. r = -ENOENT;
  2013. for (i = 0; i < new_bus->dev_count; i++)
  2014. if (new_bus->devs[i] == dev) {
  2015. r = 0;
  2016. new_bus->devs[i] = new_bus->devs[--new_bus->dev_count];
  2017. break;
  2018. }
  2019. if (r) {
  2020. kfree(new_bus);
  2021. return r;
  2022. }
  2023. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  2024. synchronize_srcu_expedited(&kvm->srcu);
  2025. kfree(bus);
  2026. return r;
  2027. }
  2028. static struct notifier_block kvm_cpu_notifier = {
  2029. .notifier_call = kvm_cpu_hotplug,
  2030. };
  2031. static int vm_stat_get(void *_offset, u64 *val)
  2032. {
  2033. unsigned offset = (long)_offset;
  2034. struct kvm *kvm;
  2035. *val = 0;
  2036. raw_spin_lock(&kvm_lock);
  2037. list_for_each_entry(kvm, &vm_list, vm_list)
  2038. *val += *(u32 *)((void *)kvm + offset);
  2039. raw_spin_unlock(&kvm_lock);
  2040. return 0;
  2041. }
  2042. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  2043. static int vcpu_stat_get(void *_offset, u64 *val)
  2044. {
  2045. unsigned offset = (long)_offset;
  2046. struct kvm *kvm;
  2047. struct kvm_vcpu *vcpu;
  2048. int i;
  2049. *val = 0;
  2050. raw_spin_lock(&kvm_lock);
  2051. list_for_each_entry(kvm, &vm_list, vm_list)
  2052. kvm_for_each_vcpu(i, vcpu, kvm)
  2053. *val += *(u32 *)((void *)vcpu + offset);
  2054. raw_spin_unlock(&kvm_lock);
  2055. return 0;
  2056. }
  2057. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  2058. static const struct file_operations *stat_fops[] = {
  2059. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  2060. [KVM_STAT_VM] = &vm_stat_fops,
  2061. };
  2062. static void kvm_init_debug(void)
  2063. {
  2064. struct kvm_stats_debugfs_item *p;
  2065. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  2066. for (p = debugfs_entries; p->name; ++p)
  2067. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  2068. (void *)(long)p->offset,
  2069. stat_fops[p->kind]);
  2070. }
  2071. static void kvm_exit_debug(void)
  2072. {
  2073. struct kvm_stats_debugfs_item *p;
  2074. for (p = debugfs_entries; p->name; ++p)
  2075. debugfs_remove(p->dentry);
  2076. debugfs_remove(kvm_debugfs_dir);
  2077. }
  2078. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2079. {
  2080. if (kvm_usage_count)
  2081. hardware_disable_nolock(NULL);
  2082. return 0;
  2083. }
  2084. static int kvm_resume(struct sys_device *dev)
  2085. {
  2086. if (kvm_usage_count) {
  2087. WARN_ON(raw_spin_is_locked(&kvm_lock));
  2088. hardware_enable_nolock(NULL);
  2089. }
  2090. return 0;
  2091. }
  2092. static struct sysdev_class kvm_sysdev_class = {
  2093. .name = "kvm",
  2094. .suspend = kvm_suspend,
  2095. .resume = kvm_resume,
  2096. };
  2097. static struct sys_device kvm_sysdev = {
  2098. .id = 0,
  2099. .cls = &kvm_sysdev_class,
  2100. };
  2101. struct page *bad_page;
  2102. pfn_t bad_pfn;
  2103. static inline
  2104. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2105. {
  2106. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2107. }
  2108. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2109. {
  2110. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2111. kvm_arch_vcpu_load(vcpu, cpu);
  2112. }
  2113. static void kvm_sched_out(struct preempt_notifier *pn,
  2114. struct task_struct *next)
  2115. {
  2116. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2117. kvm_arch_vcpu_put(vcpu);
  2118. }
  2119. int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
  2120. struct module *module)
  2121. {
  2122. int r;
  2123. int cpu;
  2124. r = kvm_arch_init(opaque);
