cpuset.c 74 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648
  1. /*
  2. * kernel/cpuset.c
  3. *
  4. * Processor and Memory placement constraints for sets of tasks.
  5. *
  6. * Copyright (C) 2003 BULL SA.
  7. * Copyright (C) 2004-2007 Silicon Graphics, Inc.
  8. * Copyright (C) 2006 Google, Inc
  9. *
  10. * Portions derived from Patrick Mochel's sysfs code.
  11. * sysfs is Copyright (c) 2001-3 Patrick Mochel
  12. *
  13. * 2003-10-10 Written by Simon Derr.
  14. * 2003-10-22 Updates by Stephen Hemminger.
  15. * 2004 May-July Rework by Paul Jackson.
  16. * 2006 Rework by Paul Menage to use generic cgroups
  17. * 2008 Rework of the scheduler domains and CPU hotplug handling
  18. * by Max Krasnyansky
  19. *
  20. * This file is subject to the terms and conditions of the GNU General Public
  21. * License. See the file COPYING in the main directory of the Linux
  22. * distribution for more details.
  23. */
  24. #include <linux/cpu.h>
  25. #include <linux/cpumask.h>
  26. #include <linux/cpuset.h>
  27. #include <linux/err.h>
  28. #include <linux/errno.h>
  29. #include <linux/file.h>
  30. #include <linux/fs.h>
  31. #include <linux/init.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/kernel.h>
  34. #include <linux/kmod.h>
  35. #include <linux/list.h>
  36. #include <linux/mempolicy.h>
  37. #include <linux/mm.h>
  38. #include <linux/memory.h>
  39. #include <linux/module.h>
  40. #include <linux/mount.h>
  41. #include <linux/namei.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/proc_fs.h>
  44. #include <linux/rcupdate.h>
  45. #include <linux/sched.h>
  46. #include <linux/seq_file.h>
  47. #include <linux/security.h>
  48. #include <linux/slab.h>
  49. #include <linux/spinlock.h>
  50. #include <linux/stat.h>
  51. #include <linux/string.h>
  52. #include <linux/time.h>
  53. #include <linux/backing-dev.h>
  54. #include <linux/sort.h>
  55. #include <asm/uaccess.h>
  56. #include <asm/atomic.h>
  57. #include <linux/mutex.h>
  58. #include <linux/workqueue.h>
  59. #include <linux/cgroup.h>
  60. /*
  61. * Workqueue for cpuset related tasks.
  62. *
  63. * Using kevent workqueue may cause deadlock when memory_migrate
  64. * is set. So we create a separate workqueue thread for cpuset.
  65. */
  66. static struct workqueue_struct *cpuset_wq;
  67. /*
  68. * Tracks how many cpusets are currently defined in system.
  69. * When there is only one cpuset (the root cpuset) we can
  70. * short circuit some hooks.
  71. */
  72. int number_of_cpusets __read_mostly;
  73. /* Forward declare cgroup structures */
  74. struct cgroup_subsys cpuset_subsys;
  75. struct cpuset;
  76. /* See "Frequency meter" comments, below. */
  77. struct fmeter {
  78. int cnt; /* unprocessed events count */
  79. int val; /* most recent output value */
  80. time_t time; /* clock (secs) when val computed */
  81. spinlock_t lock; /* guards read or write of above */
  82. };
  83. struct cpuset {
  84. struct cgroup_subsys_state css;
  85. unsigned long flags; /* "unsigned long" so bitops work */
  86. cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
  87. nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
  88. struct cpuset *parent; /* my parent */
  89. struct fmeter fmeter; /* memory_pressure filter */
  90. /* partition number for rebuild_sched_domains() */
  91. int pn;
  92. /* for custom sched domain */
  93. int relax_domain_level;
  94. /* used for walking a cpuset hierarchy */
  95. struct list_head stack_list;
  96. };
  97. /* Retrieve the cpuset for a cgroup */
  98. static inline struct cpuset *cgroup_cs(struct cgroup *cont)
  99. {
  100. return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
  101. struct cpuset, css);
  102. }
  103. /* Retrieve the cpuset for a task */
  104. static inline struct cpuset *task_cs(struct task_struct *task)
  105. {
  106. return container_of(task_subsys_state(task, cpuset_subsys_id),
  107. struct cpuset, css);
  108. }
  109. /* bits in struct cpuset flags field */
  110. typedef enum {
  111. CS_CPU_EXCLUSIVE,
  112. CS_MEM_EXCLUSIVE,
  113. CS_MEM_HARDWALL,
  114. CS_MEMORY_MIGRATE,
  115. CS_SCHED_LOAD_BALANCE,
  116. CS_SPREAD_PAGE,
  117. CS_SPREAD_SLAB,
  118. } cpuset_flagbits_t;
  119. /* convenient tests for these bits */
  120. static inline int is_cpu_exclusive(const struct cpuset *cs)
  121. {
  122. return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
  123. }
  124. static inline int is_mem_exclusive(const struct cpuset *cs)
  125. {
  126. return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
  127. }
  128. static inline int is_mem_hardwall(const struct cpuset *cs)
  129. {
  130. return test_bit(CS_MEM_HARDWALL, &cs->flags);
  131. }
  132. static inline int is_sched_load_balance(const struct cpuset *cs)
  133. {
  134. return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  135. }
  136. static inline int is_memory_migrate(const struct cpuset *cs)
  137. {
  138. return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
  139. }
  140. static inline int is_spread_page(const struct cpuset *cs)
  141. {
  142. return test_bit(CS_SPREAD_PAGE, &cs->flags);
  143. }
  144. static inline int is_spread_slab(const struct cpuset *cs)
  145. {
  146. return test_bit(CS_SPREAD_SLAB, &cs->flags);
  147. }
  148. static struct cpuset top_cpuset = {
  149. .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
  150. };
  151. /*
  152. * There are two global mutexes guarding cpuset structures. The first
  153. * is the main control groups cgroup_mutex, accessed via
  154. * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
  155. * callback_mutex, below. They can nest. It is ok to first take
  156. * cgroup_mutex, then nest callback_mutex. We also require taking
  157. * task_lock() when dereferencing a task's cpuset pointer. See "The
  158. * task_lock() exception", at the end of this comment.
  159. *
  160. * A task must hold both mutexes to modify cpusets. If a task
  161. * holds cgroup_mutex, then it blocks others wanting that mutex,
  162. * ensuring that it is the only task able to also acquire callback_mutex
  163. * and be able to modify cpusets. It can perform various checks on
  164. * the cpuset structure first, knowing nothing will change. It can
  165. * also allocate memory while just holding cgroup_mutex. While it is
  166. * performing these checks, various callback routines can briefly
  167. * acquire callback_mutex to query cpusets. Once it is ready to make
  168. * the changes, it takes callback_mutex, blocking everyone else.
  169. *
  170. * Calls to the kernel memory allocator can not be made while holding
  171. * callback_mutex, as that would risk double tripping on callback_mutex
  172. * from one of the callbacks into the cpuset code from within
  173. * __alloc_pages().
  174. *
  175. * If a task is only holding callback_mutex, then it has read-only
  176. * access to cpusets.
  177. *
  178. * Now, the task_struct fields mems_allowed and mempolicy may be changed
  179. * by other task, we use alloc_lock in the task_struct fields to protect
  180. * them.
  181. *
  182. * The cpuset_common_file_read() handlers only hold callback_mutex across
  183. * small pieces of code, such as when reading out possibly multi-word
  184. * cpumasks and nodemasks.
  185. *
  186. * Accessing a task's cpuset should be done in accordance with the
  187. * guidelines for accessing subsystem state in kernel/cgroup.c
  188. */
  189. static DEFINE_MUTEX(callback_mutex);
  190. /*
  191. * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
  192. * buffers. They are statically allocated to prevent using excess stack
  193. * when calling cpuset_print_task_mems_allowed().
  194. */
  195. #define CPUSET_NAME_LEN (128)
  196. #define CPUSET_NODELIST_LEN (256)
  197. static char cpuset_name[CPUSET_NAME_LEN];
  198. static char cpuset_nodelist[CPUSET_NODELIST_LEN];
  199. static DEFINE_SPINLOCK(cpuset_buffer_lock);
  200. /*
  201. * This is ugly, but preserves the userspace API for existing cpuset
  202. * users. If someone tries to mount the "cpuset" filesystem, we
  203. * silently switch it to mount "cgroup" instead
  204. */
  205. static struct dentry *cpuset_mount(struct file_system_type *fs_type,
  206. int flags, const char *unused_dev_name, void *data)
  207. {
  208. struct file_system_type *cgroup_fs = get_fs_type("cgroup");
  209. struct dentry *ret = ERR_PTR(-ENODEV);
  210. if (cgroup_fs) {
  211. char mountopts[] =
  212. "cpuset,noprefix,"
  213. "release_agent=/sbin/cpuset_release_agent";
  214. ret = cgroup_fs->mount(cgroup_fs, flags,
  215. unused_dev_name, mountopts);
  216. put_filesystem(cgroup_fs);
  217. }
  218. return ret;
  219. }
  220. static struct file_system_type cpuset_fs_type = {
  221. .name = "cpuset",
  222. .mount = cpuset_mount,
  223. };
  224. /*
  225. * Return in pmask the portion of a cpusets's cpus_allowed that
  226. * are online. If none are online, walk up the cpuset hierarchy
  227. * until we find one that does have some online cpus. If we get
  228. * all the way to the top and still haven't found any online cpus,
  229. * return cpu_online_map. Or if passed a NULL cs from an exit'ing
  230. * task, return cpu_online_map.
  231. *
  232. * One way or another, we guarantee to return some non-empty subset
  233. * of cpu_online_map.
  234. *
  235. * Call with callback_mutex held.
  236. */
  237. static void guarantee_online_cpus(const struct cpuset *cs,
  238. struct cpumask *pmask)
  239. {
  240. while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
  241. cs = cs->parent;
  242. if (cs)
  243. cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
  244. else
  245. cpumask_copy(pmask, cpu_online_mask);
  246. BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
  247. }
  248. /*
  249. * Return in *pmask the portion of a cpusets's mems_allowed that
  250. * are online, with memory. If none are online with memory, walk
  251. * up the cpuset hierarchy until we find one that does have some
  252. * online mems. If we get all the way to the top and still haven't
  253. * found any online mems, return node_states[N_HIGH_MEMORY].
  254. *
  255. * One way or another, we guarantee to return some non-empty subset
  256. * of node_states[N_HIGH_MEMORY].
  257. *
  258. * Call with callback_mutex held.
