process.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929
  1. /*
  2. * linux/arch/i386/kernel/process.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. *
  6. * Pentium III FXSR, SSE support
  7. * Gareth Hughes <gareth@valinux.com>, May 2000
  8. */
  9. /*
  10. * This file handles the architecture-dependent parts of process handling..
  11. */
  12. #include <stdarg.h>
  13. #include <linux/cpu.h>
  14. #include <linux/errno.h>
  15. #include <linux/sched.h>
  16. #include <linux/fs.h>
  17. #include <linux/kernel.h>
  18. #include <linux/mm.h>
  19. #include <linux/elfcore.h>
  20. #include <linux/smp.h>
  21. #include <linux/smp_lock.h>
  22. #include <linux/stddef.h>
  23. #include <linux/slab.h>
  24. #include <linux/vmalloc.h>
  25. #include <linux/user.h>
  26. #include <linux/a.out.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/utsname.h>
  29. #include <linux/delay.h>
  30. #include <linux/reboot.h>
  31. #include <linux/init.h>
  32. #include <linux/mc146818rtc.h>
  33. #include <linux/module.h>
  34. #include <linux/kallsyms.h>
  35. #include <linux/ptrace.h>
  36. #include <linux/random.h>
  37. #include <linux/personality.h>
  38. #include <linux/tick.h>
  39. #include <asm/uaccess.h>
  40. #include <asm/pgtable.h>
  41. #include <asm/system.h>
  42. #include <asm/io.h>
  43. #include <asm/ldt.h>
  44. #include <asm/processor.h>
  45. #include <asm/i387.h>
  46. #include <asm/desc.h>
  47. #include <asm/vm86.h>
  48. #ifdef CONFIG_MATH_EMULATION
  49. #include <asm/math_emu.h>
  50. #endif
  51. #include <linux/err.h>
  52. #include <asm/tlbflush.h>
  53. #include <asm/cpu.h>
  54. #include <asm/pda.h>
  55. asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
  56. static int hlt_counter;
  57. unsigned long boot_option_idle_override = 0;
  58. EXPORT_SYMBOL(boot_option_idle_override);
  59. /*
  60. * Return saved PC of a blocked thread.
  61. */
  62. unsigned long thread_saved_pc(struct task_struct *tsk)
  63. {
  64. return ((unsigned long *)tsk->thread.esp)[3];
  65. }
  66. /*
  67. * Powermanagement idle function, if any..
  68. */
  69. void (*pm_idle)(void);
  70. EXPORT_SYMBOL(pm_idle);
  71. static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
  72. void disable_hlt(void)
  73. {
  74. hlt_counter++;
  75. }
  76. EXPORT_SYMBOL(disable_hlt);
  77. void enable_hlt(void)
  78. {
  79. hlt_counter--;
  80. }
  81. EXPORT_SYMBOL(enable_hlt);
  82. /*
  83. * We use this if we don't have any better
  84. * idle routine..
  85. */
  86. void default_idle(void)
  87. {
  88. if (!hlt_counter && boot_cpu_data.hlt_works_ok) {
  89. current_thread_info()->status &= ~TS_POLLING;
  90. /*
  91. * TS_POLLING-cleared state must be visible before we
  92. * test NEED_RESCHED:
  93. */
  94. smp_mb();
  95. local_irq_disable();
  96. if (!need_resched())
  97. safe_halt(); /* enables interrupts racelessly */
  98. else
  99. local_irq_enable();
  100. current_thread_info()->status |= TS_POLLING;
  101. } else {
  102. /* loop is done by the caller */
  103. cpu_relax();
  104. }
  105. }
  106. #ifdef CONFIG_APM_MODULE
  107. EXPORT_SYMBOL(default_idle);
  108. #endif
  109. /*
  110. * On SMP it's slightly faster (but much more power-consuming!)
  111. * to poll the ->work.need_resched flag instead of waiting for the
  112. * cross-CPU IPI to arrive. Use this option with caution.
