futex.c 69 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697
  1. /*
  2. * Fast Userspace Mutexes (which I call "Futexes!").
  3. * (C) Rusty Russell, IBM 2002
  4. *
  5. * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
  6. * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
  7. *
  8. * Removed page pinning, fix privately mapped COW pages and other cleanups
  9. * (C) Copyright 2003, 2004 Jamie Lokier
  10. *
  11. * Robust futex support started by Ingo Molnar
  12. * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  13. * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  14. *
  15. * PI-futex support started by Ingo Molnar and Thomas Gleixner
  16. * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  17. * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  18. *
  19. * PRIVATE futexes by Eric Dumazet
  20. * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  21. *
  22. * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  23. * Copyright (C) IBM Corporation, 2009
  24. * Thanks to Thomas Gleixner for conceptual design and careful reviews.
  25. *
  26. * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  27. * enough at me, Linus for the original (flawed) idea, Matthew
  28. * Kirkwood for proof-of-concept implementation.
  29. *
  30. * "The futexes are also cursed."
  31. * "But they come in a choice of three flavours!"
  32. *
  33. * This program is free software; you can redistribute it and/or modify
  34. * it under the terms of the GNU General Public License as published by
  35. * the Free Software Foundation; either version 2 of the License, or
  36. * (at your option) any later version.
  37. *
  38. * This program is distributed in the hope that it will be useful,
  39. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  40. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  41. * GNU General Public License for more details.
  42. *
  43. * You should have received a copy of the GNU General Public License
  44. * along with this program; if not, write to the Free Software
  45. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  46. */
  47. #include <linux/slab.h>
  48. #include <linux/poll.h>
  49. #include <linux/fs.h>
  50. #include <linux/file.h>
  51. #include <linux/jhash.h>
  52. #include <linux/init.h>
  53. #include <linux/futex.h>
  54. #include <linux/mount.h>
  55. #include <linux/pagemap.h>
  56. #include <linux/syscalls.h>
  57. #include <linux/signal.h>
  58. #include <linux/module.h>
  59. #include <linux/magic.h>
  60. #include <linux/pid.h>
  61. #include <linux/nsproxy.h>
  62. #include <asm/futex.h>
  63. #include "rtmutex_common.h"
  64. int __read_mostly futex_cmpxchg_enabled;
  65. #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
  66. /*
  67. * Futex flags used to encode options to functions and preserve them across
  68. * restarts.
  69. */
  70. #define FLAGS_SHARED 0x01
  71. #define FLAGS_CLOCKRT 0x02
  72. #define FLAGS_HAS_TIMEOUT 0x04
  73. /*
  74. * Priority Inheritance state:
  75. */
  76. struct futex_pi_state {
  77. /*
  78. * list of 'owned' pi_state instances - these have to be
  79. * cleaned up in do_exit() if the task exits prematurely:
  80. */
  81. struct list_head list;
  82. /*
  83. * The PI object:
  84. */
  85. struct rt_mutex pi_mutex;
  86. struct task_struct *owner;
  87. atomic_t refcount;
  88. union futex_key key;
  89. };
  90. /**
  91. * struct futex_q - The hashed futex queue entry, one per waiting task
  92. * @list: priority-sorted list of tasks waiting on this futex
  93. * @task: the task waiting on the futex
  94. * @lock_ptr: the hash bucket lock
  95. * @key: the key the futex is hashed on
  96. * @pi_state: optional priority inheritance state
  97. * @rt_waiter: rt_waiter storage for use with requeue_pi
  98. * @requeue_pi_key: the requeue_pi target futex key
  99. * @bitset: bitset for the optional bitmasked wakeup
  100. *
  101. * We use this hashed waitqueue, instead of a normal wait_queue_t, so
  102. * we can wake only the relevant ones (hashed queues may be shared).
  103. *
  104. * A futex_q has a woken state, just like tasks have TASK_RUNNING.
  105. * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
  106. * The order of wakeup is always to make the first condition true, then
  107. * the second.
  108. *
  109. * PI futexes are typically woken before they are removed from the hash list via
  110. * the rt_mutex code. See unqueue_me_pi().
  111. */
  112. struct futex_q {
  113. struct plist_node list;
  114. struct task_struct *task;
  115. spinlock_t *lock_ptr;
  116. union futex_key key;
  117. struct futex_pi_state *pi_state;
  118. struct rt_mutex_waiter *rt_waiter;
  119. union futex_key *requeue_pi_key;
  120. u32 bitset;
  121. };
  122. static const struct futex_q futex_q_init = {
  123. /* list gets initialized in queue_me()*/
  124. .key = FUTEX_KEY_INIT,
  125. .bitset = FUTEX_BITSET_MATCH_ANY
  126. };
  127. /*
  128. * Hash buckets are shared by all the futex_keys that hash to the same
  129. * location. Each key may have multiple futex_q structures, one for each task
  130. * waiting on a futex.
  131. */
  132. struct futex_hash_bucket {
  133. spinlock_t lock;
  134. struct plist_head chain;
  135. };
  136. static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
  137. /*
  138. * We hash on the keys returned from get_futex_key (see below).
  139. */
  140. static struct futex_hash_bucket *hash_futex(union futex_key *key)
  141. {
  142. u32 hash = jhash2((u32*)&key->both.word,
  143. (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
  144. key->both.offset);
  145. return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
  146. }
  147. /*
  148. * Return 1 if two futex_keys are equal, 0 otherwise.
  149. */
  150. static inline int match_futex(union futex_key *key1, union futex_key *key2)
  151. {
  152. return (key1 && key2
  153. && key1->both.word == key2->both.word
  154. && key1->both.ptr == key2->both.ptr
  155. && key1->both.offset == key2->both.offset);
  156. }
  157. /*
  158. * Take a reference to the resource addressed by a key.
  159. * Can be called while holding spinlocks.
  160. *
  161. */
  162. static void get_futex_key_refs(union futex_key *key)
  163. {
  164. if (!key->both.ptr)
  165. return;
  166. switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  167. case FUT_OFF_INODE:
  168. ihold(key->shared.inode);
  169. break;
  170. case FUT_OFF_MMSHARED:
  171. atomic_inc(&key->private.mm->mm_count);
  172. break;
  173. }
  174. }
  175. /*
  176. * Drop a reference to the resource addressed by a key.
  177. * The hash bucket spinlock must not be held.
  178. */
  179. static void drop_futex_key_refs(union futex_key *key)
  180. {
  181. if (!key->both.ptr) {
  182. /* If we're here then we tried to put a key we failed to get */
  183. WARN_ON_ONCE(1);
  184. return;
  185. }
  186. switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  187. case FUT_OFF_INODE:
  188. iput(key->shared.inode);
  189. break;
  190. case FUT_OFF_MMSHARED:
  191. mmdrop(key->private.mm);
  192. break;
  193. }
  194. }
  195. /**
  196. * get_futex_key() - Get parameters which are the keys for a futex
  197. * @uaddr: virtual address of the futex
  198. * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
  199. * @key: address where result is stored.
  200. *
  201. * Returns a negative error code or 0
  202. * The key words are stored in *key on success.
  203. *
  204. * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
  205. * offset_within_page). For private mappings, it's (uaddr, current->mm).
  206. * We can usually work out the index without swapping in the page.
  207. *
  208. * lock_page() might sleep, the caller should not hold a spinlock.
  209. */
  210. static int
  211. get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
  212. {
  213. unsigned long address = (unsigned long)uaddr;
  214. struct mm_struct *mm = current->mm;
  215. struct page *page, *page_head;
  216. int err;
  217. /*
  218. * The futex address must be "naturally" aligned.
  219. */
  220. key->both.offset = address % PAGE_SIZE;
  221. if (unlikely((address % sizeof(u32)) != 0))
  222. return -EINVAL;
  223. address -= key->both.offset;
  224. /*
  225. * PROCESS_PRIVATE futexes are fast.
  226. * As the mm cannot disappear under us and the 'key' only needs
  227. * virtual address, we dont even have to find the underlying vma.
  228. * Note : We do have to check 'uaddr' is a valid user address,
  229. * but access_ok() should be faster than find_vma()
  230. */
  231. if (!fshared) {
  232. if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
  233. return -EFAULT;
  234. key->private.mm = mm;
  235. key->private.address = address;
  236. get_futex_key_refs(key);
  237. return 0;
  238. }
  239. again:
  240. err = get_user_pages_fast(address, 1, 1, &page);
  241. if (err < 0)
  242. return err;
  243. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  244. page_head = page;
  245. if (unlikely(PageTail(page))) {
  246. put_page(page);
  247. /* serialize against __split_huge_page_splitting() */
  248. local_irq_disable();
  249. if (likely(__get_user_pages_fast(address, 1, 1, &page) == 1)) {
  250. page_head = compound_head(page);
  251. /*
  252. * page_head is valid pointer but we must pin
  253. * it before taking the PG_lock and/or
  254. * PG_compound_lock. The moment we re-enable
  255. * irqs __split_huge_page_splitting() can
  256. * return and the head page can be freed from
  257. * under us. We can't take the PG_lock and/or
  258. * PG_compound_lock on a page that could be
  259. * freed from under us.
  260. */
  261. if (page != page_head) {
  262. get_page(page_head);
  263. put_page(page);
  264. }
  265. local_irq_enable();
  266. } else {
  267. local_irq_enable();
  268. goto again;
  269. }
  270. }
  271. #else
  272. page_head = compound_head(page);
  273. if (page != page_head) {
  274. get_page(page_head);
  275. put_page(page);
  276. }
  277. #endif
  278. lock_page(page_head);
  279. if (!page_head->mapping) {
  280. unlock_page(page_head);
  281. put_page(page_head);
  282. goto again;
  283. }
  284. /*
  285. * Private mappings are handled in a simple way.
  286. *
  287. * NOTE: When userspace waits on a MAP_SHARED mapping, even if
  288. * it's a read-only handle, it's expected that futexes attach to
  289. * the object not the particular process.
  290. */
  291. if (PageAnon(page_head)) {
  292. key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
  293. key->private.mm = mm;
  294. key->private.address = address;
  295. } else {
  296. key->both.offset |= FUT_OFF_INODE; /* inode-based key */
  297. key->shared.inode = page_head->mapping->host;
  298. key->shared.pgoff = page_head->index;
  299. }
  300. get_futex_key_refs(key);
  301. unlock_page(page_head);
  302. put_page(page_head);
  303. return 0;
  304. }
  305. static inline void put_futex_key(union futex_key *key)
  306. {
  307. drop_futex_key_refs(key);
  308. }
  309. /**
  310. * fault_in_user_writeable() - Fault in user address and verify RW access
  311. * @uaddr: pointer to faulting user space address
  312. *
  313. * Slow path to fixup the fault we just took in the atomic write
  314. * access to @uaddr.
