sched_fair.c 108 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. #include <linux/sched.h>
  24. /*
  25. * Targeted preemption latency for CPU-bound tasks:
  26. * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  27. *
  28. * NOTE: this latency value is not the same as the concept of
  29. * 'timeslice length' - timeslices in CFS are of variable length
  30. * and have no persistent notion like in traditional, time-slice
  31. * based scheduling concepts.
  32. *
  33. * (to see the precise effective timeslice length of your workload,
  34. * run vmstat and monitor the context-switches (cs) field)
  35. */
  36. unsigned int sysctl_sched_latency = 6000000ULL;
  37. unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  38. /*
  39. * The initial- and re-scaling of tunables is configurable
  40. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  41. *
  42. * Options are:
  43. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  44. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  45. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  46. */
  47. enum sched_tunable_scaling sysctl_sched_tunable_scaling
  48. = SCHED_TUNABLESCALING_LOG;
  49. /*
  50. * Minimal preemption granularity for CPU-bound tasks:
  51. * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  52. */
  53. unsigned int sysctl_sched_min_granularity = 750000ULL;
  54. unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  55. /*
  56. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  57. */
  58. static unsigned int sched_nr_latency = 8;
  59. /*
  60. * After fork, child runs first. If set to 0 (default) then
  61. * parent will (try to) run first.
  62. */
  63. unsigned int sysctl_sched_child_runs_first __read_mostly;
  64. /*
  65. * SCHED_OTHER wake-up granularity.
  66. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  67. *
  68. * This option delays the preemption effects of decoupled workloads
  69. * and reduces their over-scheduling. Synchronous workloads will still
  70. * have immediate wakeup/sleep latencies.
  71. */
  72. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  73. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  74. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  75. /*
  76. * The exponential sliding window over which load is averaged for shares
  77. * distribution.
  78. * (default: 10msec)
  79. */
  80. unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
  81. static const struct sched_class fair_sched_class;
  82. /**************************************************************
  83. * CFS operations on generic schedulable entities:
  84. */
  85. #ifdef CONFIG_FAIR_GROUP_SCHED
  86. /* cpu runqueue to which this cfs_rq is attached */
  87. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  88. {
  89. return cfs_rq->rq;
  90. }
  91. /* An entity is a task if it doesn't "own" a runqueue */
  92. #define entity_is_task(se) (!se->my_q)
  93. static inline struct task_struct *task_of(struct sched_entity *se)
  94. {
  95. #ifdef CONFIG_SCHED_DEBUG
  96. WARN_ON_ONCE(!entity_is_task(se));
  97. #endif
  98. return container_of(se, struct task_struct, se);
  99. }
  100. /* Walk up scheduling entities hierarchy */
  101. #define for_each_sched_entity(se) \
  102. for (; se; se = se->parent)
  103. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  104. {
  105. return p->se.cfs_rq;
  106. }
  107. /* runqueue on which this entity is (to be) queued */
  108. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  109. {
  110. return se->cfs_rq;
  111. }
  112. /* runqueue "owned" by this group */
  113. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  114. {
  115. return grp->my_q;
  116. }
  117. /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
  118. * another cpu ('this_cpu')
  119. */
  120. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  121. {
  122. return cfs_rq->tg->cfs_rq[this_cpu];
  123. }
  124. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  125. {
  126. if (!cfs_rq->on_list) {
  127. /*
  128. * Ensure we either appear before our parent (if already
  129. * enqueued) or force our parent to appear after us when it is
  130. * enqueued. The fact that we always enqueue bottom-up
  131. * reduces this to two cases.
  132. */
  133. if (cfs_rq->tg->parent &&
  134. cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
  135. list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
  136. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  137. } else {
  138. list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  139. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  140. }
  141. cfs_rq->on_list = 1;
  142. }
  143. }
  144. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  145. {
  146. if (cfs_rq->on_list) {
  147. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  148. cfs_rq->on_list = 0;
  149. }
  150. }
  151. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  152. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  153. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  154. /* Do the two (enqueued) entities belong to the same group ? */
  155. static inline int
  156. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  157. {
  158. if (se->cfs_rq == pse->cfs_rq)
  159. return 1;
  160. return 0;
  161. }
  162. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  163. {
  164. return se->parent;
  165. }
  166. /* return depth at which a sched entity is present in the hierarchy */
  167. static inline int depth_se(struct sched_entity *se)
  168. {
  169. int depth = 0;
  170. for_each_sched_entity(se)
  171. depth++;
  172. return depth;
  173. }
  174. static void
  175. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  176. {
  177. int se_depth, pse_depth;
  178. /*
  179. * preemption test can be made between sibling entities who are in the
  180. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  181. * both tasks until we find their ancestors who are siblings of common
  182. * parent.
  183. */
  184. /* First walk up until both entities are at same depth */
  185. se_depth = depth_se(*se);
  186. pse_depth = depth_se(*pse);
  187. while (se_depth > pse_depth) {
  188. se_depth--;
  189. *se = parent_entity(*se);
  190. }
  191. while (pse_depth > se_depth) {
  192. pse_depth--;
  193. *pse = parent_entity(*pse);
  194. }
  195. while (!is_same_group(*se, *pse)) {
  196. *se = parent_entity(*se);
  197. *pse = parent_entity(*pse);
  198. }
  199. }
  200. #else /* !CONFIG_FAIR_GROUP_SCHED */
  201. static inline struct task_struct *task_of(struct sched_entity *se)
  202. {
  203. return container_of(se, struct task_struct, se);
  204. }
  205. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  206. {
  207. return container_of(cfs_rq, struct rq, cfs);
  208. }
  209. #define entity_is_task(se) 1
  210. #define for_each_sched_entity(se) \
  211. for (; se; se = NULL)
  212. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  213. {
  214. return &task_rq(p)->cfs;
  215. }
  216. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  217. {
  218. struct task_struct *p = task_of(se);
  219. struct rq *rq = task_rq(p);
  220. return &rq->cfs;
  221. }
  222. /* runqueue "owned" by this group */
  223. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  224. {
  225. return NULL;
  226. }
  227. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  228. {
  229. return &cpu_rq(this_cpu)->cfs;
  230. }
  231. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  232. {
  233. }
  234. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  235. {
  236. }
  237. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  238. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  239. static inline int
  240. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  241. {
  242. return 1;
  243. }
  244. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  245. {
  246. return NULL;
  247. }
  248. static inline void
  249. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  250. {
  251. }
  252. #endif /* CONFIG_FAIR_GROUP_SCHED */
  253. /**************************************************************
  254. * Scheduling class tree data structure manipulation methods:
  255. */
  256. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  257. {
  258. s64 delta = (s64)(vruntime - min_vruntime);
  259. if (delta > 0)
  260. min_vruntime = vruntime;
  261. return min_vruntime;
  262. }
  263. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  264. {
  265. s64 delta = (s64)(vruntime - min_vruntime);
  266. if (delta < 0)
  267. min_vruntime = vruntime;
  268. return min_vruntime;
  269. }
  270. static inline int entity_before(struct sched_entity *a,
  271. struct sched_entity *b)
  272. {
  273. return (s64)(a->vruntime - b->vruntime) < 0;
  274. }
  275. static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
  276. {
  277. return se->vruntime - cfs_rq->min_vruntime;
  278. }
  279. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  280. {
  281. u64 vruntime = cfs_rq->min_vruntime;
  282. if (cfs_rq->curr)
  283. vruntime = cfs_rq->curr->vruntime;
  284. if (cfs_rq->rb_leftmost) {
  285. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  286. struct sched_entity,
  287. run_node);
  288. if (!cfs_rq->curr)
  289. vruntime = se->vruntime;
  290. else
  291. vruntime = min_vruntime(vruntime, se->vruntime);
  292. }
  293. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  294. }
  295. /*
  296. * Enqueue an entity into the rb-tree:
  297. */
  298. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  299. {
  300. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  301. struct rb_node *parent = NULL;
  302. struct sched_entity *entry;
  303. s64 key = entity_key(cfs_rq, se);
  304. int leftmost = 1;
  305. /*
  306. * Find the right place in the rbtree:
  307. */
  308. while (*link) {
  309. parent = *link;
  310. entry = rb_entry(parent, struct sched_entity, run_node);
  311. /*
  312. * We dont care about collisions. Nodes with
  313. * the same key stay together.
  314. */
  315. if (key < entity_key(cfs_rq, entry)) {
  316. link = &parent->rb_left;
  317. } else {
  318. link = &parent->rb_right;
  319. leftmost = 0;
  320. }
  321. }
  322. /*
  323. * Maintain a cache of leftmost tree entries (it is frequently
  324. * used):
  325. */
  326. if (leftmost)
  327. cfs_rq->rb_leftmost = &se->run_node;
  328. rb_link_node(&se->run_node, parent, link);
  329. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  330. }
  331. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  332. {
  333. if (cfs_rq->rb_leftmost == &se->run_node) {
  334. struct rb_node *next_node;
  335. next_node = rb_next(&se->run_node);
  336. cfs_rq->rb_leftmost = next_node;
  337. }
  338. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  339. }
  340. static struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
  341. {
  342. struct rb_node *left = cfs_rq->rb_leftmost;
  343. if (!left)
  344. return NULL;
  345. return rb_entry(left, struct sched_entity, run_node);
  346. }
  347. static struct sched_entity *__pick_next_entity(struct sched_entity *se)
  348. {
  349. struct rb_node *next = rb_next(&se->run_node);
  350. if (!next)
  351. return NULL;
  352. return rb_entry(next, struct sched_entity, run_node);
  353. }
  354. #ifdef CONFIG_SCHED_DEBUG
  355. static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  356. {
  357. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  358. if (!last)
  359. return NULL;
  360. return rb_entry(last, struct sched_entity, run_node);
  361. }
  362. /**************************************************************
  363. * Scheduling class statistics methods:
  364. */
  365. int sched_proc_update_handler(struct ctl_table *table, int write,
  366. void __user *buffer, size_t *lenp,
  367. loff_t *ppos)
  368. {
  369. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  370. int factor = get_update_sysctl_factor();
  371. if (ret || !write)
  372. return ret;
  373. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  374. sysctl_sched_min_granularity);
  375. #define WRT_SYSCTL(name) \
  376. (normalized_sysctl_##name = sysctl_##name / (factor))
  377. WRT_SYSCTL(sched_min_granularity);
  378. WRT_SYSCTL(sched_latency);
  379. WRT_SYSCTL(sched_wakeup_granularity);
  380. #undef WRT_SYSCTL
  381. return 0;
  382. }
  383. #endif
  384. /*
  385. * delta /= w
  386. */
  387. static inline unsigned long
  388. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  389. {
  390. if (unlikely(se->load.weight != NICE_0_LOAD))
  391. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  392. return delta;
  393. }
  394. /*
  395. * The idea is to set a period in which each task runs once.
  396. *
  397. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  398. * this period because otherwise the slices get too small.
  399. *
  400. * p = (nr <= nl) ? l : l*nr/nl
  401. */
  402. static u64 __sched_period(unsigned long nr_running)
  403. {
  404. u64 period = sysctl_sched_latency;
  405. unsigned long nr_latency = sched_nr_latency;
  406. if (unlikely(nr_running > nr_latency)) {
  407. period = sysctl_sched_min_granularity;
  408. period *= nr_running;
  409. }
  410. return period;
  411. }
  412. /*
  413. * We calculate the wall-time slice from the period by taking a part
  414. * proportional to the weight.
  415. *
  416. * s = p*P[w/rw]
  417. */
  418. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  419. {
  420. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  421. for_each_sched_entity(se) {
  422. struct load_weight *load;
  423. struct load_weight lw;
  424. cfs_rq = cfs_rq_of(se);
  425. load = &cfs_rq->load;
  426. if (unlikely(!se->on_rq)) {
  427. lw = cfs_rq->load;
  428. update_load_add(&lw, se->load.weight);
  429. load = &lw;
  430. }
  431. slice = calc_delta_mine(slice, se->load.weight, load);
  432. }
  433. return slice;
  434. }
  435. /*
  436. * We calculate the vruntime slice of a to be inserted task
  437. *
  438. * vs = s/w
  439. */
  440. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  441. {
  442. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  443. }
  444. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
  445. static void update_cfs_shares(struct cfs_rq *cfs_rq);
  446. /*
  447. * Update the current task's runtime statistics. Skip current tasks that
  448. * are not in our scheduling class.
  449. */
  450. static inline void
  451. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  452. unsigned long delta_exec)
  453. {
  454. unsigned long delta_exec_weighted;
  455. schedstat_set(curr->statistics.exec_max,
  456. max((u64)delta_exec, curr->statistics.exec_max));
  457. curr->sum_exec_runtime += delta_exec;
  458. schedstat_add(cfs_rq, exec_clock, delta_exec);
  459. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  460. curr->vruntime += delta_exec_weighted;
  461. update_min_vruntime(cfs_rq);
  462. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  463. cfs_rq->load_unacc_exec_time += delta_exec;
  464. #endif
  465. }
  466. static void update_curr(struct cfs_rq *cfs_rq)
  467. {
  468. struct sched_entity *curr = cfs_rq->curr;
  469. u64 now = rq_of(cfs_rq)->clock_task;
  470. unsigned long delta_exec;
  471. if (unlikely(!curr))
  472. return;
  473. /*
  474. * Get the amount of time the current task was running
  475. * since the last time we changed load (this cannot
  476. * overflow on 32 bits):
  477. */
  478. delta_exec = (unsigned long)(now - curr->exec_start);
  479. if (!delta_exec)
  480. return;
  481. __update_curr(cfs_rq, curr, delta_exec);
  482. curr->exec_start = now;
  483. if (entity_is_task(curr)) {
  484. struct task_struct *curtask = task_of(curr);
  485. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  486. cpuacct_charge(curtask, delta_exec);
  487. account_group_exec_runtime(curtask, delta_exec);
  488. }
  489. }
  490. static inline void
  491. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  492. {
  493. schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
  494. }
  495. /*
  496. * Task is being enqueued - update stats:
  497. */
  498. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  499. {
  500. /*
  501. * Are we enqueueing a waiting task? (for current tasks
  502. * a dequeue/enqueue event is a NOP)
  503. */
  504. if (se != cfs_rq->curr)
  505. update_stats_wait_start(cfs_rq, se);
  506. }
  507. static void
  508. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  509. {
  510. schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
  511. rq_of(cfs_rq)->clock - se->statistics.wait_start));
  512. schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
  513. schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
  514. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  515. #ifdef CONFIG_SCHEDSTATS
  516. if (entity_is_task(se)) {
  517. trace_sched_stat_wait(task_of(se),
  518. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  519. }
  520. #endif
  521. schedstat_set(se->statistics.wait_start, 0);
  522. }
  523. static inline void
  524. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  525. {
  526. /*
  527. * Mark the end of the wait period if dequeueing a
  528. * waiting task:
  529. */
  530. if (se != cfs_rq->curr)
  531. update_stats_wait_end(cfs_rq, se);
  532. }
  533. /*
  534. * We are picking a new current task - update its stats:
  535. */
  536. static inline void
  537. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  538. {
  539. /*
  540. * We are starting a new run period:
  541. */
  542. se->exec_start = rq_of(cfs_rq)->clock_task;
  543. }
  544. /**************************************************
  545. * Scheduling class queueing methods:
  546. */
  547. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  548. static void
  549. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  550. {
  551. cfs_rq->task_weight += weight;
  552. }
  553. #else
  554. static inline void
  555. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  556. {
  557. }
  558. #endif
  559. static void
  560. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  561. {
  562. update_load_add(&cfs_rq->load, se->load.weight);
  563. if (!parent_entity(se))
  564. inc_cpu_load(rq_of(cfs_rq), se->load.weight);
  565. if (entity_is_task(se)) {
  566. add_cfs_task_weight(cfs_rq, se->load.weight);
  567. list_add(&se->group_node, &cfs_rq->tasks);
  568. }
  569. cfs_rq->nr_running++;
  570. }
  571. static void
  572. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  573. {
  574. update_load_sub(&cfs_rq->load, se->load.weight);
  575. if (!parent_entity(se))
  576. dec_cpu_load(rq_of(cfs_rq), se->load.weight);
  577. if (entity_is_task(se)) {
  578. add_cfs_task_weight(cfs_rq, -se->load.weight);
  579. list_del_init(&se->group_node);
  580. }
  581. cfs_rq->nr_running--;
  582. }
  583. #ifdef CONFIG_FAIR_GROUP_SCHED
  584. # ifdef CONFIG_SMP
  585. static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
  586. int global_update)
  587. {
  588. struct task_group *tg = cfs_rq->tg;
  589. long load_avg;
  590. load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
  591. load_avg -= cfs_rq->load_contribution;
  592. if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
  593. atomic_add(load_avg, &tg->load_weight);
  594. cfs_rq->load_contribution += load_avg;
  595. }
  596. }
  597. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  598. {
  599. u64 period = sysctl_sched_shares_window;
  600. u64 now, delta;
  601. unsigned long load = cfs_rq->load.weight;
  602. if (cfs_rq->tg == &root_task_group)
  603. return;
  604. now = rq_of(cfs_rq)->clock_task;
  605. delta = now - cfs_rq->load_stamp;
  606. /* truncate load history at 4 idle periods */
  607. if (cfs_rq->load_stamp > cfs_rq->load_last &&
  608. now - cfs_rq->load_last > 4 * period) {
  609. cfs_rq->load_period = 0;
  610. cfs_rq->load_avg = 0;
  611. delta = period - 1;
  612. }
  613. cfs_rq->load_stamp = now;
  614. cfs_rq->load_unacc_exec_time = 0;
  615. cfs_rq->load_period += delta;
  616. if (load) {
  617. cfs_rq->load_last = now;
  618. cfs_rq->load_avg += delta * load;
  619. }
  620. /* consider updating load contribution on each fold or truncate */
  621. if (global_update || cfs_rq->load_period > period
  622. || !cfs_rq->load_period)
  623. update_cfs_rq_load_contribution(cfs_rq, global_update);
  624. while (cfs_rq->load_period > period) {
  625. /*
  626. * Inline assembly required to prevent the compiler
  627. * optimising this loop into a divmod call.