  113. */
  114. static void poll_idle (void)
  115. {
  116. cpu_relax();
  117. }
  118. #ifdef CONFIG_HOTPLUG_CPU
  119. #include <asm/nmi.h>
  120. /* We don't actually take CPU down, just spin without interrupts. */
  121. static inline void play_dead(void)
  122. {
  123. /* This must be done before dead CPU ack */
  124. cpu_exit_clear();
  125. wbinvd();
  126. mb();
  127. /* Ack it */
  128. __get_cpu_var(cpu_state) = CPU_DEAD;
  129. /*
  130. * With physical CPU hotplug, we should halt the cpu
  131. */
  132. local_irq_disable();
  133. while (1)
  134. halt();
  135. }
  136. #else
  137. static inline void play_dead(void)
  138. {
  139. BUG();
  140. }
  141. #endif /* CONFIG_HOTPLUG_CPU */
  142. /*
  143. * The idle thread. There's no useful work to be
  144. * done, so just try to conserve power and have a
  145. * low exit latency (ie sit in a loop waiting for
  146. * somebody to say that they'd like to reschedule)
  147. */
  148. void cpu_idle(void)
  149. {
  150. int cpu = smp_processor_id();
  151. current_thread_info()->status |= TS_POLLING;
  152. /* endless idle loop with no priority at all */
  153. while (1) {
  154. tick_nohz_stop_sched_tick();
  155. while (!need_resched()) {
  156. void (*idle)(void);
  157. if (__get_cpu_var(cpu_idle_state))
  158. __get_cpu_var(cpu_idle_state) = 0;
  159. rmb();
  160. idle = pm_idle;
  161. if (!idle)
  162. idle = default_idle;
  163. if (cpu_is_offline(cpu))
  164. play_dead();
  165. __get_cpu_var(irq_stat).idle_timestamp = jiffies;
  166. idle();
  167. }
  168. tick_nohz_restart_sched_tick();
  169. preempt_enable_no_resched();
  170. schedule();
  171. preempt_disable();
  172. }
  173. }
  174. void cpu_idle_wait(void)
  175. {
  176. unsigned int cpu, this_cpu = get_cpu();
  177. cpumask_t map, tmp = current->cpus_allowed;
  178. set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
  179. put_cpu();
  180. cpus_clear(map);
  181. for_each_online_cpu(cpu) {
  182. per_cpu(cpu_idle_state, cpu) = 1;
  183. cpu_set(cpu, map);
  184. }
  185. __get_cpu_var(cpu_idle_state) = 0;
  186. wmb();
  187. do {
  188. ssleep(1);
  189. for_each_online_cpu(cpu) {
  190. if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu))
  191. cpu_clear(cpu, map);
  192. }
  193. cpus_and(map, map, cpu_online_map);
  194. } while (!cpus_empty(map));
  195. set_cpus_allowed(current, tmp);
  196. }
  197. EXPORT_SYMBOL_GPL(cpu_idle_wait);
  198. /*
  199. * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
  200. * which can obviate IPI to trigger checking of need_resched.
  201. * We execute MONITOR against need_resched and enter optimized wait state
  202. * through MWAIT. Whenever someone changes need_resched, we would be woken
  203. * up from MWAIT (without an IPI).
  204. *
  205. * New with Core Duo processors, MWAIT can take some hints based on CPU
  206. * capability.
  207. */
  208. void mwait_idle_with_hints(unsigned long eax, unsigned long ecx)
  209. {
  210. if (!need_resched()) {
  211. __monitor((void *)&current_thread_info()->flags, 0, 0);
  212. smp_mb();
  213. if (!need_resched())
  214. __mwait(eax, ecx);
  215. }
  216. }
  217. /* Default MONITOR/MWAIT with no hints, used for default C1 state */
  218. static void mwait_idle(void)
  219. {
  220. local_irq_enable();
  221. mwait_idle_with_hints(0, 0);
  222. }
  223. void __devinit select_idle_routine(const struct cpuinfo_x86 *c)
  224. {
  225. if (cpu_has(c, X86_FEATURE_MWAIT)) {
  226. printk("monitor/mwait feature present.\n");
  227. /*
  228. * Skip, if setup has overridden idle.