  315. *
  316. * We have no generic implementation of a non-destructive write to the
  317. * user address. We know that we faulted in the atomic pagefault
  318. * disabled section so we can as well avoid the #PF overhead by
  319. * calling get_user_pages() right away.
  320. */
  321. static int fault_in_user_writeable(u32 __user *uaddr)
  322. {
  323. struct mm_struct *mm = current->mm;
  324. int ret;
  325. down_read(&mm->mmap_sem);
  326. ret = get_user_pages(current, mm, (unsigned long)uaddr,
  327. 1, 1, 0, NULL, NULL);
  328. up_read(&mm->mmap_sem);
  329. return ret < 0 ? ret : 0;
  330. }
  331. /**
  332. * futex_top_waiter() - Return the highest priority waiter on a futex
  333. * @hb: the hash bucket the futex_q's reside in
  334. * @key: the futex key (to distinguish it from other futex futex_q's)
  335. *
  336. * Must be called with the hb lock held.
  337. */
  338. static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
  339. union futex_key *key)
  340. {
  341. struct futex_q *this;
  342. plist_for_each_entry(this, &hb->chain, list) {
  343. if (match_futex(&this->key, key))
  344. return this;
  345. }
  346. return NULL;
  347. }
  348. static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
  349. u32 uval, u32 newval)
  350. {
  351. int ret;
  352. pagefault_disable();
  353. ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
  354. pagefault_enable();
  355. return ret;
  356. }
  357. static int get_futex_value_locked(u32 *dest, u32 __user *from)
  358. {
  359. int ret;
  360. pagefault_disable();
  361. ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
  362. pagefault_enable();
  363. return ret ? -EFAULT : 0;
  364. }
  365. /*
  366. * PI code:
  367. */
  368. static int refill_pi_state_cache(void)
  369. {
  370. struct futex_pi_state *pi_state;
  371. if (likely(current->pi_state_cache))
  372. return 0;
  373. pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
  374. if (!pi_state)
  375. return -ENOMEM;
  376. INIT_LIST_HEAD(&pi_state->list);
  377. /* pi_mutex gets initialized later */
  378. pi_state->owner = NULL;
  379. atomic_set(&pi_state->refcount, 1);
  380. pi_state->key = FUTEX_KEY_INIT;
  381. current->pi_state_cache = pi_state;
  382. return 0;
  383. }
  384. static struct futex_pi_state * alloc_pi_state(void)
  385. {
  386. struct futex_pi_state *pi_state = current->pi_state_cache;
  387. WARN_ON(!pi_state);
  388. current->pi_state_cache = NULL;
  389. return pi_state;
  390. }
  391. static void free_pi_state(struct futex_pi_state *pi_state)
  392. {
  393. if (!atomic_dec_and_test(&pi_state->refcount))
  394. return;
  395. /*
  396. * If pi_state->owner is NULL, the owner is most probably dying
  397. * and has cleaned up the pi_state already
  398. */
  399. if (pi_state->owner) {
  400. raw_spin_lock_irq(&pi_state->owner->pi_lock);
  401. list_del_init(&pi_state->list);
  402. raw_spin_unlock_irq(&pi_state->owner->pi_lock);
  403. rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
  404. }
  405. if (current->pi_state_cache)
  406. kfree(pi_state);
  407. else {
  408. /*
  409. * pi_state->list is already empty.
  410. * clear pi_state->owner.
  411. * refcount is at 0 - put it back to 1.
  412. */
  413. pi_state->owner = NULL;
  414. atomic_set(&pi_state->refcount, 1);
  415. current->pi_state_cache = pi_state;
  416. }
  417. }
  418. /*
  419. * Look up the task based on what TID userspace gave us.
  420. * We dont trust it.
  421. */
  422. static struct task_struct * futex_find_get_task(pid_t pid)
  423. {
  424. struct task_struct *p;
  425. rcu_read_lock();
  426. p = find_task_by_vpid(pid);
  427. if (p)
  428. get_task_struct(p);
  429. rcu_read_unlock();
  430. return p;
  431. }
  432. /*
  433. * This task is holding PI mutexes at exit time => bad.
  434. * Kernel cleans up PI-state, but userspace is likely hosed.
  435. * (Robust-futex cleanup is separate and might save the day for userspace.)
  436. */
  437. void exit_pi_state_list(struct task_struct *curr)
  438. {
  439. struct list_head *next, *head = &curr->pi_state_list;
  440. struct futex_pi_state *pi_state;
  441. struct futex_hash_bucket *hb;
  442. union futex_key key = FUTEX_KEY_INIT;
  443. if (!futex_cmpxchg_enabled)
  444. return;
  445. /*
  446. * We are a ZOMBIE and nobody can enqueue itself on
  447. * pi_state_list anymore, but we have to be careful
  448. * versus waiters unqueueing themselves:
  449. */
  450. raw_spin_lock_irq(&curr->pi_lock);
  451. while (!list_empty(head)) {
  452. next = head->next;
  453. pi_state = list_entry(next, struct futex_pi_state, list);
  454. key = pi_state->key;
  455. hb = hash_futex(&key);
  456. raw_spin_unlock_irq(&curr->pi_lock);
  457. spin_lock(&hb->lock);
  458. raw_spin_lock_irq(&curr->pi_lock);
  459. /*
  460. * We dropped the pi-lock, so re-check whether this
  461. * task still owns the PI-state:
  462. */
  463. if (head->next != next) {
  464. spin_unlock(&hb->lock);
  465. continue;
  466. }
  467. WARN_ON(pi_state->owner != curr);
  468. WARN_ON(list_empty(&pi_state->list));
  469. list_del_init(&pi_state->list);
  470. pi_state->owner = NULL;
  471. raw_spin_unlock_irq(&curr->pi_lock);
  472. rt_mutex_unlock(&pi_state->pi_mutex);
  473. spin_unlock(&hb->lock);
  474. raw_spin_lock_irq(&curr->pi_lock);
  475. }
  476. raw_spin_unlock_irq(&curr->pi_lock);
  477. }
  478. static int
  479. lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
  480. union futex_key *key, struct futex_pi_state **ps)
  481. {
  482. struct futex_pi_state *pi_state = NULL;
  483. struct futex_q *this, *next;
  484. struct plist_head *head;
  485. struct task_struct *p;
  486. pid_t pid = uval & FUTEX_TID_MASK;
  487. head = &hb->chain;
  488. plist_for_each_entry_safe(this, next, head, list) {
  489. if (match_futex(&this->key, key)) {
  490. /*
  491. * Another waiter already exists - bump up
  492. * the refcount and return its pi_state:
  493. */
  494. pi_state = this->pi_state;
  495. /*
  496. * Userspace might have messed up non-PI and PI futexes
  497. */
  498. if (unlikely(!pi_state))
  499. return -EINVAL;
  500. WARN_ON(!atomic_read(&pi_state->refcount));
  501. /*
  502. * When pi_state->owner is NULL then the owner died
  503. * and another waiter is on the fly. pi_state->owner
  504. * is fixed up by the task which acquires
  505. * pi_state->rt_mutex.
  506. *
  507. * We do not check for pid == 0 which can happen when
  508. * the owner died and robust_list_exit() cleared the
  509. * TID.
  510. */
  511. if (pid && pi_state->owner) {
  512. /*
  513. * Bail out if user space manipulated the
  514. * futex value.
  515. */
  516. if (pid != task_pid_vnr(pi_state->owner))
  517. return -EINVAL;
  518. }
  519. atomic_inc(&pi_state->refcount);
  520. *ps = pi_state;
  521. return 0;
  522. }
  523. }
  524. /*
  525. * We are the first waiter - try to look up the real owner and attach
  526. * the new pi_state to it, but bail out when TID = 0
  527. */
  528. if (!pid)
  529. return -ESRCH;
  530. p = futex_find_get_task(pid);
  531. if (!p)
  532. return -ESRCH;
  533. /*
  534. * We need to look at the task state flags to figure out,
  535. * whether the task is exiting. To protect against the do_exit
  536. * change of the task flags, we do this protected by
  537. * p->pi_lock:
  538. */
  539. raw_spin_lock_irq(&p->pi_lock);
  540. if (unlikely(p->flags & PF_EXITING)) {
  541. /*
  542. * The task is on the way out. When PF_EXITPIDONE is
  543. * set, we know that the task has finished the
  544. * cleanup:
  545. */
  546. int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
  547. raw_spin_unlock_irq(&p->pi_lock);
  548. put_task_struct(p);
  549. return ret;
  550. }
  551. pi_state = alloc_pi_state();
  552. /*
  553. * Initialize the pi_mutex in locked state and make 'p'
  554. * the owner of it:
  555. */
  556. rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
  557. /* Store the key for possible exit cleanups: */
  558. pi_state->key = *key;
  559. WARN_ON(!list_empty(&pi_state->list));
  560. list_add(&pi_state->list, &p->pi_state_list);
  561. pi_state->owner = p;
  562. raw_spin_unlock_irq(&p->pi_lock);
  563. put_task_struct(p);
  564. *ps = pi_state;
  565. return 0;
  566. }
  567. /**
  568. * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
  569. * @uaddr: the pi futex user address
  570. * @hb: the pi futex hash bucket
  571. * @key: the futex key associated with uaddr and hb
  572. * @ps: the pi_state pointer where we store the result of the
  573. * lookup
  574. * @task: the task to perform the atomic lock work for. This will
  575. * be "current" except in the case of requeue pi.
  576. * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
  577. *
  578. * Returns:
  579. * 0 - ready to wait
  580. * 1 - acquired the lock
  581. * <0 - error
  582. *
  583. * The hb->lock and futex_key refs shall be held by the caller.
  584. */
  585. static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
  586. union futex_key *key,
  587. struct futex_pi_state **ps,
  588. struct task_struct *task, int set_waiters)
  589. {
  590. int lock_taken, ret, ownerdied = 0;
  591. u32 uval, newval, curval, vpid = task_pid_vnr(task);
  592. retry:
  593. ret = lock_taken = 0;
  594. /*
  595. * To avoid races, we attempt to take the lock here again
  596. * (by doing a 0 -> TID atomic cmpxchg), while holding all
  597. * the locks. It will most likely not succeed.
  598. */
  599. newval = vpid;
  600. if (set_waiters)
  601. newval |= FUTEX_WAITERS;
  602. if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
  603. return -EFAULT;
  604. /*
  605. * Detect deadlocks.
  606. */
  607. if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
  608. return -EDEADLK;
  609. /*
  610. * Surprise - we got the lock. Just return to userspace:
  611. */
  612. if (unlikely(!curval))
  613. return 1;
  614. uval = curval;
  615. /*
  616. * Set the FUTEX_WAITERS flag, so the owner will know it has someone
  617. * to wake at the next unlock.
  618. */
  619. newval = curval | FUTEX_WAITERS;
  620. /*
  621. * There are two cases, where a futex might have no owner (the
  622. * owner TID is 0): OWNER_DIED. We take over the futex in this
  623. * case. We also do an unconditional take over, when the owner
  624. * of the futex died.