  628. * See __iter_div_u64_rem() for another example of this.
  629. */
  630. asm("" : "+rm" (cfs_rq->load_period));
  631. cfs_rq->load_period /= 2;
  632. cfs_rq->load_avg /= 2;
  633. }
  634. if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
  635. list_del_leaf_cfs_rq(cfs_rq);
  636. }
  637. static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  638. {
  639. long load_weight, load, shares;
  640. load = cfs_rq->load.weight;
  641. load_weight = atomic_read(&tg->load_weight);
  642. load_weight += load;
  643. load_weight -= cfs_rq->load_contribution;
  644. shares = (tg->shares * load);
  645. if (load_weight)
  646. shares /= load_weight;
  647. if (shares < MIN_SHARES)
  648. shares = MIN_SHARES;
  649. if (shares > tg->shares)
  650. shares = tg->shares;
  651. return shares;
  652. }
  653. static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  654. {
  655. if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
  656. update_cfs_load(cfs_rq, 0);
  657. update_cfs_shares(cfs_rq);
  658. }
  659. }
  660. # else /* CONFIG_SMP */
  661. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  662. {
  663. }
  664. static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  665. {
  666. return tg->shares;
  667. }
  668. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  669. {
  670. }
  671. # endif /* CONFIG_SMP */
  672. static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
  673. unsigned long weight)
  674. {
  675. if (se->on_rq) {
  676. /* commit outstanding execution time */
  677. if (cfs_rq->curr == se)
  678. update_curr(cfs_rq);
  679. account_entity_dequeue(cfs_rq, se);
  680. }
  681. update_load_set(&se->load, weight);
  682. if (se->on_rq)
  683. account_entity_enqueue(cfs_rq, se);
  684. }
  685. static void update_cfs_shares(struct cfs_rq *cfs_rq)
  686. {
  687. struct task_group *tg;
  688. struct sched_entity *se;
  689. long shares;
  690. tg = cfs_rq->tg;
  691. se = tg->se[cpu_of(rq_of(cfs_rq))];
  692. if (!se)
  693. return;
  694. #ifndef CONFIG_SMP
  695. if (likely(se->load.weight == tg->shares))
  696. return;
  697. #endif
  698. shares = calc_cfs_shares(cfs_rq, tg);
  699. reweight_entity(cfs_rq_of(se), se, shares);
  700. }
  701. #else /* CONFIG_FAIR_GROUP_SCHED */
  702. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  703. {
  704. }
  705. static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
  706. {
  707. }
  708. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  709. {
  710. }
  711. #endif /* CONFIG_FAIR_GROUP_SCHED */
  712. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  713. {
  714. #ifdef CONFIG_SCHEDSTATS
  715. struct task_struct *tsk = NULL;
  716. if (entity_is_task(se))
  717. tsk = task_of(se);
  718. if (se->statistics.sleep_start) {
  719. u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
  720. if ((s64)delta < 0)
  721. delta = 0;
  722. if (unlikely(delta > se->statistics.sleep_max))
  723. se->statistics.sleep_max = delta;
  724. se->statistics.sleep_start = 0;
  725. se->statistics.sum_sleep_runtime += delta;
  726. if (tsk) {
  727. account_scheduler_latency(tsk, delta >> 10, 1);
  728. trace_sched_stat_sleep(tsk, delta);
  729. }
  730. }
  731. if (se->statistics.block_start) {
  732. u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
  733. if ((s64)delta < 0)
  734. delta = 0;
  735. if (unlikely(delta > se->statistics.block_max))
  736. se->statistics.block_max = delta;
  737. se->statistics.block_start = 0;
  738. se->statistics.sum_sleep_runtime += delta;
  739. if (tsk) {
  740. if (tsk->in_iowait) {
  741. se->statistics.iowait_sum += delta;
  742. se->statistics.iowait_count++;
  743. trace_sched_stat_iowait(tsk, delta);
  744. }
  745. /*
  746. * Blocking time is in units of nanosecs, so shift by
  747. * 20 to get a milliseconds-range estimation of the
  748. * amount of time that the task spent sleeping:
  749. */
  750. if (unlikely(prof_on == SLEEP_PROFILING)) {
  751. profile_hits(SLEEP_PROFILING,
  752. (void *)get_wchan(tsk),
  753. delta >> 20);
  754. }
  755. account_scheduler_latency(tsk, delta >> 10, 0);
  756. }
  757. }
  758. #endif
  759. }
  760. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  761. {
  762. #ifdef CONFIG_SCHED_DEBUG
  763. s64 d = se->vruntime - cfs_rq->min_vruntime;
  764. if (d < 0)
  765. d = -d;
  766. if (d > 3*sysctl_sched_latency)
  767. schedstat_inc(cfs_rq, nr_spread_over);
  768. #endif
  769. }
  770. static void
  771. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  772. {
  773. u64 vruntime = cfs_rq->min_vruntime;
  774. /*
  775. * The 'current' period is already promised to the current tasks,
  776. * however the extra weight of the new task will slow them down a
  777. * little, place the new task so that it fits in the slot that
  778. * stays open at the end.
  779. */
  780. if (initial && sched_feat(START_DEBIT))
  781. vruntime += sched_vslice(cfs_rq, se);
  782. /* sleeps up to a single latency don't count. */
  783. if (!initial) {
  784. unsigned long thresh = sysctl_sched_latency;
  785. /*
  786. * Halve their sleep time's effect, to allow
  787. * for a gentler effect of sleepers:
  788. */
  789. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  790. thresh >>= 1;
  791. vruntime -= thresh;
  792. }
  793. /* ensure we never gain time by being placed backwards. */
  794. vruntime = max_vruntime(se->vruntime, vruntime);
  795. se->vruntime = vruntime;
  796. }
  797. static void
  798. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  799. {
  800. /*
  801. * Update the normalized vruntime before updating min_vruntime
  802. * through callig update_curr().
  803. */
  804. if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
  805. se->vruntime += cfs_rq->min_vruntime;
  806. /*
  807. * Update run-time statistics of the 'current'.
  808. */
  809. update_curr(cfs_rq);
  810. update_cfs_load(cfs_rq, 0);
  811. account_entity_enqueue(cfs_rq, se);
  812. update_cfs_shares(cfs_rq);
  813. if (flags & ENQUEUE_WAKEUP) {
  814. place_entity(cfs_rq, se, 0);
  815. enqueue_sleeper(cfs_rq, se);
  816. }
  817. update_stats_enqueue(cfs_rq, se);
  818. check_spread(cfs_rq, se);
  819. if (se != cfs_rq->curr)
  820. __enqueue_entity(cfs_rq, se);
  821. se->on_rq = 1;
  822. if (cfs_rq->nr_running == 1)
  823. list_add_leaf_cfs_rq(cfs_rq);
  824. }
  825. static void __clear_buddies_last(struct sched_entity *se)
  826. {
  827. for_each_sched_entity(se) {
  828. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  829. if (cfs_rq->last == se)
  830. cfs_rq->last = NULL;
  831. else
  832. break;
  833. }
  834. }
  835. static void __clear_buddies_next(struct sched_entity *se)
  836. {
  837. for_each_sched_entity(se) {
  838. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  839. if (cfs_rq->next == se)
  840. cfs_rq->next = NULL;
  841. else
  842. break;
  843. }
  844. }
  845. static void __clear_buddies_skip(struct sched_entity *se)
  846. {
  847. for_each_sched_entity(se) {
  848. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  849. if (cfs_rq->skip == se)
  850. cfs_rq->skip = NULL;
  851. else
  852. break;
  853. }
  854. }
  855. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  856. {
  857. if (cfs_rq->last == se)
  858. __clear_buddies_last(se);
  859. if (cfs_rq->next == se)
  860. __clear_buddies_next(se);
  861. if (cfs_rq->skip == se)
  862. __clear_buddies_skip(se);
  863. }
  864. static void
  865. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  866. {
  867. /*
  868. * Update run-time statistics of the 'current'.
  869. */
  870. update_curr(cfs_rq);
  871. update_stats_dequeue(cfs_rq, se);
  872. if (flags & DEQUEUE_SLEEP) {
  873. #ifdef CONFIG_SCHEDSTATS
  874. if (entity_is_task(se)) {
  875. struct task_struct *tsk = task_of(se);
  876. if (tsk->state & TASK_INTERRUPTIBLE)
  877. se->statistics.sleep_start = rq_of(cfs_rq)->clock;
  878. if (tsk->state & TASK_UNINTERRUPTIBLE)
  879. se->statistics.block_start = rq_of(cfs_rq)->clock;
  880. }
  881. #endif
  882. }
  883. clear_buddies(cfs_rq, se);
  884. if (se != cfs_rq->curr)
  885. __dequeue_entity(cfs_rq, se);
  886. se->on_rq = 0;
  887. update_cfs_load(cfs_rq, 0);
  888. account_entity_dequeue(cfs_rq, se);
  889. update_min_vruntime(cfs_rq);
  890. update_cfs_shares(cfs_rq);
  891. /*
  892. * Normalize the entity after updating the min_vruntime because the
  893. * update can refer to the ->curr item and we need to reflect this
  894. * movement in our normalized position.
  895. */
  896. if (!(flags & DEQUEUE_SLEEP))
  897. se->vruntime -= cfs_rq->min_vruntime;
  898. }
  899. /*
  900. * Preempt the current task with a newly woken task if needed:
  901. */
  902. static void
  903. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  904. {
  905. unsigned long ideal_runtime, delta_exec;
  906. ideal_runtime = sched_slice(cfs_rq, curr);
  907. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  908. if (delta_exec > ideal_runtime) {
  909. resched_task(rq_of(cfs_rq)->curr);
  910. /*
  911. * The current task ran long enough, ensure it doesn't get
  912. * re-elected due to buddy favours.
  913. */
  914. clear_buddies(cfs_rq, curr);
  915. return;
  916. }
  917. /*
  918. * Ensure that a task that missed wakeup preemption by a
  919. * narrow margin doesn't have to wait for a full slice.
  920. * This also mitigates buddy induced latencies under load.
  921. */
  922. if (!sched_feat(WAKEUP_PREEMPT))
  923. return;
  924. if (delta_exec < sysctl_sched_min_granularity)
  925. return;
  926. if (cfs_rq->nr_running > 1) {
  927. struct sched_entity *se = __pick_first_entity(cfs_rq);
  928. s64 delta = curr->vruntime - se->vruntime;
  929. if (delta < 0)
  930. return;
  931. if (delta > ideal_runtime)
  932. resched_task(rq_of(cfs_rq)->curr);
  933. }
  934. }
  935. static void
  936. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  937. {
  938. /* 'current' is not kept within the tree. */
  939. if (se->on_rq) {
  940. /*
  941. * Any task has to be enqueued before it get to execute on
  942. * a CPU. So account for the time it spent waiting on the
  943. * runqueue.
  944. */
  945. update_stats_wait_end(cfs_rq, se);
  946. __dequeue_entity(cfs_rq, se);
  947. }
  948. update_stats_curr_start(cfs_rq, se);
  949. cfs_rq->curr = se;
  950. #ifdef CONFIG_SCHEDSTATS
  951. /*
  952. * Track our maximum slice length, if the CPU's load is at
  953. * least twice that of our own weight (i.e. dont track it
  954. * when there are only lesser-weight tasks around):
  955. */
  956. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  957. se->statistics.slice_max = max(se->statistics.slice_max,
  958. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  959. }
  960. #endif
  961. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  962. }
  963. static int
  964. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  965. /*
  966. * Pick the next process, keeping these things in mind, in this order:
  967. * 1) keep things fair between processes/task groups
  968. * 2) pick the "next" process, since someone really wants that to run
  969. * 3) pick the "last" process, for cache locality
  970. * 4) do not run the "skip" process, if something else is available
  971. */
  972. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  973. {
  974. struct sched_entity *se = __pick_first_entity(cfs_rq);
  975. struct sched_entity *left = se;
  976. /*
  977. * Avoid running the skip buddy, if running something else can
  978. * be done without getting too unfair.
  979. */
  980. if (cfs_rq->skip == se) {
  981. struct sched_entity *second = __pick_next_entity(se);
  982. if (second && wakeup_preempt_entity(second, left) < 1)
  983. se = second;
  984. }
  985. /*
  986. * Prefer last buddy, try to return the CPU to a preempted task.
  987. */
  988. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  989. se = cfs_rq->last;
  990. /*
  991. * Someone really wants this to run. If it's not unfair, run it.
  992. */
  993. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  994. se = cfs_rq->next;
  995. clear_buddies(cfs_rq, se);
  996. return se;
  997. }
  998. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  999. {
  1000. /*
  1001. * If still on the runqueue then deactivate_task()
  1002. * was not called and update_curr() has to be done:
  1003. */
  1004. if (prev->on_rq)
  1005. update_curr(cfs_rq);
  1006. check_spread(cfs_rq, prev);
  1007. if (prev->on_rq) {
  1008. update_stats_wait_start(cfs_rq, prev);
  1009. /* Put 'current' back into the tree. */
  1010. __enqueue_entity(cfs_rq, prev);
  1011. }
  1012. cfs_rq->curr = NULL;
  1013. }
  1014. static void
  1015. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  1016. {
  1017. /*
  1018. * Update run-time statistics of the 'current'.
  1019. */
  1020. update_curr(cfs_rq);
  1021. /*
  1022. * Update share accounting for long-running entities.
  1023. */
  1024. update_entity_shares_tick(cfs_rq);
  1025. #ifdef CONFIG_SCHED_HRTICK
  1026. /*
  1027. * queued ticks are scheduled to match the slice, so don't bother
  1028. * validating it and just reschedule.