  259. */
  260. static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
  261. {
  262. while (cs && !nodes_intersects(cs->mems_allowed,
  263. node_states[N_HIGH_MEMORY]))
  264. cs = cs->parent;
  265. if (cs)
  266. nodes_and(*pmask, cs->mems_allowed,
  267. node_states[N_HIGH_MEMORY]);
  268. else
  269. *pmask = node_states[N_HIGH_MEMORY];
  270. BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
  271. }
  272. /*
  273. * update task's spread flag if cpuset's page/slab spread flag is set
  274. *
  275. * Called with callback_mutex/cgroup_mutex held
  276. */
  277. static void cpuset_update_task_spread_flag(struct cpuset *cs,
  278. struct task_struct *tsk)
  279. {
  280. if (is_spread_page(cs))
  281. tsk->flags |= PF_SPREAD_PAGE;
  282. else
  283. tsk->flags &= ~PF_SPREAD_PAGE;
  284. if (is_spread_slab(cs))
  285. tsk->flags |= PF_SPREAD_SLAB;
  286. else
  287. tsk->flags &= ~PF_SPREAD_SLAB;
  288. }
  289. /*
  290. * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
  291. *
  292. * One cpuset is a subset of another if all its allowed CPUs and
  293. * Memory Nodes are a subset of the other, and its exclusive flags
  294. * are only set if the other's are set. Call holding cgroup_mutex.
  295. */
  296. static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
  297. {
  298. return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
  299. nodes_subset(p->mems_allowed, q->mems_allowed) &&
  300. is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
  301. is_mem_exclusive(p) <= is_mem_exclusive(q);
  302. }
  303. /**
  304. * alloc_trial_cpuset - allocate a trial cpuset
  305. * @cs: the cpuset that the trial cpuset duplicates
  306. */
  307. static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
  308. {
  309. struct cpuset *trial;
  310. trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
  311. if (!trial)
  312. return NULL;
  313. if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
  314. kfree(trial);
  315. return NULL;
  316. }
  317. cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
  318. return trial;
  319. }
  320. /**
  321. * free_trial_cpuset - free the trial cpuset
  322. * @trial: the trial cpuset to be freed
  323. */
  324. static void free_trial_cpuset(struct cpuset *trial)
  325. {
  326. free_cpumask_var(trial->cpus_allowed);
  327. kfree(trial);
  328. }
  329. /*
  330. * validate_change() - Used to validate that any proposed cpuset change
  331. * follows the structural rules for cpusets.
  332. *
  333. * If we replaced the flag and mask values of the current cpuset
  334. * (cur) with those values in the trial cpuset (trial), would
  335. * our various subset and exclusive rules still be valid? Presumes
  336. * cgroup_mutex held.
  337. *
  338. * 'cur' is the address of an actual, in-use cpuset. Operations
  339. * such as list traversal that depend on the actual address of the
  340. * cpuset in the list must use cur below, not trial.
  341. *
  342. * 'trial' is the address of bulk structure copy of cur, with
  343. * perhaps one or more of the fields cpus_allowed, mems_allowed,
  344. * or flags changed to new, trial values.
  345. *
  346. * Return 0 if valid, -errno if not.
  347. */
  348. static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
  349. {
  350. struct cgroup *cont;
  351. struct cpuset *c, *par;
  352. /* Each of our child cpusets must be a subset of us */
  353. list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
  354. if (!is_cpuset_subset(cgroup_cs(cont), trial))
  355. return -EBUSY;
  356. }
  357. /* Remaining checks don't apply to root cpuset */
  358. if (cur == &top_cpuset)
  359. return 0;
  360. par = cur->parent;
  361. /* We must be a subset of our parent cpuset */
  362. if (!is_cpuset_subset(trial, par))
  363. return -EACCES;
  364. /*
  365. * If either I or some sibling (!= me) is exclusive, we can't
  366. * overlap
  367. */
  368. list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
  369. c = cgroup_cs(cont);
  370. if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
  371. c != cur &&
  372. cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
  373. return -EINVAL;
  374. if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
  375. c != cur &&
  376. nodes_intersects(trial->mems_allowed, c->mems_allowed))
  377. return -EINVAL;
  378. }
  379. /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
  380. if (cgroup_task_count(cur->css.cgroup)) {
  381. if (cpumask_empty(trial->cpus_allowed) ||
  382. nodes_empty(trial->mems_allowed)) {
  383. return -ENOSPC;
  384. }
  385. }
  386. return 0;
  387. }
  388. #ifdef CONFIG_SMP
  389. /*
  390. * Helper routine for generate_sched_domains().
  391. * Do cpusets a, b have overlapping cpus_allowed masks?
  392. */
  393. static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
  394. {
  395. return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
  396. }
  397. static void
  398. update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
  399. {
  400. if (dattr->relax_domain_level < c->relax_domain_level)
  401. dattr->relax_domain_level = c->relax_domain_level;
  402. return;
  403. }
  404. static void
  405. update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
  406. {
  407. LIST_HEAD(q);
  408. list_add(&c->stack_list, &q);
  409. while (!list_empty(&q)) {
  410. struct cpuset *cp;
  411. struct cgroup *cont;
  412. struct cpuset *child;
  413. cp = list_first_entry(&q, struct cpuset, stack_list);
  414. list_del(q.next);
  415. if (cpumask_empty(cp->cpus_allowed))
  416. continue;
  417. if (is_sched_load_balance(cp))
  418. update_domain_attr(dattr, cp);
  419. list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
  420. child = cgroup_cs(cont);
  421. list_add_tail(&child->stack_list, &q);
  422. }
  423. }
  424. }
  425. /*
  426. * generate_sched_domains()
  427. *
  428. * This function builds a partial partition of the systems CPUs
  429. * A 'partial partition' is a set of non-overlapping subsets whose
  430. * union is a subset of that set.
  431. * The output of this function needs to be passed to kernel/sched.c
  432. * partition_sched_domains() routine, which will rebuild the scheduler's
  433. * load balancing domains (sched domains) as specified by that partial
  434. * partition.
  435. *
  436. * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
  437. * for a background explanation of this.
  438. *
  439. * Does not return errors, on the theory that the callers of this
  440. * routine would rather not worry about failures to rebuild sched
  441. * domains when operating in the severe memory shortage situations
  442. * that could cause allocation failures below.
  443. *
  444. * Must be called with cgroup_lock held.
  445. *
  446. * The three key local variables below are:
  447. * q - a linked-list queue of cpuset pointers, used to implement a
  448. * top-down scan of all cpusets. This scan loads a pointer
  449. * to each cpuset marked is_sched_load_balance into the
  450. * array 'csa'. For our purposes, rebuilding the schedulers
  451. * sched domains, we can ignore !is_sched_load_balance cpusets.
  452. * csa - (for CpuSet Array) Array of pointers to all the cpusets
  453. * that need to be load balanced, for convenient iterative
  454. * access by the subsequent code that finds the best partition,
  455. * i.e the set of domains (subsets) of CPUs such that the
  456. * cpus_allowed of every cpuset marked is_sched_load_balance
  457. * is a subset of one of these domains, while there are as
  458. * many such domains as possible, each as small as possible.
  459. * doms - Conversion of 'csa' to an array of cpumasks, for passing to
  460. * the kernel/sched.c routine partition_sched_domains() in a
  461. * convenient format, that can be easily compared to the prior
  462. * value to determine what partition elements (sched domains)
  463. * were changed (added or removed.)
  464. *
  465. * Finding the best partition (set of domains):
  466. * The triple nested loops below over i, j, k scan over the
  467. * load balanced cpusets (using the array of cpuset pointers in
  468. * csa[]) looking for pairs of cpusets that have overlapping
  469. * cpus_allowed, but which don't have the same 'pn' partition
  470. * number and gives them in the same partition number. It keeps
  471. * looping on the 'restart' label until it can no longer find
  472. * any such pairs.
  473. *
  474. * The union of the cpus_allowed masks from the set of
  475. * all cpusets having the same 'pn' value then form the one
  476. * element of the partition (one sched domain) to be passed to
  477. * partition_sched_domains().
  478. */
  479. static int generate_sched_domains(cpumask_var_t **domains,
  480. struct sched_domain_attr **attributes)
  481. {
  482. LIST_HEAD(q); /* queue of cpusets to be scanned */
  483. struct cpuset *cp; /* scans q */
  484. struct cpuset **csa; /* array of all cpuset ptrs */
  485. int csn; /* how many cpuset ptrs in csa so far */
  486. int i, j, k; /* indices for partition finding loops */
  487. cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
  488. struct sched_domain_attr *dattr; /* attributes for custom domains */
  489. int ndoms = 0; /* number of sched domains in result */
  490. int nslot; /* next empty doms[] struct cpumask slot */
  491. doms = NULL;
  492. dattr = NULL;
  493. csa = NULL;
  494. /* Special case for the 99% of systems with one, full, sched domain */
  495. if (is_sched_load_balance(&top_cpuset)) {
  496. ndoms = 1;
  497. doms = alloc_sched_domains(ndoms);
  498. if (!doms)
  499. goto done;
  500. dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
  501. if (dattr) {
  502. *dattr = SD_ATTR_INIT;
  503. update_domain_attr_tree(dattr, &top_cpuset);
  504. }
  505. cpumask_copy(doms[0], top_cpuset.cpus_allowed);
  506. goto done;
  507. }
  508. csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
  509. if (!csa)
  510. goto done;
  511. csn = 0;
  512. list_add(&top_cpuset.stack_list, &q);
  513. while (!list_empty(&q)) {
  514. struct cgroup *cont;
  515. struct cpuset *child; /* scans child cpusets of cp */
  516. cp = list_first_entry(&q, struct cpuset, stack_list);
  517. list_del(q.next);
  518. if (cpumask_empty(cp->cpus_allowed))
  519. continue;
  520. /*
  521. * All child cpusets contain a subset of the parent's cpus, so
  522. * just skip them, and then we call update_domain_attr_tree()
  523. * to calc relax_domain_level of the corresponding sched
  524. * domain.
  525. */
  526. if (is_sched_load_balance(cp)) {
  527. csa[csn++] = cp;
  528. continue;
  529. }
  530. list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
  531. child = cgroup_cs(cont);
  532. list_add_tail(&child->stack_list, &q);
  533. }
  534. }
  535. for (i = 0; i < csn; i++)
  536. csa[i]->pn = i;
  537. ndoms = csn;
  538. restart:
  539. /* Find the best partition (set of sched domains) */
  540. for (i = 0; i < csn; i++) {
  541. struct cpuset *a = csa[i];
  542. int apn = a->pn;
  543. for (j = 0; j < csn; j++) {
  544. struct cpuset *b = csa[j];
  545. int bpn = b->pn;
  546. if (apn != bpn && cpusets_overlap(a, b)) {
  547. for (k = 0; k < csn; k++) {
  548. struct cpuset *c = csa[k];
  549. if (c->pn == bpn)
  550. c->pn = apn;
  551. }
  552. ndoms--; /* one less element */
  553. goto restart;
  554. }
  555. }
  556. }
  557. /*
  558. * Now we know how many domains to create.
  559. * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
  560. */
  561. doms = alloc_sched_domains(ndoms);
  562. if (!doms)
  563. goto done;
  564. /*
  565. * The rest of the code, including the scheduler, can deal with
  566. * dattr==NULL case. No need to abort if alloc fails.