  625. *
  626. * This is safe as we are protected by the hash bucket lock !
  627. */
  628. if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
  629. /* Keep the OWNER_DIED bit */
  630. newval = (curval & ~FUTEX_TID_MASK) | vpid;
  631. ownerdied = 0;
  632. lock_taken = 1;
  633. }
  634. if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
  635. return -EFAULT;
  636. if (unlikely(curval != uval))
  637. goto retry;
  638. /*
  639. * We took the lock due to owner died take over.
  640. */
  641. if (unlikely(lock_taken))
  642. return 1;
  643. /*
  644. * We dont have the lock. Look up the PI state (or create it if
  645. * we are the first waiter):
  646. */
  647. ret = lookup_pi_state(uval, hb, key, ps);
  648. if (unlikely(ret)) {
  649. switch (ret) {
  650. case -ESRCH:
  651. /*
  652. * No owner found for this futex. Check if the
  653. * OWNER_DIED bit is set to figure out whether
  654. * this is a robust futex or not.
  655. */
  656. if (get_futex_value_locked(&curval, uaddr))
  657. return -EFAULT;
  658. /*
  659. * We simply start over in case of a robust
  660. * futex. The code above will take the futex
  661. * and return happy.
  662. */
  663. if (curval & FUTEX_OWNER_DIED) {
  664. ownerdied = 1;
  665. goto retry;
  666. }
  667. default:
  668. break;
  669. }
  670. }
  671. return ret;
  672. }
  673. /**
  674. * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
  675. * @q: The futex_q to unqueue
  676. *
  677. * The q->lock_ptr must not be NULL and must be held by the caller.
  678. */
  679. static void __unqueue_futex(struct futex_q *q)
  680. {
  681. struct futex_hash_bucket *hb;
  682. if (WARN_ON(!q->lock_ptr || !spin_is_locked(q->lock_ptr)
  683. || plist_node_empty(&q->list)))
  684. return;
  685. hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
  686. plist_del(&q->list, &hb->chain);
  687. }
  688. /*
  689. * The hash bucket lock must be held when this is called.
  690. * Afterwards, the futex_q must not be accessed.
  691. */
  692. static void wake_futex(struct futex_q *q)
  693. {
  694. struct task_struct *p = q->task;
  695. /*
  696. * We set q->lock_ptr = NULL _before_ we wake up the task. If
  697. * a non-futex wake up happens on another CPU then the task
  698. * might exit and p would dereference a non-existing task
  699. * struct. Prevent this by holding a reference on p across the
  700. * wake up.
  701. */
  702. get_task_struct(p);
  703. __unqueue_futex(q);
  704. /*
  705. * The waiting task can free the futex_q as soon as
  706. * q->lock_ptr = NULL is written, without taking any locks. A
  707. * memory barrier is required here to prevent the following
  708. * store to lock_ptr from getting ahead of the plist_del.
  709. */
  710. smp_wmb();
  711. q->lock_ptr = NULL;
  712. wake_up_state(p, TASK_NORMAL);
  713. put_task_struct(p);
  714. }
  715. static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
  716. {
  717. struct task_struct *new_owner;
  718. struct futex_pi_state *pi_state = this->pi_state;
  719. u32 curval, newval;
  720. if (!pi_state)
  721. return -EINVAL;
  722. /*
  723. * If current does not own the pi_state then the futex is
  724. * inconsistent and user space fiddled with the futex value.
  725. */
  726. if (pi_state->owner != current)
  727. return -EINVAL;
  728. raw_spin_lock(&pi_state->pi_mutex.wait_lock);
  729. new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
  730. /*
  731. * It is possible that the next waiter (the one that brought
  732. * this owner to the kernel) timed out and is no longer
  733. * waiting on the lock.
  734. */
  735. if (!new_owner)
  736. new_owner = this->task;
  737. /*
  738. * We pass it to the next owner. (The WAITERS bit is always
  739. * kept enabled while there is PI state around. We must also
  740. * preserve the owner died bit.)
  741. */
  742. if (!(uval & FUTEX_OWNER_DIED)) {
  743. int ret = 0;
  744. newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
  745. if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
  746. ret = -EFAULT;
  747. else if (curval != uval)
  748. ret = -EINVAL;
  749. if (ret) {
  750. raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
  751. return ret;
  752. }
  753. }
  754. raw_spin_lock_irq(&pi_state->owner->pi_lock);
  755. WARN_ON(list_empty(&pi_state->list));
  756. list_del_init(&pi_state->list);
  757. raw_spin_unlock_irq(&pi_state->owner->pi_lock);
  758. raw_spin_lock_irq(&new_owner->pi_lock);
  759. WARN_ON(!list_empty(&pi_state->list));
  760. list_add(&pi_state->list, &new_owner->pi_state_list);
  761. pi_state->owner = new_owner;
  762. raw_spin_unlock_irq(&new_owner->pi_lock);
  763. raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
  764. rt_mutex_unlock(&pi_state->pi_mutex);
  765. return 0;
  766. }
  767. static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
  768. {
  769. u32 oldval;
  770. /*
  771. * There is no waiter, so we unlock the futex. The owner died
  772. * bit has not to be preserved here. We are the owner:
  773. */
  774. if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
  775. return -EFAULT;
  776. if (oldval != uval)
  777. return -EAGAIN;
  778. return 0;
  779. }
  780. /*
  781. * Express the locking dependencies for lockdep:
  782. */
  783. static inline void
  784. double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  785. {
  786. if (hb1 <= hb2) {
  787. spin_lock(&hb1->lock);
  788. if (hb1 < hb2)
  789. spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
  790. } else { /* hb1 > hb2 */
  791. spin_lock(&hb2->lock);
  792. spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
  793. }
  794. }
  795. static inline void
  796. double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  797. {
  798. spin_unlock(&hb1->lock);
  799. if (hb1 != hb2)
  800. spin_unlock(&hb2->lock);
  801. }
  802. /*
  803. * Wake up waiters matching bitset queued on this futex (uaddr).
  804. */
  805. static int
  806. futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
  807. {
  808. struct futex_hash_bucket *hb;
  809. struct futex_q *this, *next;
  810. struct plist_head *head;
  811. union futex_key key = FUTEX_KEY_INIT;
  812. int ret;
  813. if (!bitset)
  814. return -EINVAL;
  815. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key);
  816. if (unlikely(ret != 0))
  817. goto out;
  818. hb = hash_futex(&key);
  819. spin_lock(&hb->lock);
  820. head = &hb->chain;
  821. plist_for_each_entry_safe(this, next, head, list) {
  822. if (match_futex (&this->key, &key)) {
  823. if (this->pi_state || this->rt_waiter) {
  824. ret = -EINVAL;
  825. break;
  826. }
  827. /* Check if one of the bits is set in both bitsets */
  828. if (!(this->bitset & bitset))
  829. continue;
  830. wake_futex(this);
  831. if (++ret >= nr_wake)
  832. break;
  833. }
  834. }
  835. spin_unlock(&hb->lock);
  836. put_futex_key(&key);
  837. out:
  838. return ret;
  839. }
  840. /*
  841. * Wake up all waiters hashed on the physical page that is mapped
  842. * to this virtual address:
  843. */
  844. static int
  845. futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
  846. int nr_wake, int nr_wake2, int op)
  847. {
  848. union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
  849. struct futex_hash_bucket *hb1, *hb2;
  850. struct plist_head *head;
  851. struct futex_q *this, *next;
  852. int ret, op_ret;
  853. retry:
  854. ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1);
  855. if (unlikely(ret != 0))
  856. goto out;
  857. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
  858. if (unlikely(ret != 0))
  859. goto out_put_key1;
  860. hb1 = hash_futex(&key1);
  861. hb2 = hash_futex(&key2);
  862. retry_private:
  863. double_lock_hb(hb1, hb2);
  864. op_ret = futex_atomic_op_inuser(op, uaddr2);
  865. if (unlikely(op_ret < 0)) {
  866. double_unlock_hb(hb1, hb2);
  867. #ifndef CONFIG_MMU
  868. /*
  869. * we don't get EFAULT from MMU faults if we don't have an MMU,
  870. * but we might get them from range checking
  871. */
  872. ret = op_ret;
  873. goto out_put_keys;
  874. #endif
  875. if (unlikely(op_ret != -EFAULT)) {
  876. ret = op_ret;
  877. goto out_put_keys;
  878. }
  879. ret = fault_in_user_writeable(uaddr2);
  880. if (ret)
  881. goto out_put_keys;
  882. if (!(flags & FLAGS_SHARED))
  883. goto retry_private;
  884. put_futex_key(&key2);
  885. put_futex_key(&key1);
  886. goto retry;
  887. }
  888. head = &hb1->chain;
  889. plist_for_each_entry_safe(this, next, head, list) {
  890. if (match_futex (&this->key, &key1)) {
  891. wake_futex(this);
  892. if (++ret >= nr_wake)
  893. break;
  894. }
  895. }
  896. if (op_ret > 0) {
  897. head = &hb2->chain;
  898. op_ret = 0;
  899. plist_for_each_entry_safe(this, next, head, list) {
  900. if (match_futex (&this->key, &key2)) {
  901. wake_futex(this);
  902. if (++op_ret >= nr_wake2)
  903. break;
  904. }
  905. }
  906. ret += op_ret;
  907. }
  908. double_unlock_hb(hb1, hb2);
  909. out_put_keys:
  910. put_futex_key(&key2);
  911. out_put_key1:
  912. put_futex_key(&key1);
  913. out:
  914. return ret;
  915. }
  916. /**
  917. * requeue_futex() - Requeue a futex_q from one hb to another
  918. * @q: the futex_q to requeue
  919. * @hb1: the source hash_bucket
  920. * @hb2: the target hash_bucket
  921. * @key2: the new key for the requeued futex_q
  922. */
  923. static inline
  924. void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
  925. struct futex_hash_bucket *hb2, union futex_key *key2)
  926. {
  927. /*
  928. * If key1 and key2 hash to the same bucket, no need to
  929. * requeue.
  930. */
  931. if (likely(&hb1->chain != &hb2->chain)) {
  932. plist_del(&q->list, &hb1->chain);
  933. plist_add(&q->list, &hb2->chain);
  934. q->lock_ptr = &hb2->lock;
  935. }
  936. get_futex_key_refs(key2);
  937. q->key = *key2;
  938. }
  939. /**
  940. * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
  941. * @q: the futex_q
  942. * @key: the key of the requeue target futex
  943. * @hb: the hash_bucket of the requeue target futex
  944. *
  945. * During futex_requeue, with requeue_pi=1, it is possible to acquire the
  946. * target futex if it is uncontended or via a lock steal. Set the futex_q key
  947. * to the requeue target futex so the waiter can detect the wakeup on the right
  948. * futex, but remove it from the hb and NULL the rt_waiter so it can detect
  949. * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
  950. * to protect access to the pi_state to fixup the owner later. Must be called
  951. * with both q->lock_ptr and hb->lock held.