  229. * One CPU supports mwait => All CPUs supports mwait
  230. */
  231. if (!pm_idle) {
  232. printk("using mwait in idle threads.\n");
  233. pm_idle = mwait_idle;
  234. }
  235. }
  236. }
  237. static int __init idle_setup (char *str)
  238. {
  239. if (!strncmp(str, "poll", 4)) {
  240. printk("using polling idle threads.\n");
  241. pm_idle = poll_idle;
  242. #ifdef CONFIG_X86_SMP
  243. if (smp_num_siblings > 1)
  244. printk("WARNING: polling idle and HT enabled, performance may degrade.\n");
  245. #endif
  246. } else if (!strncmp(str, "halt", 4)) {
  247. printk("using halt in idle threads.\n");
  248. pm_idle = default_idle;
  249. }
  250. boot_option_idle_override = 1;
  251. return 1;
  252. }
  253. __setup("idle=", idle_setup);
  254. void show_regs(struct pt_regs * regs)
  255. {
  256. unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
  257. printk("\n");
  258. printk("Pid: %d, comm: %20s\n", current->pid, current->comm);
  259. printk("EIP: %04x:[<%08lx>] CPU: %d\n",0xffff & regs->xcs,regs->eip, smp_processor_id());
  260. print_symbol("EIP is at %s\n", regs->eip);
  261. if (user_mode_vm(regs))
  262. printk(" ESP: %04x:%08lx",0xffff & regs->xss,regs->esp);
  263. printk(" EFLAGS: %08lx %s (%s %.*s)\n",
  264. regs->eflags, print_tainted(), init_utsname()->release,
  265. (int)strcspn(init_utsname()->version, " "),
  266. init_utsname()->version);
  267. printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
  268. regs->eax,regs->ebx,regs->ecx,regs->edx);
  269. printk("ESI: %08lx EDI: %08lx EBP: %08lx",
  270. regs->esi, regs->edi, regs->ebp);
  271. printk(" DS: %04x ES: %04x FS: %04x\n",
  272. 0xffff & regs->xds,0xffff & regs->xes, 0xffff & regs->xfs);
  273. cr0 = read_cr0();
  274. cr2 = read_cr2();
  275. cr3 = read_cr3();
  276. cr4 = read_cr4_safe();
  277. printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n", cr0, cr2, cr3, cr4);
  278. show_trace(NULL, regs, &regs->esp);
  279. }
  280. /*
  281. * This gets run with %ebx containing the
  282. * function to call, and %edx containing
  283. * the "args".
  284. */
  285. extern void kernel_thread_helper(void);
  286. /*
  287. * Create a kernel thread
  288. */
  289. int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  290. {
  291. struct pt_regs regs;
  292. memset(&regs, 0, sizeof(regs));
  293. regs.ebx = (unsigned long) fn;
  294. regs.edx = (unsigned long) arg;
  295. regs.xds = __USER_DS;
  296. regs.xes = __USER_DS;
  297. regs.xfs = __KERNEL_PDA;
  298. regs.orig_eax = -1;
  299. regs.eip = (unsigned long) kernel_thread_helper;
  300. regs.xcs = __KERNEL_CS | get_kernel_rpl();
  301. regs.eflags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
  302. /* Ok, create the new process.. */
  303. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
  304. }
  305. EXPORT_SYMBOL(kernel_thread);
  306. /*
  307. * Free current thread data structures etc..
