builtin-sched.c 38 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759
  1. #include "builtin.h"
  2. #include "perf.h"
  3. #include "util/util.h"
  4. #include "util/cache.h"
  5. #include "util/symbol.h"
  6. #include "util/thread.h"
  7. #include "util/header.h"
  8. #include "util/parse-options.h"
  9. #include "util/trace-event.h"
  10. #include "util/debug.h"
  11. #include <sys/types.h>
  12. #include <sys/prctl.h>
  13. #include <semaphore.h>
  14. #include <pthread.h>
  15. #include <math.h>
  16. static char const *input_name = "perf.data";
  17. static int input;
  18. static unsigned long page_size;
  19. static unsigned long mmap_window = 32;
  20. static unsigned long total_comm = 0;
  21. static struct rb_root threads;
  22. static struct thread *last_match;
  23. static struct perf_header *header;
  24. static u64 sample_type;
  25. static char default_sort_order[] = "avg, max, switch, runtime";
  26. static char *sort_order = default_sort_order;
  27. #define PR_SET_NAME 15 /* Set process name */
  28. #define MAX_CPUS 4096
  29. #define BUG_ON(x) assert(!(x))
  30. static u64 run_measurement_overhead;
  31. static u64 sleep_measurement_overhead;
  32. #define COMM_LEN 20
  33. #define SYM_LEN 129
  34. #define MAX_PID 65536
  35. static unsigned long nr_tasks;
  36. struct sched_event;
  37. struct task_desc {
  38. unsigned long nr;
  39. unsigned long pid;
  40. char comm[COMM_LEN];
  41. unsigned long nr_events;
  42. unsigned long curr_event;
  43. struct sched_event **events;
  44. pthread_t thread;
  45. sem_t sleep_sem;
  46. sem_t ready_for_work;
  47. sem_t work_done_sem;
  48. u64 cpu_usage;
  49. };
  50. enum sched_event_type {
  51. SCHED_EVENT_RUN,
  52. SCHED_EVENT_SLEEP,
  53. SCHED_EVENT_WAKEUP,
  54. };
  55. struct sched_event {
  56. enum sched_event_type type;
  57. u64 timestamp;
  58. u64 duration;
  59. unsigned long nr;
  60. int specific_wait;
  61. sem_t *wait_sem;
  62. struct task_desc *wakee;
  63. };
  64. static struct task_desc *pid_to_task[MAX_PID];
  65. static struct task_desc **tasks;
  66. static pthread_mutex_t start_work_mutex = PTHREAD_MUTEX_INITIALIZER;
  67. static u64 start_time;
  68. static pthread_mutex_t work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
  69. static unsigned long nr_run_events;
  70. static unsigned long nr_sleep_events;
  71. static unsigned long nr_wakeup_events;
  72. static unsigned long nr_sleep_corrections;
  73. static unsigned long nr_run_events_optimized;
  74. static unsigned long targetless_wakeups;
  75. static unsigned long multitarget_wakeups;
  76. static u64 cpu_usage;
  77. static u64 runavg_cpu_usage;
  78. static u64 parent_cpu_usage;
  79. static u64 runavg_parent_cpu_usage;
  80. static unsigned long nr_runs;
  81. static u64 sum_runtime;
  82. static u64 sum_fluct;
  83. static u64 run_avg;
  84. static unsigned long replay_repeat = 10;
  85. static unsigned long nr_timestamps;
  86. static unsigned long unordered_timestamps;
  87. #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
  88. enum thread_state {
  89. THREAD_SLEEPING = 0,
  90. THREAD_WAIT_CPU,
  91. THREAD_SCHED_IN,
  92. THREAD_IGNORE
  93. };
  94. struct work_atom {
  95. struct list_head list;
  96. enum thread_state state;
  97. u64 sched_out_time;
  98. u64 wake_up_time;
  99. u64 sched_in_time;
  100. u64 runtime;
  101. };
  102. struct task_atoms {
  103. struct list_head atom_list;
  104. struct thread *thread;
  105. struct rb_node node;
  106. u64 max_lat;
  107. u64 total_lat;
  108. u64 nb_atoms;
  109. u64 total_runtime;
  110. };
  111. typedef int (*sort_fn_t)(struct task_atoms *, struct task_atoms *);
  112. static struct rb_root atom_root, sorted_atom_root;
  113. static u64 all_runtime;
  114. static u64 all_count;
  115. static int read_events(void);
  116. static u64 get_nsecs(void)
  117. {
  118. struct timespec ts;
  119. clock_gettime(CLOCK_MONOTONIC, &ts);
  120. return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
  121. }
  122. static void burn_nsecs(u64 nsecs)
  123. {
  124. u64 T0 = get_nsecs(), T1;
  125. do {
  126. T1 = get_nsecs();
  127. } while (T1 + run_measurement_overhead < T0 + nsecs);
  128. }
  129. static void sleep_nsecs(u64 nsecs)
  130. {
  131. struct timespec ts;
  132. ts.tv_nsec = nsecs % 999999999;
  133. ts.tv_sec = nsecs / 999999999;
  134. nanosleep(&ts, NULL);
  135. }
  136. static void calibrate_run_measurement_overhead(void)
  137. {
  138. u64 T0, T1, delta, min_delta = 1000000000ULL;
  139. int i;
  140. for (i = 0; i < 10; i++) {
  141. T0 = get_nsecs();
  142. burn_nsecs(0);
  143. T1 = get_nsecs();
  144. delta = T1-T0;
  145. min_delta = min(min_delta, delta);
  146. }
  147. run_measurement_overhead = min_delta;
  148. printf("run measurement overhead: %Ld nsecs\n", min_delta);
  149. }
  150. static void calibrate_sleep_measurement_overhead(void)
  151. {
  152. u64 T0, T1, delta, min_delta = 1000000000ULL;
  153. int i;
  154. for (i = 0; i < 10; i++) {
  155. T0 = get_nsecs();
  156. sleep_nsecs(10000);
  157. T1 = get_nsecs();
  158. delta = T1-T0;
  159. min_delta = min(min_delta, delta);
  160. }
  161. min_delta -= 10000;
  162. sleep_measurement_overhead = min_delta;
  163. printf("sleep measurement overhead: %Ld nsecs\n", min_delta);
  164. }
  165. static struct sched_event *
  166. get_new_event(struct task_desc *task, u64 timestamp)
  167. {
  168. struct sched_event *event = calloc(1, sizeof(*event));
  169. unsigned long idx = task->nr_events;
  170. size_t size;
  171. event->timestamp = timestamp;
  172. event->nr = idx;
  173. task->nr_events++;
  174. size = sizeof(struct sched_event *) * task->nr_events;
  175. task->events = realloc(task->events, size);
  176. BUG_ON(!task->events);
  177. task->events[idx] = event;
  178. return event;
  179. }
  180. static struct sched_event *last_event(struct task_desc *task)
  181. {
  182. if (!task->nr_events)
  183. return NULL;