  952. */
  953. static inline
  954. void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
  955. struct futex_hash_bucket *hb)
  956. {
  957. get_futex_key_refs(key);
  958. q->key = *key;
  959. __unqueue_futex(q);
  960. WARN_ON(!q->rt_waiter);
  961. q->rt_waiter = NULL;
  962. q->lock_ptr = &hb->lock;
  963. wake_up_state(q->task, TASK_NORMAL);
  964. }
  965. /**
  966. * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
  967. * @pifutex: the user address of the to futex
  968. * @hb1: the from futex hash bucket, must be locked by the caller
  969. * @hb2: the to futex hash bucket, must be locked by the caller
  970. * @key1: the from futex key
  971. * @key2: the to futex key
  972. * @ps: address to store the pi_state pointer
  973. * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
  974. *
  975. * Try and get the lock on behalf of the top waiter if we can do it atomically.
  976. * Wake the top waiter if we succeed. If the caller specified set_waiters,
  977. * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
  978. * hb1 and hb2 must be held by the caller.
  979. *
  980. * Returns:
  981. * 0 - failed to acquire the lock atomicly
  982. * 1 - acquired the lock
  983. * <0 - error
  984. */
  985. static int futex_proxy_trylock_atomic(u32 __user *pifutex,
  986. struct futex_hash_bucket *hb1,
  987. struct futex_hash_bucket *hb2,
  988. union futex_key *key1, union futex_key *key2,
  989. struct futex_pi_state **ps, int set_waiters)
  990. {
  991. struct futex_q *top_waiter = NULL;
  992. u32 curval;
  993. int ret;
  994. if (get_futex_value_locked(&curval, pifutex))
  995. return -EFAULT;
  996. /*
  997. * Find the top_waiter and determine if there are additional waiters.
  998. * If the caller intends to requeue more than 1 waiter to pifutex,
  999. * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
  1000. * as we have means to handle the possible fault. If not, don't set
  1001. * the bit unecessarily as it will force the subsequent unlock to enter
  1002. * the kernel.
  1003. */
  1004. top_waiter = futex_top_waiter(hb1, key1);
  1005. /* There are no waiters, nothing for us to do. */
  1006. if (!top_waiter)
  1007. return 0;
  1008. /* Ensure we requeue to the expected futex. */
  1009. if (!match_futex(top_waiter->requeue_pi_key, key2))
  1010. return -EINVAL;
  1011. /*
  1012. * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
  1013. * the contended case or if set_waiters is 1. The pi_state is returned
  1014. * in ps in contended cases.
  1015. */
  1016. ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
  1017. set_waiters);
  1018. if (ret == 1)
  1019. requeue_pi_wake_futex(top_waiter, key2, hb2);
  1020. return ret;
  1021. }
  1022. /**
  1023. * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
  1024. * @uaddr1: source futex user address
  1025. * @flags: futex flags (FLAGS_SHARED, etc.)
  1026. * @uaddr2: target futex user address
  1027. * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
  1028. * @nr_requeue: number of waiters to requeue (0-INT_MAX)
  1029. * @cmpval: @uaddr1 expected value (or %NULL)
  1030. * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
  1031. * pi futex (pi to pi requeue is not supported)
  1032. *
  1033. * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
  1034. * uaddr2 atomically on behalf of the top waiter.
  1035. *
  1036. * Returns:
  1037. * >=0 - on success, the number of tasks requeued or woken
  1038. * <0 - on error
  1039. */
  1040. static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
  1041. u32 __user *uaddr2, int nr_wake, int nr_requeue,
  1042. u32 *cmpval, int requeue_pi)
  1043. {
  1044. union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
  1045. int drop_count = 0, task_count = 0, ret;
  1046. struct futex_pi_state *pi_state = NULL;
  1047. struct futex_hash_bucket *hb1, *hb2;
  1048. struct plist_head *head1;
  1049. struct futex_q *this, *next;
  1050. u32 curval2;
  1051. if (requeue_pi) {
  1052. /*
  1053. * requeue_pi requires a pi_state, try to allocate it now
  1054. * without any locks in case it fails.
  1055. */
  1056. if (refill_pi_state_cache())
  1057. return -ENOMEM;
  1058. /*
  1059. * requeue_pi must wake as many tasks as it can, up to nr_wake
  1060. * + nr_requeue, since it acquires the rt_mutex prior to
  1061. * returning to userspace, so as to not leave the rt_mutex with
  1062. * waiters and no owner. However, second and third wake-ups
  1063. * cannot be predicted as they involve race conditions with the
  1064. * first wake and a fault while looking up the pi_state. Both
  1065. * pthread_cond_signal() and pthread_cond_broadcast() should
  1066. * use nr_wake=1.
  1067. */
  1068. if (nr_wake != 1)
  1069. return -EINVAL;
  1070. }
  1071. retry:
  1072. if (pi_state != NULL) {
  1073. /*
  1074. * We will have to lookup the pi_state again, so free this one
  1075. * to keep the accounting correct.
  1076. */
  1077. free_pi_state(pi_state);
  1078. pi_state = NULL;
  1079. }
  1080. ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1);
  1081. if (unlikely(ret != 0))
  1082. goto out;
  1083. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
  1084. if (unlikely(ret != 0))
  1085. goto out_put_key1;
  1086. hb1 = hash_futex(&key1);
  1087. hb2 = hash_futex(&key2);
  1088. retry_private:
  1089. double_lock_hb(hb1, hb2);
  1090. if (likely(cmpval != NULL)) {
  1091. u32 curval;
  1092. ret = get_futex_value_locked(&curval, uaddr1);
  1093. if (unlikely(ret)) {
  1094. double_unlock_hb(hb1, hb2);
  1095. ret = get_user(curval, uaddr1);
  1096. if (ret)
  1097. goto out_put_keys;
  1098. if (!(flags & FLAGS_SHARED))
  1099. goto retry_private;
  1100. put_futex_key(&key2);
  1101. put_futex_key(&key1);
  1102. goto retry;
  1103. }
  1104. if (curval != *cmpval) {
  1105. ret = -EAGAIN;
  1106. goto out_unlock;
  1107. }
  1108. }
  1109. if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
  1110. /*
  1111. * Attempt to acquire uaddr2 and wake the top waiter. If we
  1112. * intend to requeue waiters, force setting the FUTEX_WAITERS
  1113. * bit. We force this here where we are able to easily handle
  1114. * faults rather in the requeue loop below.
  1115. */
  1116. ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
  1117. &key2, &pi_state, nr_requeue);
  1118. /*
  1119. * At this point the top_waiter has either taken uaddr2 or is
  1120. * waiting on it. If the former, then the pi_state will not
  1121. * exist yet, look it up one more time to ensure we have a
  1122. * reference to it.
  1123. */
  1124. if (ret == 1) {
  1125. WARN_ON(pi_state);
  1126. drop_count++;
  1127. task_count++;
  1128. ret = get_futex_value_locked(&curval2, uaddr2);
  1129. if (!ret)
  1130. ret = lookup_pi_state(curval2, hb2, &key2,
  1131. &pi_state);
  1132. }
  1133. switch (ret) {
  1134. case 0:
  1135. break;
  1136. case -EFAULT:
  1137. double_unlock_hb(hb1, hb2);
  1138. put_futex_key(&key2);
  1139. put_futex_key(&key1);
  1140. ret = fault_in_user_writeable(uaddr2);
  1141. if (!ret)
  1142. goto retry;
  1143. goto out;
  1144. case -EAGAIN:
  1145. /* The owner was exiting, try again. */
  1146. double_unlock_hb(hb1, hb2);
  1147. put_futex_key(&key2);
  1148. put_futex_key(&key1);
  1149. cond_resched();
  1150. goto retry;
  1151. default:
  1152. goto out_unlock;
  1153. }
  1154. }
  1155. head1 = &hb1->chain;
  1156. plist_for_each_entry_safe(this, next, head1, list) {
  1157. if (task_count - nr_wake >= nr_requeue)
  1158. break;
  1159. if (!match_futex(&this->key, &key1))
  1160. continue;
  1161. /*
  1162. * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
  1163. * be paired with each other and no other futex ops.
  1164. */
  1165. if ((requeue_pi && !this->rt_waiter) ||
  1166. (!requeue_pi && this->rt_waiter)) {
  1167. ret = -EINVAL;
  1168. break;
  1169. }
  1170. /*
  1171. * Wake nr_wake waiters. For requeue_pi, if we acquired the
  1172. * lock, we already woke the top_waiter. If not, it will be
  1173. * woken by futex_unlock_pi().
  1174. */
  1175. if (++task_count <= nr_wake && !requeue_pi) {
  1176. wake_futex(this);
  1177. continue;
  1178. }
  1179. /* Ensure we requeue to the expected futex for requeue_pi. */
  1180. if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
  1181. ret = -EINVAL;
  1182. break;
  1183. }
  1184. /*
  1185. * Requeue nr_requeue waiters and possibly one more in the case
  1186. * of requeue_pi if we couldn't acquire the lock atomically.
  1187. */
  1188. if (requeue_pi) {
  1189. /* Prepare the waiter to take the rt_mutex. */
  1190. atomic_inc(&pi_state->refcount);
  1191. this->pi_state = pi_state;
  1192. ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
  1193. this->rt_waiter,
  1194. this->task, 1);
  1195. if (ret == 1) {
  1196. /* We got the lock. */
  1197. requeue_pi_wake_futex(this, &key2, hb2);
  1198. drop_count++;
  1199. continue;
  1200. } else if (ret) {
  1201. /* -EDEADLK */
  1202. this->pi_state = NULL;
  1203. free_pi_state(pi_state);
  1204. goto out_unlock;
  1205. }
  1206. }
  1207. requeue_futex(this, hb1, hb2, &key2);
  1208. drop_count++;
  1209. }
  1210. out_unlock:
  1211. double_unlock_hb(hb1, hb2);
  1212. /*
  1213. * drop_futex_key_refs() must be called outside the spinlocks. During
  1214. * the requeue we moved futex_q's from the hash bucket at key1 to the
  1215. * one at key2 and updated their key pointer. We no longer need to
  1216. * hold the references to key1.