  1029. */
  1030. if (queued) {
  1031. resched_task(rq_of(cfs_rq)->curr);
  1032. return;
  1033. }
  1034. /*
  1035. * don't let the period tick interfere with the hrtick preemption
  1036. */
  1037. if (!sched_feat(DOUBLE_TICK) &&
  1038. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  1039. return;
  1040. #endif
  1041. if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
  1042. check_preempt_tick(cfs_rq, curr);
  1043. }
  1044. /**************************************************
  1045. * CFS operations on tasks:
  1046. */
  1047. #ifdef CONFIG_SCHED_HRTICK
  1048. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1049. {
  1050. struct sched_entity *se = &p->se;
  1051. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1052. WARN_ON(task_rq(p) != rq);
  1053. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  1054. u64 slice = sched_slice(cfs_rq, se);
  1055. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  1056. s64 delta = slice - ran;
  1057. if (delta < 0) {
  1058. if (rq->curr == p)
  1059. resched_task(p);
  1060. return;
  1061. }
  1062. /*
  1063. * Don't schedule slices shorter than 10000ns, that just
  1064. * doesn't make sense. Rely on vruntime for fairness.
  1065. */
  1066. if (rq->curr != p)
  1067. delta = max_t(s64, 10000LL, delta);
  1068. hrtick_start(rq, delta);
  1069. }
  1070. }
  1071. /*
  1072. * called from enqueue/dequeue and updates the hrtick when the
  1073. * current task is from our class and nr_running is low enough
  1074. * to matter.
  1075. */
  1076. static void hrtick_update(struct rq *rq)
  1077. {
  1078. struct task_struct *curr = rq->curr;
  1079. if (curr->sched_class != &fair_sched_class)
  1080. return;
  1081. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  1082. hrtick_start_fair(rq, curr);
  1083. }
  1084. #else /* !CONFIG_SCHED_HRTICK */
  1085. static inline void
  1086. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1087. {
  1088. }
  1089. static inline void hrtick_update(struct rq *rq)
  1090. {
  1091. }
  1092. #endif
  1093. /*
  1094. * The enqueue_task method is called before nr_running is
  1095. * increased. Here we update the fair scheduling stats and
  1096. * then put the task into the rbtree:
  1097. */
  1098. static void
  1099. enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1100. {
  1101. struct cfs_rq *cfs_rq;
  1102. struct sched_entity *se = &p->se;
  1103. for_each_sched_entity(se) {
  1104. if (se->on_rq)
  1105. break;
  1106. cfs_rq = cfs_rq_of(se);
  1107. enqueue_entity(cfs_rq, se, flags);
  1108. flags = ENQUEUE_WAKEUP;
  1109. }
  1110. for_each_sched_entity(se) {
  1111. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1112. update_cfs_load(cfs_rq, 0);
  1113. update_cfs_shares(cfs_rq);
  1114. }
  1115. hrtick_update(rq);
  1116. }
  1117. /*
  1118. * The dequeue_task method is called before nr_running is
  1119. * decreased. We remove the task from the rbtree and
  1120. * update the fair scheduling stats:
  1121. */
  1122. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1123. {
  1124. struct cfs_rq *cfs_rq;
  1125. struct sched_entity *se = &p->se;
  1126. for_each_sched_entity(se) {
  1127. cfs_rq = cfs_rq_of(se);
  1128. dequeue_entity(cfs_rq, se, flags);
  1129. /* Don't dequeue parent if it has other entities besides us */
  1130. if (cfs_rq->load.weight)
  1131. break;
  1132. flags |= DEQUEUE_SLEEP;
  1133. }
  1134. for_each_sched_entity(se) {
  1135. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1136. update_cfs_load(cfs_rq, 0);
  1137. update_cfs_shares(cfs_rq);
  1138. }
  1139. hrtick_update(rq);
  1140. }
  1141. #ifdef CONFIG_SMP
  1142. static void task_waking_fair(struct rq *rq, struct task_struct *p)
  1143. {
  1144. struct sched_entity *se = &p->se;
  1145. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1146. se->vruntime -= cfs_rq->min_vruntime;
  1147. }
  1148. #ifdef CONFIG_FAIR_GROUP_SCHED
  1149. /*
  1150. * effective_load() calculates the load change as seen from the root_task_group
  1151. *
  1152. * Adding load to a group doesn't make a group heavier, but can cause movement
  1153. * of group shares between cpus. Assuming the shares were perfectly aligned one
  1154. * can calculate the shift in shares.
  1155. */
  1156. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  1157. {
  1158. struct sched_entity *se = tg->se[cpu];
  1159. if (!tg->parent)
  1160. return wl;
  1161. for_each_sched_entity(se) {
  1162. long lw, w;
  1163. tg = se->my_q->tg;
  1164. w = se->my_q->load.weight;
  1165. /* use this cpu's instantaneous contribution */
  1166. lw = atomic_read(&tg->load_weight);
  1167. lw -= se->my_q->load_contribution;
  1168. lw += w + wg;
  1169. wl += w;
  1170. if (lw > 0 && wl < lw)
  1171. wl = (wl * tg->shares) / lw;
  1172. else
  1173. wl = tg->shares;
  1174. /* zero point is MIN_SHARES */
  1175. if (wl < MIN_SHARES)
  1176. wl = MIN_SHARES;
  1177. wl -= se->load.weight;
  1178. wg = 0;
  1179. }
  1180. return wl;
  1181. }
  1182. #else
  1183. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  1184. unsigned long wl, unsigned long wg)
  1185. {
  1186. return wl;
  1187. }
  1188. #endif
  1189. static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
  1190. {
  1191. s64 this_load, load;
  1192. int idx, this_cpu, prev_cpu;
  1193. unsigned long tl_per_task;
  1194. struct task_group *tg;
  1195. unsigned long weight;
  1196. int balanced;
  1197. idx = sd->wake_idx;
  1198. this_cpu = smp_processor_id();
  1199. prev_cpu = task_cpu(p);
  1200. load = source_load(prev_cpu, idx);
  1201. this_load = target_load(this_cpu, idx);
  1202. /*
  1203. * If sync wakeup then subtract the (maximum possible)
  1204. * effect of the currently running task from the load
  1205. * of the current CPU:
  1206. */
  1207. rcu_read_lock();
  1208. if (sync) {
  1209. tg = task_group(current);
  1210. weight = current->se.load.weight;
  1211. this_load += effective_load(tg, this_cpu, -weight, -weight);
  1212. load += effective_load(tg, prev_cpu, 0, -weight);
  1213. }
  1214. tg = task_group(p);
  1215. weight = p->se.load.weight;
  1216. /*
  1217. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  1218. * due to the sync cause above having dropped this_load to 0, we'll
  1219. * always have an imbalance, but there's really nothing you can do
  1220. * about that, so that's good too.
  1221. *
  1222. * Otherwise check if either cpus are near enough in load to allow this
  1223. * task to be woken on this_cpu.
  1224. */
  1225. if (this_load > 0) {
  1226. s64 this_eff_load, prev_eff_load;
  1227. this_eff_load = 100;
  1228. this_eff_load *= power_of(prev_cpu);
  1229. this_eff_load *= this_load +
  1230. effective_load(tg, this_cpu, weight, weight);
  1231. prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
  1232. prev_eff_load *= power_of(this_cpu);
  1233. prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
  1234. balanced = this_eff_load <= prev_eff_load;
  1235. } else
  1236. balanced = true;
  1237. rcu_read_unlock();
  1238. /*
  1239. * If the currently running task will sleep within
  1240. * a reasonable amount of time then attract this newly
  1241. * woken task:
  1242. */
  1243. if (sync && balanced)
  1244. return 1;
  1245. schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
  1246. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1247. if (balanced ||
  1248. (this_load <= load &&
  1249. this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
  1250. /*
  1251. * This domain has SD_WAKE_AFFINE and
  1252. * p is cache cold in this domain, and
  1253. * there is no bad imbalance.
  1254. */
  1255. schedstat_inc(sd, ttwu_move_affine);
  1256. schedstat_inc(p, se.statistics.nr_wakeups_affine);
  1257. return 1;
  1258. }
  1259. return 0;
  1260. }
  1261. /*
  1262. * find_idlest_group finds and returns the least busy CPU group within the
  1263. * domain.
  1264. */
  1265. static struct sched_group *
  1266. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  1267. int this_cpu, int load_idx)
  1268. {
  1269. struct sched_group *idlest = NULL, *group = sd->groups;
  1270. unsigned long min_load = ULONG_MAX, this_load = 0;
  1271. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1272. do {
  1273. unsigned long load, avg_load;
  1274. int local_group;
  1275. int i;
  1276. /* Skip over this group if it has no CPUs allowed */
  1277. if (!cpumask_intersects(sched_group_cpus(group),
  1278. &p->cpus_allowed))
  1279. continue;
  1280. local_group = cpumask_test_cpu(this_cpu,
  1281. sched_group_cpus(group));
  1282. /* Tally up the load of all CPUs in the group */
  1283. avg_load = 0;
  1284. for_each_cpu(i, sched_group_cpus(group)) {
  1285. /* Bias balancing toward cpus of our domain */
  1286. if (local_group)
  1287. load = source_load(i, load_idx);
  1288. else
  1289. load = target_load(i, load_idx);
  1290. avg_load += load;
  1291. }
  1292. /* Adjust by relative CPU power of the group */
  1293. avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
  1294. if (local_group) {
  1295. this_load = avg_load;
  1296. } else if (avg_load < min_load) {
  1297. min_load = avg_load;
  1298. idlest = group;
  1299. }
  1300. } while (group = group->next, group != sd->groups);
  1301. if (!idlest || 100*this_load < imbalance*min_load)
  1302. return NULL;
  1303. return idlest;
  1304. }
  1305. /*
  1306. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1307. */
  1308. static int
  1309. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1310. {
  1311. unsigned long load, min_load = ULONG_MAX;
  1312. int idlest = -1;
  1313. int i;
  1314. /* Traverse only the allowed CPUs */
  1315. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1316. load = weighted_cpuload(i);
  1317. if (load < min_load || (load == min_load && i == this_cpu)) {
  1318. min_load = load;
  1319. idlest = i;
  1320. }
  1321. }
  1322. return idlest;
  1323. }
  1324. /*
  1325. * Try and locate an idle CPU in the sched_domain.
  1326. */
  1327. static int select_idle_sibling(struct task_struct *p, int target)
  1328. {
  1329. int cpu = smp_processor_id();
  1330. int prev_cpu = task_cpu(p);
  1331. struct sched_domain *sd;
  1332. int i;
  1333. /*
  1334. * If the task is going to be woken-up on this cpu and if it is
  1335. * already idle, then it is the right target.
  1336. */
  1337. if (target == cpu && idle_cpu(cpu))
  1338. return cpu;
  1339. /*
  1340. * If the task is going to be woken-up on the cpu where it previously
  1341. * ran and if it is currently idle, then it the right target.
  1342. */
  1343. if (target == prev_cpu && idle_cpu(prev_cpu))
  1344. return prev_cpu;
  1345. /*
  1346. * Otherwise, iterate the domains and find an elegible idle cpu.
  1347. */
  1348. for_each_domain(target, sd) {
  1349. if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
  1350. break;
  1351. for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
  1352. if (idle_cpu(i)) {
  1353. target = i;
  1354. break;
  1355. }
  1356. }
  1357. /*
  1358. * Lets stop looking for an idle sibling when we reached
  1359. * the domain that spans the current cpu and prev_cpu.
  1360. */
  1361. if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
  1362. cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
  1363. break;
  1364. }
  1365. return target;
  1366. }
  1367. /*
  1368. * sched_balance_self: balance the current task (running on cpu) in domains
  1369. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1370. * SD_BALANCE_EXEC.
  1371. *
  1372. * Balance, ie. select the least loaded group.
  1373. *
  1374. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1375. *
  1376. * preempt must be disabled.
  1377. */
  1378. static int
  1379. select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
  1380. {
  1381. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  1382. int cpu = smp_processor_id();
  1383. int prev_cpu = task_cpu(p);
  1384. int new_cpu = cpu;
  1385. int want_affine = 0;
  1386. int want_sd = 1;
  1387. int sync = wake_flags & WF_SYNC;
  1388. if (sd_flag & SD_BALANCE_WAKE) {
  1389. if (cpumask_test_cpu(cpu, &p->cpus_allowed))
  1390. want_affine = 1;
  1391. new_cpu = prev_cpu;
  1392. }
  1393. for_each_domain(cpu, tmp) {
  1394. if (!(tmp->flags & SD_LOAD_BALANCE))
  1395. continue;
  1396. /*
  1397. * If power savings logic is enabled for a domain, see if we
  1398. * are not overloaded, if so, don't balance wider.
  1399. */
  1400. if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
  1401. unsigned long power = 0;
  1402. unsigned long nr_running = 0;
  1403. unsigned long capacity;
  1404. int i;
  1405. for_each_cpu(i, sched_domain_span(tmp)) {
  1406. power += power_of(i);
  1407. nr_running += cpu_rq(i)->cfs.nr_running;
  1408. }
  1409. capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  1410. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1411. nr_running /= 2;
  1412. if (nr_running < capacity)
  1413. want_sd = 0;
  1414. }
  1415. /*
  1416. * If both cpu and prev_cpu are part of this domain,
  1417. * cpu is a valid SD_WAKE_AFFINE target.
  1418. */
  1419. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  1420. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  1421. affine_sd = tmp;
  1422. want_affine = 0;
  1423. }
  1424. if (!want_sd && !want_affine)
  1425. break;
  1426. if (!(tmp->flags & sd_flag))
  1427. continue;
  1428. if (want_sd)
  1429. sd = tmp;
  1430. }
  1431. if (affine_sd) {
  1432. if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
  1433. return select_idle_sibling(p, cpu);
  1434. else
  1435. return select_idle_sibling(p, prev_cpu);
  1436. }
  1437. while (sd) {
  1438. int load_idx = sd->forkexec_idx;
  1439. struct sched_group *group;
  1440. int weight;
  1441. if (!(sd->flags & sd_flag)) {
  1442. sd = sd->child;
  1443. continue;
  1444. }
  1445. if (sd_flag & SD_BALANCE_WAKE)
  1446. load_idx = sd->wake_idx;
  1447. group = find_idlest_group(sd, p, cpu, load_idx);
  1448. if (!group) {
  1449. sd = sd->child;
  1450. continue;
  1451. }
  1452. new_cpu = find_idlest_cpu(group, p, cpu);
  1453. if (new_cpu == -1 || new_cpu == cpu) {
  1454. /* Now try balancing at a lower domain level of cpu */
  1455. sd = sd->child;
  1456. continue;
  1457. }
  1458. /* Now try balancing at a lower domain level of new_cpu */
  1459. cpu = new_cpu;
  1460. weight = sd->span_weight;
  1461. sd = NULL;
  1462. for_each_domain(cpu, tmp) {
  1463. if (weight <= tmp->span_weight)
  1464. break;
  1465. if (tmp->flags & sd_flag)
  1466. sd = tmp;
  1467. }
  1468. /* while loop will break here if sd == NULL */
  1469. }
  1470. return new_cpu;
  1471. }
  1472. #endif /* CONFIG_SMP */
  1473. static unsigned long
  1474. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  1475. {
  1476. unsigned long gran = sysctl_sched_wakeup_granularity;
  1477. /*
  1478. * Since its curr running now, convert the gran from real-time
  1479. * to virtual-time in his units.
  1480. *
  1481. * By using 'se' instead of 'curr' we penalize light tasks, so
  1482. * they get preempted easier. That is, if 'se' < 'curr' then
  1483. * the resulting gran will be larger, therefore penalizing the
  1484. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  1485. * be smaller, again penalizing the lighter task.
  1486. *
  1487. * This is especially important for buddies when the leftmost
  1488. * task is higher priority than the buddy.