  184. return task->events[task->nr_events - 1];
  185. }
  186. static void
  187. add_sched_event_run(struct task_desc *task, u64 timestamp, u64 duration)
  188. {
  189. struct sched_event *event, *curr_event = last_event(task);
  190. /*
  191. * optimize an existing RUN event by merging this one
  192. * to it:
  193. */
  194. if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
  195. nr_run_events_optimized++;
  196. curr_event->duration += duration;
  197. return;
  198. }
  199. event = get_new_event(task, timestamp);
  200. event->type = SCHED_EVENT_RUN;
  201. event->duration = duration;
  202. nr_run_events++;
  203. }
  204. static void
  205. add_sched_event_wakeup(struct task_desc *task, u64 timestamp,
  206. struct task_desc *wakee)
  207. {
  208. struct sched_event *event, *wakee_event;
  209. event = get_new_event(task, timestamp);
  210. event->type = SCHED_EVENT_WAKEUP;
  211. event->wakee = wakee;
  212. wakee_event = last_event(wakee);
  213. if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
  214. targetless_wakeups++;
  215. return;
  216. }
  217. if (wakee_event->wait_sem) {
  218. multitarget_wakeups++;
  219. return;
  220. }
  221. wakee_event->wait_sem = calloc(1, sizeof(*wakee_event->wait_sem));
  222. sem_init(wakee_event->wait_sem, 0, 0);
  223. wakee_event->specific_wait = 1;
  224. event->wait_sem = wakee_event->wait_sem;
  225. nr_wakeup_events++;
  226. }
  227. static void
  228. add_sched_event_sleep(struct task_desc *task, u64 timestamp,
  229. u64 task_state __used)
  230. {
  231. struct sched_event *event = get_new_event(task, timestamp);
  232. event->type = SCHED_EVENT_SLEEP;
  233. nr_sleep_events++;
  234. }
  235. static struct task_desc *register_pid(unsigned long pid, const char *comm)
  236. {
  237. struct task_desc *task;
  238. BUG_ON(pid >= MAX_PID);
  239. task = pid_to_task[pid];
  240. if (task)
  241. return task;
  242. task = calloc(1, sizeof(*task));
  243. task->pid = pid;
  244. task->nr = nr_tasks;
  245. strcpy(task->comm, comm);
  246. /*
  247. * every task starts in sleeping state - this gets ignored
  248. * if there's no wakeup pointing to this sleep state:
  249. */
  250. add_sched_event_sleep(task, 0, 0);
  251. pid_to_task[pid] = task;
  252. nr_tasks++;
  253. tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *));
  254. BUG_ON(!tasks);
  255. tasks[task->nr] = task;
  256. if (verbose)
  257. printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm);
  258. return task;
  259. }
  260. static void print_task_traces(void)
  261. {
  262. struct task_desc *task;
  263. unsigned long i;
  264. for (i = 0; i < nr_tasks; i++) {
  265. task = tasks[i];
  266. printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
  267. task->nr, task->comm, task->pid, task->nr_events);
  268. }
  269. }
  270. static void add_cross_task_wakeups(void)
  271. {
  272. struct task_desc *task1, *task2;
  273. unsigned long i, j;
  274. for (i = 0; i < nr_tasks; i++) {
  275. task1 = tasks[i];
  276. j = i + 1;
  277. if (j == nr_tasks)
  278. j = 0;
  279. task2 = tasks[j];
  280. add_sched_event_wakeup(task1, 0, task2);
  281. }
  282. }
  283. static void
  284. process_sched_event(struct task_desc *this_task __used, struct sched_event *event)
  285. {
  286. int ret = 0;
  287. u64 now;
  288. long long delta;
  289. now = get_nsecs();
  290. delta = start_time + event->timestamp - now;
  291. switch (event->type) {
  292. case SCHED_EVENT_RUN:
  293. burn_nsecs(event->duration);
  294. break;
  295. case SCHED_EVENT_SLEEP:
  296. if (event->wait_sem)
  297. ret = sem_wait(event->wait_sem);
  298. BUG_ON(ret);
  299. break;
  300. case SCHED_EVENT_WAKEUP:
  301. if (event->wait_sem)
  302. ret = sem_post(event->wait_sem);
  303. BUG_ON(ret);
  304. break;
  305. default:
  306. BUG_ON(1);
  307. }
  308. }
  309. static u64 get_cpu_usage_nsec_parent(void)
  310. {
  311. struct rusage ru;
  312. u64 sum;
  313. int err;
  314. err = getrusage(RUSAGE_SELF, &ru);
  315. BUG_ON(err);
  316. sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
  317. sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
  318. return sum;
  319. }
  320. static u64 get_cpu_usage_nsec_self(void)
  321. {
  322. char filename [] = "/proc/1234567890/sched";
  323. unsigned long msecs, nsecs;
  324. char *line = NULL;
  325. u64 total = 0;
  326. size_t len = 0;
  327. ssize_t chars;
  328. FILE *file;
  329. int ret;
  330. sprintf(filename, "/proc/%d/sched", getpid());
  331. file = fopen(filename, "r");
  332. BUG_ON(!file);
  333. while ((chars = getline(&line, &len, file)) != -1) {
  334. ret = sscanf(line, "se.sum_exec_runtime : %ld.%06ld\n",
  335. &msecs, &nsecs);
  336. if (ret == 2) {
  337. total = msecs*1e6 + nsecs;
  338. break;
  339. }
  340. }
  341. if (line)
  342. free(line);
  343. fclose(file);
  344. return total;
  345. }
  346. static void *thread_func(void *ctx)
  347. {
  348. struct task_desc *this_task = ctx;
  349. u64 cpu_usage_0, cpu_usage_1;
  350. unsigned long i, ret;
  351. char comm2[22];
  352. sprintf(comm2, ":%s", this_task->comm);
  353. prctl(PR_SET_NAME, comm2);
  354. again:
  355. ret = sem_post(&this_task->ready_for_work);
  356. BUG_ON(ret);
  357. ret = pthread_mutex_lock(&start_work_mutex);
  358. BUG_ON(ret);
  359. ret = pthread_mutex_unlock(&start_work_mutex);
  360. BUG_ON(ret);
  361. cpu_usage_0 = get_cpu_usage_nsec_self();
  362. for (i = 0; i < this_task->nr_events; i++) {
  363. this_task->curr_event = i;
  364. process_sched_event(this_task, this_task->events[i]);
  365. }
  366. cpu_usage_1 = get_cpu_usage_nsec_self();
  367. this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
  368. ret = sem_post(&this_task->work_done_sem);
  369. BUG_ON(ret);
  370. ret = pthread_mutex_lock(&work_done_wait_mutex);
  371. BUG_ON(ret);
  372. ret = pthread_mutex_unlock(&work_done_wait_mutex);
  373. BUG_ON(ret);
  374. goto again;
  375. }
  376. static void create_tasks(void)