  1217. */
  1218. while (--drop_count >= 0)
  1219. drop_futex_key_refs(&key1);
  1220. out_put_keys:
  1221. put_futex_key(&key2);
  1222. out_put_key1:
  1223. put_futex_key(&key1);
  1224. out:
  1225. if (pi_state != NULL)
  1226. free_pi_state(pi_state);
  1227. return ret ? ret : task_count;
  1228. }
  1229. /* The key must be already stored in q->key. */
  1230. static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
  1231. __acquires(&hb->lock)
  1232. {
  1233. struct futex_hash_bucket *hb;
  1234. hb = hash_futex(&q->key);
  1235. q->lock_ptr = &hb->lock;
  1236. spin_lock(&hb->lock);
  1237. return hb;
  1238. }
  1239. static inline void
  1240. queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
  1241. __releases(&hb->lock)
  1242. {
  1243. spin_unlock(&hb->lock);
  1244. }
  1245. /**
  1246. * queue_me() - Enqueue the futex_q on the futex_hash_bucket
  1247. * @q: The futex_q to enqueue
  1248. * @hb: The destination hash bucket
  1249. *
  1250. * The hb->lock must be held by the caller, and is released here. A call to
  1251. * queue_me() is typically paired with exactly one call to unqueue_me(). The
  1252. * exceptions involve the PI related operations, which may use unqueue_me_pi()
  1253. * or nothing if the unqueue is done as part of the wake process and the unqueue
  1254. * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
  1255. * an example).
  1256. */
  1257. static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
  1258. __releases(&hb->lock)
  1259. {
  1260. int prio;
  1261. /*
  1262. * The priority used to register this element is
  1263. * - either the real thread-priority for the real-time threads
  1264. * (i.e. threads with a priority lower than MAX_RT_PRIO)
  1265. * - or MAX_RT_PRIO for non-RT threads.
  1266. * Thus, all RT-threads are woken first in priority order, and
  1267. * the others are woken last, in FIFO order.
  1268. */
  1269. prio = min(current->normal_prio, MAX_RT_PRIO);
  1270. plist_node_init(&q->list, prio);
  1271. plist_add(&q->list, &hb->chain);
  1272. q->task = current;
  1273. spin_unlock(&hb->lock);
  1274. }
  1275. /**
  1276. * unqueue_me() - Remove the futex_q from its futex_hash_bucket
  1277. * @q: The futex_q to unqueue
  1278. *
  1279. * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
  1280. * be paired with exactly one earlier call to queue_me().
  1281. *
  1282. * Returns:
  1283. * 1 - if the futex_q was still queued (and we removed unqueued it)
  1284. * 0 - if the futex_q was already removed by the waking thread
  1285. */
  1286. static int unqueue_me(struct futex_q *q)
  1287. {
  1288. spinlock_t *lock_ptr;
  1289. int ret = 0;
  1290. /* In the common case we don't take the spinlock, which is nice. */
  1291. retry:
  1292. lock_ptr = q->lock_ptr;
  1293. barrier();
  1294. if (lock_ptr != NULL) {
  1295. spin_lock(lock_ptr);
  1296. /*
  1297. * q->lock_ptr can change between reading it and
  1298. * spin_lock(), causing us to take the wrong lock. This
  1299. * corrects the race condition.
  1300. *
  1301. * Reasoning goes like this: if we have the wrong lock,
  1302. * q->lock_ptr must have changed (maybe several times)
  1303. * between reading it and the spin_lock(). It can
  1304. * change again after the spin_lock() but only if it was
  1305. * already changed before the spin_lock(). It cannot,
  1306. * however, change back to the original value. Therefore
  1307. * we can detect whether we acquired the correct lock.
  1308. */
  1309. if (unlikely(lock_ptr != q->lock_ptr)) {
  1310. spin_unlock(lock_ptr);
  1311. goto retry;
  1312. }
  1313. __unqueue_futex(q);
  1314. BUG_ON(q->pi_state);
  1315. spin_unlock(lock_ptr);
  1316. ret = 1;
  1317. }
  1318. drop_futex_key_refs(&q->key);
  1319. return ret;
  1320. }
  1321. /*
  1322. * PI futexes can not be requeued and must remove themself from the
  1323. * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
  1324. * and dropped here.
  1325. */
  1326. static void unqueue_me_pi(struct futex_q *q)
  1327. __releases(q->lock_ptr)
  1328. {
  1329. __unqueue_futex(q);
  1330. BUG_ON(!q->pi_state);
  1331. free_pi_state(q->pi_state);
  1332. q->pi_state = NULL;
  1333. spin_unlock(q->lock_ptr);
  1334. }
  1335. /*
  1336. * Fixup the pi_state owner with the new owner.
  1337. *
  1338. * Must be called with hash bucket lock held and mm->sem held for non
  1339. * private futexes.
  1340. */
  1341. static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
  1342. struct task_struct *newowner)
  1343. {
  1344. u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
  1345. struct futex_pi_state *pi_state = q->pi_state;
  1346. struct task_struct *oldowner = pi_state->owner;
  1347. u32 uval, curval, newval;
  1348. int ret;
  1349. /* Owner died? */
  1350. if (!pi_state->owner)
  1351. newtid |= FUTEX_OWNER_DIED;
  1352. /*
  1353. * We are here either because we stole the rtmutex from the
  1354. * previous highest priority waiter or we are the highest priority
  1355. * waiter but failed to get the rtmutex the first time.
  1356. * We have to replace the newowner TID in the user space variable.
  1357. * This must be atomic as we have to preserve the owner died bit here.
  1358. *
  1359. * Note: We write the user space value _before_ changing the pi_state
  1360. * because we can fault here. Imagine swapped out pages or a fork
  1361. * that marked all the anonymous memory readonly for cow.
  1362. *
  1363. * Modifying pi_state _before_ the user space value would
  1364. * leave the pi_state in an inconsistent state when we fault
  1365. * here, because we need to drop the hash bucket lock to
  1366. * handle the fault. This might be observed in the PID check
  1367. * in lookup_pi_state.
  1368. */
  1369. retry:
  1370. if (get_futex_value_locked(&uval, uaddr))
  1371. goto handle_fault;
  1372. while (1) {
  1373. newval = (uval & FUTEX_OWNER_DIED) | newtid;
  1374. if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
  1375. goto handle_fault;
  1376. if (curval == uval)
  1377. break;
  1378. uval = curval;
  1379. }
  1380. /*
  1381. * We fixed up user space. Now we need to fix the pi_state
  1382. * itself.
  1383. */
  1384. if (pi_state->owner != NULL) {
  1385. raw_spin_lock_irq(&pi_state->owner->pi_lock);
  1386. WARN_ON(list_empty(&pi_state->list));
  1387. list_del_init(&pi_state->list);
  1388. raw_spin_unlock_irq(&pi_state->owner->pi_lock);
  1389. }
  1390. pi_state->owner = newowner;
  1391. raw_spin_lock_irq(&newowner->pi_lock);
  1392. WARN_ON(!list_empty(&pi_state->list));
  1393. list_add(&pi_state->list, &newowner->pi_state_list);
  1394. raw_spin_unlock_irq(&newowner->pi_lock);
  1395. return 0;
  1396. /*
  1397. * To handle the page fault we need to drop the hash bucket
  1398. * lock here. That gives the other task (either the highest priority
  1399. * waiter itself or the task which stole the rtmutex) the
  1400. * chance to try the fixup of the pi_state. So once we are
  1401. * back from handling the fault we need to check the pi_state
  1402. * after reacquiring the hash bucket lock and before trying to
  1403. * do another fixup. When the fixup has been done already we
  1404. * simply return.
  1405. */
  1406. handle_fault:
  1407. spin_unlock(q->lock_ptr);
  1408. ret = fault_in_user_writeable(uaddr);
  1409. spin_lock(q->lock_ptr);
  1410. /*
  1411. * Check if someone else fixed it for us:
  1412. */
  1413. if (pi_state->owner != oldowner)
  1414. return 0;
  1415. if (ret)
  1416. return ret;
  1417. goto retry;
  1418. }
  1419. static long futex_wait_restart(struct restart_block *restart);
  1420. /**
  1421. * fixup_owner() - Post lock pi_state and corner case management
  1422. * @uaddr: user address of the futex
  1423. * @q: futex_q (contains pi_state and access to the rt_mutex)
  1424. * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
  1425. *
  1426. * After attempting to lock an rt_mutex, this function is called to cleanup
  1427. * the pi_state owner as well as handle race conditions that may allow us to
  1428. * acquire the lock. Must be called with the hb lock held.
  1429. *
  1430. * Returns:
  1431. * 1 - success, lock taken
  1432. * 0 - success, lock not taken
  1433. * <0 - on error (-EFAULT)
  1434. */
  1435. static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
  1436. {
  1437. struct task_struct *owner;
  1438. int ret = 0;
  1439. if (locked) {
  1440. /*
  1441. * Got the lock. We might not be the anticipated owner if we
  1442. * did a lock-steal - fix up the PI-state in that case:
  1443. */
  1444. if (q->pi_state->owner != current)
  1445. ret = fixup_pi_state_owner(uaddr, q, current);
  1446. goto out;
  1447. }
  1448. /*
  1449. * Catch the rare case, where the lock was released when we were on the
  1450. * way back before we locked the hash bucket.
  1451. */
  1452. if (q->pi_state->owner == current) {
  1453. /*
  1454. * Try to get the rt_mutex now. This might fail as some other
  1455. * task acquired the rt_mutex after we removed ourself from the
  1456. * rt_mutex waiters list.
  1457. */
  1458. if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
  1459. locked = 1;
  1460. goto out;
  1461. }
  1462. /*
  1463. * pi_state is incorrect, some other task did a lock steal and
  1464. * we returned due to timeout or signal without taking the
  1465. * rt_mutex. Too late.
  1466. */
  1467. raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
  1468. owner = rt_mutex_owner(&q->pi_state->pi_mutex);
  1469. if (!owner)
  1470. owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
  1471. raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
  1472. ret = fixup_pi_state_owner(uaddr, q, owner);
  1473. goto out;
  1474. }
  1475. /*
  1476. * Paranoia check. If we did not take the lock, then we should not be
  1477. * the owner of the rt_mutex.
  1478. */
  1479. if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
  1480. printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
  1481. "pi-state %p\n", ret,
  1482. q->pi_state->pi_mutex.owner,
  1483. q->pi_state->owner);
  1484. out:
  1485. return ret ? ret : locked;
  1486. }
  1487. /**
  1488. * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
  1489. * @hb: the futex hash bucket, must be locked by the caller
  1490. * @q: the futex_q to queue up on
  1491. * @timeout: the prepared hrtimer_sleeper, or null for no timeout
  1492. */
  1493. static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
  1494. struct hrtimer_sleeper *timeout)
  1495. {
  1496. /*
  1497. * The task state is guaranteed to be set before another task can
  1498. * wake it. set_current_state() is implemented using set_mb() and
  1499. * queue_me() calls spin_unlock() upon completion, both serializing
  1500. * access to the hash list and forcing another memory barrier.
  1501. */
  1502. set_current_state(TASK_INTERRUPTIBLE);
  1503. queue_me(q, hb);
  1504. /* Arm the timer */
  1505. if (timeout) {
  1506. hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
  1507. if (!hrtimer_active(&timeout->timer))
  1508. timeout->task = NULL;
  1509. }
  1510. /*
  1511. * If we have been removed from the hash list, then another task
  1512. * has tried to wake us, and we can skip the call to schedule().