  308. */
  309. void exit_thread(void)
  310. {
  311. /* The process may have allocated an io port bitmap... nuke it. */
  312. if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
  313. struct task_struct *tsk = current;
  314. struct thread_struct *t = &tsk->thread;
  315. int cpu = get_cpu();
  316. struct tss_struct *tss = &per_cpu(init_tss, cpu);
  317. kfree(t->io_bitmap_ptr);
  318. t->io_bitmap_ptr = NULL;
  319. clear_thread_flag(TIF_IO_BITMAP);
  320. /*
  321. * Careful, clear this in the TSS too:
  322. */
  323. memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
  324. t->io_bitmap_max = 0;
  325. tss->io_bitmap_owner = NULL;
  326. tss->io_bitmap_max = 0;
  327. tss->io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
  328. put_cpu();
  329. }
  330. }
  331. void flush_thread(void)
  332. {
  333. struct task_struct *tsk = current;
  334. memset(tsk->thread.debugreg, 0, sizeof(unsigned long)*8);
  335. memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
  336. clear_tsk_thread_flag(tsk, TIF_DEBUG);
  337. /*
  338. * Forget coprocessor state..
  339. */
  340. clear_fpu(tsk);
  341. clear_used_math();
  342. }
  343. void release_thread(struct task_struct *dead_task)
  344. {
  345. BUG_ON(dead_task->mm);
  346. release_vm86_irqs(dead_task);
  347. }
  348. /*
  349. * This gets called before we allocate a new thread and copy
  350. * the current task into it.
  351. */
  352. void prepare_to_copy(struct task_struct *tsk)
  353. {
  354. unlazy_fpu(tsk);
  355. }
  356. int copy_thread(int nr, unsigned long clone_flags, unsigned long esp,
  357. unsigned long unused,
  358. struct task_struct * p, struct pt_regs * regs)
  359. {
  360. struct pt_regs * childregs;
  361. struct task_struct *tsk;
  362. int err;
  363. childregs = task_pt_regs(p);
  364. *childregs = *regs;
  365. childregs->eax = 0;
  366. childregs->esp = esp;
  367. p->thread.esp = (unsigned long) childregs;
  368. p->thread.esp0 = (unsigned long) (childregs+1);
  369. p->thread.eip = (unsigned long) ret_from_fork;
  370. savesegment(gs,p->thread.gs);
  371. tsk = current;
  372. if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
  373. p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
  374. IO_BITMAP_BYTES, GFP_KERNEL);
  375. if (!p->thread.io_bitmap_ptr) {
  376. p->thread.io_bitmap_max = 0;
  377. return -ENOMEM;
  378. }
  379. set_tsk_thread_flag(p, TIF_IO_BITMAP);
  380. }
  381. /*
  382. * Set a new TLS for the child thread?
  383. */
  384. if (clone_flags & CLONE_SETTLS) {
  385. struct desc_struct *desc;
  386. struct user_desc info;
  387. int idx;
  388. err = -EFAULT;
  389. if (copy_from_user(&info, (void __user *)childregs->esi, sizeof(info)))
  390. goto out;
  391. err = -EINVAL;
  392. if (LDT_empty(&info))
  393. goto out;
  394. idx = info.entry_number;
  395. if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
  396. goto out;
  397. desc = p->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
  398. desc->a = LDT_entry_a(&info);
  399. desc->b = LDT_entry_b(&info);
  400. }
  401. err = 0;
  402. out:
  403. if (err && p->thread.io_bitmap_ptr) {
  404. kfree(p->thread.io_bitmap_ptr);
  405. p->thread.io_bitmap_max = 0;
  406. }
  407. return err;
  408. }
  409. /*
  410. * fill in the user structure for a core dump..