  567. */
  568. dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
  569. for (nslot = 0, i = 0; i < csn; i++) {
  570. struct cpuset *a = csa[i];
  571. struct cpumask *dp;
  572. int apn = a->pn;
  573. if (apn < 0) {
  574. /* Skip completed partitions */
  575. continue;
  576. }
  577. dp = doms[nslot];
  578. if (nslot == ndoms) {
  579. static int warnings = 10;
  580. if (warnings) {
  581. printk(KERN_WARNING
  582. "rebuild_sched_domains confused:"
  583. " nslot %d, ndoms %d, csn %d, i %d,"
  584. " apn %d\n",
  585. nslot, ndoms, csn, i, apn);
  586. warnings--;
  587. }
  588. continue;
  589. }
  590. cpumask_clear(dp);
  591. if (dattr)
  592. *(dattr + nslot) = SD_ATTR_INIT;
  593. for (j = i; j < csn; j++) {
  594. struct cpuset *b = csa[j];
  595. if (apn == b->pn) {
  596. cpumask_or(dp, dp, b->cpus_allowed);
  597. if (dattr)
  598. update_domain_attr_tree(dattr + nslot, b);
  599. /* Done with this partition */
  600. b->pn = -1;
  601. }
  602. }
  603. nslot++;
  604. }
  605. BUG_ON(nslot != ndoms);
  606. done:
  607. kfree(csa);
  608. /*
  609. * Fallback to the default domain if kmalloc() failed.
  610. * See comments in partition_sched_domains().
  611. */
  612. if (doms == NULL)
  613. ndoms = 1;
  614. *domains = doms;
  615. *attributes = dattr;
  616. return ndoms;
  617. }
  618. /*
  619. * Rebuild scheduler domains.
  620. *
  621. * Call with neither cgroup_mutex held nor within get_online_cpus().
  622. * Takes both cgroup_mutex and get_online_cpus().
  623. *
  624. * Cannot be directly called from cpuset code handling changes
  625. * to the cpuset pseudo-filesystem, because it cannot be called
  626. * from code that already holds cgroup_mutex.
  627. */
  628. static void do_rebuild_sched_domains(struct work_struct *unused)
  629. {
  630. struct sched_domain_attr *attr;
  631. cpumask_var_t *doms;
  632. int ndoms;
  633. get_online_cpus();
  634. /* Generate domain masks and attrs */
  635. cgroup_lock();
  636. ndoms = generate_sched_domains(&doms, &attr);
  637. cgroup_unlock();
  638. /* Have scheduler rebuild the domains */
  639. partition_sched_domains(ndoms, doms, attr);
  640. put_online_cpus();
  641. }
  642. #else /* !CONFIG_SMP */
  643. static void do_rebuild_sched_domains(struct work_struct *unused)
  644. {
  645. }
  646. static int generate_sched_domains(cpumask_var_t **domains,
  647. struct sched_domain_attr **attributes)
  648. {
  649. *domains = NULL;
  650. return 1;
  651. }
  652. #endif /* CONFIG_SMP */
  653. static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
  654. /*
  655. * Rebuild scheduler domains, asynchronously via workqueue.
  656. *
  657. * If the flag 'sched_load_balance' of any cpuset with non-empty
  658. * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
  659. * which has that flag enabled, or if any cpuset with a non-empty
  660. * 'cpus' is removed, then call this routine to rebuild the
  661. * scheduler's dynamic sched domains.
  662. *
  663. * The rebuild_sched_domains() and partition_sched_domains()
  664. * routines must nest cgroup_lock() inside get_online_cpus(),
  665. * but such cpuset changes as these must nest that locking the
  666. * other way, holding cgroup_lock() for much of the code.
  667. *
  668. * So in order to avoid an ABBA deadlock, the cpuset code handling
  669. * these user changes delegates the actual sched domain rebuilding
  670. * to a separate workqueue thread, which ends up processing the
  671. * above do_rebuild_sched_domains() function.
  672. */
  673. static void async_rebuild_sched_domains(void)
  674. {
  675. queue_work(cpuset_wq, &rebuild_sched_domains_work);
  676. }
  677. /*
  678. * Accomplishes the same scheduler domain rebuild as the above
  679. * async_rebuild_sched_domains(), however it directly calls the
  680. * rebuild routine synchronously rather than calling it via an
  681. * asynchronous work thread.
  682. *
  683. * This can only be called from code that is not holding
  684. * cgroup_mutex (not nested in a cgroup_lock() call.)
  685. */
  686. void rebuild_sched_domains(void)
  687. {
  688. do_rebuild_sched_domains(NULL);
  689. }
  690. /**
  691. * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
  692. * @tsk: task to test
  693. * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
  694. *
  695. * Call with cgroup_mutex held. May take callback_mutex during call.
  696. * Called for each task in a cgroup by cgroup_scan_tasks().
  697. * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
  698. * words, if its mask is not equal to its cpuset's mask).
  699. */
  700. static int cpuset_test_cpumask(struct task_struct *tsk,
  701. struct cgroup_scanner *scan)
  702. {
  703. return !cpumask_equal(&tsk->cpus_allowed,
  704. (cgroup_cs(scan->cg))->cpus_allowed);
  705. }
  706. /**
  707. * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
  708. * @tsk: task to test
  709. * @scan: struct cgroup_scanner containing the cgroup of the task
  710. *
  711. * Called by cgroup_scan_tasks() for each task in a cgroup whose
  712. * cpus_allowed mask needs to be changed.
  713. *
  714. * We don't need to re-check for the cgroup/cpuset membership, since we're
  715. * holding cgroup_lock() at this point.
  716. */
  717. static void cpuset_change_cpumask(struct task_struct *tsk,
  718. struct cgroup_scanner *scan)
  719. {
  720. set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
  721. }
  722. /**
  723. * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
  724. * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
  725. * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
  726. *
  727. * Called with cgroup_mutex held
  728. *
  729. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  730. * calling callback functions for each.
  731. *
  732. * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
  733. * if @heap != NULL.
  734. */
  735. static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
  736. {
  737. struct cgroup_scanner scan;
  738. scan.cg = cs->css.cgroup;
  739. scan.test_task = cpuset_test_cpumask;
  740. scan.process_task = cpuset_change_cpumask;
  741. scan.heap = heap;
  742. cgroup_scan_tasks(&scan);
  743. }
  744. /**
  745. * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
  746. * @cs: the cpuset to consider
  747. * @buf: buffer of cpu numbers written to this cpuset
  748. */
  749. static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
  750. const char *buf)
  751. {
  752. struct ptr_heap heap;
  753. int retval;
  754. int is_load_balanced;
  755. /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
  756. if (cs == &top_cpuset)
  757. return -EACCES;
  758. /*
  759. * An empty cpus_allowed is ok only if the cpuset has no tasks.
  760. * Since cpulist_parse() fails on an empty mask, we special case
  761. * that parsing. The validate_change() call ensures that cpusets
  762. * with tasks have cpus.
  763. */
  764. if (!*buf) {
  765. cpumask_clear(trialcs->cpus_allowed);
  766. } else {
  767. retval = cpulist_parse(buf, trialcs->cpus_allowed);
  768. if (retval < 0)
  769. return retval;
  770. if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
  771. return -EINVAL;
  772. }
  773. retval = validate_change(cs, trialcs);
  774. if (retval < 0)
  775. return retval;
  776. /* Nothing to do if the cpus didn't change */
  777. if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
  778. return 0;
  779. retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  780. if (retval)
  781. return retval;
  782. is_load_balanced = is_sched_load_balance(trialcs);
  783. mutex_lock(&callback_mutex);
  784. cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
  785. mutex_unlock(&callback_mutex);
  786. /*
  787. * Scan tasks in the cpuset, and update the cpumasks of any
  788. * that need an update.
  789. */
  790. update_tasks_cpumask(cs, &heap);
  791. heap_free(&heap);
  792. if (is_load_balanced)
  793. async_rebuild_sched_domains();
  794. return 0;
  795. }
  796. /*
  797. * cpuset_migrate_mm
  798. *
  799. * Migrate memory region from one set of nodes to another.
  800. *
  801. * Temporarilly set tasks mems_allowed to target nodes of migration,
  802. * so that the migration code can allocate pages on these nodes.
  803. *
  804. * Call holding cgroup_mutex, so current's cpuset won't change
  805. * during this call, as manage_mutex holds off any cpuset_attach()
  806. * calls. Therefore we don't need to take task_lock around the
  807. * call to guarantee_online_mems(), as we know no one is changing
  808. * our task's cpuset.
  809. *
  810. * While the mm_struct we are migrating is typically from some
  811. * other task, the task_struct mems_allowed that we are hacking
  812. * is for our current task, which must allocate new pages for that
  813. * migrating memory region.
  814. */
  815. static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
  816. const nodemask_t *to)
  817. {
  818. struct task_struct *tsk = current;
  819. tsk->mems_allowed = *to;
  820. do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
  821. guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
  822. }
  823. /*
  824. * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
  825. * @tsk: the task to change
  826. * @newmems: new nodes that the task will be set
  827. *
  828. * In order to avoid seeing no nodes if the old and new nodes are disjoint,
  829. * we structure updates as setting all new allowed nodes, then clearing newly
  830. * disallowed ones.
  831. */
  832. static void cpuset_change_task_nodemask(struct task_struct *tsk,
  833. nodemask_t *newmems)
  834. {
  835. repeat:
  836. /*
  837. * Allow tasks that have access to memory reserves because they have
  838. * been OOM killed to get memory anywhere.
  839. */
  840. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  841. return;
  842. if (current->flags & PF_EXITING) /* Let dying task have memory */
  843. return;
  844. task_lock(tsk);
  845. nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
  846. mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
  847. /*
  848. * ensure checking ->mems_allowed_change_disable after setting all new
  849. * allowed nodes.
  850. *
  851. * the read-side task can see an nodemask with new allowed nodes and
  852. * old allowed nodes. and if it allocates page when cpuset clears newly
  853. * disallowed ones continuous, it can see the new allowed bits.
  854. *
  855. * And if setting all new allowed nodes is after the checking, setting
  856. * all new allowed nodes and clearing newly disallowed ones will be done
  857. * continuous, and the read-side task may find no node to alloc page.
  858. */
  859. smp_mb();
  860. /*
  861. * Allocation of memory is very fast, we needn't sleep when waiting
  862. * for the read-side.
  863. */
  864. while (ACCESS_ONCE(tsk->mems_allowed_change_disable)) {
  865. task_unlock(tsk);
  866. if (!task_curr(tsk))
  867. yield();
  868. goto repeat;
  869. }
  870. /*
  871. * ensure checking ->mems_allowed_change_disable before clearing all new
  872. * disallowed nodes.
  873. *
  874. * if clearing newly disallowed bits before the checking, the read-side
  875. * task may find no node to alloc page.
  876. */
  877. smp_mb();
  878. mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
  879. tsk->mems_allowed = *newmems;
  880. task_unlock(tsk);
  881. }
  882. /*
  883. * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
  884. * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
  885. * memory_migrate flag is set. Called with cgroup_mutex held.
  886. */
  887. static void cpuset_change_nodemask(struct task_struct *p,
  888. struct cgroup_scanner *scan)
  889. {
  890. struct mm_struct *mm;
  891. struct cpuset *cs;
  892. int migrate;
  893. const nodemask_t *oldmem = scan->data;
  894. NODEMASK_ALLOC(nodemask_t, newmems, GFP_KERNEL);
  895. if (!newmems)
  896. return;
  897. cs = cgroup_cs(scan->cg);
  898. guarantee_online_mems(cs, newmems);
  899. cpuset_change_task_nodemask(p, newmems);
  900. NODEMASK_FREE(newmems);
  901. mm = get_task_mm(p);
  902. if (!mm)
  903. return;
  904. migrate = is_memory_migrate(cs);
  905. mpol_rebind_mm(mm, &cs->mems_allowed);
  906. if (migrate)
  907. cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
  908. mmput(mm);
  909. }
  910. static void *cpuset_being_rebound;
  911. /**
  912. * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
  913. * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
  914. * @oldmem: old mems_allowed of cpuset cs
  915. * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
  916. *
  917. * Called with cgroup_mutex held
  918. * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
  919. * if @heap != NULL.