  1513. */
  1514. if (likely(!plist_node_empty(&q->list))) {
  1515. /*
  1516. * If the timer has already expired, current will already be
  1517. * flagged for rescheduling. Only call schedule if there
  1518. * is no timeout, or if it has yet to expire.
  1519. */
  1520. if (!timeout || timeout->task)
  1521. schedule();
  1522. }
  1523. __set_current_state(TASK_RUNNING);
  1524. }
  1525. /**
  1526. * futex_wait_setup() - Prepare to wait on a futex
  1527. * @uaddr: the futex userspace address
  1528. * @val: the expected value
  1529. * @flags: futex flags (FLAGS_SHARED, etc.)
  1530. * @q: the associated futex_q
  1531. * @hb: storage for hash_bucket pointer to be returned to caller
  1532. *
  1533. * Setup the futex_q and locate the hash_bucket. Get the futex value and
  1534. * compare it with the expected value. Handle atomic faults internally.
  1535. * Return with the hb lock held and a q.key reference on success, and unlocked
  1536. * with no q.key reference on failure.
  1537. *
  1538. * Returns:
  1539. * 0 - uaddr contains val and hb has been locked
  1540. * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
  1541. */
  1542. static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
  1543. struct futex_q *q, struct futex_hash_bucket **hb)
  1544. {
  1545. u32 uval;
  1546. int ret;
  1547. /*
  1548. * Access the page AFTER the hash-bucket is locked.
  1549. * Order is important:
  1550. *
  1551. * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
  1552. * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
  1553. *
  1554. * The basic logical guarantee of a futex is that it blocks ONLY
  1555. * if cond(var) is known to be true at the time of blocking, for
  1556. * any cond. If we locked the hash-bucket after testing *uaddr, that
  1557. * would open a race condition where we could block indefinitely with
  1558. * cond(var) false, which would violate the guarantee.
  1559. *
  1560. * On the other hand, we insert q and release the hash-bucket only
  1561. * after testing *uaddr. This guarantees that futex_wait() will NOT
  1562. * absorb a wakeup if *uaddr does not match the desired values
  1563. * while the syscall executes.
  1564. */
  1565. retry:
  1566. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key);
  1567. if (unlikely(ret != 0))
  1568. return ret;
  1569. retry_private:
  1570. *hb = queue_lock(q);
  1571. ret = get_futex_value_locked(&uval, uaddr);
  1572. if (ret) {
  1573. queue_unlock(q, *hb);
  1574. ret = get_user(uval, uaddr);
  1575. if (ret)
  1576. goto out;
  1577. if (!(flags & FLAGS_SHARED))
  1578. goto retry_private;
  1579. put_futex_key(&q->key);
  1580. goto retry;
  1581. }
  1582. if (uval != val) {
  1583. queue_unlock(q, *hb);
  1584. ret = -EWOULDBLOCK;
  1585. }
  1586. out:
  1587. if (ret)
  1588. put_futex_key(&q->key);
  1589. return ret;
  1590. }
  1591. static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
  1592. ktime_t *abs_time, u32 bitset)
  1593. {
  1594. struct hrtimer_sleeper timeout, *to = NULL;
  1595. struct restart_block *restart;
  1596. struct futex_hash_bucket *hb;
  1597. struct futex_q q = futex_q_init;
  1598. int ret;
  1599. if (!bitset)
  1600. return -EINVAL;
  1601. q.bitset = bitset;
  1602. if (abs_time) {
  1603. to = &timeout;
  1604. hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
  1605. CLOCK_REALTIME : CLOCK_MONOTONIC,
  1606. HRTIMER_MODE_ABS);
  1607. hrtimer_init_sleeper(to, current);
  1608. hrtimer_set_expires_range_ns(&to->timer, *abs_time,
  1609. current->timer_slack_ns);
  1610. }
  1611. retry:
  1612. /*
  1613. * Prepare to wait on uaddr. On success, holds hb lock and increments
  1614. * q.key refs.
  1615. */
  1616. ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
  1617. if (ret)
  1618. goto out;
  1619. /* queue_me and wait for wakeup, timeout, or a signal. */
  1620. futex_wait_queue_me(hb, &q, to);
  1621. /* If we were woken (and unqueued), we succeeded, whatever. */
  1622. ret = 0;
  1623. /* unqueue_me() drops q.key ref */
  1624. if (!unqueue_me(&q))
  1625. goto out;
  1626. ret = -ETIMEDOUT;
  1627. if (to && !to->task)
  1628. goto out;
  1629. /*
  1630. * We expect signal_pending(current), but we might be the
  1631. * victim of a spurious wakeup as well.
  1632. */
  1633. if (!signal_pending(current))
  1634. goto retry;
  1635. ret = -ERESTARTSYS;
  1636. if (!abs_time)
  1637. goto out;
  1638. restart = &current_thread_info()->restart_block;
  1639. restart->fn = futex_wait_restart;
  1640. restart->futex.uaddr = uaddr;
  1641. restart->futex.val = val;
  1642. restart->futex.time = abs_time->tv64;
  1643. restart->futex.bitset = bitset;
  1644. restart->futex.flags = flags;
  1645. ret = -ERESTART_RESTARTBLOCK;
  1646. out:
  1647. if (to) {
  1648. hrtimer_cancel(&to->timer);
  1649. destroy_hrtimer_on_stack(&to->timer);
  1650. }
  1651. return ret;
  1652. }
  1653. static long futex_wait_restart(struct restart_block *restart)
  1654. {
  1655. u32 __user *uaddr = restart->futex.uaddr;
  1656. ktime_t t, *tp = NULL;
  1657. if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
  1658. t.tv64 = restart->futex.time;
  1659. tp = &t;
  1660. }
  1661. restart->fn = do_no_restart_syscall;
  1662. return (long)futex_wait(uaddr, restart->futex.flags,
  1663. restart->futex.val, tp, restart->futex.bitset);
  1664. }
  1665. /*
  1666. * Userspace tried a 0 -> TID atomic transition of the futex value
  1667. * and failed. The kernel side here does the whole locking operation:
  1668. * if there are waiters then it will block, it does PI, etc. (Due to
  1669. * races the kernel might see a 0 value of the futex too.)
  1670. */
  1671. static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
  1672. ktime_t *time, int trylock)
  1673. {
  1674. struct hrtimer_sleeper timeout, *to = NULL;
  1675. struct futex_hash_bucket *hb;
  1676. struct futex_q q = futex_q_init;
  1677. int res, ret;
  1678. if (refill_pi_state_cache())
  1679. return -ENOMEM;
  1680. if (time) {
  1681. to = &timeout;
  1682. hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
  1683. HRTIMER_MODE_ABS);
  1684. hrtimer_init_sleeper(to, current);
  1685. hrtimer_set_expires(&to->timer, *time);
  1686. }
  1687. retry:
  1688. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key);
  1689. if (unlikely(ret != 0))
  1690. goto out;
  1691. retry_private:
  1692. hb = queue_lock(&q);
  1693. ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
  1694. if (unlikely(ret)) {
  1695. switch (ret) {
  1696. case 1:
  1697. /* We got the lock. */
  1698. ret = 0;
  1699. goto out_unlock_put_key;
  1700. case -EFAULT:
  1701. goto uaddr_faulted;
  1702. case -EAGAIN:
  1703. /*
  1704. * Task is exiting and we just wait for the
  1705. * exit to complete.
  1706. */
  1707. queue_unlock(&q, hb);
  1708. put_futex_key(&q.key);
  1709. cond_resched();
  1710. goto retry;
  1711. default:
  1712. goto out_unlock_put_key;
  1713. }
  1714. }
  1715. /*
  1716. * Only actually queue now that the atomic ops are done:
  1717. */
  1718. queue_me(&q, hb);
  1719. WARN_ON(!q.pi_state);
  1720. /*
  1721. * Block on the PI mutex:
  1722. */
  1723. if (!trylock)
  1724. ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
  1725. else {
  1726. ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
  1727. /* Fixup the trylock return value: */
  1728. ret = ret ? 0 : -EWOULDBLOCK;
  1729. }
  1730. spin_lock(q.lock_ptr);
  1731. /*
  1732. * Fixup the pi_state owner and possibly acquire the lock if we
  1733. * haven't already.
  1734. */
  1735. res = fixup_owner(uaddr, &q, !ret);
  1736. /*
  1737. * If fixup_owner() returned an error, proprogate that. If it acquired
  1738. * the lock, clear our -ETIMEDOUT or -EINTR.
  1739. */
  1740. if (res)
  1741. ret = (res < 0) ? res : 0;
  1742. /*
  1743. * If fixup_owner() faulted and was unable to handle the fault, unlock
  1744. * it and return the fault to userspace.
  1745. */
  1746. if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
  1747. rt_mutex_unlock(&q.pi_state->pi_mutex);
  1748. /* Unqueue and drop the lock */
  1749. unqueue_me_pi(&q);
  1750. goto out_put_key;
  1751. out_unlock_put_key:
  1752. queue_unlock(&q, hb);
  1753. out_put_key:
  1754. put_futex_key(&q.key);
  1755. out:
  1756. if (to)
  1757. destroy_hrtimer_on_stack(&to->timer);
  1758. return ret != -EINTR ? ret : -ERESTARTNOINTR;
  1759. uaddr_faulted:
  1760. queue_unlock(&q, hb);
  1761. ret = fault_in_user_writeable(uaddr);
  1762. if (ret)
  1763. goto out_put_key;
  1764. if (!(flags & FLAGS_SHARED))
  1765. goto retry_private;
  1766. put_futex_key(&q.key);
  1767. goto retry;
  1768. }
  1769. /*
  1770. * Userspace attempted a TID -> 0 atomic transition, and failed.
  1771. * This is the in-kernel slowpath: we look up the PI state (if any),
  1772. * and do the rt-mutex unlock.