  1489. */
  1490. if (unlikely(se->load.weight != NICE_0_LOAD))
  1491. gran = calc_delta_fair(gran, se);
  1492. return gran;
  1493. }
  1494. /*
  1495. * Should 'se' preempt 'curr'.
  1496. *
  1497. * |s1
  1498. * |s2
  1499. * |s3
  1500. * g
  1501. * |<--->|c
  1502. *
  1503. * w(c, s1) = -1
  1504. * w(c, s2) = 0
  1505. * w(c, s3) = 1
  1506. *
  1507. */
  1508. static int
  1509. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  1510. {
  1511. s64 gran, vdiff = curr->vruntime - se->vruntime;
  1512. if (vdiff <= 0)
  1513. return -1;
  1514. gran = wakeup_gran(curr, se);
  1515. if (vdiff > gran)
  1516. return 1;
  1517. return 0;
  1518. }
  1519. static void set_last_buddy(struct sched_entity *se)
  1520. {
  1521. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1522. for_each_sched_entity(se)
  1523. cfs_rq_of(se)->last = se;
  1524. }
  1525. }
  1526. static void set_next_buddy(struct sched_entity *se)
  1527. {
  1528. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1529. for_each_sched_entity(se)
  1530. cfs_rq_of(se)->next = se;
  1531. }
  1532. }
  1533. static void set_skip_buddy(struct sched_entity *se)
  1534. {
  1535. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1536. for_each_sched_entity(se)
  1537. cfs_rq_of(se)->skip = se;
  1538. }
  1539. }
  1540. /*
  1541. * Preempt the current task with a newly woken task if needed:
  1542. */
  1543. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1544. {
  1545. struct task_struct *curr = rq->curr;
  1546. struct sched_entity *se = &curr->se, *pse = &p->se;
  1547. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1548. int scale = cfs_rq->nr_running >= sched_nr_latency;
  1549. if (unlikely(se == pse))
  1550. return;
  1551. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
  1552. set_next_buddy(pse);
  1553. /*
  1554. * We can come here with TIF_NEED_RESCHED already set from new task
  1555. * wake up path.
  1556. */
  1557. if (test_tsk_need_resched(curr))
  1558. return;
  1559. /* Idle tasks are by definition preempted by non-idle tasks. */
  1560. if (unlikely(curr->policy == SCHED_IDLE) &&
  1561. likely(p->policy != SCHED_IDLE))
  1562. goto preempt;
  1563. /*
  1564. * Batch and idle tasks do not preempt non-idle tasks (their preemption
  1565. * is driven by the tick):
  1566. */
  1567. if (unlikely(p->policy != SCHED_NORMAL))
  1568. return;
  1569. if (!sched_feat(WAKEUP_PREEMPT))
  1570. return;
  1571. update_curr(cfs_rq);
  1572. find_matching_se(&se, &pse);
  1573. BUG_ON(!pse);
  1574. if (wakeup_preempt_entity(se, pse) == 1)
  1575. goto preempt;
  1576. return;
  1577. preempt:
  1578. resched_task(curr);
  1579. /*
  1580. * Only set the backward buddy when the current task is still
  1581. * on the rq. This can happen when a wakeup gets interleaved
  1582. * with schedule on the ->pre_schedule() or idle_balance()
  1583. * point, either of which can * drop the rq lock.
  1584. *
  1585. * Also, during early boot the idle thread is in the fair class,
  1586. * for obvious reasons its a bad idea to schedule back to it.
  1587. */
  1588. if (unlikely(!se->on_rq || curr == rq->idle))
  1589. return;
  1590. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  1591. set_last_buddy(se);
  1592. }
  1593. static struct task_struct *pick_next_task_fair(struct rq *rq)
  1594. {
  1595. struct task_struct *p;
  1596. struct cfs_rq *cfs_rq = &rq->cfs;
  1597. struct sched_entity *se;
  1598. if (!cfs_rq->nr_running)
  1599. return NULL;
  1600. do {
  1601. se = pick_next_entity(cfs_rq);
  1602. set_next_entity(cfs_rq, se);
  1603. cfs_rq = group_cfs_rq(se);
  1604. } while (cfs_rq);
  1605. p = task_of(se);
  1606. hrtick_start_fair(rq, p);
  1607. return p;
  1608. }
  1609. /*
  1610. * Account for a descheduled task:
  1611. */
  1612. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  1613. {
  1614. struct sched_entity *se = &prev->se;
  1615. struct cfs_rq *cfs_rq;
  1616. for_each_sched_entity(se) {
  1617. cfs_rq = cfs_rq_of(se);
  1618. put_prev_entity(cfs_rq, se);
  1619. }
  1620. }
  1621. /*
  1622. * sched_yield() is very simple
  1623. *
  1624. * The magic of dealing with the ->skip buddy is in pick_next_entity.
  1625. */
  1626. static void yield_task_fair(struct rq *rq)
  1627. {
  1628. struct task_struct *curr = rq->curr;
  1629. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1630. struct sched_entity *se = &curr->se;
  1631. /*
  1632. * Are we the only task in the tree?
  1633. */
  1634. if (unlikely(rq->nr_running == 1))
  1635. return;
  1636. clear_buddies(cfs_rq, se);
  1637. if (curr->policy != SCHED_BATCH) {
  1638. update_rq_clock(rq);
  1639. /*
  1640. * Update run-time statistics of the 'current'.
  1641. */
  1642. update_curr(cfs_rq);
  1643. }
  1644. set_skip_buddy(se);
  1645. }
  1646. static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
  1647. {
  1648. struct sched_entity *se = &p->se;
  1649. if (!se->on_rq)
  1650. return false;
  1651. /* Tell the scheduler that we'd really like pse to run next. */
  1652. set_next_buddy(se);
  1653. yield_task_fair(rq);
  1654. return true;
  1655. }
  1656. #ifdef CONFIG_SMP
  1657. /**************************************************
  1658. * Fair scheduling class load-balancing methods:
  1659. */
  1660. /*
  1661. * pull_task - move a task from a remote runqueue to the local runqueue.
  1662. * Both runqueues must be locked.
  1663. */
  1664. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1665. struct rq *this_rq, int this_cpu)
  1666. {
  1667. deactivate_task(src_rq, p, 0);
  1668. set_task_cpu(p, this_cpu);
  1669. activate_task(this_rq, p, 0);
  1670. check_preempt_curr(this_rq, p, 0);
  1671. }
  1672. /*
  1673. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1674. */
  1675. static
  1676. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1677. struct sched_domain *sd, enum cpu_idle_type idle,
  1678. int *all_pinned)
  1679. {
  1680. int tsk_cache_hot = 0;
  1681. /*
  1682. * We do not migrate tasks that are:
  1683. * 1) running (obviously), or
  1684. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1685. * 3) are cache-hot on their current CPU.
  1686. */
  1687. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  1688. schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
  1689. return 0;
  1690. }
  1691. *all_pinned = 0;
  1692. if (task_running(rq, p)) {
  1693. schedstat_inc(p, se.statistics.nr_failed_migrations_running);
  1694. return 0;
  1695. }
  1696. /*
  1697. * Aggressive migration if:
  1698. * 1) task is cache cold, or
  1699. * 2) too many balance attempts have failed.
  1700. */
  1701. tsk_cache_hot = task_hot(p, rq->clock_task, sd);
  1702. if (!tsk_cache_hot ||
  1703. sd->nr_balance_failed > sd->cache_nice_tries) {
  1704. #ifdef CONFIG_SCHEDSTATS
  1705. if (tsk_cache_hot) {
  1706. schedstat_inc(sd, lb_hot_gained[idle]);
  1707. schedstat_inc(p, se.statistics.nr_forced_migrations);
  1708. }
  1709. #endif
  1710. return 1;
  1711. }
  1712. if (tsk_cache_hot) {
  1713. schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
  1714. return 0;
  1715. }
  1716. return 1;
  1717. }
  1718. /*
  1719. * move_one_task tries to move exactly one task from busiest to this_rq, as
  1720. * part of active balancing operations within "domain".
  1721. * Returns 1 if successful and 0 otherwise.
  1722. *
  1723. * Called with both runqueues locked.
  1724. */
  1725. static int
  1726. move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1727. struct sched_domain *sd, enum cpu_idle_type idle)
  1728. {
  1729. struct task_struct *p, *n;
  1730. struct cfs_rq *cfs_rq;
  1731. int pinned = 0;
  1732. for_each_leaf_cfs_rq(busiest, cfs_rq) {
  1733. list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
  1734. if (!can_migrate_task(p, busiest, this_cpu,
  1735. sd, idle, &pinned))
  1736. continue;
  1737. pull_task(busiest, p, this_rq, this_cpu);
  1738. /*
  1739. * Right now, this is only the second place pull_task()
  1740. * is called, so we can safely collect pull_task()
  1741. * stats here rather than inside pull_task().
  1742. */
  1743. schedstat_inc(sd, lb_gained[idle]);
  1744. return 1;
  1745. }
  1746. }
  1747. return 0;
  1748. }
  1749. static unsigned long
  1750. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1751. unsigned long max_load_move, struct sched_domain *sd,
  1752. enum cpu_idle_type idle, int *all_pinned,
  1753. int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
  1754. {
  1755. int loops = 0, pulled = 0, pinned = 0;
  1756. long rem_load_move = max_load_move;
  1757. struct task_struct *p, *n;
  1758. if (max_load_move == 0)
  1759. goto out;
  1760. pinned = 1;
  1761. list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
  1762. if (loops++ > sysctl_sched_nr_migrate)
  1763. break;
  1764. if ((p->se.load.weight >> 1) > rem_load_move ||
  1765. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
  1766. continue;
  1767. pull_task(busiest, p, this_rq, this_cpu);
  1768. pulled++;
  1769. rem_load_move -= p->se.load.weight;
  1770. #ifdef CONFIG_PREEMPT
  1771. /*
  1772. * NEWIDLE balancing is a source of latency, so preemptible
  1773. * kernels will stop after the first task is pulled to minimize
  1774. * the critical section.
  1775. */
  1776. if (idle == CPU_NEWLY_IDLE)
  1777. break;
  1778. #endif
  1779. /*
  1780. * We only want to steal up to the prescribed amount of
  1781. * weighted load.
  1782. */
  1783. if (rem_load_move <= 0)
  1784. break;
  1785. if (p->prio < *this_best_prio)
  1786. *this_best_prio = p->prio;
  1787. }
  1788. out:
  1789. /*
  1790. * Right now, this is one of only two places pull_task() is called,
  1791. * so we can safely collect pull_task() stats here rather than
  1792. * inside pull_task().
  1793. */
  1794. schedstat_add(sd, lb_gained[idle], pulled);
  1795. if (all_pinned)
  1796. *all_pinned = pinned;
  1797. return max_load_move - rem_load_move;
  1798. }
  1799. #ifdef CONFIG_FAIR_GROUP_SCHED
  1800. /*
  1801. * update tg->load_weight by folding this cpu's load_avg
  1802. */
  1803. static int update_shares_cpu(struct task_group *tg, int cpu)
  1804. {
  1805. struct cfs_rq *cfs_rq;
  1806. unsigned long flags;
  1807. struct rq *rq;
  1808. if (!tg->se[cpu])
  1809. return 0;
  1810. rq = cpu_rq(cpu);
  1811. cfs_rq = tg->cfs_rq[cpu];
  1812. raw_spin_lock_irqsave(&rq->lock, flags);
  1813. update_rq_clock(rq);
  1814. update_cfs_load(cfs_rq, 1);
  1815. /*
  1816. * We need to update shares after updating tg->load_weight in
  1817. * order to adjust the weight of groups with long running tasks.
  1818. */
  1819. update_cfs_shares(cfs_rq);
  1820. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1821. return 0;
  1822. }
  1823. static void update_shares(int cpu)
  1824. {
  1825. struct cfs_rq *cfs_rq;
  1826. struct rq *rq = cpu_rq(cpu);
  1827. rcu_read_lock();
  1828. for_each_leaf_cfs_rq(rq, cfs_rq)
  1829. update_shares_cpu(cfs_rq->tg, cpu);
  1830. rcu_read_unlock();
  1831. }
  1832. static unsigned long
  1833. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1834. unsigned long max_load_move,
  1835. struct sched_domain *sd, enum cpu_idle_type idle,
  1836. int *all_pinned, int *this_best_prio)
  1837. {
  1838. long rem_load_move = max_load_move;
  1839. int busiest_cpu = cpu_of(busiest);
  1840. struct task_group *tg;
  1841. rcu_read_lock();
  1842. update_h_load(busiest_cpu);
  1843. list_for_each_entry_rcu(tg, &task_groups, list) {
  1844. struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
  1845. unsigned long busiest_h_load = busiest_cfs_rq->h_load;
  1846. unsigned long busiest_weight = busiest_cfs_rq->load.weight;
  1847. u64 rem_load, moved_load;
  1848. /*
  1849. * empty group
  1850. */
  1851. if (!busiest_cfs_rq->task_weight)
  1852. continue;
  1853. rem_load = (u64)rem_load_move * busiest_weight;
  1854. rem_load = div_u64(rem_load, busiest_h_load + 1);
  1855. moved_load = balance_tasks(this_rq, this_cpu, busiest,
  1856. rem_load, sd, idle, all_pinned, this_best_prio,
  1857. busiest_cfs_rq);
  1858. if (!moved_load)
  1859. continue;
  1860. moved_load *= busiest_h_load;
  1861. moved_load = div_u64(moved_load, busiest_weight + 1);
  1862. rem_load_move -= moved_load;
  1863. if (rem_load_move < 0)
  1864. break;
  1865. }
  1866. rcu_read_unlock();
  1867. return max_load_move - rem_load_move;
  1868. }
  1869. #else
  1870. static inline void update_shares(int cpu)
  1871. {
  1872. }
  1873. static unsigned long
  1874. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1875. unsigned long max_load_move,
  1876. struct sched_domain *sd, enum cpu_idle_type idle,
  1877. int *all_pinned, int *this_best_prio)
  1878. {
  1879. return balance_tasks(this_rq, this_cpu, busiest,
  1880. max_load_move, sd, idle, all_pinned,
  1881. this_best_prio, &busiest->cfs);
  1882. }
  1883. #endif
  1884. /*
  1885. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1886. * this_rq, as part of a balancing operation within domain "sd".
  1887. * Returns 1 if successful and 0 otherwise.
  1888. *
  1889. * Called with both runqueues locked.
  1890. */
  1891. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1892. unsigned long max_load_move,
  1893. struct sched_domain *sd, enum cpu_idle_type idle,
  1894. int *all_pinned)
  1895. {
  1896. unsigned long total_load_moved = 0, load_moved;
  1897. int this_best_prio = this_rq->curr->prio;
  1898. do {
  1899. load_moved = load_balance_fair(this_rq, this_cpu, busiest,
  1900. max_load_move - total_load_moved,
  1901. sd, idle, all_pinned, &this_best_prio);
  1902. total_load_moved += load_moved;
  1903. #ifdef CONFIG_PREEMPT
  1904. /*
  1905. * NEWIDLE balancing is a source of latency, so preemptible
  1906. * kernels will stop after the first task is pulled to minimize
  1907. * the critical section.
  1908. */
  1909. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  1910. break;
  1911. if (raw_spin_is_contended(&this_rq->lock) ||
  1912. raw_spin_is_contended(&busiest->lock))
  1913. break;
  1914. #endif
  1915. } while (load_moved && max_load_move > total_load_moved);
  1916. return total_load_moved > 0;
  1917. }
  1918. /********** Helpers for find_busiest_group ************************/
  1919. /*
  1920. * sd_lb_stats - Structure to store the statistics of a sched_domain
  1921. * during load balancing.