  2125. if (r)
  2126. goto out_fail;
  2127. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2128. if (bad_page == NULL) {
  2129. r = -ENOMEM;
  2130. goto out;
  2131. }
  2132. bad_pfn = page_to_pfn(bad_page);
  2133. hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2134. if (hwpoison_page == NULL) {
  2135. r = -ENOMEM;
  2136. goto out_free_0;
  2137. }
  2138. hwpoison_pfn = page_to_pfn(hwpoison_page);
  2139. fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2140. if (fault_page == NULL) {
  2141. r = -ENOMEM;
  2142. goto out_free_0;
  2143. }
  2144. fault_pfn = page_to_pfn(fault_page);
  2145. if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
  2146. r = -ENOMEM;
  2147. goto out_free_0;
  2148. }
  2149. r = kvm_arch_hardware_setup();
  2150. if (r < 0)
  2151. goto out_free_0a;
  2152. for_each_online_cpu(cpu) {
  2153. smp_call_function_single(cpu,
  2154. kvm_arch_check_processor_compat,
  2155. &r, 1);
  2156. if (r < 0)
  2157. goto out_free_1;
  2158. }
  2159. r = register_cpu_notifier(&kvm_cpu_notifier);
  2160. if (r)
  2161. goto out_free_2;
  2162. register_reboot_notifier(&kvm_reboot_notifier);
  2163. r = sysdev_class_register(&kvm_sysdev_class);
  2164. if (r)
  2165. goto out_free_3;
  2166. r = sysdev_register(&kvm_sysdev);
  2167. if (r)
  2168. goto out_free_4;
  2169. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2170. if (!vcpu_align)
  2171. vcpu_align = __alignof__(struct kvm_vcpu);
  2172. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
  2173. 0, NULL);
  2174. if (!kvm_vcpu_cache) {
  2175. r = -ENOMEM;
  2176. goto out_free_5;
  2177. }
  2178. r = kvm_async_pf_init();
  2179. if (r)
  2180. goto out_free;
  2181. kvm_chardev_ops.owner = module;
  2182. kvm_vm_fops.owner = module;
  2183. kvm_vcpu_fops.owner = module;
  2184. r = misc_register(&kvm_dev);
  2185. if (r) {
  2186. printk(KERN_ERR "kvm: misc device register failed\n");
  2187. goto out_unreg;
  2188. }
  2189. kvm_preempt_ops.sched_in = kvm_sched_in;
  2190. kvm_preempt_ops.sched_out = kvm_sched_out;
  2191. kvm_init_debug();
  2192. return 0;
  2193. out_unreg:
  2194. kvm_async_pf_deinit();
  2195. out_free:
  2196. kmem_cache_destroy(kvm_vcpu_cache);
  2197. out_free_5:
  2198. sysdev_unregister(&kvm_sysdev);
  2199. out_free_4:
  2200. sysdev_class_unregister(&kvm_sysdev_class);
  2201. out_free_3:
  2202. unregister_reboot_notifier(&kvm_reboot_notifier);
  2203. unregister_cpu_notifier(&kvm_cpu_notifier);
  2204. out_free_2:
  2205. out_free_1:
  2206. kvm_arch_hardware_unsetup();
  2207. out_free_0a:
  2208. free_cpumask_var(cpus_hardware_enabled);
  2209. out_free_0:
  2210. if (fault_page)
  2211. __free_page(fault_page);
  2212. if (hwpoison_page)
  2213. __free_page(hwpoison_page);
  2214. __free_page(bad_page);
  2215. out:
  2216. kvm_arch_exit();
  2217. out_fail:
  2218. return r;
  2219. }
  2220. EXPORT_SYMBOL_GPL(kvm_init);
  2221. void kvm_exit(void)
  2222. {
  2223. kvm_exit_debug();
  2224. misc_deregister(&kvm_dev);
  2225. kmem_cache_destroy(kvm_vcpu_cache);
  2226. kvm_async_pf_deinit();
  2227. sysdev_unregister(&kvm_sysdev);
  2228. sysdev_class_unregister(&kvm_sysdev_class);
  2229. unregister_reboot_notifier(&kvm_reboot_notifier);
  2230. unregister_cpu_notifier(&kvm_cpu_notifier);
  2231. on_each_cpu(hardware_disable_nolock, NULL, 1);
  2232. kvm_arch_hardware_unsetup();
  2233. kvm_arch_exit();
  2234. free_cpumask_var(cpus_hardware_enabled);
  2235. __free_page(hwpoison_page);
  2236. __free_page(bad_page);
  2237. }
  2238. EXPORT_SYMBOL_GPL(kvm_exit);