  1773. */
  1774. static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
  1775. {
  1776. struct futex_hash_bucket *hb;
  1777. struct futex_q *this, *next;
  1778. struct plist_head *head;
  1779. union futex_key key = FUTEX_KEY_INIT;
  1780. u32 uval, vpid = task_pid_vnr(current);
  1781. int ret;
  1782. retry:
  1783. if (get_user(uval, uaddr))
  1784. return -EFAULT;
  1785. /*
  1786. * We release only a lock we actually own:
  1787. */
  1788. if ((uval & FUTEX_TID_MASK) != vpid)
  1789. return -EPERM;
  1790. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key);
  1791. if (unlikely(ret != 0))
  1792. goto out;
  1793. hb = hash_futex(&key);
  1794. spin_lock(&hb->lock);
  1795. /*
  1796. * To avoid races, try to do the TID -> 0 atomic transition
  1797. * again. If it succeeds then we can return without waking
  1798. * anyone else up:
  1799. */
  1800. if (!(uval & FUTEX_OWNER_DIED) &&
  1801. cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
  1802. goto pi_faulted;
  1803. /*
  1804. * Rare case: we managed to release the lock atomically,
  1805. * no need to wake anyone else up:
  1806. */
  1807. if (unlikely(uval == vpid))
  1808. goto out_unlock;
  1809. /*
  1810. * Ok, other tasks may need to be woken up - check waiters
  1811. * and do the wakeup if necessary:
  1812. */
  1813. head = &hb->chain;
  1814. plist_for_each_entry_safe(this, next, head, list) {
  1815. if (!match_futex (&this->key, &key))
  1816. continue;
  1817. ret = wake_futex_pi(uaddr, uval, this);
  1818. /*
  1819. * The atomic access to the futex value
  1820. * generated a pagefault, so retry the
  1821. * user-access and the wakeup:
  1822. */
  1823. if (ret == -EFAULT)
  1824. goto pi_faulted;
  1825. goto out_unlock;
  1826. }
  1827. /*
  1828. * No waiters - kernel unlocks the futex:
  1829. */
  1830. if (!(uval & FUTEX_OWNER_DIED)) {
  1831. ret = unlock_futex_pi(uaddr, uval);
  1832. if (ret == -EFAULT)
  1833. goto pi_faulted;
  1834. }
  1835. out_unlock:
  1836. spin_unlock(&hb->lock);
  1837. put_futex_key(&key);
  1838. out:
  1839. return ret;
  1840. pi_faulted:
  1841. spin_unlock(&hb->lock);
  1842. put_futex_key(&key);
  1843. ret = fault_in_user_writeable(uaddr);
  1844. if (!ret)
  1845. goto retry;
  1846. return ret;
  1847. }
  1848. /**
  1849. * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
  1850. * @hb: the hash_bucket futex_q was original enqueued on
  1851. * @q: the futex_q woken while waiting to be requeued
  1852. * @key2: the futex_key of the requeue target futex
  1853. * @timeout: the timeout associated with the wait (NULL if none)
  1854. *
  1855. * Detect if the task was woken on the initial futex as opposed to the requeue
  1856. * target futex. If so, determine if it was a timeout or a signal that caused
  1857. * the wakeup and return the appropriate error code to the caller. Must be
  1858. * called with the hb lock held.
  1859. *
  1860. * Returns
  1861. * 0 - no early wakeup detected
  1862. * <0 - -ETIMEDOUT or -ERESTARTNOINTR
  1863. */
  1864. static inline
  1865. int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
  1866. struct futex_q *q, union futex_key *key2,
  1867. struct hrtimer_sleeper *timeout)
  1868. {
  1869. int ret = 0;
  1870. /*
  1871. * With the hb lock held, we avoid races while we process the wakeup.
  1872. * We only need to hold hb (and not hb2) to ensure atomicity as the
  1873. * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
  1874. * It can't be requeued from uaddr2 to something else since we don't
  1875. * support a PI aware source futex for requeue.
  1876. */
  1877. if (!match_futex(&q->key, key2)) {
  1878. WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
  1879. /*
  1880. * We were woken prior to requeue by a timeout or a signal.
  1881. * Unqueue the futex_q and determine which it was.
  1882. */
  1883. plist_del(&q->list, &hb->chain);
  1884. /* Handle spurious wakeups gracefully */
  1885. ret = -EWOULDBLOCK;
  1886. if (timeout && !timeout->task)
  1887. ret = -ETIMEDOUT;
  1888. else if (signal_pending(current))
  1889. ret = -ERESTARTNOINTR;
  1890. }
  1891. return ret;
  1892. }
  1893. /**
  1894. * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
  1895. * @uaddr: the futex we initially wait on (non-pi)
  1896. * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
  1897. * the same type, no requeueing from private to shared, etc.
  1898. * @val: the expected value of uaddr
  1899. * @abs_time: absolute timeout
  1900. * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
  1901. * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
  1902. * @uaddr2: the pi futex we will take prior to returning to user-space
  1903. *
  1904. * The caller will wait on uaddr and will be requeued by futex_requeue() to
  1905. * uaddr2 which must be PI aware. Normal wakeup will wake on uaddr2 and
  1906. * complete the acquisition of the rt_mutex prior to returning to userspace.
  1907. * This ensures the rt_mutex maintains an owner when it has waiters; without
  1908. * one, the pi logic wouldn't know which task to boost/deboost, if there was a
  1909. * need to.
  1910. *
  1911. * We call schedule in futex_wait_queue_me() when we enqueue and return there
  1912. * via the following:
  1913. * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
  1914. * 2) wakeup on uaddr2 after a requeue
  1915. * 3) signal
  1916. * 4) timeout
  1917. *
  1918. * If 3, cleanup and return -ERESTARTNOINTR.
  1919. *
  1920. * If 2, we may then block on trying to take the rt_mutex and return via:
  1921. * 5) successful lock
  1922. * 6) signal
  1923. * 7) timeout
  1924. * 8) other lock acquisition failure
  1925. *
  1926. * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
  1927. *
  1928. * If 4 or 7, we cleanup and return with -ETIMEDOUT.
  1929. *
  1930. * Returns:
  1931. * 0 - On success
  1932. * <0 - On error
  1933. */
  1934. static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
  1935. u32 val, ktime_t *abs_time, u32 bitset,
  1936. u32 __user *uaddr2)
  1937. {
  1938. struct hrtimer_sleeper timeout, *to = NULL;
  1939. struct rt_mutex_waiter rt_waiter;
  1940. struct rt_mutex *pi_mutex = NULL;
  1941. struct futex_hash_bucket *hb;
  1942. union futex_key key2 = FUTEX_KEY_INIT;
  1943. struct futex_q q = futex_q_init;
  1944. int res, ret;
  1945. if (!bitset)
  1946. return -EINVAL;
  1947. if (abs_time) {
  1948. to = &timeout;
  1949. hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
  1950. CLOCK_REALTIME : CLOCK_MONOTONIC,
  1951. HRTIMER_MODE_ABS);
  1952. hrtimer_init_sleeper(to, current);
  1953. hrtimer_set_expires_range_ns(&to->timer, *abs_time,
  1954. current->timer_slack_ns);
  1955. }
  1956. /*
  1957. * The waiter is allocated on our stack, manipulated by the requeue
  1958. * code while we sleep on uaddr.
  1959. */
  1960. debug_rt_mutex_init_waiter(&rt_waiter);
  1961. rt_waiter.task = NULL;
  1962. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
  1963. if (unlikely(ret != 0))
  1964. goto out;
  1965. q.bitset = bitset;
  1966. q.rt_waiter = &rt_waiter;
  1967. q.requeue_pi_key = &key2;
  1968. /*
  1969. * Prepare to wait on uaddr. On success, increments q.key (key1) ref
  1970. * count.
  1971. */
  1972. ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
  1973. if (ret)
  1974. goto out_key2;
  1975. /* Queue the futex_q, drop the hb lock, wait for wakeup. */
  1976. futex_wait_queue_me(hb, &q, to);
  1977. spin_lock(&hb->lock);
  1978. ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
  1979. spin_unlock(&hb->lock);
  1980. if (ret)
  1981. goto out_put_keys;
  1982. /*
  1983. * In order for us to be here, we know our q.key == key2, and since
  1984. * we took the hb->lock above, we also know that futex_requeue() has
  1985. * completed and we no longer have to concern ourselves with a wakeup
  1986. * race with the atomic proxy lock acquisition by the requeue code. The
  1987. * futex_requeue dropped our key1 reference and incremented our key2
  1988. * reference count.
  1989. */
  1990. /* Check if the requeue code acquired the second futex for us. */
  1991. if (!q.rt_waiter) {
  1992. /*
  1993. * Got the lock. We might not be the anticipated owner if we
  1994. * did a lock-steal - fix up the PI-state in that case.
  1995. */
  1996. if (q.pi_state && (q.pi_state->owner != current)) {
  1997. spin_lock(q.lock_ptr);
  1998. ret = fixup_pi_state_owner(uaddr2, &q, current);
  1999. spin_unlock(q.lock_ptr);
  2000. }
  2001. } else {
  2002. /*
  2003. * We have been woken up by futex_unlock_pi(), a timeout, or a
  2004. * signal. futex_unlock_pi() will not destroy the lock_ptr nor
  2005. * the pi_state.
  2006. */
  2007. WARN_ON(!&q.pi_state);
  2008. pi_mutex = &q.pi_state->pi_mutex;
  2009. ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
  2010. debug_rt_mutex_free_waiter(&rt_waiter);
  2011. spin_lock(q.lock_ptr);
  2012. /*
  2013. * Fixup the pi_state owner and possibly acquire the lock if we
  2014. * haven't already.
  2015. */
  2016. res = fixup_owner(uaddr2, &q, !ret);
  2017. /*
  2018. * If fixup_owner() returned an error, proprogate that. If it
  2019. * acquired the lock, clear -ETIMEDOUT or -EINTR.
  2020. */
  2021. if (res)
  2022. ret = (res < 0) ? res : 0;
  2023. /* Unqueue and drop the lock. */
  2024. unqueue_me_pi(&q);
  2025. }
  2026. /*
  2027. * If fixup_pi_state_owner() faulted and was unable to handle the
  2028. * fault, unlock the rt_mutex and return the fault to userspace.
  2029. */
  2030. if (ret == -EFAULT) {
  2031. if (rt_mutex_owner(pi_mutex) == current)
  2032. rt_mutex_unlock(pi_mutex);
  2033. } else if (ret == -EINTR) {
  2034. /*
  2035. * We've already been requeued, but cannot restart by calling
  2036. * futex_lock_pi() directly. We could restart this syscall, but
  2037. * it would detect that the user space "val" changed and return
  2038. * -EWOULDBLOCK. Save the overhead of the restart and return
  2039. * -EWOULDBLOCK directly.
  2040. */
  2041. ret = -EWOULDBLOCK;
  2042. }
  2043. out_put_keys:
  2044. put_futex_key(&q.key);
  2045. out_key2:
  2046. put_futex_key(&key2);
  2047. out:
  2048. if (to) {
  2049. hrtimer_cancel(&to->timer);
  2050. destroy_hrtimer_on_stack(&to->timer);
  2051. }
  2052. return ret;
  2053. }
  2054. /*
  2055. * Support for robust futexes: the kernel cleans up held futexes at
  2056. * thread exit time.
  2057. *
  2058. * Implementation: user-space maintains a per-thread list of locks it
  2059. * is holding. Upon do_exit(), the kernel carefully walks this list,
  2060. * and marks all locks that are owned by this thread with the
  2061. * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
  2062. * always manipulated with the lock held, so the list is private and
  2063. * per-thread. Userspace also maintains a per-thread 'list_op_pending'
  2064. * field, to allow the kernel to clean up if the thread dies after
  2065. * acquiring the lock, but just before it could have added itself to
  2066. * the list. There can only be one such pending lock.