  920. */
  921. static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
  922. struct ptr_heap *heap)
  923. {
  924. struct cgroup_scanner scan;
  925. cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
  926. scan.cg = cs->css.cgroup;
  927. scan.test_task = NULL;
  928. scan.process_task = cpuset_change_nodemask;
  929. scan.heap = heap;
  930. scan.data = (nodemask_t *)oldmem;
  931. /*
  932. * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
  933. * take while holding tasklist_lock. Forks can happen - the
  934. * mpol_dup() cpuset_being_rebound check will catch such forks,
  935. * and rebind their vma mempolicies too. Because we still hold
  936. * the global cgroup_mutex, we know that no other rebind effort
  937. * will be contending for the global variable cpuset_being_rebound.
  938. * It's ok if we rebind the same mm twice; mpol_rebind_mm()
  939. * is idempotent. Also migrate pages in each mm to new nodes.
  940. */
  941. cgroup_scan_tasks(&scan);
  942. /* We're done rebinding vmas to this cpuset's new mems_allowed. */
  943. cpuset_being_rebound = NULL;
  944. }
  945. /*
  946. * Handle user request to change the 'mems' memory placement
  947. * of a cpuset. Needs to validate the request, update the
  948. * cpusets mems_allowed, and for each task in the cpuset,
  949. * update mems_allowed and rebind task's mempolicy and any vma
  950. * mempolicies and if the cpuset is marked 'memory_migrate',
  951. * migrate the tasks pages to the new memory.
  952. *
  953. * Call with cgroup_mutex held. May take callback_mutex during call.
  954. * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
  955. * lock each such tasks mm->mmap_sem, scan its vma's and rebind
  956. * their mempolicies to the cpusets new mems_allowed.
  957. */
  958. static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
  959. const char *buf)
  960. {
  961. NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL);
  962. int retval;
  963. struct ptr_heap heap;
  964. if (!oldmem)
  965. return -ENOMEM;
  966. /*
  967. * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
  968. * it's read-only
  969. */
  970. if (cs == &top_cpuset) {
  971. retval = -EACCES;
  972. goto done;
  973. }
  974. /*
  975. * An empty mems_allowed is ok iff there are no tasks in the cpuset.
  976. * Since nodelist_parse() fails on an empty mask, we special case
  977. * that parsing. The validate_change() call ensures that cpusets
  978. * with tasks have memory.
  979. */
  980. if (!*buf) {
  981. nodes_clear(trialcs->mems_allowed);
  982. } else {
  983. retval = nodelist_parse(buf, trialcs->mems_allowed);
  984. if (retval < 0)
  985. goto done;
  986. if (!nodes_subset(trialcs->mems_allowed,
  987. node_states[N_HIGH_MEMORY])) {
  988. retval = -EINVAL;
  989. goto done;
  990. }
  991. }
  992. *oldmem = cs->mems_allowed;
  993. if (nodes_equal(*oldmem, trialcs->mems_allowed)) {
  994. retval = 0; /* Too easy - nothing to do */
  995. goto done;
  996. }
  997. retval = validate_change(cs, trialcs);
  998. if (retval < 0)
  999. goto done;
  1000. retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  1001. if (retval < 0)
  1002. goto done;
  1003. mutex_lock(&callback_mutex);
  1004. cs->mems_allowed = trialcs->mems_allowed;
  1005. mutex_unlock(&callback_mutex);
  1006. update_tasks_nodemask(cs, oldmem, &heap);
  1007. heap_free(&heap);
  1008. done:
  1009. NODEMASK_FREE(oldmem);
  1010. return retval;
  1011. }
  1012. int current_cpuset_is_being_rebound(void)
  1013. {
  1014. return task_cs(current) == cpuset_being_rebound;
  1015. }
  1016. static int update_relax_domain_level(struct cpuset *cs, s64 val)
  1017. {
  1018. #ifdef CONFIG_SMP
  1019. if (val < -1 || val >= SD_LV_MAX)
  1020. return -EINVAL;
  1021. #endif
  1022. if (val != cs->relax_domain_level) {
  1023. cs->relax_domain_level = val;
  1024. if (!cpumask_empty(cs->cpus_allowed) &&
  1025. is_sched_load_balance(cs))
  1026. async_rebuild_sched_domains();
  1027. }
  1028. return 0;
  1029. }
  1030. /*
  1031. * cpuset_change_flag - make a task's spread flags the same as its cpuset's
  1032. * @tsk: task to be updated
  1033. * @scan: struct cgroup_scanner containing the cgroup of the task
  1034. *
  1035. * Called by cgroup_scan_tasks() for each task in a cgroup.
  1036. *
  1037. * We don't need to re-check for the cgroup/cpuset membership, since we're
  1038. * holding cgroup_lock() at this point.
  1039. */
  1040. static void cpuset_change_flag(struct task_struct *tsk,
  1041. struct cgroup_scanner *scan)
  1042. {
  1043. cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
  1044. }
  1045. /*
  1046. * update_tasks_flags - update the spread flags of tasks in the cpuset.
  1047. * @cs: the cpuset in which each task's spread flags needs to be changed
  1048. * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
  1049. *
  1050. * Called with cgroup_mutex held
  1051. *
  1052. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  1053. * calling callback functions for each.
  1054. *
  1055. * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
  1056. * if @heap != NULL.
  1057. */
  1058. static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
  1059. {
  1060. struct cgroup_scanner scan;
  1061. scan.cg = cs->css.cgroup;
  1062. scan.test_task = NULL;
  1063. scan.process_task = cpuset_change_flag;
  1064. scan.heap = heap;
  1065. cgroup_scan_tasks(&scan);
  1066. }
  1067. /*
  1068. * update_flag - read a 0 or a 1 in a file and update associated flag
  1069. * bit: the bit to update (see cpuset_flagbits_t)
  1070. * cs: the cpuset to update
  1071. * turning_on: whether the flag is being set or cleared
  1072. *
  1073. * Call with cgroup_mutex held.
  1074. */
  1075. static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
  1076. int turning_on)
  1077. {
  1078. struct cpuset *trialcs;
  1079. int balance_flag_changed;
  1080. int spread_flag_changed;
  1081. struct ptr_heap heap;
  1082. int err;
  1083. trialcs = alloc_trial_cpuset(cs);
  1084. if (!trialcs)
  1085. return -ENOMEM;
  1086. if (turning_on)
  1087. set_bit(bit, &trialcs->flags);
  1088. else
  1089. clear_bit(bit, &trialcs->flags);
  1090. err = validate_change(cs, trialcs);
  1091. if (err < 0)
  1092. goto out;
  1093. err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  1094. if (err < 0)
  1095. goto out;
  1096. balance_flag_changed = (is_sched_load_balance(cs) !=
  1097. is_sched_load_balance(trialcs));
  1098. spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
  1099. || (is_spread_page(cs) != is_spread_page(trialcs)));
  1100. mutex_lock(&callback_mutex);
  1101. cs->flags = trialcs->flags;
  1102. mutex_unlock(&callback_mutex);
  1103. if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
  1104. async_rebuild_sched_domains();
  1105. if (spread_flag_changed)
  1106. update_tasks_flags(cs, &heap);
  1107. heap_free(&heap);
  1108. out:
  1109. free_trial_cpuset(trialcs);
  1110. return err;
  1111. }
  1112. /*
  1113. * Frequency meter - How fast is some event occurring?
  1114. *
  1115. * These routines manage a digitally filtered, constant time based,
  1116. * event frequency meter. There are four routines:
  1117. * fmeter_init() - initialize a frequency meter.
  1118. * fmeter_markevent() - called each time the event happens.
  1119. * fmeter_getrate() - returns the recent rate of such events.
  1120. * fmeter_update() - internal routine used to update fmeter.
  1121. *
  1122. * A common data structure is passed to each of these routines,
  1123. * which is used to keep track of the state required to manage the
  1124. * frequency meter and its digital filter.
  1125. *
  1126. * The filter works on the number of events marked per unit time.
  1127. * The filter is single-pole low-pass recursive (IIR). The time unit
  1128. * is 1 second. Arithmetic is done using 32-bit integers scaled to
  1129. * simulate 3 decimal digits of precision (multiplied by 1000).
  1130. *
  1131. * With an FM_COEF of 933, and a time base of 1 second, the filter
  1132. * has a half-life of 10 seconds, meaning that if the events quit
  1133. * happening, then the rate returned from the fmeter_getrate()
  1134. * will be cut in half each 10 seconds, until it converges to zero.
  1135. *
  1136. * It is not worth doing a real infinitely recursive filter. If more
  1137. * than FM_MAXTICKS ticks have elapsed since the last filter event,
  1138. * just compute FM_MAXTICKS ticks worth, by which point the level
  1139. * will be stable.
  1140. *
  1141. * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
  1142. * arithmetic overflow in the fmeter_update() routine.
  1143. *
  1144. * Given the simple 32 bit integer arithmetic used, this meter works
  1145. * best for reporting rates between one per millisecond (msec) and
  1146. * one per 32 (approx) seconds. At constant rates faster than one
  1147. * per msec it maxes out at values just under 1,000,000. At constant
  1148. * rates between one per msec, and one per second it will stabilize
  1149. * to a value N*1000, where N is the rate of events per second.
  1150. * At constant rates between one per second and one per 32 seconds,
  1151. * it will be choppy, moving up on the seconds that have an event,
  1152. * and then decaying until the next event. At rates slower than
  1153. * about one in 32 seconds, it decays all the way back to zero between
  1154. * each event.