  377. {
  378. struct task_desc *task;
  379. pthread_attr_t attr;
  380. unsigned long i;
  381. int err;
  382. err = pthread_attr_init(&attr);
  383. BUG_ON(err);
  384. err = pthread_attr_setstacksize(&attr, (size_t)(16*1024));
  385. BUG_ON(err);
  386. err = pthread_mutex_lock(&start_work_mutex);
  387. BUG_ON(err);
  388. err = pthread_mutex_lock(&work_done_wait_mutex);
  389. BUG_ON(err);
  390. for (i = 0; i < nr_tasks; i++) {
  391. task = tasks[i];
  392. sem_init(&task->sleep_sem, 0, 0);
  393. sem_init(&task->ready_for_work, 0, 0);
  394. sem_init(&task->work_done_sem, 0, 0);
  395. task->curr_event = 0;
  396. err = pthread_create(&task->thread, &attr, thread_func, task);
  397. BUG_ON(err);
  398. }
  399. }
  400. static void wait_for_tasks(void)
  401. {
  402. u64 cpu_usage_0, cpu_usage_1;
  403. struct task_desc *task;
  404. unsigned long i, ret;
  405. start_time = get_nsecs();
  406. cpu_usage = 0;
  407. pthread_mutex_unlock(&work_done_wait_mutex);
  408. for (i = 0; i < nr_tasks; i++) {
  409. task = tasks[i];
  410. ret = sem_wait(&task->ready_for_work);
  411. BUG_ON(ret);
  412. sem_init(&task->ready_for_work, 0, 0);
  413. }
  414. ret = pthread_mutex_lock(&work_done_wait_mutex);
  415. BUG_ON(ret);
  416. cpu_usage_0 = get_cpu_usage_nsec_parent();
  417. pthread_mutex_unlock(&start_work_mutex);
  418. for (i = 0; i < nr_tasks; i++) {
  419. task = tasks[i];
  420. ret = sem_wait(&task->work_done_sem);
  421. BUG_ON(ret);
  422. sem_init(&task->work_done_sem, 0, 0);
  423. cpu_usage += task->cpu_usage;
  424. task->cpu_usage = 0;
  425. }
  426. cpu_usage_1 = get_cpu_usage_nsec_parent();
  427. if (!runavg_cpu_usage)
  428. runavg_cpu_usage = cpu_usage;
  429. runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10;
  430. parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
  431. if (!runavg_parent_cpu_usage)
  432. runavg_parent_cpu_usage = parent_cpu_usage;
  433. runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 +
  434. parent_cpu_usage)/10;
  435. ret = pthread_mutex_lock(&start_work_mutex);
  436. BUG_ON(ret);
  437. for (i = 0; i < nr_tasks; i++) {
  438. task = tasks[i];
  439. sem_init(&task->sleep_sem, 0, 0);
  440. task->curr_event = 0;
  441. }
  442. }
  443. static void run_one_test(void)
  444. {
  445. u64 T0, T1, delta, avg_delta, fluct, std_dev;
  446. T0 = get_nsecs();
  447. wait_for_tasks();
  448. T1 = get_nsecs();
  449. delta = T1 - T0;
  450. sum_runtime += delta;
  451. nr_runs++;
  452. avg_delta = sum_runtime / nr_runs;
  453. if (delta < avg_delta)
  454. fluct = avg_delta - delta;
  455. else
  456. fluct = delta - avg_delta;
  457. sum_fluct += fluct;
  458. std_dev = sum_fluct / nr_runs / sqrt(nr_runs);
  459. if (!run_avg)
  460. run_avg = delta;
  461. run_avg = (run_avg*9 + delta)/10;
  462. printf("#%-3ld: %0.3f, ",
  463. nr_runs, (double)delta/1000000.0);
  464. printf("ravg: %0.2f, ",
  465. (double)run_avg/1e6);
  466. printf("cpu: %0.2f / %0.2f",
  467. (double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6);
  468. #if 0
  469. /*
  470. * rusage statistics done by the parent, these are less
  471. * accurate than the sum_exec_runtime based statistics:
  472. */
  473. printf(" [%0.2f / %0.2f]",
  474. (double)parent_cpu_usage/1e6,
  475. (double)runavg_parent_cpu_usage/1e6);
  476. #endif
  477. printf("\n");
  478. if (nr_sleep_corrections)
  479. printf(" (%ld sleep corrections)\n", nr_sleep_corrections);
  480. nr_sleep_corrections = 0;
  481. }
  482. static void test_calibrations(void)
  483. {
  484. u64 T0, T1;
  485. T0 = get_nsecs();
  486. burn_nsecs(1e6);
  487. T1 = get_nsecs();
  488. printf("the run test took %Ld nsecs\n", T1-T0);
  489. T0 = get_nsecs();
  490. sleep_nsecs(1e6);
  491. T1 = get_nsecs();
  492. printf("the sleep test took %Ld nsecs\n", T1-T0);
  493. }
  494. static void __cmd_replay(void)
  495. {
  496. unsigned long i;
  497. calibrate_run_measurement_overhead();
  498. calibrate_sleep_measurement_overhead();
  499. test_calibrations();
  500. read_events();
  501. printf("nr_run_events: %ld\n", nr_run_events);
  502. printf("nr_sleep_events: %ld\n", nr_sleep_events);
  503. printf("nr_wakeup_events: %ld\n", nr_wakeup_events);
  504. if (targetless_wakeups)
  505. printf("target-less wakeups: %ld\n", targetless_wakeups);
  506. if (multitarget_wakeups)
  507. printf("multi-target wakeups: %ld\n", multitarget_wakeups);
  508. if (nr_run_events_optimized)
  509. printf("run events optimized: %ld\n",
  510. nr_run_events_optimized);
  511. print_task_traces();
  512. add_cross_task_wakeups();
  513. create_tasks();
  514. printf("------------------------------------------------------------\n");
  515. for (i = 0; i < replay_repeat; i++)
  516. run_one_test();
  517. }
  518. static int
  519. process_comm_event(event_t *event, unsigned long offset, unsigned long head)
  520. {
  521. struct thread *thread;
  522. thread = threads__findnew(event->comm.pid, &threads, &last_match);
  523. dump_printf("%p [%p]: PERF_EVENT_COMM: %s:%d\n",
  524. (void *)(offset + head),
  525. (void *)(long)(event->header.size),
  526. event->comm.comm, event->comm.pid);
  527. if (thread == NULL ||
  528. thread__set_comm(thread, event->comm.comm)) {
  529. dump_printf("problem processing PERF_EVENT_COMM, skipping event.\n");
  530. return -1;
  531. }
  532. total_comm++;
  533. return 0;
  534. }
  535. struct raw_event_sample {
  536. u32 size;
  537. char data[0];
  538. };
  539. #define FILL_FIELD(ptr, field, event, data) \
  540. ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data)
  541. #define FILL_ARRAY(ptr, array, event, data) \
  542. do { \
  543. void *__array = raw_field_ptr(event, #array, data); \
  544. memcpy(ptr.array, __array, sizeof(ptr.array)); \
  545. } while(0)
  546. #define FILL_COMMON_FIELDS(ptr, event, data) \
  547. do { \
  548. FILL_FIELD(ptr, common_type, event, data); \
  549. FILL_FIELD(ptr, common_flags, event, data); \