  2067. */
  2068. /**
  2069. * sys_set_robust_list() - Set the robust-futex list head of a task
  2070. * @head: pointer to the list-head
  2071. * @len: length of the list-head, as userspace expects
  2072. */
  2073. SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
  2074. size_t, len)
  2075. {
  2076. if (!futex_cmpxchg_enabled)
  2077. return -ENOSYS;
  2078. /*
  2079. * The kernel knows only one size for now:
  2080. */
  2081. if (unlikely(len != sizeof(*head)))
  2082. return -EINVAL;
  2083. current->robust_list = head;
  2084. return 0;
  2085. }
  2086. /**
  2087. * sys_get_robust_list() - Get the robust-futex list head of a task
  2088. * @pid: pid of the process [zero for current task]
  2089. * @head_ptr: pointer to a list-head pointer, the kernel fills it in
  2090. * @len_ptr: pointer to a length field, the kernel fills in the header size
  2091. */
  2092. SYSCALL_DEFINE3(get_robust_list, int, pid,
  2093. struct robust_list_head __user * __user *, head_ptr,
  2094. size_t __user *, len_ptr)
  2095. {
  2096. struct robust_list_head __user *head;
  2097. unsigned long ret;
  2098. const struct cred *cred = current_cred(), *pcred;
  2099. if (!futex_cmpxchg_enabled)
  2100. return -ENOSYS;
  2101. if (!pid)
  2102. head = current->robust_list;
  2103. else {
  2104. struct task_struct *p;
  2105. ret = -ESRCH;
  2106. rcu_read_lock();
  2107. p = find_task_by_vpid(pid);
  2108. if (!p)
  2109. goto err_unlock;
  2110. ret = -EPERM;
  2111. pcred = __task_cred(p);
  2112. if (cred->euid != pcred->euid &&
  2113. cred->euid != pcred->uid &&
  2114. !capable(CAP_SYS_PTRACE))
  2115. goto err_unlock;
  2116. head = p->robust_list;
  2117. rcu_read_unlock();
  2118. }
  2119. if (put_user(sizeof(*head), len_ptr))
  2120. return -EFAULT;
  2121. return put_user(head, head_ptr);
  2122. err_unlock:
  2123. rcu_read_unlock();
  2124. return ret;
  2125. }
  2126. /*
  2127. * Process a futex-list entry, check whether it's owned by the
  2128. * dying task, and do notification if so:
  2129. */
  2130. int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
  2131. {
  2132. u32 uval, nval, mval;
  2133. retry:
  2134. if (get_user(uval, uaddr))
  2135. return -1;
  2136. if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
  2137. /*
  2138. * Ok, this dying thread is truly holding a futex
  2139. * of interest. Set the OWNER_DIED bit atomically
  2140. * via cmpxchg, and if the value had FUTEX_WAITERS
  2141. * set, wake up a waiter (if any). (We have to do a
  2142. * futex_wake() even if OWNER_DIED is already set -
  2143. * to handle the rare but possible case of recursive
  2144. * thread-death.) The rest of the cleanup is done in
  2145. * userspace.
  2146. */
  2147. mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
  2148. /*
  2149. * We are not holding a lock here, but we want to have
  2150. * the pagefault_disable/enable() protection because
  2151. * we want to handle the fault gracefully. If the
  2152. * access fails we try to fault in the futex with R/W
  2153. * verification via get_user_pages. get_user() above
  2154. * does not guarantee R/W access. If that fails we
  2155. * give up and leave the futex locked.
  2156. */
  2157. if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
  2158. if (fault_in_user_writeable(uaddr))
  2159. return -1;
  2160. goto retry;
  2161. }
  2162. if (nval != uval)
  2163. goto retry;
  2164. /*
  2165. * Wake robust non-PI futexes here. The wakeup of
  2166. * PI futexes happens in exit_pi_state():
  2167. */
  2168. if (!pi && (uval & FUTEX_WAITERS))
  2169. futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
  2170. }
  2171. return 0;
  2172. }
  2173. /*
  2174. * Fetch a robust-list pointer. Bit 0 signals PI futexes:
  2175. */
  2176. static inline int fetch_robust_entry(struct robust_list __user **entry,
  2177. struct robust_list __user * __user *head,
  2178. unsigned int *pi)
  2179. {
  2180. unsigned long uentry;
  2181. if (get_user(uentry, (unsigned long __user *)head))
  2182. return -EFAULT;
  2183. *entry = (void __user *)(uentry & ~1UL);
  2184. *pi = uentry & 1;
  2185. return 0;
  2186. }
  2187. /*
  2188. * Walk curr->robust_list (very carefully, it's a userspace list!)
  2189. * and mark any locks found there dead, and notify any waiters.
  2190. *
  2191. * We silently return on any sign of list-walking problem.
  2192. */
  2193. void exit_robust_list(struct task_struct *curr)
  2194. {
  2195. struct robust_list_head __user *head = curr->robust_list;
  2196. struct robust_list __user *entry, *next_entry, *pending;
  2197. unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
  2198. unsigned int uninitialized_var(next_pi);
  2199. unsigned long futex_offset;
  2200. int rc;
  2201. if (!futex_cmpxchg_enabled)
  2202. return;
  2203. /*
  2204. * Fetch the list head (which was registered earlier, via
  2205. * sys_set_robust_list()):
  2206. */
  2207. if (fetch_robust_entry(&entry, &head->list.next, &pi))
  2208. return;
  2209. /*
  2210. * Fetch the relative futex offset:
  2211. */
  2212. if (get_user(futex_offset, &head->futex_offset))
  2213. return;
  2214. /*
  2215. * Fetch any possibly pending lock-add first, and handle it
  2216. * if it exists:
  2217. */
  2218. if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
  2219. return;
  2220. next_entry = NULL; /* avoid warning with gcc */
  2221. while (entry != &head->list) {
  2222. /*
  2223. * Fetch the next entry in the list before calling
  2224. * handle_futex_death:
  2225. */
  2226. rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
  2227. /*
  2228. * A pending lock might already be on the list, so
  2229. * don't process it twice:
  2230. */
  2231. if (entry != pending)
  2232. if (handle_futex_death((void __user *)entry + futex_offset,
  2233. curr, pi))
  2234. return;
  2235. if (rc)
  2236. return;
  2237. entry = next_entry;
  2238. pi = next_pi;
  2239. /*
  2240. * Avoid excessively long or circular lists:
  2241. */
  2242. if (!--limit)
  2243. break;
  2244. cond_resched();
  2245. }
  2246. if (pending)
  2247. handle_futex_death((void __user *)pending + futex_offset,
  2248. curr, pip);
  2249. }
  2250. long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
  2251. u32 __user *uaddr2, u32 val2, u32 val3)
  2252. {
  2253. int ret = -ENOSYS, cmd = op & FUTEX_CMD_MASK;
  2254. unsigned int flags = 0;
  2255. if (!(op & FUTEX_PRIVATE_FLAG))
  2256. flags |= FLAGS_SHARED;
  2257. if (op & FUTEX_CLOCK_REALTIME) {
  2258. flags |= FLAGS_CLOCKRT;
  2259. if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
  2260. return -ENOSYS;
  2261. }
  2262. switch (cmd) {
  2263. case FUTEX_WAIT:
  2264. val3 = FUTEX_BITSET_MATCH_ANY;
  2265. case FUTEX_WAIT_BITSET:
  2266. ret = futex_wait(uaddr, flags, val, timeout, val3);
  2267. break;
  2268. case FUTEX_WAKE:
  2269. val3 = FUTEX_BITSET_MATCH_ANY;
  2270. case FUTEX_WAKE_BITSET:
  2271. ret = futex_wake(uaddr, flags, val, val3);
  2272. break;
  2273. case FUTEX_REQUEUE:
  2274. ret = futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
  2275. break;
  2276. case FUTEX_CMP_REQUEUE:
  2277. ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
  2278. break;
  2279. case FUTEX_WAKE_OP:
  2280. ret = futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
  2281. break;
  2282. case FUTEX_LOCK_PI:
  2283. if (futex_cmpxchg_enabled)
  2284. ret = futex_lock_pi(uaddr, flags, val, timeout, 0);
  2285. break;
  2286. case FUTEX_UNLOCK_PI:
  2287. if (futex_cmpxchg_enabled)
  2288. ret = futex_unlock_pi(uaddr, flags);
  2289. break;
  2290. case FUTEX_TRYLOCK_PI:
  2291. if (futex_cmpxchg_enabled)
  2292. ret = futex_lock_pi(uaddr, flags, 0, timeout, 1);
  2293. break;
  2294. case FUTEX_WAIT_REQUEUE_PI:
  2295. val3 = FUTEX_BITSET_MATCH_ANY;
  2296. ret = futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
  2297. uaddr2);
  2298. break;
  2299. case FUTEX_CMP_REQUEUE_PI:
  2300. ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
  2301. break;
  2302. default:
  2303. ret = -ENOSYS;
  2304. }
  2305. return ret;
  2306. }
  2307. SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
  2308. struct timespec __user *, utime, u32 __user *, uaddr2,
  2309. u32, val3)
  2310. {
  2311. struct timespec ts;
  2312. ktime_t t, *tp = NULL;
  2313. u32 val2 = 0;
  2314. int cmd = op & FUTEX_CMD_MASK;
  2315. if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
  2316. cmd == FUTEX_WAIT_BITSET ||
  2317. cmd == FUTEX_WAIT_REQUEUE_PI)) {
  2318. if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
  2319. return -EFAULT;
  2320. if (!timespec_valid(&ts))
  2321. return -EINVAL;
  2322. t = timespec_to_ktime(ts);
  2323. if (cmd == FUTEX_WAIT)
  2324. t = ktime_add_safe(ktime_get(), t);
  2325. tp = &t;
  2326. }
  2327. /*
  2328. * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
  2329. * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
  2330. */
  2331. if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
  2332. cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
  2333. val2 = (u32) (unsigned long) utime;
  2334. return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
  2335. }
  2336. static int __init futex_init(void)
  2337. {
  2338. u32 curval;
  2339. int i;
  2340. /*
  2341. * This will fail and we want it. Some arch implementations do
  2342. * runtime detection of the futex_atomic_cmpxchg_inatomic()
  2343. * functionality. We want to know that before we call in any
  2344. * of the complex code paths. Also we want to prevent
  2345. * registration of robust lists in that case. NULL is
  2346. * guaranteed to fault and we get -EFAULT on functional
  2347. * implementation, the non-functional ones will return
  2348. * -ENOSYS.
  2349. */
  2350. if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
  2351. futex_cmpxchg_enabled = 1;
  2352. for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
  2353. plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
  2354. spin_lock_init(&futex_queues[i].lock);
  2355. }
  2356. return 0;
  2357. }
  2358. __initcall(futex_init);