  1155. */
  1156. #define FM_COEF 933 /* coefficient for half-life of 10 secs */
  1157. #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
  1158. #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
  1159. #define FM_SCALE 1000 /* faux fixed point scale */
  1160. /* Initialize a frequency meter */
  1161. static void fmeter_init(struct fmeter *fmp)
  1162. {
  1163. fmp->cnt = 0;
  1164. fmp->val = 0;
  1165. fmp->time = 0;
  1166. spin_lock_init(&fmp->lock);
  1167. }
  1168. /* Internal meter update - process cnt events and update value */
  1169. static void fmeter_update(struct fmeter *fmp)
  1170. {
  1171. time_t now = get_seconds();
  1172. time_t ticks = now - fmp->time;
  1173. if (ticks == 0)
  1174. return;
  1175. ticks = min(FM_MAXTICKS, ticks);
  1176. while (ticks-- > 0)
  1177. fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
  1178. fmp->time = now;
  1179. fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
  1180. fmp->cnt = 0;
  1181. }
  1182. /* Process any previous ticks, then bump cnt by one (times scale). */
  1183. static void fmeter_markevent(struct fmeter *fmp)
  1184. {
  1185. spin_lock(&fmp->lock);
  1186. fmeter_update(fmp);
  1187. fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
  1188. spin_unlock(&fmp->lock);
  1189. }
  1190. /* Process any previous ticks, then return current value. */
  1191. static int fmeter_getrate(struct fmeter *fmp)
  1192. {
  1193. int val;
  1194. spin_lock(&fmp->lock);
  1195. fmeter_update(fmp);
  1196. val = fmp->val;
  1197. spin_unlock(&fmp->lock);
  1198. return val;
  1199. }
  1200. /* Protected by cgroup_lock */
  1201. static cpumask_var_t cpus_attach;
  1202. /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
  1203. static int cpuset_can_attach(struct cgroup_subsys *ss, struct cgroup *cont,
  1204. struct task_struct *tsk, bool threadgroup)
  1205. {
  1206. int ret;
  1207. struct cpuset *cs = cgroup_cs(cont);
  1208. if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
  1209. return -ENOSPC;
  1210. /*
  1211. * Kthreads bound to specific cpus cannot be moved to a new cpuset; we
  1212. * cannot change their cpu affinity and isolating such threads by their
  1213. * set of allowed nodes is unnecessary. Thus, cpusets are not
  1214. * applicable for such threads. This prevents checking for success of
  1215. * set_cpus_allowed_ptr() on all attached tasks before cpus_allowed may
  1216. * be changed.
  1217. */
  1218. if (tsk->flags & PF_THREAD_BOUND)
  1219. return -EINVAL;
  1220. ret = security_task_setscheduler(tsk);
  1221. if (ret)
  1222. return ret;
  1223. if (threadgroup) {
  1224. struct task_struct *c;
  1225. rcu_read_lock();
  1226. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  1227. ret = security_task_setscheduler(c);
  1228. if (ret) {
  1229. rcu_read_unlock();
  1230. return ret;
  1231. }
  1232. }
  1233. rcu_read_unlock();
  1234. }
  1235. return 0;
  1236. }
  1237. static void cpuset_attach_task(struct task_struct *tsk, nodemask_t *to,
  1238. struct cpuset *cs)
  1239. {
  1240. int err;
  1241. /*
  1242. * can_attach beforehand should guarantee that this doesn't fail.
  1243. * TODO: have a better way to handle failure here
  1244. */
  1245. err = set_cpus_allowed_ptr(tsk, cpus_attach);
  1246. WARN_ON_ONCE(err);
  1247. cpuset_change_task_nodemask(tsk, to);
  1248. cpuset_update_task_spread_flag(cs, tsk);
  1249. }
  1250. static void cpuset_attach(struct cgroup_subsys *ss, struct cgroup *cont,
  1251. struct cgroup *oldcont, struct task_struct *tsk,
  1252. bool threadgroup)
  1253. {
  1254. struct mm_struct *mm;
  1255. struct cpuset *cs = cgroup_cs(cont);
  1256. struct cpuset *oldcs = cgroup_cs(oldcont);
  1257. NODEMASK_ALLOC(nodemask_t, from, GFP_KERNEL);
  1258. NODEMASK_ALLOC(nodemask_t, to, GFP_KERNEL);
  1259. if (from == NULL || to == NULL)
  1260. goto alloc_fail;
  1261. if (cs == &top_cpuset) {
  1262. cpumask_copy(cpus_attach, cpu_possible_mask);
  1263. } else {
  1264. guarantee_online_cpus(cs, cpus_attach);
  1265. }
  1266. guarantee_online_mems(cs, to);
  1267. /* do per-task migration stuff possibly for each in the threadgroup */
  1268. cpuset_attach_task(tsk, to, cs);
  1269. if (threadgroup) {
  1270. struct task_struct *c;
  1271. rcu_read_lock();
  1272. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  1273. cpuset_attach_task(c, to, cs);
  1274. }
  1275. rcu_read_unlock();
  1276. }
  1277. /* change mm; only needs to be done once even if threadgroup */
  1278. *from = oldcs->mems_allowed;
  1279. *to = cs->mems_allowed;
  1280. mm = get_task_mm(tsk);
  1281. if (mm) {
  1282. mpol_rebind_mm(mm, to);
  1283. if (is_memory_migrate(cs))
  1284. cpuset_migrate_mm(mm, from, to);
  1285. mmput(mm);
  1286. }
  1287. alloc_fail:
  1288. NODEMASK_FREE(from);
  1289. NODEMASK_FREE(to);
  1290. }
  1291. /* The various types of files and directories in a cpuset file system */
  1292. typedef enum {
  1293. FILE_MEMORY_MIGRATE,
  1294. FILE_CPULIST,
  1295. FILE_MEMLIST,
  1296. FILE_CPU_EXCLUSIVE,
  1297. FILE_MEM_EXCLUSIVE,
  1298. FILE_MEM_HARDWALL,
  1299. FILE_SCHED_LOAD_BALANCE,
  1300. FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1301. FILE_MEMORY_PRESSURE_ENABLED,
  1302. FILE_MEMORY_PRESSURE,
  1303. FILE_SPREAD_PAGE,
  1304. FILE_SPREAD_SLAB,
  1305. } cpuset_filetype_t;
  1306. static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
  1307. {
  1308. int retval = 0;
  1309. struct cpuset *cs = cgroup_cs(cgrp);
  1310. cpuset_filetype_t type = cft->private;
  1311. if (!cgroup_lock_live_group(cgrp))
  1312. return -ENODEV;
  1313. switch (type) {
  1314. case FILE_CPU_EXCLUSIVE:
  1315. retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
  1316. break;
  1317. case FILE_MEM_EXCLUSIVE:
  1318. retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
  1319. break;
  1320. case FILE_MEM_HARDWALL:
  1321. retval = update_flag(CS_MEM_HARDWALL, cs, val);
  1322. break;
  1323. case FILE_SCHED_LOAD_BALANCE:
  1324. retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
  1325. break;
  1326. case FILE_MEMORY_MIGRATE:
  1327. retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
  1328. break;
  1329. case FILE_MEMORY_PRESSURE_ENABLED:
  1330. cpuset_memory_pressure_enabled = !!val;
  1331. break;
  1332. case FILE_MEMORY_PRESSURE:
  1333. retval = -EACCES;
  1334. break;
  1335. case FILE_SPREAD_PAGE:
  1336. retval = update_flag(CS_SPREAD_PAGE, cs, val);
  1337. break;
  1338. case FILE_SPREAD_SLAB:
  1339. retval = update_flag(CS_SPREAD_SLAB, cs, val);
  1340. break;
  1341. default:
  1342. retval = -EINVAL;
  1343. break;
  1344. }
  1345. cgroup_unlock();
  1346. return retval;
  1347. }
  1348. static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
  1349. {
  1350. int retval = 0;
  1351. struct cpuset *cs = cgroup_cs(cgrp);
  1352. cpuset_filetype_t type = cft->private;
  1353. if (!cgroup_lock_live_group(cgrp))
  1354. return -ENODEV;
  1355. switch (type) {
  1356. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1357. retval = update_relax_domain_level(cs, val);
  1358. break;
  1359. default:
  1360. retval = -EINVAL;
  1361. break;
  1362. }
  1363. cgroup_unlock();
  1364. return retval;
  1365. }
  1366. /*
  1367. * Common handling for a write to a "cpus" or "mems" file.
  1368. */
  1369. static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
  1370. const char *buf)
  1371. {
  1372. int retval = 0;
  1373. struct cpuset *cs = cgroup_cs(cgrp);
  1374. struct cpuset *trialcs;
  1375. if (!cgroup_lock_live_group(cgrp))
  1376. return -ENODEV;
  1377. trialcs = alloc_trial_cpuset(cs);
  1378. if (!trialcs) {
  1379. retval = -ENOMEM;
  1380. goto out;
  1381. }
  1382. switch (cft->private) {
  1383. case FILE_CPULIST:
  1384. retval = update_cpumask(cs, trialcs, buf);
  1385. break;
  1386. case FILE_MEMLIST:
  1387. retval = update_nodemask(cs, trialcs, buf);
  1388. break;
  1389. default:
  1390. retval = -EINVAL;
  1391. break;
  1392. }
  1393. free_trial_cpuset(trialcs);
  1394. out:
  1395. cgroup_unlock();
  1396. return retval;
  1397. }
  1398. /*
  1399. * These ascii lists should be read in a single call, by using a user
  1400. * buffer large enough to hold the entire map. If read in smaller
  1401. * chunks, there is no guarantee of atomicity. Since the display format
  1402. * used, list of ranges of sequential numbers, is variable length,
  1403. * and since these maps can change value dynamically, one could read
  1404. * gibberish by doing partial reads while a list was changing.
  1405. * A single large read to a buffer that crosses a page boundary is
  1406. * ok, because the result being copied to user land is not recomputed
  1407. * across a page fault.