  1922. */
  1923. struct sd_lb_stats {
  1924. struct sched_group *busiest; /* Busiest group in this sd */
  1925. struct sched_group *this; /* Local group in this sd */
  1926. unsigned long total_load; /* Total load of all groups in sd */
  1927. unsigned long total_pwr; /* Total power of all groups in sd */
  1928. unsigned long avg_load; /* Average load across all groups in sd */
  1929. /** Statistics of this group */
  1930. unsigned long this_load;
  1931. unsigned long this_load_per_task;
  1932. unsigned long this_nr_running;
  1933. unsigned long this_has_capacity;
  1934. unsigned int this_idle_cpus;
  1935. /* Statistics of the busiest group */
  1936. unsigned int busiest_idle_cpus;
  1937. unsigned long max_load;
  1938. unsigned long busiest_load_per_task;
  1939. unsigned long busiest_nr_running;
  1940. unsigned long busiest_group_capacity;
  1941. unsigned long busiest_has_capacity;
  1942. unsigned int busiest_group_weight;
  1943. int group_imb; /* Is there imbalance in this sd */
  1944. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1945. int power_savings_balance; /* Is powersave balance needed for this sd */
  1946. struct sched_group *group_min; /* Least loaded group in sd */
  1947. struct sched_group *group_leader; /* Group which relieves group_min */
  1948. unsigned long min_load_per_task; /* load_per_task in group_min */
  1949. unsigned long leader_nr_running; /* Nr running of group_leader */
  1950. unsigned long min_nr_running; /* Nr running of group_min */
  1951. #endif
  1952. };
  1953. /*
  1954. * sg_lb_stats - stats of a sched_group required for load_balancing
  1955. */
  1956. struct sg_lb_stats {
  1957. unsigned long avg_load; /*Avg load across the CPUs of the group */
  1958. unsigned long group_load; /* Total load over the CPUs of the group */
  1959. unsigned long sum_nr_running; /* Nr tasks running in the group */
  1960. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  1961. unsigned long group_capacity;
  1962. unsigned long idle_cpus;
  1963. unsigned long group_weight;
  1964. int group_imb; /* Is there an imbalance in the group ? */
  1965. int group_has_capacity; /* Is there extra capacity in the group? */
  1966. };
  1967. /**
  1968. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  1969. * @group: The group whose first cpu is to be returned.
  1970. */
  1971. static inline unsigned int group_first_cpu(struct sched_group *group)
  1972. {
  1973. return cpumask_first(sched_group_cpus(group));
  1974. }
  1975. /**
  1976. * get_sd_load_idx - Obtain the load index for a given sched domain.
  1977. * @sd: The sched_domain whose load_idx is to be obtained.
  1978. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  1979. */
  1980. static inline int get_sd_load_idx(struct sched_domain *sd,
  1981. enum cpu_idle_type idle)
  1982. {
  1983. int load_idx;
  1984. switch (idle) {
  1985. case CPU_NOT_IDLE:
  1986. load_idx = sd->busy_idx;
  1987. break;
  1988. case CPU_NEWLY_IDLE:
  1989. load_idx = sd->newidle_idx;
  1990. break;
  1991. default:
  1992. load_idx = sd->idle_idx;
  1993. break;
  1994. }
  1995. return load_idx;
  1996. }
  1997. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1998. /**
  1999. * init_sd_power_savings_stats - Initialize power savings statistics for
  2000. * the given sched_domain, during load balancing.
  2001. *
  2002. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2003. * @sds: Variable containing the statistics for sd.
  2004. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2005. */
  2006. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2007. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2008. {
  2009. /*
  2010. * Busy processors will not participate in power savings
  2011. * balance.
  2012. */
  2013. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2014. sds->power_savings_balance = 0;
  2015. else {
  2016. sds->power_savings_balance = 1;
  2017. sds->min_nr_running = ULONG_MAX;
  2018. sds->leader_nr_running = 0;
  2019. }
  2020. }
  2021. /**
  2022. * update_sd_power_savings_stats - Update the power saving stats for a
  2023. * sched_domain while performing load balancing.
  2024. *
  2025. * @group: sched_group belonging to the sched_domain under consideration.
  2026. * @sds: Variable containing the statistics of the sched_domain
  2027. * @local_group: Does group contain the CPU for which we're performing
  2028. * load balancing ?
  2029. * @sgs: Variable containing the statistics of the group.
  2030. */
  2031. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2032. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2033. {
  2034. if (!sds->power_savings_balance)
  2035. return;
  2036. /*
  2037. * If the local group is idle or completely loaded
  2038. * no need to do power savings balance at this domain
  2039. */
  2040. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2041. !sds->this_nr_running))
  2042. sds->power_savings_balance = 0;
  2043. /*
  2044. * If a group is already running at full capacity or idle,
  2045. * don't include that group in power savings calculations
  2046. */
  2047. if (!sds->power_savings_balance ||
  2048. sgs->sum_nr_running >= sgs->group_capacity ||
  2049. !sgs->sum_nr_running)
  2050. return;
  2051. /*
  2052. * Calculate the group which has the least non-idle load.
  2053. * This is the group from where we need to pick up the load
  2054. * for saving power
  2055. */
  2056. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  2057. (sgs->sum_nr_running == sds->min_nr_running &&
  2058. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  2059. sds->group_min = group;
  2060. sds->min_nr_running = sgs->sum_nr_running;
  2061. sds->min_load_per_task = sgs->sum_weighted_load /
  2062. sgs->sum_nr_running;
  2063. }
  2064. /*
  2065. * Calculate the group which is almost near its
  2066. * capacity but still has some space to pick up some load
  2067. * from other group and save more power
  2068. */
  2069. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  2070. return;
  2071. if (sgs->sum_nr_running > sds->leader_nr_running ||
  2072. (sgs->sum_nr_running == sds->leader_nr_running &&
  2073. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  2074. sds->group_leader = group;
  2075. sds->leader_nr_running = sgs->sum_nr_running;
  2076. }
  2077. }
  2078. /**
  2079. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  2080. * @sds: Variable containing the statistics of the sched_domain
  2081. * under consideration.
  2082. * @this_cpu: Cpu at which we're currently performing load-balancing.
  2083. * @imbalance: Variable to store the imbalance.
  2084. *
  2085. * Description:
  2086. * Check if we have potential to perform some power-savings balance.
  2087. * If yes, set the busiest group to be the least loaded group in the
  2088. * sched_domain, so that it's CPUs can be put to idle.
  2089. *
  2090. * Returns 1 if there is potential to perform power-savings balance.
  2091. * Else returns 0.
  2092. */
  2093. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2094. int this_cpu, unsigned long *imbalance)
  2095. {
  2096. if (!sds->power_savings_balance)
  2097. return 0;
  2098. if (sds->this != sds->group_leader ||
  2099. sds->group_leader == sds->group_min)
  2100. return 0;
  2101. *imbalance = sds->min_load_per_task;
  2102. sds->busiest = sds->group_min;
  2103. return 1;
  2104. }
  2105. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2106. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2107. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2108. {
  2109. return;
  2110. }
  2111. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2112. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2113. {
  2114. return;
  2115. }
  2116. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2117. int this_cpu, unsigned long *imbalance)
  2118. {
  2119. return 0;
  2120. }
  2121. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2122. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  2123. {
  2124. return SCHED_LOAD_SCALE;
  2125. }
  2126. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  2127. {
  2128. return default_scale_freq_power(sd, cpu);
  2129. }
  2130. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  2131. {
  2132. unsigned long weight = sd->span_weight;
  2133. unsigned long smt_gain = sd->smt_gain;
  2134. smt_gain /= weight;
  2135. return smt_gain;
  2136. }
  2137. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  2138. {
  2139. return default_scale_smt_power(sd, cpu);
  2140. }
  2141. unsigned long scale_rt_power(int cpu)
  2142. {
  2143. struct rq *rq = cpu_rq(cpu);
  2144. u64 total, available;
  2145. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  2146. if (unlikely(total < rq->rt_avg)) {
  2147. /* Ensures that power won't end up being negative */
  2148. available = 0;
  2149. } else {
  2150. available = total - rq->rt_avg;
  2151. }
  2152. if (unlikely((s64)total < SCHED_LOAD_SCALE))
  2153. total = SCHED_LOAD_SCALE;
  2154. total >>= SCHED_LOAD_SHIFT;
  2155. return div_u64(available, total);
  2156. }
  2157. static void update_cpu_power(struct sched_domain *sd, int cpu)
  2158. {
  2159. unsigned long weight = sd->span_weight;
  2160. unsigned long power = SCHED_LOAD_SCALE;
  2161. struct sched_group *sdg = sd->groups;
  2162. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  2163. if (sched_feat(ARCH_POWER))
  2164. power *= arch_scale_smt_power(sd, cpu);
  2165. else
  2166. power *= default_scale_smt_power(sd, cpu);
  2167. power >>= SCHED_LOAD_SHIFT;
  2168. }
  2169. sdg->cpu_power_orig = power;
  2170. if (sched_feat(ARCH_POWER))
  2171. power *= arch_scale_freq_power(sd, cpu);
  2172. else
  2173. power *= default_scale_freq_power(sd, cpu);
  2174. power >>= SCHED_LOAD_SHIFT;
  2175. power *= scale_rt_power(cpu);
  2176. power >>= SCHED_LOAD_SHIFT;
  2177. if (!power)
  2178. power = 1;
  2179. cpu_rq(cpu)->cpu_power = power;
  2180. sdg->cpu_power = power;
  2181. }
  2182. static void update_group_power(struct sched_domain *sd, int cpu)
  2183. {
  2184. struct sched_domain *child = sd->child;
  2185. struct sched_group *group, *sdg = sd->groups;
  2186. unsigned long power;
  2187. if (!child) {
  2188. update_cpu_power(sd, cpu);
  2189. return;
  2190. }
  2191. power = 0;
  2192. group = child->groups;
  2193. do {
  2194. power += group->cpu_power;
  2195. group = group->next;
  2196. } while (group != child->groups);
  2197. sdg->cpu_power = power;
  2198. }
  2199. /*
  2200. * Try and fix up capacity for tiny siblings, this is needed when
  2201. * things like SD_ASYM_PACKING need f_b_g to select another sibling
  2202. * which on its own isn't powerful enough.
  2203. *
  2204. * See update_sd_pick_busiest() and check_asym_packing().
  2205. */
  2206. static inline int
  2207. fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
  2208. {
  2209. /*
  2210. * Only siblings can have significantly less than SCHED_LOAD_SCALE
  2211. */
  2212. if (sd->level != SD_LV_SIBLING)
  2213. return 0;
  2214. /*
  2215. * If ~90% of the cpu_power is still there, we're good.
  2216. */
  2217. if (group->cpu_power * 32 > group->cpu_power_orig * 29)
  2218. return 1;
  2219. return 0;
  2220. }
  2221. /**
  2222. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  2223. * @sd: The sched_domain whose statistics are to be updated.
  2224. * @group: sched_group whose statistics are to be updated.
  2225. * @this_cpu: Cpu for which load balance is currently performed.
  2226. * @idle: Idle status of this_cpu
  2227. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  2228. * @local_group: Does group contain this_cpu.
  2229. * @cpus: Set of cpus considered for load balancing.
  2230. * @balance: Should we balance.
  2231. * @sgs: variable to hold the statistics for this group.
  2232. */
  2233. static inline void update_sg_lb_stats(struct sched_domain *sd,
  2234. struct sched_group *group, int this_cpu,
  2235. enum cpu_idle_type idle, int load_idx,
  2236. int local_group, const struct cpumask *cpus,
  2237. int *balance, struct sg_lb_stats *sgs)
  2238. {
  2239. unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
  2240. int i;
  2241. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2242. unsigned long avg_load_per_task = 0;
  2243. if (local_group)
  2244. balance_cpu = group_first_cpu(group);
  2245. /* Tally up the load of all CPUs in the group */
  2246. max_cpu_load = 0;
  2247. min_cpu_load = ~0UL;
  2248. max_nr_running = 0;
  2249. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  2250. struct rq *rq = cpu_rq(i);
  2251. /* Bias balancing toward cpus of our domain */
  2252. if (local_group) {
  2253. if (idle_cpu(i) && !first_idle_cpu) {
  2254. first_idle_cpu = 1;
  2255. balance_cpu = i;
  2256. }
  2257. load = target_load(i, load_idx);
  2258. } else {
  2259. load = source_load(i, load_idx);
  2260. if (load > max_cpu_load) {
  2261. max_cpu_load = load;
  2262. max_nr_running = rq->nr_running;
  2263. }
  2264. if (min_cpu_load > load)
  2265. min_cpu_load = load;
  2266. }
  2267. sgs->group_load += load;
  2268. sgs->sum_nr_running += rq->nr_running;
  2269. sgs->sum_weighted_load += weighted_cpuload(i);
  2270. if (idle_cpu(i))
  2271. sgs->idle_cpus++;
  2272. }
  2273. /*
  2274. * First idle cpu or the first cpu(busiest) in this sched group
  2275. * is eligible for doing load balancing at this and above
  2276. * domains. In the newly idle case, we will allow all the cpu's
  2277. * to do the newly idle load balance.
  2278. */
  2279. if (idle != CPU_NEWLY_IDLE && local_group) {
  2280. if (balance_cpu != this_cpu) {
  2281. *balance = 0;
  2282. return;
  2283. }
  2284. update_group_power(sd, this_cpu);
  2285. }
  2286. /* Adjust by relative CPU power of the group */
  2287. sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
  2288. /*
  2289. * Consider the group unbalanced when the imbalance is larger
  2290. * than the average weight of a task.
  2291. *
  2292. * APZ: with cgroup the avg task weight can vary wildly and
  2293. * might not be a suitable number - should we keep a
  2294. * normalized nr_running number somewhere that negates
  2295. * the hierarchy?
  2296. */
  2297. if (sgs->sum_nr_running)
  2298. avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
  2299. if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
  2300. sgs->group_imb = 1;
  2301. sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
  2302. if (!sgs->group_capacity)
  2303. sgs->group_capacity = fix_small_capacity(sd, group);
  2304. sgs->group_weight = group->group_weight;
  2305. if (sgs->group_capacity > sgs->sum_nr_running)
  2306. sgs->group_has_capacity = 1;
  2307. }
  2308. /**
  2309. * update_sd_pick_busiest - return 1 on busiest group
  2310. * @sd: sched_domain whose statistics are to be checked
  2311. * @sds: sched_domain statistics
  2312. * @sg: sched_group candidate to be checked for being the busiest
  2313. * @sgs: sched_group statistics
  2314. * @this_cpu: the current cpu
  2315. *
  2316. * Determine if @sg is a busier group than the previously selected
  2317. * busiest group.
  2318. */
  2319. static bool update_sd_pick_busiest(struct sched_domain *sd,
  2320. struct sd_lb_stats *sds,
  2321. struct sched_group *sg,
  2322. struct sg_lb_stats *sgs,
  2323. int this_cpu)
  2324. {
  2325. if (sgs->avg_load <= sds->max_load)
  2326. return false;
  2327. if (sgs->sum_nr_running > sgs->group_capacity)
  2328. return true;
  2329. if (sgs->group_imb)
  2330. return true;
  2331. /*
  2332. * ASYM_PACKING needs to move all the work to the lowest
  2333. * numbered CPUs in the group, therefore mark all groups
  2334. * higher than ourself as busy.
  2335. */
  2336. if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
  2337. this_cpu < group_first_cpu(sg)) {
  2338. if (!sds->busiest)
  2339. return true;
  2340. if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
  2341. return true;
  2342. }
  2343. return false;
  2344. }
  2345. /**
  2346. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  2347. * @sd: sched_domain whose statistics are to be updated.
  2348. * @this_cpu: Cpu for which load balance is currently performed.
  2349. * @idle: Idle status of this_cpu
  2350. * @cpus: Set of cpus considered for load balancing.
  2351. * @balance: Should we balance.
  2352. * @sds: variable to hold the statistics for this sched_domain.