  550. FILL_FIELD(ptr, common_preempt_count, event, data); \
  551. FILL_FIELD(ptr, common_pid, event, data); \
  552. FILL_FIELD(ptr, common_tgid, event, data); \
  553. } while (0)
  554. struct trace_switch_event {
  555. u32 size;
  556. u16 common_type;
  557. u8 common_flags;
  558. u8 common_preempt_count;
  559. u32 common_pid;
  560. u32 common_tgid;
  561. char prev_comm[16];
  562. u32 prev_pid;
  563. u32 prev_prio;
  564. u64 prev_state;
  565. char next_comm[16];
  566. u32 next_pid;
  567. u32 next_prio;
  568. };
  569. struct trace_wakeup_event {
  570. u32 size;
  571. u16 common_type;
  572. u8 common_flags;
  573. u8 common_preempt_count;
  574. u32 common_pid;
  575. u32 common_tgid;
  576. char comm[16];
  577. u32 pid;
  578. u32 prio;
  579. u32 success;
  580. u32 cpu;
  581. };
  582. struct trace_fork_event {
  583. u32 size;
  584. u16 common_type;
  585. u8 common_flags;
  586. u8 common_preempt_count;
  587. u32 common_pid;
  588. u32 common_tgid;
  589. char parent_comm[16];
  590. u32 parent_pid;
  591. char child_comm[16];
  592. u32 child_pid;
  593. };
  594. struct trace_sched_handler {
  595. void (*switch_event)(struct trace_switch_event *,
  596. struct event *,
  597. int cpu,
  598. u64 timestamp,
  599. struct thread *thread);
  600. void (*wakeup_event)(struct trace_wakeup_event *,
  601. struct event *,
  602. int cpu,
  603. u64 timestamp,
  604. struct thread *thread);
  605. void (*fork_event)(struct trace_fork_event *,
  606. struct event *,
  607. int cpu,
  608. u64 timestamp,
  609. struct thread *thread);
  610. };
  611. static void
  612. replay_wakeup_event(struct trace_wakeup_event *wakeup_event,
  613. struct event *event,
  614. int cpu __used,
  615. u64 timestamp __used,
  616. struct thread *thread __used)
  617. {
  618. struct task_desc *waker, *wakee;
  619. if (verbose) {
  620. printf("sched_wakeup event %p\n", event);
  621. printf(" ... pid %d woke up %s/%d\n",
  622. wakeup_event->common_pid,
  623. wakeup_event->comm,
  624. wakeup_event->pid);
  625. }
  626. waker = register_pid(wakeup_event->common_pid, "<unknown>");
  627. wakee = register_pid(wakeup_event->pid, wakeup_event->comm);
  628. add_sched_event_wakeup(waker, timestamp, wakee);
  629. }
  630. static unsigned long cpu_last_switched[MAX_CPUS];
  631. static void
  632. replay_switch_event(struct trace_switch_event *switch_event,
  633. struct event *event,
  634. int cpu,
  635. u64 timestamp,
  636. struct thread *thread __used)
  637. {
  638. struct task_desc *prev, *next;
  639. u64 timestamp0;
  640. s64 delta;
  641. if (verbose)
  642. printf("sched_switch event %p\n", event);
  643. if (cpu >= MAX_CPUS || cpu < 0)
  644. return;
  645. timestamp0 = cpu_last_switched[cpu];
  646. if (timestamp0)
  647. delta = timestamp - timestamp0;
  648. else
  649. delta = 0;
  650. if (delta < 0)
  651. die("hm, delta: %Ld < 0 ?\n", delta);
  652. if (verbose) {
  653. printf(" ... switch from %s/%d to %s/%d [ran %Ld nsecs]\n",
  654. switch_event->prev_comm, switch_event->prev_pid,
  655. switch_event->next_comm, switch_event->next_pid,
  656. delta);
  657. }
  658. prev = register_pid(switch_event->prev_pid, switch_event->prev_comm);
  659. next = register_pid(switch_event->next_pid, switch_event->next_comm);
  660. cpu_last_switched[cpu] = timestamp;
  661. add_sched_event_run(prev, timestamp, delta);
  662. add_sched_event_sleep(prev, timestamp, switch_event->prev_state);
  663. }
  664. static void
  665. replay_fork_event(struct trace_fork_event *fork_event,
  666. struct event *event,
  667. int cpu __used,
  668. u64 timestamp __used,
  669. struct thread *thread __used)
  670. {
  671. if (verbose) {
  672. printf("sched_fork event %p\n", event);
  673. printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
  674. printf("... child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
  675. }
  676. register_pid(fork_event->parent_pid, fork_event->parent_comm);
  677. register_pid(fork_event->child_pid, fork_event->child_comm);
  678. }
  679. static struct trace_sched_handler replay_ops = {
  680. .wakeup_event = replay_wakeup_event,
  681. .switch_event = replay_switch_event,
  682. .fork_event = replay_fork_event,
  683. };
  684. struct sort_dimension {
  685. const char *name;
  686. sort_fn_t cmp;
  687. struct list_head list;
  688. };
  689. static LIST_HEAD(cmp_pid);
  690. static int
  691. thread_lat_cmp(struct list_head *list, struct task_atoms *l, struct task_atoms *r)
  692. {
  693. struct sort_dimension *sort;
  694. int ret = 0;
  695. BUG_ON(list_empty(list));
  696. list_for_each_entry(sort, list, list) {
  697. ret = sort->cmp(l, r);
  698. if (ret)
  699. return ret;
  700. }
  701. return ret;
  702. }
  703. static struct task_atoms *
  704. thread_atoms_search(struct rb_root *root, struct thread *thread,
  705. struct list_head *sort_list)
  706. {
  707. struct rb_node *node = root->rb_node;
  708. struct task_atoms key = { .thread = thread };
  709. while (node) {
  710. struct task_atoms *atoms;
  711. int cmp;
  712. atoms = container_of(node, struct task_atoms, node);
  713. cmp = thread_lat_cmp(sort_list, &key, atoms);
  714. if (cmp > 0)
  715. node = node->rb_left;
  716. else if (cmp < 0)
  717. node = node->rb_right;
  718. else {
  719. BUG_ON(thread != atoms->thread);
  720. return atoms;
  721. }
  722. }
  723. return NULL;
  724. }
  725. static void
  726. __thread_latency_insert(struct rb_root *root, struct task_atoms *data,
  727. struct list_head *sort_list)
  728. {
  729. struct rb_node **new = &(root->rb_node), *parent = NULL;
  730. while (*new) {
  731. struct task_atoms *this;
  732. int cmp;
  733. this = container_of(*new, struct task_atoms, node);
  734. parent = *new;
  735. cmp = thread_lat_cmp(sort_list, data, this);
  736. if (cmp > 0)
  737. new = &((*new)->rb_left);
  738. else
  739. new = &((*new)->rb_right);
  740. }
  741. rb_link_node(&data->node, parent, new);