  1408. */
  1409. static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
  1410. {
  1411. int ret;
  1412. mutex_lock(&callback_mutex);
  1413. ret = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
  1414. mutex_unlock(&callback_mutex);
  1415. return ret;
  1416. }
  1417. static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
  1418. {
  1419. NODEMASK_ALLOC(nodemask_t, mask, GFP_KERNEL);
  1420. int retval;
  1421. if (mask == NULL)
  1422. return -ENOMEM;
  1423. mutex_lock(&callback_mutex);
  1424. *mask = cs->mems_allowed;
  1425. mutex_unlock(&callback_mutex);
  1426. retval = nodelist_scnprintf(page, PAGE_SIZE, *mask);
  1427. NODEMASK_FREE(mask);
  1428. return retval;
  1429. }
  1430. static ssize_t cpuset_common_file_read(struct cgroup *cont,
  1431. struct cftype *cft,
  1432. struct file *file,
  1433. char __user *buf,
  1434. size_t nbytes, loff_t *ppos)
  1435. {
  1436. struct cpuset *cs = cgroup_cs(cont);
  1437. cpuset_filetype_t type = cft->private;
  1438. char *page;
  1439. ssize_t retval = 0;
  1440. char *s;
  1441. if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
  1442. return -ENOMEM;
  1443. s = page;
  1444. switch (type) {
  1445. case FILE_CPULIST:
  1446. s += cpuset_sprintf_cpulist(s, cs);
  1447. break;
  1448. case FILE_MEMLIST:
  1449. s += cpuset_sprintf_memlist(s, cs);
  1450. break;
  1451. default:
  1452. retval = -EINVAL;
  1453. goto out;
  1454. }
  1455. *s++ = '\n';
  1456. retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
  1457. out:
  1458. free_page((unsigned long)page);
  1459. return retval;
  1460. }
  1461. static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
  1462. {
  1463. struct cpuset *cs = cgroup_cs(cont);
  1464. cpuset_filetype_t type = cft->private;
  1465. switch (type) {
  1466. case FILE_CPU_EXCLUSIVE:
  1467. return is_cpu_exclusive(cs);
  1468. case FILE_MEM_EXCLUSIVE:
  1469. return is_mem_exclusive(cs);
  1470. case FILE_MEM_HARDWALL:
  1471. return is_mem_hardwall(cs);
  1472. case FILE_SCHED_LOAD_BALANCE:
  1473. return is_sched_load_balance(cs);
  1474. case FILE_MEMORY_MIGRATE:
  1475. return is_memory_migrate(cs);
  1476. case FILE_MEMORY_PRESSURE_ENABLED:
  1477. return cpuset_memory_pressure_enabled;
  1478. case FILE_MEMORY_PRESSURE:
  1479. return fmeter_getrate(&cs->fmeter);
  1480. case FILE_SPREAD_PAGE:
  1481. return is_spread_page(cs);
  1482. case FILE_SPREAD_SLAB:
  1483. return is_spread_slab(cs);
  1484. default:
  1485. BUG();
  1486. }
  1487. /* Unreachable but makes gcc happy */
  1488. return 0;
  1489. }
  1490. static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
  1491. {
  1492. struct cpuset *cs = cgroup_cs(cont);
  1493. cpuset_filetype_t type = cft->private;
  1494. switch (type) {
  1495. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1496. return cs->relax_domain_level;
  1497. default:
  1498. BUG();
  1499. }
  1500. /* Unrechable but makes gcc happy */
  1501. return 0;
  1502. }
  1503. /*
  1504. * for the common functions, 'private' gives the type of file
  1505. */
  1506. static struct cftype files[] = {
  1507. {
  1508. .name = "cpus",
  1509. .read = cpuset_common_file_read,
  1510. .write_string = cpuset_write_resmask,
  1511. .max_write_len = (100U + 6 * NR_CPUS),
  1512. .private = FILE_CPULIST,
  1513. },
  1514. {
  1515. .name = "mems",
  1516. .read = cpuset_common_file_read,
  1517. .write_string = cpuset_write_resmask,
  1518. .max_write_len = (100U + 6 * MAX_NUMNODES),
  1519. .private = FILE_MEMLIST,
  1520. },
  1521. {
  1522. .name = "cpu_exclusive",
  1523. .read_u64 = cpuset_read_u64,
  1524. .write_u64 = cpuset_write_u64,
  1525. .private = FILE_CPU_EXCLUSIVE,
  1526. },
  1527. {
  1528. .name = "mem_exclusive",
  1529. .read_u64 = cpuset_read_u64,
  1530. .write_u64 = cpuset_write_u64,
  1531. .private = FILE_MEM_EXCLUSIVE,
  1532. },
  1533. {
  1534. .name = "mem_hardwall",
  1535. .read_u64 = cpuset_read_u64,
  1536. .write_u64 = cpuset_write_u64,
  1537. .private = FILE_MEM_HARDWALL,
  1538. },
  1539. {
  1540. .name = "sched_load_balance",
  1541. .read_u64 = cpuset_read_u64,
  1542. .write_u64 = cpuset_write_u64,
  1543. .private = FILE_SCHED_LOAD_BALANCE,
  1544. },
  1545. {
  1546. .name = "sched_relax_domain_level",
  1547. .read_s64 = cpuset_read_s64,
  1548. .write_s64 = cpuset_write_s64,
  1549. .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1550. },
  1551. {
  1552. .name = "memory_migrate",
  1553. .read_u64 = cpuset_read_u64,
  1554. .write_u64 = cpuset_write_u64,
  1555. .private = FILE_MEMORY_MIGRATE,
  1556. },
  1557. {
  1558. .name = "memory_pressure",
  1559. .read_u64 = cpuset_read_u64,
  1560. .write_u64 = cpuset_write_u64,
  1561. .private = FILE_MEMORY_PRESSURE,
  1562. .mode = S_IRUGO,
  1563. },
  1564. {
  1565. .name = "memory_spread_page",
  1566. .read_u64 = cpuset_read_u64,
  1567. .write_u64 = cpuset_write_u64,
  1568. .private = FILE_SPREAD_PAGE,
  1569. },
  1570. {
  1571. .name = "memory_spread_slab",
  1572. .read_u64 = cpuset_read_u64,
  1573. .write_u64 = cpuset_write_u64,
  1574. .private = FILE_SPREAD_SLAB,
  1575. },
  1576. };
  1577. static struct cftype cft_memory_pressure_enabled = {
  1578. .name = "memory_pressure_enabled",
  1579. .read_u64 = cpuset_read_u64,
  1580. .write_u64 = cpuset_write_u64,
  1581. .private = FILE_MEMORY_PRESSURE_ENABLED,
  1582. };
  1583. static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  1584. {
  1585. int err;
  1586. err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
  1587. if (err)
  1588. return err;
  1589. /* memory_pressure_enabled is in root cpuset only */
  1590. if (!cont->parent)
  1591. err = cgroup_add_file(cont, ss,
  1592. &cft_memory_pressure_enabled);
  1593. return err;
  1594. }
  1595. /*
  1596. * post_clone() is called at the end of cgroup_clone().
  1597. * 'cgroup' was just created automatically as a result of
  1598. * a cgroup_clone(), and the current task is about to
  1599. * be moved into 'cgroup'.
  1600. *
  1601. * Currently we refuse to set up the cgroup - thereby
  1602. * refusing the task to be entered, and as a result refusing
  1603. * the sys_unshare() or clone() which initiated it - if any
  1604. * sibling cpusets have exclusive cpus or mem.
  1605. *
  1606. * If this becomes a problem for some users who wish to
  1607. * allow that scenario, then cpuset_post_clone() could be
  1608. * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
  1609. * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
  1610. * held.
  1611. */
  1612. static void cpuset_post_clone(struct cgroup_subsys *ss,
  1613. struct cgroup *cgroup)
  1614. {
  1615. struct cgroup *parent, *child;
  1616. struct cpuset *cs, *parent_cs;
  1617. parent = cgroup->parent;
  1618. list_for_each_entry(child, &parent->children, sibling) {
  1619. cs = cgroup_cs(child);
  1620. if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
  1621. return;
  1622. }
  1623. cs = cgroup_cs(cgroup);
  1624. parent_cs = cgroup_cs(parent);
  1625. cs->mems_allowed = parent_cs->mems_allowed;
  1626. cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed);
  1627. return;
  1628. }
  1629. /*
  1630. * cpuset_create - create a cpuset
  1631. * ss: cpuset cgroup subsystem
  1632. * cont: control group that the new cpuset will be part of
  1633. */
  1634. static struct cgroup_subsys_state *cpuset_create(
  1635. struct cgroup_subsys *ss,
  1636. struct cgroup *cont)
  1637. {
  1638. struct cpuset *cs;
  1639. struct cpuset *parent;
  1640. if (!cont->parent) {
  1641. return &top_cpuset.css;
  1642. }
  1643. parent = cgroup_cs(cont->parent);
  1644. cs = kmalloc(sizeof(*cs), GFP_KERNEL);
  1645. if (!cs)
  1646. return ERR_PTR(-ENOMEM);
  1647. if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
  1648. kfree(cs);
  1649. return ERR_PTR(-ENOMEM);
  1650. }
  1651. cs->flags = 0;
  1652. if (is_spread_page(parent))
  1653. set_bit(CS_SPREAD_PAGE, &cs->flags);
  1654. if (is_spread_slab(parent))
  1655. set_bit(CS_SPREAD_SLAB, &cs->flags);
  1656. set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  1657. cpumask_clear(cs->cpus_allowed);
  1658. nodes_clear(cs->mems_allowed);
  1659. fmeter_init(&cs->fmeter);
  1660. cs->relax_domain_level = -1;
  1661. cs->parent = parent;
  1662. number_of_cpusets++;
  1663. return &cs->css ;
  1664. }
  1665. /*
  1666. * If the cpuset being removed has its flag 'sched_load_balance'
  1667. * enabled, then simulate turning sched_load_balance off, which
  1668. * will call async_rebuild_sched_domains().
  1669. */
  1670. static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
  1671. {
  1672. struct cpuset *cs = cgroup_cs(cont);
  1673. if (is_sched_load_balance(cs))
  1674. update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
  1675. number_of_cpusets--;
  1676. free_cpumask_var(cs->cpus_allowed);
  1677. kfree(cs);
  1678. }
  1679. struct cgroup_subsys cpuset_subsys = {
  1680. .name = "cpuset",
  1681. .create = cpuset_create,
  1682. .destroy = cpuset_destroy,
  1683. .can_attach = cpuset_can_attach,
  1684. .attach = cpuset_attach,
  1685. .populate = cpuset_populate,
  1686. .post_clone = cpuset_post_clone,
  1687. .subsys_id = cpuset_subsys_id,
  1688. .early_init = 1,
  1689. };
  1690. /**
  1691. * cpuset_init - initialize cpusets at system boot
  1692. *
  1693. * Description: Initialize top_cpuset and the cpuset internal file system,
  1694. **/
  1695. int __init cpuset_init(void)
  1696. {
  1697. int err = 0;
  1698. if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
  1699. BUG();
  1700. cpumask_setall(top_cpuset.cpus_allowed);
  1701. nodes_setall(top_cpuset.mems_allowed);
  1702. fmeter_init(&top_cpuset.fmeter);
  1703. set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
  1704. top_cpuset.relax_domain_level = -1;
  1705. err = register_filesystem(&cpuset_fs_type);
  1706. if (err < 0)
  1707. return err;
  1708. if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
  1709. BUG();
  1710. number_of_cpusets = 1;
  1711. return 0;
  1712. }
  1713. /**
  1714. * cpuset_do_move_task - move a given task to another cpuset
  1715. * @tsk: pointer to task_struct the task to move
  1716. * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
  1717. *
  1718. * Called by cgroup_scan_tasks() for each task in a cgroup.
  1719. * Return nonzero to stop the walk through the tasks.
  1720. */
  1721. static void cpuset_do_move_task(struct task_struct *tsk,
  1722. struct cgroup_scanner *scan)
  1723. {
  1724. struct cgroup *new_cgroup = scan->data;
  1725. cgroup_attach_task(new_cgroup, tsk);
  1726. }
  1727. /**
  1728. * move_member_tasks_to_cpuset - move tasks from one cpuset to another
  1729. * @from: cpuset in which the tasks currently reside
  1730. * @to: cpuset to which the tasks will be moved
  1731. *
  1732. * Called with cgroup_mutex held
  1733. * callback_mutex must not be held, as cpuset_attach() will take it.
  1734. *
  1735. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  1736. * calling callback functions for each.
  1737. */
  1738. static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
  1739. {
  1740. struct cgroup_scanner scan;
  1741. scan.cg = from->css.cgroup;
  1742. scan.test_task = NULL; /* select all tasks in cgroup */
  1743. scan.process_task = cpuset_do_move_task;
  1744. scan.heap = NULL;
  1745. scan.data = to->css.cgroup;
  1746. if (cgroup_scan_tasks(&scan))
  1747. printk(KERN_ERR "move_member_tasks_to_cpuset: "
  1748. "cgroup_scan_tasks failed\n");
  1749. }
  1750. /*
  1751. * If CPU and/or memory hotplug handlers, below, unplug any CPUs
  1752. * or memory nodes, we need to walk over the cpuset hierarchy,
  1753. * removing that CPU or node from all cpusets. If this removes the
  1754. * last CPU or node from a cpuset, then move the tasks in the empty
  1755. * cpuset to its next-highest non-empty parent.
  1756. *
  1757. * Called with cgroup_mutex held
  1758. * callback_mutex must not be held, as cpuset_attach() will take it.
