amba-pl011.c 58 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287
  1. /*
  2. * Driver for AMBA serial ports
  3. *
  4. * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
  5. *
  6. * Copyright 1999 ARM Limited
  7. * Copyright (C) 2000 Deep Blue Solutions Ltd.
  8. * Copyright (C) 2010 ST-Ericsson SA
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation; either version 2 of the License, or
  13. * (at your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. * GNU General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  23. *
  24. * This is a generic driver for ARM AMBA-type serial ports. They
  25. * have a lot of 16550-like features, but are not register compatible.
  26. * Note that although they do have CTS, DCD and DSR inputs, they do
  27. * not have an RI input, nor do they have DTR or RTS outputs. If
  28. * required, these have to be supplied via some other means (eg, GPIO)
  29. * and hooked into this driver.
  30. */
  31. #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
  32. #define SUPPORT_SYSRQ
  33. #endif
  34. #include <linux/module.h>
  35. #include <linux/ioport.h>
  36. #include <linux/init.h>
  37. #include <linux/console.h>
  38. #include <linux/sysrq.h>
  39. #include <linux/device.h>
  40. #include <linux/tty.h>
  41. #include <linux/tty_flip.h>
  42. #include <linux/serial_core.h>
  43. #include <linux/serial.h>
  44. #include <linux/amba/bus.h>
  45. #include <linux/amba/serial.h>
  46. #include <linux/clk.h>
  47. #include <linux/slab.h>
  48. #include <linux/dmaengine.h>
  49. #include <linux/dma-mapping.h>
  50. #include <linux/scatterlist.h>
  51. #include <linux/delay.h>
  52. #include <linux/types.h>
  53. #include <linux/of.h>
  54. #include <linux/of_device.h>
  55. #include <linux/pinctrl/consumer.h>
  56. #include <linux/sizes.h>
  57. #include <linux/io.h>
  58. #define UART_NR 14
  59. #define SERIAL_AMBA_MAJOR 204
  60. #define SERIAL_AMBA_MINOR 64
  61. #define SERIAL_AMBA_NR UART_NR
  62. #define AMBA_ISR_PASS_LIMIT 256
  63. #define UART_DR_ERROR (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
  64. #define UART_DUMMY_DR_RX (1 << 16)
  65. /* There is by now at least one vendor with differing details, so handle it */
  66. struct vendor_data {
  67. unsigned int ifls;
  68. unsigned int lcrh_tx;
  69. unsigned int lcrh_rx;
  70. bool oversampling;
  71. bool dma_threshold;
  72. bool cts_event_workaround;
  73. unsigned int (*get_fifosize)(struct amba_device *dev);
  74. };
  75. static unsigned int get_fifosize_arm(struct amba_device *dev)
  76. {
  77. return amba_rev(dev) < 3 ? 16 : 32;
  78. }
  79. static struct vendor_data vendor_arm = {
  80. .ifls = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
  81. .lcrh_tx = UART011_LCRH,
  82. .lcrh_rx = UART011_LCRH,
  83. .oversampling = false,
  84. .dma_threshold = false,
  85. .cts_event_workaround = false,
  86. .get_fifosize = get_fifosize_arm,
  87. };
  88. static unsigned int get_fifosize_st(struct amba_device *dev)
  89. {
  90. return 64;
  91. }
  92. static struct vendor_data vendor_st = {
  93. .ifls = UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
  94. .lcrh_tx = ST_UART011_LCRH_TX,
  95. .lcrh_rx = ST_UART011_LCRH_RX,
  96. .oversampling = true,
  97. .dma_threshold = true,
  98. .cts_event_workaround = true,
  99. .get_fifosize = get_fifosize_st,
  100. };
  101. static struct uart_amba_port *amba_ports[UART_NR];
  102. /* Deals with DMA transactions */
  103. struct pl011_sgbuf {
  104. struct scatterlist sg;
  105. char *buf;
  106. };
  107. struct pl011_dmarx_data {
  108. struct dma_chan *chan;
  109. struct completion complete;
  110. bool use_buf_b;
  111. struct pl011_sgbuf sgbuf_a;
  112. struct pl011_sgbuf sgbuf_b;
  113. dma_cookie_t cookie;
  114. bool running;
  115. struct timer_list timer;
  116. unsigned int last_residue;
  117. unsigned long last_jiffies;
  118. bool auto_poll_rate;
  119. unsigned int poll_rate;
  120. unsigned int poll_timeout;
  121. };
  122. struct pl011_dmatx_data {
  123. struct dma_chan *chan;
  124. struct scatterlist sg;
  125. char *buf;
  126. bool queued;
  127. };
  128. /*
  129. * We wrap our port structure around the generic uart_port.