  411. */
  412. void dump_thread(struct pt_regs * regs, struct user * dump)
  413. {
  414. int i;
  415. /* changed the size calculations - should hopefully work better. lbt */
  416. dump->magic = CMAGIC;
  417. dump->start_code = 0;
  418. dump->start_stack = regs->esp & ~(PAGE_SIZE - 1);
  419. dump->u_tsize = ((unsigned long) current->mm->end_code) >> PAGE_SHIFT;
  420. dump->u_dsize = ((unsigned long) (current->mm->brk + (PAGE_SIZE-1))) >> PAGE_SHIFT;
  421. dump->u_dsize -= dump->u_tsize;
  422. dump->u_ssize = 0;
  423. for (i = 0; i < 8; i++)
  424. dump->u_debugreg[i] = current->thread.debugreg[i];
  425. if (dump->start_stack < TASK_SIZE)
  426. dump->u_ssize = ((unsigned long) (TASK_SIZE - dump->start_stack)) >> PAGE_SHIFT;
  427. dump->regs.ebx = regs->ebx;
  428. dump->regs.ecx = regs->ecx;
  429. dump->regs.edx = regs->edx;
  430. dump->regs.esi = regs->esi;
  431. dump->regs.edi = regs->edi;
  432. dump->regs.ebp = regs->ebp;
  433. dump->regs.eax = regs->eax;
  434. dump->regs.ds = regs->xds;
  435. dump->regs.es = regs->xes;
  436. dump->regs.fs = regs->xfs;
  437. savesegment(gs,dump->regs.gs);
  438. dump->regs.orig_eax = regs->orig_eax;
  439. dump->regs.eip = regs->eip;
  440. dump->regs.cs = regs->xcs;
  441. dump->regs.eflags = regs->eflags;
  442. dump->regs.esp = regs->esp;
  443. dump->regs.ss = regs->xss;
  444. dump->u_fpvalid = dump_fpu (regs, &dump->i387);
  445. }
  446. EXPORT_SYMBOL(dump_thread);
  447. /*
  448. * Capture the user space registers if the task is not running (in user space)
  449. */
  450. int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
  451. {
  452. struct pt_regs ptregs = *task_pt_regs(tsk);
  453. ptregs.xcs &= 0xffff;
  454. ptregs.xds &= 0xffff;
  455. ptregs.xes &= 0xffff;
  456. ptregs.xss &= 0xffff;
  457. elf_core_copy_regs(regs, &ptregs);
  458. return 1;
  459. }
  460. static noinline void __switch_to_xtra(struct task_struct *next_p,
  461. struct tss_struct *tss)
  462. {
  463. struct thread_struct *next;
  464. next = &next_p->thread;
  465. if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
  466. set_debugreg(next->debugreg[0], 0);
  467. set_debugreg(next->debugreg[1], 1);
  468. set_debugreg(next->debugreg[2], 2);
  469. set_debugreg(next->debugreg[3], 3);
  470. /* no 4 and 5 */
  471. set_debugreg(next->debugreg[6], 6);
  472. set_debugreg(next->debugreg[7], 7);
  473. }
  474. if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
  475. /*
  476. * Disable the bitmap via an invalid offset. We still cache
  477. * the previous bitmap owner and the IO bitmap contents:
  478. */
  479. tss->io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
  480. return;
  481. }
  482. if (likely(next == tss->io_bitmap_owner)) {
  483. /*
  484. * Previous owner of the bitmap (hence the bitmap content)
  485. * matches the next task, we dont have to do anything but
  486. * to set a valid offset in the TSS:
  487. */
  488. tss->io_bitmap_base = IO_BITMAP_OFFSET;
  489. return;
  490. }
  491. /*
  492. * Lazy TSS's I/O bitmap copy. We set an invalid offset here
  493. * and we let the task to get a GPF in case an I/O instruction
  494. * is performed. The handler of the GPF will verify that the
  495. * faulting task has a valid I/O bitmap and, it true, does the
  496. * real copy and restart the instruction. This will save us
  497. * redundant copies when the currently switched task does not
  498. * perform any I/O during its timeslice.
  499. */
  500. tss->io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
  501. }
  502. /*
  503. * This function selects if the context switch from prev to next
  504. * has to tweak the TSC disable bit in the cr4.
  505. */
  506. static inline void disable_tsc(struct task_struct *prev_p,
  507. struct task_struct *next_p)
  508. {
  509. struct thread_info *prev, *next;
  510. /*
  511. * gcc should eliminate the ->thread_info dereference if
  512. * has_secure_computing returns 0 at compile time (SECCOMP=n).