  2353. */
  2354. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  2355. enum cpu_idle_type idle, const struct cpumask *cpus,
  2356. int *balance, struct sd_lb_stats *sds)
  2357. {
  2358. struct sched_domain *child = sd->child;
  2359. struct sched_group *sg = sd->groups;
  2360. struct sg_lb_stats sgs;
  2361. int load_idx, prefer_sibling = 0;
  2362. if (child && child->flags & SD_PREFER_SIBLING)
  2363. prefer_sibling = 1;
  2364. init_sd_power_savings_stats(sd, sds, idle);
  2365. load_idx = get_sd_load_idx(sd, idle);
  2366. do {
  2367. int local_group;
  2368. local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
  2369. memset(&sgs, 0, sizeof(sgs));
  2370. update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
  2371. local_group, cpus, balance, &sgs);
  2372. if (local_group && !(*balance))
  2373. return;
  2374. sds->total_load += sgs.group_load;
  2375. sds->total_pwr += sg->cpu_power;
  2376. /*
  2377. * In case the child domain prefers tasks go to siblings
  2378. * first, lower the sg capacity to one so that we'll try
  2379. * and move all the excess tasks away. We lower the capacity
  2380. * of a group only if the local group has the capacity to fit
  2381. * these excess tasks, i.e. nr_running < group_capacity. The
  2382. * extra check prevents the case where you always pull from the
  2383. * heaviest group when it is already under-utilized (possible
  2384. * with a large weight task outweighs the tasks on the system).
  2385. */
  2386. if (prefer_sibling && !local_group && sds->this_has_capacity)
  2387. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  2388. if (local_group) {
  2389. sds->this_load = sgs.avg_load;
  2390. sds->this = sg;
  2391. sds->this_nr_running = sgs.sum_nr_running;
  2392. sds->this_load_per_task = sgs.sum_weighted_load;
  2393. sds->this_has_capacity = sgs.group_has_capacity;
  2394. sds->this_idle_cpus = sgs.idle_cpus;
  2395. } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
  2396. sds->max_load = sgs.avg_load;
  2397. sds->busiest = sg;
  2398. sds->busiest_nr_running = sgs.sum_nr_running;
  2399. sds->busiest_idle_cpus = sgs.idle_cpus;
  2400. sds->busiest_group_capacity = sgs.group_capacity;
  2401. sds->busiest_load_per_task = sgs.sum_weighted_load;
  2402. sds->busiest_has_capacity = sgs.group_has_capacity;
  2403. sds->busiest_group_weight = sgs.group_weight;
  2404. sds->group_imb = sgs.group_imb;
  2405. }
  2406. update_sd_power_savings_stats(sg, sds, local_group, &sgs);
  2407. sg = sg->next;
  2408. } while (sg != sd->groups);
  2409. }
  2410. int __weak arch_sd_sibling_asym_packing(void)
  2411. {
  2412. return 0*SD_ASYM_PACKING;
  2413. }
  2414. /**
  2415. * check_asym_packing - Check to see if the group is packed into the
  2416. * sched doman.
  2417. *
  2418. * This is primarily intended to used at the sibling level. Some
  2419. * cores like POWER7 prefer to use lower numbered SMT threads. In the
  2420. * case of POWER7, it can move to lower SMT modes only when higher
  2421. * threads are idle. When in lower SMT modes, the threads will
  2422. * perform better since they share less core resources. Hence when we
  2423. * have idle threads, we want them to be the higher ones.
  2424. *
  2425. * This packing function is run on idle threads. It checks to see if
  2426. * the busiest CPU in this domain (core in the P7 case) has a higher
  2427. * CPU number than the packing function is being run on. Here we are
  2428. * assuming lower CPU number will be equivalent to lower a SMT thread
  2429. * number.
  2430. *
  2431. * Returns 1 when packing is required and a task should be moved to
  2432. * this CPU. The amount of the imbalance is returned in *imbalance.
  2433. *
  2434. * @sd: The sched_domain whose packing is to be checked.
  2435. * @sds: Statistics of the sched_domain which is to be packed
  2436. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  2437. * @imbalance: returns amount of imbalanced due to packing.
  2438. */
  2439. static int check_asym_packing(struct sched_domain *sd,
  2440. struct sd_lb_stats *sds,
  2441. int this_cpu, unsigned long *imbalance)
  2442. {
  2443. int busiest_cpu;
  2444. if (!(sd->flags & SD_ASYM_PACKING))
  2445. return 0;
  2446. if (!sds->busiest)
  2447. return 0;
  2448. busiest_cpu = group_first_cpu(sds->busiest);
  2449. if (this_cpu > busiest_cpu)
  2450. return 0;
  2451. *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
  2452. SCHED_LOAD_SCALE);
  2453. return 1;
  2454. }
  2455. /**
  2456. * fix_small_imbalance - Calculate the minor imbalance that exists
  2457. * amongst the groups of a sched_domain, during
  2458. * load balancing.
  2459. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  2460. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  2461. * @imbalance: Variable to store the imbalance.
  2462. */
  2463. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  2464. int this_cpu, unsigned long *imbalance)
  2465. {
  2466. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  2467. unsigned int imbn = 2;
  2468. unsigned long scaled_busy_load_per_task;
  2469. if (sds->this_nr_running) {
  2470. sds->this_load_per_task /= sds->this_nr_running;
  2471. if (sds->busiest_load_per_task >
  2472. sds->this_load_per_task)
  2473. imbn = 1;
  2474. } else
  2475. sds->this_load_per_task =
  2476. cpu_avg_load_per_task(this_cpu);
  2477. scaled_busy_load_per_task = sds->busiest_load_per_task
  2478. * SCHED_LOAD_SCALE;
  2479. scaled_busy_load_per_task /= sds->busiest->cpu_power;
  2480. if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
  2481. (scaled_busy_load_per_task * imbn)) {
  2482. *imbalance = sds->busiest_load_per_task;
  2483. return;
  2484. }
  2485. /*
  2486. * OK, we don't have enough imbalance to justify moving tasks,
  2487. * however we may be able to increase total CPU power used by
  2488. * moving them.
  2489. */
  2490. pwr_now += sds->busiest->cpu_power *
  2491. min(sds->busiest_load_per_task, sds->max_load);
  2492. pwr_now += sds->this->cpu_power *
  2493. min(sds->this_load_per_task, sds->this_load);
  2494. pwr_now /= SCHED_LOAD_SCALE;
  2495. /* Amount of load we'd subtract */
  2496. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  2497. sds->busiest->cpu_power;
  2498. if (sds->max_load > tmp)
  2499. pwr_move += sds->busiest->cpu_power *
  2500. min(sds->busiest_load_per_task, sds->max_load - tmp);
  2501. /* Amount of load we'd add */
  2502. if (sds->max_load * sds->busiest->cpu_power <
  2503. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  2504. tmp = (sds->max_load * sds->busiest->cpu_power) /
  2505. sds->this->cpu_power;
  2506. else
  2507. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  2508. sds->this->cpu_power;
  2509. pwr_move += sds->this->cpu_power *
  2510. min(sds->this_load_per_task, sds->this_load + tmp);
  2511. pwr_move /= SCHED_LOAD_SCALE;
  2512. /* Move if we gain throughput */
  2513. if (pwr_move > pwr_now)
  2514. *imbalance = sds->busiest_load_per_task;
  2515. }
  2516. /**
  2517. * calculate_imbalance - Calculate the amount of imbalance present within the
  2518. * groups of a given sched_domain during load balance.
  2519. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  2520. * @this_cpu: Cpu for which currently load balance is being performed.
  2521. * @imbalance: The variable to store the imbalance.
  2522. */
  2523. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  2524. unsigned long *imbalance)
  2525. {
  2526. unsigned long max_pull, load_above_capacity = ~0UL;
  2527. sds->busiest_load_per_task /= sds->busiest_nr_running;
  2528. if (sds->group_imb) {
  2529. sds->busiest_load_per_task =
  2530. min(sds->busiest_load_per_task, sds->avg_load);
  2531. }
  2532. /*
  2533. * In the presence of smp nice balancing, certain scenarios can have
  2534. * max load less than avg load(as we skip the groups at or below
  2535. * its cpu_power, while calculating max_load..)
  2536. */
  2537. if (sds->max_load < sds->avg_load) {
  2538. *imbalance = 0;
  2539. return fix_small_imbalance(sds, this_cpu, imbalance);
  2540. }
  2541. if (!sds->group_imb) {
  2542. /*
  2543. * Don't want to pull so many tasks that a group would go idle.
  2544. */
  2545. load_above_capacity = (sds->busiest_nr_running -
  2546. sds->busiest_group_capacity);
  2547. load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
  2548. load_above_capacity /= sds->busiest->cpu_power;
  2549. }
  2550. /*
  2551. * We're trying to get all the cpus to the average_load, so we don't
  2552. * want to push ourselves above the average load, nor do we wish to
  2553. * reduce the max loaded cpu below the average load. At the same time,
  2554. * we also don't want to reduce the group load below the group capacity
  2555. * (so that we can implement power-savings policies etc). Thus we look
  2556. * for the minimum possible imbalance.
  2557. * Be careful of negative numbers as they'll appear as very large values
  2558. * with unsigned longs.
  2559. */
  2560. max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
  2561. /* How much load to actually move to equalise the imbalance */
  2562. *imbalance = min(max_pull * sds->busiest->cpu_power,
  2563. (sds->avg_load - sds->this_load) * sds->this->cpu_power)
  2564. / SCHED_LOAD_SCALE;
  2565. /*
  2566. * if *imbalance is less than the average load per runnable task
  2567. * there is no gaurantee that any tasks will be moved so we'll have
  2568. * a think about bumping its value to force at least one task to be
  2569. * moved
  2570. */
  2571. if (*imbalance < sds->busiest_load_per_task)
  2572. return fix_small_imbalance(sds, this_cpu, imbalance);
  2573. }
  2574. /******* find_busiest_group() helpers end here *********************/
  2575. /**
  2576. * find_busiest_group - Returns the busiest group within the sched_domain
  2577. * if there is an imbalance. If there isn't an imbalance, and
  2578. * the user has opted for power-savings, it returns a group whose
  2579. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  2580. * such a group exists.
  2581. *
  2582. * Also calculates the amount of weighted load which should be moved
  2583. * to restore balance.
  2584. *
  2585. * @sd: The sched_domain whose busiest group is to be returned.
  2586. * @this_cpu: The cpu for which load balancing is currently being performed.
  2587. * @imbalance: Variable which stores amount of weighted load which should
  2588. * be moved to restore balance/put a group to idle.
  2589. * @idle: The idle status of this_cpu.
  2590. * @cpus: The set of CPUs under consideration for load-balancing.
  2591. * @balance: Pointer to a variable indicating if this_cpu
  2592. * is the appropriate cpu to perform load balancing at this_level.
  2593. *
  2594. * Returns: - the busiest group if imbalance exists.
  2595. * - If no imbalance and user has opted for power-savings balance,
  2596. * return the least loaded group whose CPUs can be
  2597. * put to idle by rebalancing its tasks onto our group.
  2598. */
  2599. static struct sched_group *
  2600. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2601. unsigned long *imbalance, enum cpu_idle_type idle,
  2602. const struct cpumask *cpus, int *balance)
  2603. {
  2604. struct sd_lb_stats sds;
  2605. memset(&sds, 0, sizeof(sds));
  2606. /*
  2607. * Compute the various statistics relavent for load balancing at
  2608. * this level.
  2609. */
  2610. update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
  2611. /*
  2612. * this_cpu is not the appropriate cpu to perform load balancing at
  2613. * this level.
  2614. */
  2615. if (!(*balance))
  2616. goto ret;
  2617. if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
  2618. check_asym_packing(sd, &sds, this_cpu, imbalance))
  2619. return sds.busiest;
  2620. /* There is no busy sibling group to pull tasks from */
  2621. if (!sds.busiest || sds.busiest_nr_running == 0)
  2622. goto out_balanced;
  2623. /*
  2624. * If the busiest group is imbalanced the below checks don't
  2625. * work because they assumes all things are equal, which typically
  2626. * isn't true due to cpus_allowed constraints and the like.
  2627. */
  2628. if (sds.group_imb)
  2629. goto force_balance;
  2630. /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
  2631. if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
  2632. !sds.busiest_has_capacity)
  2633. goto force_balance;
  2634. /*
  2635. * If the local group is more busy than the selected busiest group
  2636. * don't try and pull any tasks.
  2637. */
  2638. if (sds.this_load >= sds.max_load)
  2639. goto out_balanced;
  2640. /*
  2641. * Don't pull any tasks if this group is already above the domain
  2642. * average load.
  2643. */
  2644. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  2645. if (sds.this_load >= sds.avg_load)
  2646. goto out_balanced;
  2647. if (idle == CPU_IDLE) {
  2648. /*
  2649. * This cpu is idle. If the busiest group load doesn't
  2650. * have more tasks than the number of available cpu's and
  2651. * there is no imbalance between this and busiest group
  2652. * wrt to idle cpu's, it is balanced.
  2653. */
  2654. if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
  2655. sds.busiest_nr_running <= sds.busiest_group_weight)
  2656. goto out_balanced;
  2657. } else {
  2658. /*
  2659. * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
  2660. * imbalance_pct to be conservative.
  2661. */
  2662. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  2663. goto out_balanced;
  2664. }
  2665. force_balance:
  2666. /* Looks like there is an imbalance. Compute it */
  2667. calculate_imbalance(&sds, this_cpu, imbalance);
  2668. return sds.busiest;
  2669. out_balanced:
  2670. /*
  2671. * There is no obvious imbalance. But check if we can do some balancing
  2672. * to save power.
  2673. */
  2674. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  2675. return sds.busiest;
  2676. ret:
  2677. *imbalance = 0;
  2678. return NULL;
  2679. }
  2680. /*
  2681. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2682. */
  2683. static struct rq *
  2684. find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
  2685. enum cpu_idle_type idle, unsigned long imbalance,
  2686. const struct cpumask *cpus)
  2687. {
  2688. struct rq *busiest = NULL, *rq;
  2689. unsigned long max_load = 0;
  2690. int i;
  2691. for_each_cpu(i, sched_group_cpus(group)) {
  2692. unsigned long power = power_of(i);
  2693. unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  2694. unsigned long wl;
  2695. if (!capacity)
  2696. capacity = fix_small_capacity(sd, group);
  2697. if (!cpumask_test_cpu(i, cpus))
  2698. continue;
  2699. rq = cpu_rq(i);
  2700. wl = weighted_cpuload(i);
  2701. /*
  2702. * When comparing with imbalance, use weighted_cpuload()
  2703. * which is not scaled with the cpu power.
  2704. */
  2705. if (capacity && rq->nr_running == 1 && wl > imbalance)
  2706. continue;
  2707. /*
  2708. * For the load comparisons with the other cpu's, consider
  2709. * the weighted_cpuload() scaled with the cpu power, so that
  2710. * the load can be moved away from the cpu that is potentially
  2711. * running at a lower capacity.
  2712. */
  2713. wl = (wl * SCHED_LOAD_SCALE) / power;
  2714. if (wl > max_load) {
  2715. max_load = wl;
  2716. busiest = rq;
  2717. }
  2718. }
  2719. return busiest;
  2720. }
  2721. /*
  2722. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2723. * so long as it is large enough.
  2724. */
  2725. #define MAX_PINNED_INTERVAL 512
  2726. /* Working cpumask for load_balance and load_balance_newidle. */
  2727. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  2728. static int need_active_balance(struct sched_domain *sd, int idle,
  2729. int busiest_cpu, int this_cpu)
  2730. {
  2731. if (idle == CPU_NEWLY_IDLE) {
  2732. /*
  2733. * ASYM_PACKING needs to force migrate tasks from busy but
  2734. * higher numbered CPUs in order to pack all tasks in the
  2735. * lowest numbered CPUs.
  2736. */
  2737. if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
  2738. return 1;
  2739. /*
  2740. * The only task running in a non-idle cpu can be moved to this
  2741. * cpu in an attempt to completely freeup the other CPU
  2742. * package.