  130. */
  131. struct uart_amba_port {
  132. struct uart_port port;
  133. struct clk *clk;
  134. /* Two optional pin states - default & sleep */
  135. struct pinctrl *pinctrl;
  136. struct pinctrl_state *pins_default;
  137. struct pinctrl_state *pins_sleep;
  138. const struct vendor_data *vendor;
  139. unsigned int dmacr; /* dma control reg */
  140. unsigned int im; /* interrupt mask */
  141. unsigned int old_status;
  142. unsigned int fifosize; /* vendor-specific */
  143. unsigned int lcrh_tx; /* vendor-specific */
  144. unsigned int lcrh_rx; /* vendor-specific */
  145. unsigned int old_cr; /* state during shutdown */
  146. bool autorts;
  147. char type[12];
  148. #ifdef CONFIG_DMA_ENGINE
  149. /* DMA stuff */
  150. bool using_tx_dma;
  151. bool using_rx_dma;
  152. struct pl011_dmarx_data dmarx;
  153. struct pl011_dmatx_data dmatx;
  154. #endif
  155. };
  156. /*
  157. * Reads up to 256 characters from the FIFO or until it's empty and
  158. * inserts them into the TTY layer. Returns the number of characters
  159. * read from the FIFO.
  160. */
  161. static int pl011_fifo_to_tty(struct uart_amba_port *uap)
  162. {
  163. u16 status, ch;
  164. unsigned int flag, max_count = 256;
  165. int fifotaken = 0;
  166. while (max_count--) {
  167. status = readw(uap->port.membase + UART01x_FR);
  168. if (status & UART01x_FR_RXFE)
  169. break;
  170. /* Take chars from the FIFO and update status */
  171. ch = readw(uap->port.membase + UART01x_DR) |
  172. UART_DUMMY_DR_RX;
  173. flag = TTY_NORMAL;
  174. uap->port.icount.rx++;
  175. fifotaken++;
  176. if (unlikely(ch & UART_DR_ERROR)) {
  177. if (ch & UART011_DR_BE) {
  178. ch &= ~(UART011_DR_FE | UART011_DR_PE);
  179. uap->port.icount.brk++;
  180. if (uart_handle_break(&uap->port))
  181. continue;
  182. } else if (ch & UART011_DR_PE)
  183. uap->port.icount.parity++;
  184. else if (ch & UART011_DR_FE)
  185. uap->port.icount.frame++;
  186. if (ch & UART011_DR_OE)
  187. uap->port.icount.overrun++;
  188. ch &= uap->port.read_status_mask;
  189. if (ch & UART011_DR_BE)
  190. flag = TTY_BREAK;
  191. else if (ch & UART011_DR_PE)
  192. flag = TTY_PARITY;
  193. else if (ch & UART011_DR_FE)
  194. flag = TTY_FRAME;
  195. }
  196. if (uart_handle_sysrq_char(&uap->port, ch & 255))
  197. continue;
  198. uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
  199. }
  200. return fifotaken;
  201. }
  202. /*
  203. * All the DMA operation mode stuff goes inside this ifdef.
  204. * This assumes that you have a generic DMA device interface,
  205. * no custom DMA interfaces are supported.
  206. */
  207. #ifdef CONFIG_DMA_ENGINE
  208. #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
  209. static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
  210. enum dma_data_direction dir)
  211. {
  212. dma_addr_t dma_addr;
  213. sg->buf = dma_alloc_coherent(chan->device->dev,
  214. PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
  215. if (!sg->buf)
  216. return -ENOMEM;
  217. sg_init_table(&sg->sg, 1);
  218. sg_set_page(&sg->sg, phys_to_page(dma_addr),
  219. PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
  220. sg_dma_address(&sg->sg) = dma_addr;
  221. return 0;
  222. }
  223. static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
  224. enum dma_data_direction dir)
  225. {
  226. if (sg->buf) {
  227. dma_free_coherent(chan->device->dev,
  228. PL011_DMA_BUFFER_SIZE, sg->buf,
  229. sg_dma_address(&sg->sg));
  230. }
  231. }
  232. static void pl011_dma_probe_initcall(struct device *dev, struct uart_amba_port *uap)
  233. {
  234. /* DMA is the sole user of the platform data right now */
  235. struct amba_pl011_data *plat = uap->port.dev->platform_data;
  236. struct dma_slave_config tx_conf = {
  237. .dst_addr = uap->port.mapbase + UART01x_DR,
  238. .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
  239. .direction = DMA_MEM_TO_DEV,
  240. .dst_maxburst = uap->fifosize >> 1,
  241. .device_fc = false,
  242. };
  243. struct dma_chan *chan;
  244. dma_cap_mask_t mask;
  245. chan = dma_request_slave_channel(dev, "tx");
  246. if (!chan) {
  247. /* We need platform data */