  742. rb_insert_color(&data->node, root);
  743. }
  744. static void thread_atoms_insert(struct thread *thread)
  745. {
  746. struct task_atoms *atoms;
  747. atoms = calloc(sizeof(*atoms), 1);
  748. if (!atoms)
  749. die("No memory");
  750. atoms->thread = thread;
  751. INIT_LIST_HEAD(&atoms->atom_list);
  752. __thread_latency_insert(&atom_root, atoms, &cmp_pid);
  753. }
  754. static void
  755. latency_fork_event(struct trace_fork_event *fork_event __used,
  756. struct event *event __used,
  757. int cpu __used,
  758. u64 timestamp __used,
  759. struct thread *thread __used)
  760. {
  761. /* should insert the newcomer */
  762. }
  763. __used
  764. static char sched_out_state(struct trace_switch_event *switch_event)
  765. {
  766. const char *str = TASK_STATE_TO_CHAR_STR;
  767. return str[switch_event->prev_state];
  768. }
  769. static void
  770. lat_sched_out(struct task_atoms *atoms,
  771. struct trace_switch_event *switch_event __used,
  772. u64 delta,
  773. u64 timestamp)
  774. {
  775. struct work_atom *atom;
  776. atom = calloc(sizeof(*atom), 1);
  777. if (!atom)
  778. die("Non memory");
  779. atom->sched_out_time = timestamp;
  780. if (sched_out_state(switch_event) == 'R') {
  781. atom->state = THREAD_WAIT_CPU;
  782. atom->wake_up_time = atom->sched_out_time;
  783. }
  784. atom->runtime = delta;
  785. list_add_tail(&atom->list, &atoms->atom_list);
  786. }
  787. static void
  788. lat_sched_in(struct task_atoms *atoms, u64 timestamp)
  789. {
  790. struct work_atom *atom;
  791. u64 delta;
  792. if (list_empty(&atoms->atom_list))
  793. return;
  794. atom = list_entry(atoms->atom_list.prev, struct work_atom, list);
  795. if (atom->state != THREAD_WAIT_CPU)
  796. return;
  797. if (timestamp < atom->wake_up_time) {
  798. atom->state = THREAD_IGNORE;
  799. return;
  800. }
  801. atom->state = THREAD_SCHED_IN;
  802. atom->sched_in_time = timestamp;
  803. delta = atom->sched_in_time - atom->wake_up_time;
  804. atoms->total_lat += delta;
  805. if (delta > atoms->max_lat)
  806. atoms->max_lat = delta;
  807. atoms->nb_atoms++;
  808. atoms->total_runtime += atom->runtime;
  809. }
  810. static void
  811. latency_switch_event(struct trace_switch_event *switch_event,
  812. struct event *event __used,
  813. int cpu,
  814. u64 timestamp,
  815. struct thread *thread __used)
  816. {
  817. struct task_atoms *out_atoms, *in_atoms;
  818. struct thread *sched_out, *sched_in;
  819. u64 timestamp0;
  820. s64 delta;
  821. if (cpu >= MAX_CPUS || cpu < 0)
  822. return;
  823. timestamp0 = cpu_last_switched[cpu];
  824. cpu_last_switched[cpu] = timestamp;
  825. if (timestamp0)
  826. delta = timestamp - timestamp0;
  827. else
  828. delta = 0;
  829. if (delta < 0)
  830. die("hm, delta: %Ld < 0 ?\n", delta);
  831. sched_out = threads__findnew(switch_event->prev_pid, &threads, &last_match);
  832. sched_in = threads__findnew(switch_event->next_pid, &threads, &last_match);
  833. in_atoms = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
  834. if (!in_atoms) {
  835. thread_atoms_insert(sched_in);
  836. in_atoms = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
  837. if (!in_atoms)
  838. die("in-atom: Internal tree error");
  839. }
  840. out_atoms = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
  841. if (!out_atoms) {
  842. thread_atoms_insert(sched_out);
  843. out_atoms = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
  844. if (!out_atoms)
  845. die("out-atom: Internal tree error");
  846. }
  847. lat_sched_in(in_atoms, timestamp);
  848. lat_sched_out(out_atoms, switch_event, delta, timestamp);
  849. }
  850. static void
  851. latency_wakeup_event(struct trace_wakeup_event *wakeup_event,
  852. struct event *event __used,
  853. int cpu __used,
  854. u64 timestamp,
  855. struct thread *thread __used)
  856. {
  857. struct task_atoms *atoms;
  858. struct work_atom *atom;
  859. struct thread *wakee;
  860. /* Note for later, it may be interesting to observe the failing cases */
  861. if (!wakeup_event->success)
  862. return;
  863. wakee = threads__findnew(wakeup_event->pid, &threads, &last_match);
  864. atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
  865. if (!atoms) {
  866. thread_atoms_insert(wakee);
  867. return;
  868. }
  869. if (list_empty(&atoms->atom_list))
  870. return;
  871. atom = list_entry(atoms->atom_list.prev, struct work_atom, list);
  872. if (atom->state != THREAD_SLEEPING)
  873. return;
  874. nr_timestamps++;
  875. if (atom->sched_out_time > timestamp) {
  876. unordered_timestamps++;
  877. return;
  878. }
  879. atom->state = THREAD_WAIT_CPU;
  880. atom->wake_up_time = timestamp;
  881. }
  882. static struct trace_sched_handler lat_ops = {
  883. .wakeup_event = latency_wakeup_event,
  884. .switch_event = latency_switch_event,
  885. .fork_event = latency_fork_event,
  886. };
  887. static void output_lat_thread(struct task_atoms *atom_list)
  888. {
  889. int i;
  890. int ret;
  891. u64 avg;
  892. if (!atom_list->nb_atoms)
  893. return;
  894. /*
  895. * Ignore idle threads:
  896. */
  897. if (!atom_list->thread->pid)
  898. return;
  899. all_runtime += atom_list->total_runtime;
  900. all_count += atom_list->nb_atoms;
  901. ret = printf(" %s ", atom_list->thread->comm);
  902. for (i = 0; i < 19 - ret; i++)
  903. printf(" ");
  904. avg = atom_list->total_lat / atom_list->nb_atoms;
  905. printf("|%9.3f ms |%9llu | avg:%9.3f ms | max:%9.3f ms |\n",
  906. (double)atom_list->total_runtime / 1e6,
  907. atom_list->nb_atoms, (double)avg / 1e6,
  908. (double)atom_list->max_lat / 1e6);
  909. }
  910. static int pid_cmp(struct task_atoms *l, struct task_atoms *r)
  911. {
  912. if (l->thread->pid < r->thread->pid)
  913. return -1;
  914. if (l->thread->pid > r->thread->pid)
  915. return 1;
  916. return 0;
  917. }
  918. static struct sort_dimension pid_sort_dimension = {
  919. .name = "pid",