  513. */
  514. prev = task_thread_info(prev_p);
  515. next = task_thread_info(next_p);
  516. if (has_secure_computing(prev) || has_secure_computing(next)) {
  517. /* slow path here */
  518. if (has_secure_computing(prev) &&
  519. !has_secure_computing(next)) {
  520. write_cr4(read_cr4() & ~X86_CR4_TSD);
  521. } else if (!has_secure_computing(prev) &&
  522. has_secure_computing(next))
  523. write_cr4(read_cr4() | X86_CR4_TSD);
  524. }
  525. }
  526. /*
  527. * switch_to(x,yn) should switch tasks from x to y.
  528. *
  529. * We fsave/fwait so that an exception goes off at the right time
  530. * (as a call from the fsave or fwait in effect) rather than to
  531. * the wrong process. Lazy FP saving no longer makes any sense
  532. * with modern CPU's, and this simplifies a lot of things (SMP
  533. * and UP become the same).
  534. *
  535. * NOTE! We used to use the x86 hardware context switching. The
  536. * reason for not using it any more becomes apparent when you
  537. * try to recover gracefully from saved state that is no longer
  538. * valid (stale segment register values in particular). With the
  539. * hardware task-switch, there is no way to fix up bad state in
  540. * a reasonable manner.
  541. *
  542. * The fact that Intel documents the hardware task-switching to
  543. * be slow is a fairly red herring - this code is not noticeably
  544. * faster. However, there _is_ some room for improvement here,
  545. * so the performance issues may eventually be a valid point.
  546. * More important, however, is the fact that this allows us much
  547. * more flexibility.
  548. *
  549. * The return value (in %eax) will be the "prev" task after
  550. * the task-switch, and shows up in ret_from_fork in entry.S,
  551. * for example.
  552. */
  553. struct task_struct fastcall * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
  554. {
  555. struct thread_struct *prev = &prev_p->thread,
  556. *next = &next_p->thread;
  557. int cpu = smp_processor_id();
  558. struct tss_struct *tss = &per_cpu(init_tss, cpu);
  559. /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
  560. __unlazy_fpu(prev_p);
  561. /* we're going to use this soon, after a few expensive things */
  562. if (next_p->fpu_counter > 5)
  563. prefetch(&next->i387.fxsave);
  564. /*
  565. * Reload esp0.
  566. */
  567. load_esp0(tss, next);
  568. /*
  569. * Save away %gs. No need to save %fs, as it was saved on the
  570. * stack on entry. No need to save %es and %ds, as those are
  571. * always kernel segments while inside the kernel. Doing this
  572. * before setting the new TLS descriptors avoids the situation
  573. * where we temporarily have non-reloadable segments in %fs
  574. * and %gs. This could be an issue if the NMI handler ever
  575. * used %fs or %gs (it does not today), or if the kernel is
  576. * running inside of a hypervisor layer.
  577. */
  578. savesegment(gs, prev->gs);
  579. /*
  580. * Load the per-thread Thread-Local Storage descriptor.
  581. */
  582. load_TLS(next, cpu);
  583. /*
  584. * Restore IOPL if needed. In normal use, the flags restore
  585. * in the switch assembly will handle this. But if the kernel
  586. * is running virtualized at a non-zero CPL, the popf will
  587. * not restore flags, so it must be done in a separate step.
  588. */
  589. if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
  590. set_iopl_mask(next->iopl);
  591. /*
  592. * Now maybe handle debug registers and/or IO bitmaps
  593. */
  594. if (unlikely((task_thread_info(next_p)->flags & _TIF_WORK_CTXSW)
  595. || test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)))
  596. __switch_to_xtra(next_p, tss);
  597. disable_tsc(prev_p, next_p);
  598. /*
  599. * Leave lazy mode, flushing any hypercalls made here.
  600. * This must be done before restoring TLS segments so
  601. * the GDT and LDT are properly updated, and must be
  602. * done before math_state_restore, so the TS bit is up
  603. * to date.