  1759. */
  1760. static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
  1761. {
  1762. struct cpuset *parent;
  1763. /*
  1764. * The cgroup's css_sets list is in use if there are tasks
  1765. * in the cpuset; the list is empty if there are none;
  1766. * the cs->css.refcnt seems always 0.
  1767. */
  1768. if (list_empty(&cs->css.cgroup->css_sets))
  1769. return;
  1770. /*
  1771. * Find its next-highest non-empty parent, (top cpuset
  1772. * has online cpus, so can't be empty).
  1773. */
  1774. parent = cs->parent;
  1775. while (cpumask_empty(parent->cpus_allowed) ||
  1776. nodes_empty(parent->mems_allowed))
  1777. parent = parent->parent;
  1778. move_member_tasks_to_cpuset(cs, parent);
  1779. }
  1780. /*
  1781. * Walk the specified cpuset subtree and look for empty cpusets.
  1782. * The tasks of such cpuset must be moved to a parent cpuset.
  1783. *
  1784. * Called with cgroup_mutex held. We take callback_mutex to modify
  1785. * cpus_allowed and mems_allowed.
  1786. *
  1787. * This walk processes the tree from top to bottom, completing one layer
  1788. * before dropping down to the next. It always processes a node before
  1789. * any of its children.
  1790. *
  1791. * For now, since we lack memory hot unplug, we'll never see a cpuset
  1792. * that has tasks along with an empty 'mems'. But if we did see such
  1793. * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
  1794. */
  1795. static void scan_for_empty_cpusets(struct cpuset *root)
  1796. {
  1797. LIST_HEAD(queue);
  1798. struct cpuset *cp; /* scans cpusets being updated */
  1799. struct cpuset *child; /* scans child cpusets of cp */
  1800. struct cgroup *cont;
  1801. NODEMASK_ALLOC(nodemask_t, oldmems, GFP_KERNEL);
  1802. if (oldmems == NULL)
  1803. return;
  1804. list_add_tail((struct list_head *)&root->stack_list, &queue);
  1805. while (!list_empty(&queue)) {
  1806. cp = list_first_entry(&queue, struct cpuset, stack_list);
  1807. list_del(queue.next);
  1808. list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
  1809. child = cgroup_cs(cont);
  1810. list_add_tail(&child->stack_list, &queue);
  1811. }
  1812. /* Continue past cpusets with all cpus, mems online */
  1813. if (cpumask_subset(cp->cpus_allowed, cpu_active_mask) &&
  1814. nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
  1815. continue;
  1816. *oldmems = cp->mems_allowed;
  1817. /* Remove offline cpus and mems from this cpuset. */
  1818. mutex_lock(&callback_mutex);
  1819. cpumask_and(cp->cpus_allowed, cp->cpus_allowed,
  1820. cpu_active_mask);
  1821. nodes_and(cp->mems_allowed, cp->mems_allowed,
  1822. node_states[N_HIGH_MEMORY]);
  1823. mutex_unlock(&callback_mutex);
  1824. /* Move tasks from the empty cpuset to a parent */
  1825. if (cpumask_empty(cp->cpus_allowed) ||
  1826. nodes_empty(cp->mems_allowed))
  1827. remove_tasks_in_empty_cpuset(cp);
  1828. else {
  1829. update_tasks_cpumask(cp, NULL);
  1830. update_tasks_nodemask(cp, oldmems, NULL);
  1831. }
  1832. }
  1833. NODEMASK_FREE(oldmems);
  1834. }
  1835. /*
  1836. * The top_cpuset tracks what CPUs and Memory Nodes are online,
  1837. * period. This is necessary in order to make cpusets transparent
  1838. * (of no affect) on systems that are actively using CPU hotplug
  1839. * but making no active use of cpusets.
  1840. *
  1841. * This routine ensures that top_cpuset.cpus_allowed tracks
  1842. * cpu_active_mask on each CPU hotplug (cpuhp) event.
  1843. *
  1844. * Called within get_online_cpus(). Needs to call cgroup_lock()
  1845. * before calling generate_sched_domains().
  1846. */
  1847. void cpuset_update_active_cpus(void)
  1848. {
  1849. struct sched_domain_attr *attr;
  1850. cpumask_var_t *doms;
  1851. int ndoms;
  1852. cgroup_lock();
  1853. mutex_lock(&callback_mutex);
  1854. cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
  1855. mutex_unlock(&callback_mutex);
  1856. scan_for_empty_cpusets(&top_cpuset);
  1857. ndoms = generate_sched_domains(&doms, &attr);
  1858. cgroup_unlock();
  1859. /* Have scheduler rebuild the domains */
  1860. partition_sched_domains(ndoms, doms, attr);
  1861. }
  1862. #ifdef CONFIG_MEMORY_HOTPLUG
  1863. /*
  1864. * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
  1865. * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
  1866. * See also the previous routine cpuset_track_online_cpus().
  1867. */
  1868. static int cpuset_track_online_nodes(struct notifier_block *self,
  1869. unsigned long action, void *arg)
  1870. {
  1871. NODEMASK_ALLOC(nodemask_t, oldmems, GFP_KERNEL);
  1872. if (oldmems == NULL)
  1873. return NOTIFY_DONE;
  1874. cgroup_lock();
  1875. switch (action) {
  1876. case MEM_ONLINE:
  1877. *oldmems = top_cpuset.mems_allowed;
  1878. mutex_lock(&callback_mutex);
  1879. top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
  1880. mutex_unlock(&callback_mutex);
  1881. update_tasks_nodemask(&top_cpuset, oldmems, NULL);
  1882. break;
  1883. case MEM_OFFLINE:
  1884. /*
  1885. * needn't update top_cpuset.mems_allowed explicitly because
  1886. * scan_for_empty_cpusets() will update it.
  1887. */
  1888. scan_for_empty_cpusets(&top_cpuset);
  1889. break;
  1890. default:
  1891. break;
  1892. }
  1893. cgroup_unlock();
  1894. NODEMASK_FREE(oldmems);
  1895. return NOTIFY_OK;
  1896. }
  1897. #endif
  1898. /**
  1899. * cpuset_init_smp - initialize cpus_allowed
  1900. *
  1901. * Description: Finish top cpuset after cpu, node maps are initialized
  1902. **/
  1903. void __init cpuset_init_smp(void)
  1904. {
  1905. cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
  1906. top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
  1907. hotplug_memory_notifier(cpuset_track_online_nodes, 10);
  1908. cpuset_wq = create_singlethread_workqueue("cpuset");
  1909. BUG_ON(!cpuset_wq);
  1910. }
  1911. /**
  1912. * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
  1913. * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
  1914. * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
  1915. *
  1916. * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
  1917. * attached to the specified @tsk. Guaranteed to return some non-empty
  1918. * subset of cpu_online_map, even if this means going outside the
  1919. * tasks cpuset.
  1920. **/
  1921. void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
  1922. {
  1923. mutex_lock(&callback_mutex);
  1924. task_lock(tsk);
  1925. guarantee_online_cpus(task_cs(tsk), pmask);
  1926. task_unlock(tsk);
  1927. mutex_unlock(&callback_mutex);
  1928. }
  1929. int cpuset_cpus_allowed_fallback(struct task_struct *tsk)
  1930. {
  1931. const struct cpuset *cs;
  1932. int cpu;
  1933. rcu_read_lock();
  1934. cs = task_cs(tsk);
  1935. if (cs)
  1936. cpumask_copy(&tsk->cpus_allowed, cs->cpus_allowed);
  1937. rcu_read_unlock();
  1938. /*
  1939. * We own tsk->cpus_allowed, nobody can change it under us.
  1940. *
  1941. * But we used cs && cs->cpus_allowed lockless and thus can
  1942. * race with cgroup_attach_task() or update_cpumask() and get
  1943. * the wrong tsk->cpus_allowed. However, both cases imply the
  1944. * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
  1945. * which takes task_rq_lock().
  1946. *
  1947. * If we are called after it dropped the lock we must see all
  1948. * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
  1949. * set any mask even if it is not right from task_cs() pov,
  1950. * the pending set_cpus_allowed_ptr() will fix things.
  1951. */
  1952. cpu = cpumask_any_and(&tsk->cpus_allowed, cpu_active_mask);
  1953. if (cpu >= nr_cpu_ids) {
  1954. /*
  1955. * Either tsk->cpus_allowed is wrong (see above) or it
  1956. * is actually empty. The latter case is only possible
  1957. * if we are racing with remove_tasks_in_empty_cpuset().
  1958. * Like above we can temporary set any mask and rely on
  1959. * set_cpus_allowed_ptr() as synchronization point.
  1960. */
  1961. cpumask_copy(&tsk->cpus_allowed, cpu_possible_mask);
  1962. cpu = cpumask_any(cpu_active_mask);
  1963. }
  1964. return cpu;
  1965. }
  1966. void cpuset_init_current_mems_allowed(void)
  1967. {
  1968. nodes_setall(current->mems_allowed);
  1969. }
  1970. /**
  1971. * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
  1972. * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
  1973. *
  1974. * Description: Returns the nodemask_t mems_allowed of the cpuset
  1975. * attached to the specified @tsk. Guaranteed to return some non-empty
  1976. * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
  1977. * tasks cpuset.
  1978. **/
  1979. nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
  1980. {
  1981. nodemask_t mask;
  1982. mutex_lock(&callback_mutex);
  1983. task_lock(tsk);
  1984. guarantee_online_mems(task_cs(tsk), &mask);
  1985. task_unlock(tsk);
  1986. mutex_unlock(&callback_mutex);
  1987. return mask;
  1988. }
  1989. /**
  1990. * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
  1991. * @nodemask: the nodemask to be checked
  1992. *
  1993. * Are any of the nodes in the nodemask allowed in current->mems_allowed?
  1994. */
  1995. int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
  1996. {
  1997. return nodes_intersects(*nodemask, current->mems_allowed);
  1998. }
  1999. /*
  2000. * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
  2001. * mem_hardwall ancestor to the specified cpuset. Call holding
  2002. * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
  2003. * (an unusual configuration), then returns the root cpuset.
  2004. */
  2005. static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
  2006. {
  2007. while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
  2008. cs = cs->parent;
  2009. return cs;
  2010. }
  2011. /**
  2012. * cpuset_node_allowed_softwall - Can we allocate on a memory node?
  2013. * @node: is this an allowed node?
  2014. * @gfp_mask: memory allocation flags
  2015. *
  2016. * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
  2017. * set, yes, we can always allocate. If node is in our task's mems_allowed,
  2018. * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
  2019. * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
  2020. * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
  2021. * flag, yes.
  2022. * Otherwise, no.
  2023. *
  2024. * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
  2025. * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
  2026. * might sleep, and might allow a node from an enclosing cpuset.
  2027. *
  2028. * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
  2029. * cpusets, and never sleeps.
  2030. *
  2031. * The __GFP_THISNODE placement logic is really handled elsewhere,
  2032. * by forcibly using a zonelist starting at a specified node, and by
  2033. * (in get_page_from_freelist()) refusing to consider the zones for
  2034. * any node on the zonelist except the first. By the time any such
  2035. * calls get to this routine, we should just shut up and say 'yes'.