  920. .cmp = pid_cmp,
  921. };
  922. static int avg_cmp(struct task_atoms *l, struct task_atoms *r)
  923. {
  924. u64 avgl, avgr;
  925. if (!l->nb_atoms)
  926. return -1;
  927. if (!r->nb_atoms)
  928. return 1;
  929. avgl = l->total_lat / l->nb_atoms;
  930. avgr = r->total_lat / r->nb_atoms;
  931. if (avgl < avgr)
  932. return -1;
  933. if (avgl > avgr)
  934. return 1;
  935. return 0;
  936. }
  937. static struct sort_dimension avg_sort_dimension = {
  938. .name = "avg",
  939. .cmp = avg_cmp,
  940. };
  941. static int max_cmp(struct task_atoms *l, struct task_atoms *r)
  942. {
  943. if (l->max_lat < r->max_lat)
  944. return -1;
  945. if (l->max_lat > r->max_lat)
  946. return 1;
  947. return 0;
  948. }
  949. static struct sort_dimension max_sort_dimension = {
  950. .name = "max",
  951. .cmp = max_cmp,
  952. };
  953. static int switch_cmp(struct task_atoms *l, struct task_atoms *r)
  954. {
  955. if (l->nb_atoms < r->nb_atoms)
  956. return -1;
  957. if (l->nb_atoms > r->nb_atoms)
  958. return 1;
  959. return 0;
  960. }
  961. static struct sort_dimension switch_sort_dimension = {
  962. .name = "switch",
  963. .cmp = switch_cmp,
  964. };
  965. static int runtime_cmp(struct task_atoms *l, struct task_atoms *r)
  966. {
  967. if (l->total_runtime < r->total_runtime)
  968. return -1;
  969. if (l->total_runtime > r->total_runtime)
  970. return 1;
  971. return 0;
  972. }
  973. static struct sort_dimension runtime_sort_dimension = {
  974. .name = "runtime",
  975. .cmp = runtime_cmp,
  976. };
  977. static struct sort_dimension *available_sorts[] = {
  978. &pid_sort_dimension,
  979. &avg_sort_dimension,
  980. &max_sort_dimension,
  981. &switch_sort_dimension,
  982. &runtime_sort_dimension,
  983. };
  984. #define NB_AVAILABLE_SORTS (int)(sizeof(available_sorts) / sizeof(struct sort_dimension *))
  985. static LIST_HEAD(sort_list);
  986. static int sort_dimension__add(char *tok, struct list_head *list)
  987. {
  988. int i;
  989. for (i = 0; i < NB_AVAILABLE_SORTS; i++) {
  990. if (!strcmp(available_sorts[i]->name, tok)) {
  991. list_add_tail(&available_sorts[i]->list, list);
  992. return 0;
  993. }
  994. }
  995. return -1;
  996. }
  997. static void setup_sorting(void);
  998. static void sort_lat(void)
  999. {
  1000. struct rb_node *node;
  1001. for (;;) {
  1002. struct task_atoms *data;
  1003. node = rb_first(&atom_root);
  1004. if (!node)
  1005. break;
  1006. rb_erase(node, &atom_root);
  1007. data = rb_entry(node, struct task_atoms, node);
  1008. __thread_latency_insert(&sorted_atom_root, data, &sort_list);
  1009. }
  1010. }
  1011. static void __cmd_lat(void)
  1012. {
  1013. struct rb_node *next;
  1014. setup_pager();
  1015. read_events();
  1016. sort_lat();
  1017. printf("-----------------------------------------------------------------------------------\n");
  1018. printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms |\n");
  1019. printf("-----------------------------------------------------------------------------------\n");
  1020. next = rb_first(&sorted_atom_root);
  1021. while (next) {
  1022. struct task_atoms *atom_list;
  1023. atom_list = rb_entry(next, struct task_atoms, node);
  1024. output_lat_thread(atom_list);
  1025. next = rb_next(next);
  1026. }
  1027. printf("-----------------------------------------------------------------------------------\n");
  1028. printf(" TOTAL: |%9.3f ms |%9Ld |",
  1029. (double)all_runtime/1e6, all_count);
  1030. if (unordered_timestamps && nr_timestamps) {
  1031. printf(" INFO: %.2f%% unordered events.\n",
  1032. (double)unordered_timestamps/(double)nr_timestamps*100.0);
  1033. } else {
  1034. printf("\n");
  1035. }
  1036. printf("---------------------------------------------\n");
  1037. }
  1038. static struct trace_sched_handler *trace_handler;
  1039. static void
  1040. process_sched_wakeup_event(struct raw_event_sample *raw,
  1041. struct event *event,
  1042. int cpu __used,
  1043. u64 timestamp __used,
  1044. struct thread *thread __used)
  1045. {
  1046. struct trace_wakeup_event wakeup_event;
  1047. FILL_COMMON_FIELDS(wakeup_event, event, raw->data);
  1048. FILL_ARRAY(wakeup_event, comm, event, raw->data);
  1049. FILL_FIELD(wakeup_event, pid, event, raw->data);
  1050. FILL_FIELD(wakeup_event, prio, event, raw->data);
  1051. FILL_FIELD(wakeup_event, success, event, raw->data);
  1052. FILL_FIELD(wakeup_event, cpu, event, raw->data);
  1053. trace_handler->wakeup_event(&wakeup_event, event, cpu, timestamp, thread);
  1054. }
  1055. static void
  1056. process_sched_switch_event(struct raw_event_sample *raw,
  1057. struct event *event,
  1058. int cpu __used,
  1059. u64 timestamp __used,
  1060. struct thread *thread __used)
  1061. {
  1062. struct trace_switch_event switch_event;
  1063. FILL_COMMON_FIELDS(switch_event, event, raw->data);
  1064. FILL_ARRAY(switch_event, prev_comm, event, raw->data);
  1065. FILL_FIELD(switch_event, prev_pid, event, raw->data);
  1066. FILL_FIELD(switch_event, prev_prio, event, raw->data);
  1067. FILL_FIELD(switch_event, prev_state, event, raw->data);
  1068. FILL_ARRAY(switch_event, next_comm, event, raw->data);
  1069. FILL_FIELD(switch_event, next_pid, event, raw->data);
  1070. FILL_FIELD(switch_event, next_prio, event, raw->data);
  1071. trace_handler->switch_event(&switch_event, event, cpu, timestamp, thread);
  1072. }
  1073. static void
  1074. process_sched_fork_event(struct raw_event_sample *raw,
  1075. struct event *event,
  1076. int cpu __used,
  1077. u64 timestamp __used,
  1078. struct thread *thread __used)
  1079. {
  1080. struct trace_fork_event fork_event;
  1081. FILL_COMMON_FIELDS(fork_event, event, raw->data);
  1082. FILL_ARRAY(fork_event, parent_comm, event, raw->data);
  1083. FILL_FIELD(fork_event, parent_pid, event, raw->data);
  1084. FILL_ARRAY(fork_event, child_comm, event, raw->data);
  1085. FILL_FIELD(fork_event, child_pid, event, raw->data);