  2743. *
  2744. * The package power saving logic comes from
  2745. * find_busiest_group(). If there are no imbalance, then
  2746. * f_b_g() will return NULL. However when sched_mc={1,2} then
  2747. * f_b_g() will select a group from which a running task may be
  2748. * pulled to this cpu in order to make the other package idle.
  2749. * If there is no opportunity to make a package idle and if
  2750. * there are no imbalance, then f_b_g() will return NULL and no
  2751. * action will be taken in load_balance_newidle().
  2752. *
  2753. * Under normal task pull operation due to imbalance, there
  2754. * will be more than one task in the source run queue and
  2755. * move_tasks() will succeed. ld_moved will be true and this
  2756. * active balance code will not be triggered.
  2757. */
  2758. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  2759. return 0;
  2760. }
  2761. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  2762. }
  2763. static int active_load_balance_cpu_stop(void *data);
  2764. /*
  2765. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2766. * tasks if there is an imbalance.
  2767. */
  2768. static int load_balance(int this_cpu, struct rq *this_rq,
  2769. struct sched_domain *sd, enum cpu_idle_type idle,
  2770. int *balance)
  2771. {
  2772. int ld_moved, all_pinned = 0, active_balance = 0;
  2773. struct sched_group *group;
  2774. unsigned long imbalance;
  2775. struct rq *busiest;
  2776. unsigned long flags;
  2777. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  2778. cpumask_copy(cpus, cpu_active_mask);
  2779. schedstat_inc(sd, lb_count[idle]);
  2780. redo:
  2781. group = find_busiest_group(sd, this_cpu, &imbalance, idle,
  2782. cpus, balance);
  2783. if (*balance == 0)
  2784. goto out_balanced;
  2785. if (!group) {
  2786. schedstat_inc(sd, lb_nobusyg[idle]);
  2787. goto out_balanced;
  2788. }
  2789. busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
  2790. if (!busiest) {
  2791. schedstat_inc(sd, lb_nobusyq[idle]);
  2792. goto out_balanced;
  2793. }
  2794. BUG_ON(busiest == this_rq);
  2795. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2796. ld_moved = 0;
  2797. if (busiest->nr_running > 1) {
  2798. /*
  2799. * Attempt to move tasks. If find_busiest_group has found
  2800. * an imbalance but busiest->nr_running <= 1, the group is
  2801. * still unbalanced. ld_moved simply stays zero, so it is
  2802. * correctly treated as an imbalance.
  2803. */
  2804. local_irq_save(flags);
  2805. double_rq_lock(this_rq, busiest);
  2806. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2807. imbalance, sd, idle, &all_pinned);
  2808. double_rq_unlock(this_rq, busiest);
  2809. local_irq_restore(flags);
  2810. /*
  2811. * some other cpu did the load balance for us.
  2812. */
  2813. if (ld_moved && this_cpu != smp_processor_id())
  2814. resched_cpu(this_cpu);
  2815. /* All tasks on this runqueue were pinned by CPU affinity */
  2816. if (unlikely(all_pinned)) {
  2817. cpumask_clear_cpu(cpu_of(busiest), cpus);
  2818. if (!cpumask_empty(cpus))
  2819. goto redo;
  2820. goto out_balanced;
  2821. }
  2822. }
  2823. if (!ld_moved) {
  2824. schedstat_inc(sd, lb_failed[idle]);
  2825. /*
  2826. * Increment the failure counter only on periodic balance.
  2827. * We do not want newidle balance, which can be very
  2828. * frequent, pollute the failure counter causing
  2829. * excessive cache_hot migrations and active balances.
  2830. */
  2831. if (idle != CPU_NEWLY_IDLE)
  2832. sd->nr_balance_failed++;
  2833. if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
  2834. raw_spin_lock_irqsave(&busiest->lock, flags);
  2835. /* don't kick the active_load_balance_cpu_stop,
  2836. * if the curr task on busiest cpu can't be
  2837. * moved to this_cpu
  2838. */
  2839. if (!cpumask_test_cpu(this_cpu,
  2840. &busiest->curr->cpus_allowed)) {
  2841. raw_spin_unlock_irqrestore(&busiest->lock,
  2842. flags);
  2843. all_pinned = 1;
  2844. goto out_one_pinned;
  2845. }
  2846. /*
  2847. * ->active_balance synchronizes accesses to
  2848. * ->active_balance_work. Once set, it's cleared
  2849. * only after active load balance is finished.
  2850. */
  2851. if (!busiest->active_balance) {
  2852. busiest->active_balance = 1;
  2853. busiest->push_cpu = this_cpu;
  2854. active_balance = 1;
  2855. }
  2856. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  2857. if (active_balance)
  2858. stop_one_cpu_nowait(cpu_of(busiest),
  2859. active_load_balance_cpu_stop, busiest,
  2860. &busiest->active_balance_work);
  2861. /*
  2862. * We've kicked active balancing, reset the failure
  2863. * counter.
  2864. */
  2865. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2866. }
  2867. } else
  2868. sd->nr_balance_failed = 0;
  2869. if (likely(!active_balance)) {
  2870. /* We were unbalanced, so reset the balancing interval */
  2871. sd->balance_interval = sd->min_interval;
  2872. } else {
  2873. /*
  2874. * If we've begun active balancing, start to back off. This
  2875. * case may not be covered by the all_pinned logic if there
  2876. * is only 1 task on the busy runqueue (because we don't call
  2877. * move_tasks).
  2878. */
  2879. if (sd->balance_interval < sd->max_interval)
  2880. sd->balance_interval *= 2;
  2881. }
  2882. goto out;
  2883. out_balanced:
  2884. schedstat_inc(sd, lb_balanced[idle]);
  2885. sd->nr_balance_failed = 0;
  2886. out_one_pinned:
  2887. /* tune up the balancing interval */
  2888. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2889. (sd->balance_interval < sd->max_interval))
  2890. sd->balance_interval *= 2;
  2891. ld_moved = 0;
  2892. out:
  2893. return ld_moved;
  2894. }
  2895. /*
  2896. * idle_balance is called by schedule() if this_cpu is about to become
  2897. * idle. Attempts to pull tasks from other CPUs.
  2898. */
  2899. static void idle_balance(int this_cpu, struct rq *this_rq)
  2900. {
  2901. struct sched_domain *sd;
  2902. int pulled_task = 0;
  2903. unsigned long next_balance = jiffies + HZ;
  2904. this_rq->idle_stamp = this_rq->clock;
  2905. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  2906. return;
  2907. /*
  2908. * Drop the rq->lock, but keep IRQ/preempt disabled.
  2909. */
  2910. raw_spin_unlock(&this_rq->lock);
  2911. update_shares(this_cpu);
  2912. for_each_domain(this_cpu, sd) {
  2913. unsigned long interval;
  2914. int balance = 1;
  2915. if (!(sd->flags & SD_LOAD_BALANCE))
  2916. continue;
  2917. if (sd->flags & SD_BALANCE_NEWIDLE) {
  2918. /* If we've pulled tasks over stop searching: */
  2919. pulled_task = load_balance(this_cpu, this_rq,
  2920. sd, CPU_NEWLY_IDLE, &balance);
  2921. }
  2922. interval = msecs_to_jiffies(sd->balance_interval);
  2923. if (time_after(next_balance, sd->last_balance + interval))
  2924. next_balance = sd->last_balance + interval;
  2925. if (pulled_task) {
  2926. this_rq->idle_stamp = 0;
  2927. break;
  2928. }
  2929. }
  2930. raw_spin_lock(&this_rq->lock);
  2931. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2932. /*
  2933. * We are going idle. next_balance may be set based on
  2934. * a busy processor. So reset next_balance.
  2935. */
  2936. this_rq->next_balance = next_balance;
  2937. }
  2938. }
  2939. /*
  2940. * active_load_balance_cpu_stop is run by cpu stopper. It pushes
  2941. * running tasks off the busiest CPU onto idle CPUs. It requires at
  2942. * least 1 task to be running on each physical CPU where possible, and
  2943. * avoids physical / logical imbalances.
  2944. */
  2945. static int active_load_balance_cpu_stop(void *data)
  2946. {
  2947. struct rq *busiest_rq = data;
  2948. int busiest_cpu = cpu_of(busiest_rq);
  2949. int target_cpu = busiest_rq->push_cpu;
  2950. struct rq *target_rq = cpu_rq(target_cpu);
  2951. struct sched_domain *sd;
  2952. raw_spin_lock_irq(&busiest_rq->lock);
  2953. /* make sure the requested cpu hasn't gone down in the meantime */
  2954. if (unlikely(busiest_cpu != smp_processor_id() ||
  2955. !busiest_rq->active_balance))
  2956. goto out_unlock;
  2957. /* Is there any task to move? */
  2958. if (busiest_rq->nr_running <= 1)
  2959. goto out_unlock;
  2960. /*
  2961. * This condition is "impossible", if it occurs
  2962. * we need to fix it. Originally reported by
  2963. * Bjorn Helgaas on a 128-cpu setup.
  2964. */
  2965. BUG_ON(busiest_rq == target_rq);
  2966. /* move a task from busiest_rq to target_rq */
  2967. double_lock_balance(busiest_rq, target_rq);
  2968. /* Search for an sd spanning us and the target CPU. */
  2969. for_each_domain(target_cpu, sd) {
  2970. if ((sd->flags & SD_LOAD_BALANCE) &&
  2971. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  2972. break;
  2973. }
  2974. if (likely(sd)) {
  2975. schedstat_inc(sd, alb_count);
  2976. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2977. sd, CPU_IDLE))
  2978. schedstat_inc(sd, alb_pushed);
  2979. else
  2980. schedstat_inc(sd, alb_failed);
  2981. }
  2982. double_unlock_balance(busiest_rq, target_rq);
  2983. out_unlock:
  2984. busiest_rq->active_balance = 0;
  2985. raw_spin_unlock_irq(&busiest_rq->lock);
  2986. return 0;
  2987. }
  2988. #ifdef CONFIG_NO_HZ
  2989. static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
  2990. static void trigger_sched_softirq(void *data)
  2991. {
  2992. raise_softirq_irqoff(SCHED_SOFTIRQ);
  2993. }
  2994. static inline void init_sched_softirq_csd(struct call_single_data *csd)
  2995. {
  2996. csd->func = trigger_sched_softirq;
  2997. csd->info = NULL;
  2998. csd->flags = 0;
  2999. csd->priv = 0;
  3000. }
  3001. /*
  3002. * idle load balancing details
  3003. * - One of the idle CPUs nominates itself as idle load_balancer, while
  3004. * entering idle.
  3005. * - This idle load balancer CPU will also go into tickless mode when
  3006. * it is idle, just like all other idle CPUs
  3007. * - When one of the busy CPUs notice that there may be an idle rebalancing
  3008. * needed, they will kick the idle load balancer, which then does idle
  3009. * load balancing for all the idle CPUs.
  3010. */
  3011. static struct {
  3012. atomic_t load_balancer;
  3013. atomic_t first_pick_cpu;
  3014. atomic_t second_pick_cpu;
  3015. cpumask_var_t idle_cpus_mask;
  3016. cpumask_var_t grp_idle_mask;
  3017. unsigned long next_balance; /* in jiffy units */
  3018. } nohz ____cacheline_aligned;
  3019. int get_nohz_load_balancer(void)
  3020. {
  3021. return atomic_read(&nohz.load_balancer);
  3022. }
  3023. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3024. /**
  3025. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3026. * @cpu: The cpu whose lowest level of sched domain is to
  3027. * be returned.
  3028. * @flag: The flag to check for the lowest sched_domain
  3029. * for the given cpu.
  3030. *
  3031. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3032. */
  3033. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3034. {
  3035. struct sched_domain *sd;
  3036. for_each_domain(cpu, sd)
  3037. if (sd && (sd->flags & flag))
  3038. break;
  3039. return sd;
  3040. }
  3041. /**
  3042. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3043. * @cpu: The cpu whose domains we're iterating over.
  3044. * @sd: variable holding the value of the power_savings_sd
  3045. * for cpu.
  3046. * @flag: The flag to filter the sched_domains to be iterated.
  3047. *
  3048. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3049. * set, starting from the lowest sched_domain to the highest.
  3050. */
  3051. #define for_each_flag_domain(cpu, sd, flag) \
  3052. for (sd = lowest_flag_domain(cpu, flag); \
  3053. (sd && (sd->flags & flag)); sd = sd->parent)
  3054. /**
  3055. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  3056. * @ilb_group: group to be checked for semi-idleness
  3057. *
  3058. * Returns: 1 if the group is semi-idle. 0 otherwise.
  3059. *
  3060. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  3061. * and atleast one non-idle CPU. This helper function checks if the given
  3062. * sched_group is semi-idle or not.
  3063. */
  3064. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  3065. {
  3066. cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
  3067. sched_group_cpus(ilb_group));
  3068. /*
  3069. * A sched_group is semi-idle when it has atleast one busy cpu
  3070. * and atleast one idle cpu.
  3071. */
  3072. if (cpumask_empty(nohz.grp_idle_mask))
  3073. return 0;
  3074. if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
  3075. return 0;
  3076. return 1;
  3077. }
  3078. /**
  3079. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3080. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3081. *
  3082. * Returns: Returns the id of the idle load balancer if it exists,
  3083. * Else, returns >= nr_cpu_ids.
  3084. *
  3085. * This algorithm picks the idle load balancer such that it belongs to a
  3086. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3087. * completely idle packages/cores just for the purpose of idle load balancing
  3088. * when there are other idle cpu's which are better suited for that job.
  3089. */
  3090. static int find_new_ilb(int cpu)
  3091. {
  3092. struct sched_domain *sd;
  3093. struct sched_group *ilb_group;
  3094. /*
  3095. * Have idle load balancer selection from semi-idle packages only
  3096. * when power-aware load balancing is enabled
  3097. */
  3098. if (!(sched_smt_power_savings || sched_mc_power_savings))
  3099. goto out_done;
  3100. /*
  3101. * Optimize for the case when we have no idle CPUs or only one
  3102. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  3103. */
  3104. if (cpumask_weight(nohz.idle_cpus_mask) < 2)
  3105. goto out_done;
  3106. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  3107. ilb_group = sd->groups;
  3108. do {
  3109. if (is_semi_idle_group(ilb_group))
  3110. return cpumask_first(nohz.grp_idle_mask);
  3111. ilb_group = ilb_group->next;
  3112. } while (ilb_group != sd->groups);
  3113. }
  3114. out_done:
  3115. return nr_cpu_ids;
  3116. }
  3117. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  3118. static inline int find_new_ilb(int call_cpu)
  3119. {
  3120. return nr_cpu_ids;
  3121. }
  3122. #endif
  3123. /*
  3124. * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
  3125. * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
  3126. * CPU (if there is one).
  3127. */
  3128. static void nohz_balancer_kick(int cpu)
  3129. {
  3130. int ilb_cpu;
  3131. nohz.next_balance++;
  3132. ilb_cpu = get_nohz_load_balancer();
  3133. if (ilb_cpu >= nr_cpu_ids) {
  3134. ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
  3135. if (ilb_cpu >= nr_cpu_ids)
  3136. return;
  3137. }
  3138. if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
  3139. struct call_single_data *cp;
  3140. cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
  3141. cp = &per_cpu(remote_sched_softirq_cb, cpu);
  3142. __smp_call_function_single(ilb_cpu, cp, 0);
  3143. }
  3144. return;
  3145. }
  3146. /*
  3147. * This routine will try to nominate the ilb (idle load balancing)
  3148. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3149. * load balancing on behalf of all those cpus.
  3150. *
  3151. * When the ilb owner becomes busy, we will not have new ilb owner until some
  3152. * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
  3153. * idle load balancing by kicking one of the idle CPUs.
  3154. *
  3155. * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
  3156. * ilb owner CPU in future (when there is a need for idle load balancing on
  3157. * behalf of all idle CPUs).