  604. */
  605. arch_leave_lazy_cpu_mode();
  606. /* If the task has used fpu the last 5 timeslices, just do a full
  607. * restore of the math state immediately to avoid the trap; the
  608. * chances of needing FPU soon are obviously high now
  609. */
  610. if (next_p->fpu_counter > 5)
  611. math_state_restore();
  612. /*
  613. * Restore %gs if needed (which is common)
  614. */
  615. if (prev->gs | next->gs)
  616. loadsegment(gs, next->gs);
  617. write_pda(pcurrent, next_p);
  618. return prev_p;
  619. }
  620. asmlinkage int sys_fork(struct pt_regs regs)
  621. {
  622. return do_fork(SIGCHLD, regs.esp, &regs, 0, NULL, NULL);
  623. }
  624. asmlinkage int sys_clone(struct pt_regs regs)
  625. {
  626. unsigned long clone_flags;
  627. unsigned long newsp;
  628. int __user *parent_tidptr, *child_tidptr;
  629. clone_flags = regs.ebx;
  630. newsp = regs.ecx;
  631. parent_tidptr = (int __user *)regs.edx;
  632. child_tidptr = (int __user *)regs.edi;
  633. if (!newsp)
  634. newsp = regs.esp;
  635. return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
  636. }
  637. /*
  638. * This is trivial, and on the face of it looks like it
  639. * could equally well be done in user mode.
  640. *
  641. * Not so, for quite unobvious reasons - register pressure.
  642. * In user mode vfork() cannot have a stack frame, and if
  643. * done by calling the "clone()" system call directly, you
  644. * do not have enough call-clobbered registers to hold all
  645. * the information you need.
  646. */
  647. asmlinkage int sys_vfork(struct pt_regs regs)
  648. {
  649. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.esp, &regs, 0, NULL, NULL);
  650. }
  651. /*
  652. * sys_execve() executes a new program.
  653. */
  654. asmlinkage int sys_execve(struct pt_regs regs)
  655. {
  656. int error;
  657. char * filename;
  658. filename = getname((char __user *) regs.ebx);
  659. error = PTR_ERR(filename);
  660. if (IS_ERR(filename))
  661. goto out;
  662. error = do_execve(filename,
  663. (char __user * __user *) regs.ecx,
  664. (char __user * __user *) regs.edx,
  665. &regs);
  666. if (error == 0) {
  667. task_lock(current);
  668. current->ptrace &= ~PT_DTRACE;
  669. task_unlock(current);
  670. /* Make sure we don't return using sysenter.. */
  671. set_thread_flag(TIF_IRET);
  672. }
  673. putname(filename);
  674. out:
  675. return error;
  676. }
  677. #define top_esp (THREAD_SIZE - sizeof(unsigned long))
  678. #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long))
  679. unsigned long get_wchan(struct task_struct *p)
  680. {
  681. unsigned long ebp, esp, eip;
  682. unsigned long stack_page;
  683. int count = 0;
  684. if (!p || p == current || p->state == TASK_RUNNING)
  685. return 0;
  686. stack_page = (unsigned long)task_stack_page(p);
  687. esp = p->thread.esp;
  688. if (!stack_page || esp < stack_page || esp > top_esp+stack_page)
  689. return 0;
  690. /* include/asm-i386/system.h:switch_to() pushes ebp last. */
  691. ebp = *(unsigned long *) esp;
  692. do {
  693. if (ebp < stack_page || ebp > top_ebp+stack_page)
  694. return 0;
  695. eip = *(unsigned long *) (ebp+4);
  696. if (!in_sched_functions(eip))
  697. return eip;
  698. ebp = *(unsigned long *) ebp;
  699. } while (count++ < 16);
  700. return 0;
  701. }
  702. /*
  703. * sys_alloc_thread_area: get a yet unused TLS descriptor index.