  1086. trace_handler->fork_event(&fork_event, event, cpu, timestamp, thread);
  1087. }
  1088. static void
  1089. process_sched_exit_event(struct event *event,
  1090. int cpu __used,
  1091. u64 timestamp __used,
  1092. struct thread *thread __used)
  1093. {
  1094. if (verbose)
  1095. printf("sched_exit event %p\n", event);
  1096. }
  1097. static void
  1098. process_raw_event(event_t *raw_event __used, void *more_data,
  1099. int cpu, u64 timestamp, struct thread *thread)
  1100. {
  1101. struct raw_event_sample *raw = more_data;
  1102. struct event *event;
  1103. int type;
  1104. type = trace_parse_common_type(raw->data);
  1105. event = trace_find_event(type);
  1106. if (!strcmp(event->name, "sched_switch"))
  1107. process_sched_switch_event(raw, event, cpu, timestamp, thread);
  1108. if (!strcmp(event->name, "sched_wakeup"))
  1109. process_sched_wakeup_event(raw, event, cpu, timestamp, thread);
  1110. if (!strcmp(event->name, "sched_wakeup_new"))
  1111. process_sched_wakeup_event(raw, event, cpu, timestamp, thread);
  1112. if (!strcmp(event->name, "sched_process_fork"))
  1113. process_sched_fork_event(raw, event, cpu, timestamp, thread);
  1114. if (!strcmp(event->name, "sched_process_exit"))
  1115. process_sched_exit_event(event, cpu, timestamp, thread);
  1116. }
  1117. static int
  1118. process_sample_event(event_t *event, unsigned long offset, unsigned long head)
  1119. {
  1120. char level;
  1121. int show = 0;
  1122. struct dso *dso = NULL;
  1123. struct thread *thread;
  1124. u64 ip = event->ip.ip;
  1125. u64 timestamp = -1;
  1126. u32 cpu = -1;
  1127. u64 period = 1;
  1128. void *more_data = event->ip.__more_data;
  1129. int cpumode;
  1130. thread = threads__findnew(event->ip.pid, &threads, &last_match);
  1131. if (sample_type & PERF_SAMPLE_TIME) {
  1132. timestamp = *(u64 *)more_data;
  1133. more_data += sizeof(u64);
  1134. }
  1135. if (sample_type & PERF_SAMPLE_CPU) {
  1136. cpu = *(u32 *)more_data;
  1137. more_data += sizeof(u32);
  1138. more_data += sizeof(u32); /* reserved */
  1139. }
  1140. if (sample_type & PERF_SAMPLE_PERIOD) {
  1141. period = *(u64 *)more_data;
  1142. more_data += sizeof(u64);
  1143. }
  1144. dump_printf("%p [%p]: PERF_EVENT_SAMPLE (IP, %d): %d/%d: %p period: %Ld\n",
  1145. (void *)(offset + head),
  1146. (void *)(long)(event->header.size),
  1147. event->header.misc,
  1148. event->ip.pid, event->ip.tid,
  1149. (void *)(long)ip,
  1150. (long long)period);
  1151. dump_printf(" ... thread: %s:%d\n", thread->comm, thread->pid);
  1152. if (thread == NULL) {
  1153. eprintf("problem processing %d event, skipping it.\n",
  1154. event->header.type);
  1155. return -1;
  1156. }
  1157. cpumode = event->header.misc & PERF_EVENT_MISC_CPUMODE_MASK;
  1158. if (cpumode == PERF_EVENT_MISC_KERNEL) {
  1159. show = SHOW_KERNEL;
  1160. level = 'k';
  1161. dso = kernel_dso;
  1162. dump_printf(" ...... dso: %s\n", dso->name);
  1163. } else if (cpumode == PERF_EVENT_MISC_USER) {
  1164. show = SHOW_USER;
  1165. level = '.';
  1166. } else {
  1167. show = SHOW_HV;
  1168. level = 'H';
  1169. dso = hypervisor_dso;
  1170. dump_printf(" ...... dso: [hypervisor]\n");
  1171. }
  1172. if (sample_type & PERF_SAMPLE_RAW)
  1173. process_raw_event(event, more_data, cpu, timestamp, thread);
  1174. return 0;
  1175. }
  1176. static int
  1177. process_event(event_t *event, unsigned long offset, unsigned long head)
  1178. {
  1179. trace_event(event);
  1180. switch (event->header.type) {
  1181. case PERF_EVENT_MMAP ... PERF_EVENT_LOST:
  1182. return 0;
  1183. case PERF_EVENT_COMM:
  1184. return process_comm_event(event, offset, head);
  1185. case PERF_EVENT_EXIT ... PERF_EVENT_READ:
  1186. return 0;
  1187. case PERF_EVENT_SAMPLE:
  1188. return process_sample_event(event, offset, head);
  1189. case PERF_EVENT_MAX:
  1190. default:
  1191. return -1;
  1192. }
  1193. return 0;
  1194. }
  1195. static int read_events(void)
  1196. {
  1197. int ret, rc = EXIT_FAILURE;
  1198. unsigned long offset = 0;
  1199. unsigned long head = 0;
  1200. struct stat perf_stat;
  1201. event_t *event;
  1202. uint32_t size;
  1203. char *buf;
  1204. trace_report();
  1205. register_idle_thread(&threads, &last_match);
  1206. input = open(input_name, O_RDONLY);
  1207. if (input < 0) {
  1208. perror("failed to open file");
  1209. exit(-1);
  1210. }
  1211. ret = fstat(input, &perf_stat);
  1212. if (ret < 0) {
  1213. perror("failed to stat file");
  1214. exit(-1);
  1215. }
  1216. if (!perf_stat.st_size) {
  1217. fprintf(stderr, "zero-sized file, nothing to do!\n");
  1218. exit(0);
  1219. }
  1220. header = perf_header__read(input);
  1221. head = header->data_offset;
  1222. sample_type = perf_header__sample_type(header);
  1223. if (!(sample_type & PERF_SAMPLE_RAW))
  1224. die("No trace sample to read. Did you call perf record "
  1225. "without -R?");
  1226. if (load_kernel() < 0) {
  1227. perror("failed to load kernel symbols");
  1228. return EXIT_FAILURE;
  1229. }
  1230. remap:
  1231. buf = (char *)mmap(NULL, page_size * mmap_window, PROT_READ,
  1232. MAP_SHARED, input, offset);
  1233. if (buf == MAP_FAILED) {
  1234. perror("failed to mmap file");
  1235. exit(-1);
  1236. }
  1237. more:
  1238. event = (event_t *)(buf + head);
  1239. size = event->header.size;
  1240. if (!size)
  1241. size = 8;
  1242. if (head + event->header.size >= page_size * mmap_window) {
  1243. unsigned long shift = page_size * (head / page_size);
  1244. int res;
  1245. res = munmap(buf, page_size * mmap_window);
  1246. assert(res == 0);
  1247. offset += shift;
  1248. head -= shift;
  1249. goto remap;
  1250. }
  1251. size = event->header.size;
  1252. if (!size || process_event(event, offset, head) < 0) {
  1253. /*
  1254. * assume we lost track of the stream, check alignment, and
  1255. * increment a single u64 in the hope to catch on again 'soon'.