  2036. *
  2037. * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
  2038. * and do not allow allocations outside the current tasks cpuset
  2039. * unless the task has been OOM killed as is marked TIF_MEMDIE.
  2040. * GFP_KERNEL allocations are not so marked, so can escape to the
  2041. * nearest enclosing hardwalled ancestor cpuset.
  2042. *
  2043. * Scanning up parent cpusets requires callback_mutex. The
  2044. * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
  2045. * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
  2046. * current tasks mems_allowed came up empty on the first pass over
  2047. * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
  2048. * cpuset are short of memory, might require taking the callback_mutex
  2049. * mutex.
  2050. *
  2051. * The first call here from mm/page_alloc:get_page_from_freelist()
  2052. * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
  2053. * so no allocation on a node outside the cpuset is allowed (unless
  2054. * in interrupt, of course).
  2055. *
  2056. * The second pass through get_page_from_freelist() doesn't even call
  2057. * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
  2058. * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
  2059. * in alloc_flags. That logic and the checks below have the combined
  2060. * affect that:
  2061. * in_interrupt - any node ok (current task context irrelevant)
  2062. * GFP_ATOMIC - any node ok
  2063. * TIF_MEMDIE - any node ok
  2064. * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
  2065. * GFP_USER - only nodes in current tasks mems allowed ok.
  2066. *
  2067. * Rule:
  2068. * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
  2069. * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
  2070. * the code that might scan up ancestor cpusets and sleep.
  2071. */
  2072. int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
  2073. {
  2074. const struct cpuset *cs; /* current cpuset ancestors */
  2075. int allowed; /* is allocation in zone z allowed? */
  2076. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  2077. return 1;
  2078. might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
  2079. if (node_isset(node, current->mems_allowed))
  2080. return 1;
  2081. /*
  2082. * Allow tasks that have access to memory reserves because they have
  2083. * been OOM killed to get memory anywhere.
  2084. */
  2085. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  2086. return 1;
  2087. if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
  2088. return 0;
  2089. if (current->flags & PF_EXITING) /* Let dying task have memory */
  2090. return 1;
  2091. /* Not hardwall and node outside mems_allowed: scan up cpusets */
  2092. mutex_lock(&callback_mutex);
  2093. task_lock(current);
  2094. cs = nearest_hardwall_ancestor(task_cs(current));
  2095. task_unlock(current);
  2096. allowed = node_isset(node, cs->mems_allowed);
  2097. mutex_unlock(&callback_mutex);
  2098. return allowed;
  2099. }
  2100. /*
  2101. * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
  2102. * @node: is this an allowed node?
  2103. * @gfp_mask: memory allocation flags
  2104. *
  2105. * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
  2106. * set, yes, we can always allocate. If node is in our task's mems_allowed,
  2107. * yes. If the task has been OOM killed and has access to memory reserves as
  2108. * specified by the TIF_MEMDIE flag, yes.
  2109. * Otherwise, no.
  2110. *
  2111. * The __GFP_THISNODE placement logic is really handled elsewhere,
  2112. * by forcibly using a zonelist starting at a specified node, and by
  2113. * (in get_page_from_freelist()) refusing to consider the zones for
  2114. * any node on the zonelist except the first. By the time any such
  2115. * calls get to this routine, we should just shut up and say 'yes'.
  2116. *
  2117. * Unlike the cpuset_node_allowed_softwall() variant, above,
  2118. * this variant requires that the node be in the current task's
  2119. * mems_allowed or that we're in interrupt. It does not scan up the
  2120. * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
  2121. * It never sleeps.
  2122. */
  2123. int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
  2124. {
  2125. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  2126. return 1;
  2127. if (node_isset(node, current->mems_allowed))
  2128. return 1;
  2129. /*
  2130. * Allow tasks that have access to memory reserves because they have
  2131. * been OOM killed to get memory anywhere.
  2132. */
  2133. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  2134. return 1;
  2135. return 0;
  2136. }
  2137. /**
  2138. * cpuset_unlock - release lock on cpuset changes
  2139. *
  2140. * Undo the lock taken in a previous cpuset_lock() call.
  2141. */
  2142. void cpuset_unlock(void)
  2143. {
  2144. mutex_unlock(&callback_mutex);
  2145. }
  2146. /**
  2147. * cpuset_mem_spread_node() - On which node to begin search for a file page
  2148. * cpuset_slab_spread_node() - On which node to begin search for a slab page
  2149. *
  2150. * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
  2151. * tasks in a cpuset with is_spread_page or is_spread_slab set),
  2152. * and if the memory allocation used cpuset_mem_spread_node()
  2153. * to determine on which node to start looking, as it will for
  2154. * certain page cache or slab cache pages such as used for file
  2155. * system buffers and inode caches, then instead of starting on the
  2156. * local node to look for a free page, rather spread the starting
  2157. * node around the tasks mems_allowed nodes.
  2158. *
  2159. * We don't have to worry about the returned node being offline
  2160. * because "it can't happen", and even if it did, it would be ok.
  2161. *
  2162. * The routines calling guarantee_online_mems() are careful to
  2163. * only set nodes in task->mems_allowed that are online. So it
  2164. * should not be possible for the following code to return an
  2165. * offline node. But if it did, that would be ok, as this routine
  2166. * is not returning the node where the allocation must be, only
  2167. * the node where the search should start. The zonelist passed to
  2168. * __alloc_pages() will include all nodes. If the slab allocator
  2169. * is passed an offline node, it will fall back to the local node.
  2170. * See kmem_cache_alloc_node().
  2171. */
  2172. static int cpuset_spread_node(int *rotor)
  2173. {
  2174. int node;
  2175. node = next_node(*rotor, current->mems_allowed);
  2176. if (node == MAX_NUMNODES)
  2177. node = first_node(current->mems_allowed);
  2178. *rotor = node;
  2179. return node;
  2180. }
  2181. int cpuset_mem_spread_node(void)
  2182. {
  2183. return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
  2184. }
  2185. int cpuset_slab_spread_node(void)
  2186. {
  2187. return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
  2188. }
  2189. EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
  2190. /**
  2191. * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
  2192. * @tsk1: pointer to task_struct of some task.
  2193. * @tsk2: pointer to task_struct of some other task.
  2194. *
  2195. * Description: Return true if @tsk1's mems_allowed intersects the
  2196. * mems_allowed of @tsk2. Used by the OOM killer to determine if
  2197. * one of the task's memory usage might impact the memory available
  2198. * to the other.
  2199. **/
  2200. int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
  2201. const struct task_struct *tsk2)
  2202. {
  2203. return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
  2204. }
  2205. /**
  2206. * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
  2207. * @task: pointer to task_struct of some task.
  2208. *
  2209. * Description: Prints @task's name, cpuset name, and cached copy of its
  2210. * mems_allowed to the kernel log. Must hold task_lock(task) to allow
  2211. * dereferencing task_cs(task).
  2212. */
  2213. void cpuset_print_task_mems_allowed(struct task_struct *tsk)
  2214. {
  2215. struct dentry *dentry;
  2216. dentry = task_cs(tsk)->css.cgroup->dentry;
  2217. spin_lock(&cpuset_buffer_lock);
  2218. snprintf(cpuset_name, CPUSET_NAME_LEN,
  2219. dentry ? (const char *)dentry->d_name.name : "/");
  2220. nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
  2221. tsk->mems_allowed);
  2222. printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
  2223. tsk->comm, cpuset_name, cpuset_nodelist);
  2224. spin_unlock(&cpuset_buffer_lock);
  2225. }
  2226. /*
  2227. * Collection of memory_pressure is suppressed unless
  2228. * this flag is enabled by writing "1" to the special
  2229. * cpuset file 'memory_pressure_enabled' in the root cpuset.
  2230. */
  2231. int cpuset_memory_pressure_enabled __read_mostly;
  2232. /**
  2233. * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
  2234. *
  2235. * Keep a running average of the rate of synchronous (direct)
  2236. * page reclaim efforts initiated by tasks in each cpuset.
  2237. *
  2238. * This represents the rate at which some task in the cpuset
  2239. * ran low on memory on all nodes it was allowed to use, and
  2240. * had to enter the kernels page reclaim code in an effort to
  2241. * create more free memory by tossing clean pages or swapping
  2242. * or writing dirty pages.
  2243. *
  2244. * Display to user space in the per-cpuset read-only file
  2245. * "memory_pressure". Value displayed is an integer
  2246. * representing the recent rate of entry into the synchronous
  2247. * (direct) page reclaim by any task attached to the cpuset.
  2248. **/
  2249. void __cpuset_memory_pressure_bump(void)
  2250. {
  2251. task_lock(current);
  2252. fmeter_markevent(&task_cs(current)->fmeter);
  2253. task_unlock(current);
  2254. }
  2255. #ifdef CONFIG_PROC_PID_CPUSET
  2256. /*
  2257. * proc_cpuset_show()
  2258. * - Print tasks cpuset path into seq_file.
  2259. * - Used for /proc/<pid>/cpuset.
  2260. * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
  2261. * doesn't really matter if tsk->cpuset changes after we read it,
  2262. * and we take cgroup_mutex, keeping cpuset_attach() from changing it
  2263. * anyway.
  2264. */
  2265. static int proc_cpuset_show(struct seq_file *m, void *unused_v)
  2266. {
  2267. struct pid *pid;
  2268. struct task_struct *tsk;
  2269. char *buf;
  2270. struct cgroup_subsys_state *css;
  2271. int retval;
  2272. retval = -ENOMEM;
  2273. buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2274. if (!buf)
  2275. goto out;
  2276. retval = -ESRCH;
  2277. pid = m->private;
  2278. tsk = get_pid_task(pid, PIDTYPE_PID);
  2279. if (!tsk)
  2280. goto out_free;
  2281. retval = -EINVAL;
  2282. cgroup_lock();
  2283. css = task_subsys_state(tsk, cpuset_subsys_id);
  2284. retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
  2285. if (retval < 0)
  2286. goto out_unlock;
  2287. seq_puts(m, buf);
  2288. seq_putc(m, '\n');
  2289. out_unlock:
  2290. cgroup_unlock();
  2291. put_task_struct(tsk);
  2292. out_free:
  2293. kfree(buf);
  2294. out:
  2295. return retval;
  2296. }
  2297. static int cpuset_open(struct inode *inode, struct file *file)
  2298. {
  2299. struct pid *pid = PROC_I(inode)->pid;
  2300. return single_open(file, proc_cpuset_show, pid);
  2301. }
  2302. const struct file_operations proc_cpuset_operations = {
  2303. .open = cpuset_open,
  2304. .read = seq_read,
  2305. .llseek = seq_lseek,
  2306. .release = single_release,
  2307. };
  2308. #endif /* CONFIG_PROC_PID_CPUSET */
  2309. /* Display task mems_allowed in /proc/<pid>/status file. */
  2310. void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
  2311. {
  2312. seq_printf(m, "Mems_allowed:\t");
  2313. seq_nodemask(m, &task->mems_allowed);
  2314. seq_printf(m, "\n");
  2315. seq_printf(m, "Mems_allowed_list:\t");
  2316. seq_nodemask_list(m, &task->mems_allowed);
  2317. seq_printf(m, "\n");
  2318. }