  3158. */
  3159. void select_nohz_load_balancer(int stop_tick)
  3160. {
  3161. int cpu = smp_processor_id();
  3162. if (stop_tick) {
  3163. if (!cpu_active(cpu)) {
  3164. if (atomic_read(&nohz.load_balancer) != cpu)
  3165. return;
  3166. /*
  3167. * If we are going offline and still the leader,
  3168. * give up!
  3169. */
  3170. if (atomic_cmpxchg(&nohz.load_balancer, cpu,
  3171. nr_cpu_ids) != cpu)
  3172. BUG();
  3173. return;
  3174. }
  3175. cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
  3176. if (atomic_read(&nohz.first_pick_cpu) == cpu)
  3177. atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
  3178. if (atomic_read(&nohz.second_pick_cpu) == cpu)
  3179. atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
  3180. if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
  3181. int new_ilb;
  3182. /* make me the ilb owner */
  3183. if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
  3184. cpu) != nr_cpu_ids)
  3185. return;
  3186. /*
  3187. * Check to see if there is a more power-efficient
  3188. * ilb.
  3189. */
  3190. new_ilb = find_new_ilb(cpu);
  3191. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  3192. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  3193. resched_cpu(new_ilb);
  3194. return;
  3195. }
  3196. return;
  3197. }
  3198. } else {
  3199. if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
  3200. return;
  3201. cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
  3202. if (atomic_read(&nohz.load_balancer) == cpu)
  3203. if (atomic_cmpxchg(&nohz.load_balancer, cpu,
  3204. nr_cpu_ids) != cpu)
  3205. BUG();
  3206. }
  3207. return;
  3208. }
  3209. #endif
  3210. static DEFINE_SPINLOCK(balancing);
  3211. /*
  3212. * It checks each scheduling domain to see if it is due to be balanced,
  3213. * and initiates a balancing operation if so.
  3214. *
  3215. * Balancing parameters are set up in arch_init_sched_domains.
  3216. */
  3217. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3218. {
  3219. int balance = 1;
  3220. struct rq *rq = cpu_rq(cpu);
  3221. unsigned long interval;
  3222. struct sched_domain *sd;
  3223. /* Earliest time when we have to do rebalance again */
  3224. unsigned long next_balance = jiffies + 60*HZ;
  3225. int update_next_balance = 0;
  3226. int need_serialize;
  3227. update_shares(cpu);
  3228. for_each_domain(cpu, sd) {
  3229. if (!(sd->flags & SD_LOAD_BALANCE))
  3230. continue;
  3231. interval = sd->balance_interval;
  3232. if (idle != CPU_IDLE)
  3233. interval *= sd->busy_factor;
  3234. /* scale ms to jiffies */
  3235. interval = msecs_to_jiffies(interval);
  3236. if (unlikely(!interval))
  3237. interval = 1;
  3238. if (interval > HZ*NR_CPUS/10)
  3239. interval = HZ*NR_CPUS/10;
  3240. need_serialize = sd->flags & SD_SERIALIZE;
  3241. if (need_serialize) {
  3242. if (!spin_trylock(&balancing))
  3243. goto out;
  3244. }
  3245. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3246. if (load_balance(cpu, rq, sd, idle, &balance)) {
  3247. /*
  3248. * We've pulled tasks over so either we're no
  3249. * longer idle.
  3250. */
  3251. idle = CPU_NOT_IDLE;
  3252. }
  3253. sd->last_balance = jiffies;
  3254. }
  3255. if (need_serialize)
  3256. spin_unlock(&balancing);
  3257. out:
  3258. if (time_after(next_balance, sd->last_balance + interval)) {
  3259. next_balance = sd->last_balance + interval;
  3260. update_next_balance = 1;
  3261. }
  3262. /*
  3263. * Stop the load balance at this level. There is another
  3264. * CPU in our sched group which is doing load balancing more
  3265. * actively.
  3266. */
  3267. if (!balance)
  3268. break;
  3269. }
  3270. /*
  3271. * next_balance will be updated only when there is a need.
  3272. * When the cpu is attached to null domain for ex, it will not be
  3273. * updated.
  3274. */
  3275. if (likely(update_next_balance))
  3276. rq->next_balance = next_balance;
  3277. }
  3278. #ifdef CONFIG_NO_HZ
  3279. /*
  3280. * In CONFIG_NO_HZ case, the idle balance kickee will do the
  3281. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3282. */
  3283. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
  3284. {
  3285. struct rq *this_rq = cpu_rq(this_cpu);
  3286. struct rq *rq;
  3287. int balance_cpu;
  3288. if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
  3289. return;
  3290. for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
  3291. if (balance_cpu == this_cpu)
  3292. continue;
  3293. /*
  3294. * If this cpu gets work to do, stop the load balancing
  3295. * work being done for other cpus. Next load
  3296. * balancing owner will pick it up.
  3297. */
  3298. if (need_resched()) {
  3299. this_rq->nohz_balance_kick = 0;
  3300. break;
  3301. }
  3302. raw_spin_lock_irq(&this_rq->lock);
  3303. update_rq_clock(this_rq);
  3304. update_cpu_load(this_rq);
  3305. raw_spin_unlock_irq(&this_rq->lock);
  3306. rebalance_domains(balance_cpu, CPU_IDLE);
  3307. rq = cpu_rq(balance_cpu);
  3308. if (time_after(this_rq->next_balance, rq->next_balance))
  3309. this_rq->next_balance = rq->next_balance;
  3310. }
  3311. nohz.next_balance = this_rq->next_balance;
  3312. this_rq->nohz_balance_kick = 0;
  3313. }
  3314. /*
  3315. * Current heuristic for kicking the idle load balancer
  3316. * - first_pick_cpu is the one of the busy CPUs. It will kick
  3317. * idle load balancer when it has more than one process active. This
  3318. * eliminates the need for idle load balancing altogether when we have
  3319. * only one running process in the system (common case).
  3320. * - If there are more than one busy CPU, idle load balancer may have
  3321. * to run for active_load_balance to happen (i.e., two busy CPUs are
  3322. * SMT or core siblings and can run better if they move to different
  3323. * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
  3324. * which will kick idle load balancer as soon as it has any load.
  3325. */
  3326. static inline int nohz_kick_needed(struct rq *rq, int cpu)
  3327. {
  3328. unsigned long now = jiffies;
  3329. int ret;
  3330. int first_pick_cpu, second_pick_cpu;
  3331. if (time_before(now, nohz.next_balance))
  3332. return 0;
  3333. if (rq->idle_at_tick)
  3334. return 0;
  3335. first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
  3336. second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
  3337. if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
  3338. second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
  3339. return 0;
  3340. ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
  3341. if (ret == nr_cpu_ids || ret == cpu) {
  3342. atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
  3343. if (rq->nr_running > 1)
  3344. return 1;
  3345. } else {
  3346. ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
  3347. if (ret == nr_cpu_ids || ret == cpu) {
  3348. if (rq->nr_running)
  3349. return 1;
  3350. }
  3351. }
  3352. return 0;
  3353. }
  3354. #else
  3355. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
  3356. #endif
  3357. /*
  3358. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3359. * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
  3360. */
  3361. static void run_rebalance_domains(struct softirq_action *h)
  3362. {
  3363. int this_cpu = smp_processor_id();
  3364. struct rq *this_rq = cpu_rq(this_cpu);
  3365. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3366. CPU_IDLE : CPU_NOT_IDLE;
  3367. rebalance_domains(this_cpu, idle);
  3368. /*
  3369. * If this cpu has a pending nohz_balance_kick, then do the
  3370. * balancing on behalf of the other idle cpus whose ticks are
  3371. * stopped.
  3372. */
  3373. nohz_idle_balance(this_cpu, idle);
  3374. }
  3375. static inline int on_null_domain(int cpu)
  3376. {
  3377. return !rcu_dereference_sched(cpu_rq(cpu)->sd);
  3378. }
  3379. /*
  3380. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3381. */
  3382. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3383. {
  3384. /* Don't need to rebalance while attached to NULL domain */
  3385. if (time_after_eq(jiffies, rq->next_balance) &&
  3386. likely(!on_null_domain(cpu)))
  3387. raise_softirq(SCHED_SOFTIRQ);
  3388. #ifdef CONFIG_NO_HZ
  3389. else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
  3390. nohz_balancer_kick(cpu);
  3391. #endif
  3392. }
  3393. static void rq_online_fair(struct rq *rq)
  3394. {
  3395. update_sysctl();
  3396. }
  3397. static void rq_offline_fair(struct rq *rq)
  3398. {
  3399. update_sysctl();
  3400. }
  3401. #else /* CONFIG_SMP */
  3402. /*
  3403. * on UP we do not need to balance between CPUs:
  3404. */
  3405. static inline void idle_balance(int cpu, struct rq *rq)
  3406. {
  3407. }
  3408. #endif /* CONFIG_SMP */
  3409. /*
  3410. * scheduler tick hitting a task of our scheduling class:
  3411. */
  3412. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  3413. {
  3414. struct cfs_rq *cfs_rq;
  3415. struct sched_entity *se = &curr->se;
  3416. for_each_sched_entity(se) {
  3417. cfs_rq = cfs_rq_of(se);
  3418. entity_tick(cfs_rq, se, queued);
  3419. }
  3420. }
  3421. /*
  3422. * called on fork with the child task as argument from the parent's context
  3423. * - child not yet on the tasklist
  3424. * - preemption disabled
  3425. */
  3426. static void task_fork_fair(struct task_struct *p)
  3427. {
  3428. struct cfs_rq *cfs_rq = task_cfs_rq(current);
  3429. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  3430. int this_cpu = smp_processor_id();
  3431. struct rq *rq = this_rq();
  3432. unsigned long flags;
  3433. raw_spin_lock_irqsave(&rq->lock, flags);
  3434. update_rq_clock(rq);
  3435. if (unlikely(task_cpu(p) != this_cpu)) {
  3436. rcu_read_lock();
  3437. __set_task_cpu(p, this_cpu);
  3438. rcu_read_unlock();
  3439. }
  3440. update_curr(cfs_rq);
  3441. if (curr)
  3442. se->vruntime = curr->vruntime;
  3443. place_entity(cfs_rq, se, 1);
  3444. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  3445. /*
  3446. * Upon rescheduling, sched_class::put_prev_task() will place
  3447. * 'current' within the tree based on its new key value.
  3448. */
  3449. swap(curr->vruntime, se->vruntime);
  3450. resched_task(rq->curr);
  3451. }
  3452. se->vruntime -= cfs_rq->min_vruntime;
  3453. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3454. }
  3455. /*
  3456. * Priority of the task has changed. Check to see if we preempt
  3457. * the current task.
  3458. */
  3459. static void
  3460. prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
  3461. {
  3462. if (!p->se.on_rq)
  3463. return;
  3464. /*
  3465. * Reschedule if we are currently running on this runqueue and
  3466. * our priority decreased, or if we are not currently running on
  3467. * this runqueue and our priority is higher than the current's
  3468. */
  3469. if (rq->curr == p) {
  3470. if (p->prio > oldprio)
  3471. resched_task(rq->curr);
  3472. } else
  3473. check_preempt_curr(rq, p, 0);
  3474. }
  3475. static void switched_from_fair(struct rq *rq, struct task_struct *p)
  3476. {
  3477. struct sched_entity *se = &p->se;
  3478. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  3479. /*
  3480. * Ensure the task's vruntime is normalized, so that when its
  3481. * switched back to the fair class the enqueue_entity(.flags=0) will
  3482. * do the right thing.
  3483. *
  3484. * If it was on_rq, then the dequeue_entity(.flags=0) will already
  3485. * have normalized the vruntime, if it was !on_rq, then only when
  3486. * the task is sleeping will it still have non-normalized vruntime.
  3487. */
  3488. if (!se->on_rq && p->state != TASK_RUNNING) {
  3489. /*
  3490. * Fix up our vruntime so that the current sleep doesn't
  3491. * cause 'unlimited' sleep bonus.
  3492. */
  3493. place_entity(cfs_rq, se, 0);
  3494. se->vruntime -= cfs_rq->min_vruntime;
  3495. }
  3496. }
  3497. /*
  3498. * We switched to the sched_fair class.
  3499. */
  3500. static void switched_to_fair(struct rq *rq, struct task_struct *p)
  3501. {
  3502. if (!p->se.on_rq)
  3503. return;
  3504. /*
  3505. * We were most likely switched from sched_rt, so
  3506. * kick off the schedule if running, otherwise just see
  3507. * if we can still preempt the current task.
  3508. */
  3509. if (rq->curr == p)
  3510. resched_task(rq->curr);
  3511. else
  3512. check_preempt_curr(rq, p, 0);
  3513. }
  3514. /* Account for a task changing its policy or group.
  3515. *
  3516. * This routine is mostly called to set cfs_rq->curr field when a task
  3517. * migrates between groups/classes.
  3518. */
  3519. static void set_curr_task_fair(struct rq *rq)
  3520. {
  3521. struct sched_entity *se = &rq->curr->se;
  3522. for_each_sched_entity(se)
  3523. set_next_entity(cfs_rq_of(se), se);
  3524. }
  3525. #ifdef CONFIG_FAIR_GROUP_SCHED
  3526. static void task_move_group_fair(struct task_struct *p, int on_rq)
  3527. {
  3528. /*
  3529. * If the task was not on the rq at the time of this cgroup movement
  3530. * it must have been asleep, sleeping tasks keep their ->vruntime
  3531. * absolute on their old rq until wakeup (needed for the fair sleeper
  3532. * bonus in place_entity()).
  3533. *
  3534. * If it was on the rq, we've just 'preempted' it, which does convert
  3535. * ->vruntime to a relative base.
  3536. *
  3537. * Make sure both cases convert their relative position when migrating
  3538. * to another cgroup's rq. This does somewhat interfere with the
  3539. * fair sleeper stuff for the first placement, but who cares.
  3540. */
  3541. if (!on_rq)
  3542. p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
  3543. set_task_rq(p, task_cpu(p));
  3544. if (!on_rq)
  3545. p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
  3546. }
  3547. #endif
  3548. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  3549. {
  3550. struct sched_entity *se = &task->se;
  3551. unsigned int rr_interval = 0;
  3552. /*
  3553. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  3554. * idle runqueue:
  3555. */
  3556. if (rq->cfs.load.weight)
  3557. rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  3558. return rr_interval;
  3559. }
  3560. /*
  3561. * All the scheduling class methods:
  3562. */
  3563. static const struct sched_class fair_sched_class = {
  3564. .next = &idle_sched_class,
  3565. .enqueue_task = enqueue_task_fair,
  3566. .dequeue_task = dequeue_task_fair,
  3567. .yield_task = yield_task_fair,
  3568. .yield_to_task = yield_to_task_fair,
  3569. .check_preempt_curr = check_preempt_wakeup,
  3570. .pick_next_task = pick_next_task_fair,
  3571. .put_prev_task = put_prev_task_fair,
  3572. #ifdef CONFIG_SMP
  3573. .select_task_rq = select_task_rq_fair,
  3574. .rq_online = rq_online_fair,
  3575. .rq_offline = rq_offline_fair,
  3576. .task_waking = task_waking_fair,
  3577. #endif
  3578. .set_curr_task = set_curr_task_fair,
  3579. .task_tick = task_tick_fair,
  3580. .task_fork = task_fork_fair,
  3581. .prio_changed = prio_changed_fair,
  3582. .switched_from = switched_from_fair,
  3583. .switched_to = switched_to_fair,
  3584. .get_rr_interval = get_rr_interval_fair,
  3585. #ifdef CONFIG_FAIR_GROUP_SCHED
  3586. .task_move_group = task_move_group_fair,
  3587. #endif
  3588. };
  3589. #ifdef CONFIG_SCHED_DEBUG
  3590. static void print_cfs_stats(struct seq_file *m, int cpu)
  3591. {
  3592. struct cfs_rq *cfs_rq;
  3593. rcu_read_lock();
  3594. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  3595. print_cfs_rq(m, cpu, cfs_rq);
  3596. rcu_read_unlock();
  3597. }
  3598. #endif