  1256. */
  1257. if (unlikely(head & 7))
  1258. head &= ~7ULL;
  1259. size = 8;
  1260. }
  1261. head += size;
  1262. if (offset + head < (unsigned long)perf_stat.st_size)
  1263. goto more;
  1264. rc = EXIT_SUCCESS;
  1265. close(input);
  1266. return rc;
  1267. }
  1268. static const char * const sched_usage[] = {
  1269. "perf sched [<options>] {record|latency|replay|trace}",
  1270. NULL
  1271. };
  1272. static const struct option sched_options[] = {
  1273. OPT_BOOLEAN('v', "verbose", &verbose,
  1274. "be more verbose (show symbol address, etc)"),
  1275. OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
  1276. "dump raw trace in ASCII"),
  1277. OPT_END()
  1278. };
  1279. static const char * const latency_usage[] = {
  1280. "perf sched latency [<options>]",
  1281. NULL
  1282. };
  1283. static const struct option latency_options[] = {
  1284. OPT_STRING('s', "sort", &sort_order, "key[,key2...]",
  1285. "sort by key(s): runtime, switch, avg, max"),
  1286. OPT_BOOLEAN('v', "verbose", &verbose,
  1287. "be more verbose (show symbol address, etc)"),
  1288. OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
  1289. "dump raw trace in ASCII"),
  1290. OPT_END()
  1291. };
  1292. static const char * const replay_usage[] = {
  1293. "perf sched replay [<options>]",
  1294. NULL
  1295. };
  1296. static const struct option replay_options[] = {
  1297. OPT_INTEGER('r', "repeat", &replay_repeat,
  1298. "repeat the workload replay N times (-1: infinite)"),
  1299. OPT_BOOLEAN('v', "verbose", &verbose,
  1300. "be more verbose (show symbol address, etc)"),
  1301. OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
  1302. "dump raw trace in ASCII"),
  1303. OPT_END()
  1304. };
  1305. static void setup_sorting(void)
  1306. {
  1307. char *tmp, *tok, *str = strdup(sort_order);
  1308. for (tok = strtok_r(str, ", ", &tmp);
  1309. tok; tok = strtok_r(NULL, ", ", &tmp)) {
  1310. if (sort_dimension__add(tok, &sort_list) < 0) {
  1311. error("Unknown --sort key: `%s'", tok);
  1312. usage_with_options(latency_usage, latency_options);
  1313. }
  1314. }
  1315. free(str);
  1316. sort_dimension__add((char *)"pid", &cmp_pid);
  1317. }
  1318. static const char *record_args[] = {
  1319. "record",
  1320. "-a",
  1321. "-R",
  1322. "-M",
  1323. "-f",
  1324. "-c", "1",
  1325. "-e", "sched:sched_switch:r",
  1326. "-e", "sched:sched_stat_wait:r",
  1327. "-e", "sched:sched_stat_sleep:r",
  1328. "-e", "sched:sched_stat_iowait:r",
  1329. "-e", "sched:sched_stat_runtime:r",
  1330. "-e", "sched:sched_process_exit:r",
  1331. "-e", "sched:sched_process_fork:r",
  1332. "-e", "sched:sched_wakeup:r",
  1333. "-e", "sched:sched_migrate_task:r",
  1334. };
  1335. static int __cmd_record(int argc, const char **argv)
  1336. {
  1337. unsigned int rec_argc, i, j;
  1338. const char **rec_argv;
  1339. rec_argc = ARRAY_SIZE(record_args) + argc - 1;
  1340. rec_argv = calloc(rec_argc + 1, sizeof(char *));
  1341. for (i = 0; i < ARRAY_SIZE(record_args); i++)
  1342. rec_argv[i] = strdup(record_args[i]);
  1343. for (j = 1; j < (unsigned int)argc; j++, i++)
  1344. rec_argv[i] = argv[j];
  1345. BUG_ON(i != rec_argc);
  1346. return cmd_record(i, rec_argv, NULL);
  1347. }
  1348. int cmd_sched(int argc, const char **argv, const char *prefix __used)
  1349. {
  1350. symbol__init();
  1351. page_size = getpagesize();
  1352. argc = parse_options(argc, argv, sched_options, sched_usage,
  1353. PARSE_OPT_STOP_AT_NON_OPTION);
  1354. if (!argc)
  1355. usage_with_options(sched_usage, sched_options);
  1356. if (!strncmp(argv[0], "rec", 3)) {
  1357. return __cmd_record(argc, argv);
  1358. } else if (!strncmp(argv[0], "lat", 3)) {
  1359. trace_handler = &lat_ops;
  1360. if (argc > 1) {
  1361. argc = parse_options(argc, argv, latency_options, latency_usage, 0);
  1362. if (argc)
  1363. usage_with_options(latency_usage, latency_options);
  1364. }
  1365. setup_sorting();
  1366. __cmd_lat();
  1367. } else if (!strncmp(argv[0], "rep", 3)) {
  1368. trace_handler = &replay_ops;
  1369. if (argc) {
  1370. argc = parse_options(argc, argv, replay_options, replay_usage, 0);
  1371. if (argc)
  1372. usage_with_options(replay_usage, replay_options);
  1373. }
  1374. __cmd_replay();
  1375. } else if (!strcmp(argv[0], "trace")) {
  1376. /*
  1377. * Aliased to 'perf trace' for now:
  1378. */
  1379. return cmd_trace(argc, argv, prefix);
  1380. } else {
  1381. usage_with_options(sched_usage, sched_options);
  1382. }
  1383. return 0;
  1384. }