  704. */
  705. static int get_free_idx(void)
  706. {
  707. struct thread_struct *t = &current->thread;
  708. int idx;
  709. for (idx = 0; idx < GDT_ENTRY_TLS_ENTRIES; idx++)
  710. if (desc_empty(t->tls_array + idx))
  711. return idx + GDT_ENTRY_TLS_MIN;
  712. return -ESRCH;
  713. }
  714. /*
  715. * Set a given TLS descriptor:
  716. */
  717. asmlinkage int sys_set_thread_area(struct user_desc __user *u_info)
  718. {
  719. struct thread_struct *t = &current->thread;
  720. struct user_desc info;
  721. struct desc_struct *desc;
  722. int cpu, idx;
  723. if (copy_from_user(&info, u_info, sizeof(info)))
  724. return -EFAULT;
  725. idx = info.entry_number;
  726. /*
  727. * index -1 means the kernel should try to find and
  728. * allocate an empty descriptor:
  729. */
  730. if (idx == -1) {
  731. idx = get_free_idx();
  732. if (idx < 0)
  733. return idx;
  734. if (put_user(idx, &u_info->entry_number))
  735. return -EFAULT;
  736. }
  737. if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
  738. return -EINVAL;
  739. desc = t->tls_array + idx - GDT_ENTRY_TLS_MIN;
  740. /*
  741. * We must not get preempted while modifying the TLS.
  742. */
  743. cpu = get_cpu();
  744. if (LDT_empty(&info)) {
  745. desc->a = 0;
  746. desc->b = 0;
  747. } else {
  748. desc->a = LDT_entry_a(&info);
  749. desc->b = LDT_entry_b(&info);
  750. }
  751. load_TLS(t, cpu);
  752. put_cpu();
  753. return 0;
  754. }
  755. /*
  756. * Get the current Thread-Local Storage area:
  757. */
  758. #define GET_BASE(desc) ( \
  759. (((desc)->a >> 16) & 0x0000ffff) | \
  760. (((desc)->b << 16) & 0x00ff0000) | \
  761. ( (desc)->b & 0xff000000) )
  762. #define GET_LIMIT(desc) ( \
  763. ((desc)->a & 0x0ffff) | \
  764. ((desc)->b & 0xf0000) )
  765. #define GET_32BIT(desc) (((desc)->b >> 22) & 1)
  766. #define GET_CONTENTS(desc) (((desc)->b >> 10) & 3)
  767. #define GET_WRITABLE(desc) (((desc)->b >> 9) & 1)
  768. #define GET_LIMIT_PAGES(desc) (((desc)->b >> 23) & 1)
  769. #define GET_PRESENT(desc) (((desc)->b >> 15) & 1)
  770. #define GET_USEABLE(desc) (((desc)->b >> 20) & 1)
  771. asmlinkage int sys_get_thread_area(struct user_desc __user *u_info)
  772. {
  773. struct user_desc info;
  774. struct desc_struct *desc;
  775. int idx;
  776. if (get_user(idx, &u_info->entry_number))
  777. return -EFAULT;
  778. if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
  779. return -EINVAL;
  780. memset(&info, 0, sizeof(info));
  781. desc = current->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
  782. info.entry_number = idx;
  783. info.base_addr = GET_BASE(desc);
  784. info.limit = GET_LIMIT(desc);
  785. info.seg_32bit = GET_32BIT(desc);
  786. info.contents = GET_CONTENTS(desc);
  787. info.read_exec_only = !GET_WRITABLE(desc);
  788. info.limit_in_pages = GET_LIMIT_PAGES(desc);
  789. info.seg_not_present = !GET_PRESENT(desc);
  790. info.useable = GET_USEABLE(desc);
  791. if (copy_to_user(u_info, &info, sizeof(info)))
  792. return -EFAULT;
  793. return 0;
  794. }
  795. unsigned long arch_align_stack(unsigned long sp)
  796. {
  797. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  798. sp -= get_random_int() % 8192;
  799. return sp & ~0xf;
  800. }