  248. if (!plat || !plat->dma_filter) {
  249. dev_info(uap->port.dev, "no DMA platform data\n");
  250. return;
  251. }
  252. /* Try to acquire a generic DMA engine slave TX channel */
  253. dma_cap_zero(mask);
  254. dma_cap_set(DMA_SLAVE, mask);
  255. chan = dma_request_channel(mask, plat->dma_filter,
  256. plat->dma_tx_param);
  257. if (!chan) {
  258. dev_err(uap->port.dev, "no TX DMA channel!\n");
  259. return;
  260. }
  261. }
  262. dmaengine_slave_config(chan, &tx_conf);
  263. uap->dmatx.chan = chan;
  264. dev_info(uap->port.dev, "DMA channel TX %s\n",
  265. dma_chan_name(uap->dmatx.chan));
  266. /* Optionally make use of an RX channel as well */
  267. chan = dma_request_slave_channel(dev, "rx");
  268. if (!chan && plat->dma_rx_param) {
  269. chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
  270. if (!chan) {
  271. dev_err(uap->port.dev, "no RX DMA channel!\n");
  272. return;
  273. }
  274. }
  275. if (chan) {
  276. struct dma_slave_config rx_conf = {
  277. .src_addr = uap->port.mapbase + UART01x_DR,
  278. .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
  279. .direction = DMA_DEV_TO_MEM,
  280. .src_maxburst = uap->fifosize >> 1,
  281. .device_fc = false,
  282. };
  283. dmaengine_slave_config(chan, &rx_conf);
  284. uap->dmarx.chan = chan;
  285. if (plat->dma_rx_poll_enable) {
  286. /* Set poll rate if specified. */
  287. if (plat->dma_rx_poll_rate) {
  288. uap->dmarx.auto_poll_rate = false;
  289. uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
  290. } else {
  291. /*
  292. * 100 ms defaults to poll rate if not
  293. * specified. This will be adjusted with
  294. * the baud rate at set_termios.
  295. */
  296. uap->dmarx.auto_poll_rate = true;
  297. uap->dmarx.poll_rate = 100;
  298. }
  299. /* 3 secs defaults poll_timeout if not specified. */
  300. if (plat->dma_rx_poll_timeout)
  301. uap->dmarx.poll_timeout =
  302. plat->dma_rx_poll_timeout;
  303. else
  304. uap->dmarx.poll_timeout = 3000;
  305. } else
  306. uap->dmarx.auto_poll_rate = false;
  307. dev_info(uap->port.dev, "DMA channel RX %s\n",
  308. dma_chan_name(uap->dmarx.chan));
  309. }
  310. }
  311. #ifndef MODULE
  312. /*
  313. * Stack up the UARTs and let the above initcall be done at device
  314. * initcall time, because the serial driver is called as an arch
  315. * initcall, and at this time the DMA subsystem is not yet registered.
  316. * At this point the driver will switch over to using DMA where desired.
  317. */
  318. struct dma_uap {
  319. struct list_head node;
  320. struct uart_amba_port *uap;
  321. struct device *dev;
  322. };
  323. static LIST_HEAD(pl011_dma_uarts);
  324. static int __init pl011_dma_initcall(void)
  325. {
  326. struct list_head *node, *tmp;
  327. list_for_each_safe(node, tmp, &pl011_dma_uarts) {
  328. struct dma_uap *dmau = list_entry(node, struct dma_uap, node);
  329. pl011_dma_probe_initcall(dmau->dev, dmau->uap);
  330. list_del(node);
  331. kfree(dmau);
  332. }
  333. return 0;
  334. }
  335. device_initcall(pl011_dma_initcall);
  336. static void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap)
  337. {
  338. struct dma_uap *dmau = kzalloc(sizeof(struct dma_uap), GFP_KERNEL);
  339. if (dmau) {
  340. dmau->uap = uap;
  341. dmau->dev = dev;
  342. list_add_tail(&dmau->node, &pl011_dma_uarts);
  343. }
  344. }
  345. #else
  346. static void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap)
  347. {
  348. pl011_dma_probe_initcall(dev, uap);
  349. }
  350. #endif
  351. static void pl011_dma_remove(struct uart_amba_port *uap)
  352. {
  353. /* TODO: remove the initcall if it has not yet executed */
  354. if (uap->dmatx.chan)
  355. dma_release_channel(uap->dmatx.chan);
  356. if (uap->dmarx.chan)
  357. dma_release_channel(uap->dmarx.chan);
  358. }
  359. /* Forward declare this for the refill routine */
  360. static int pl011_dma_tx_refill(struct uart_amba_port *uap);
  361. /*
  362. * The current DMA TX buffer has been sent.
  363. * Try to queue up another DMA buffer.
  364. */
  365. static void pl011_dma_tx_callback(void *data)
  366. {
  367. struct uart_amba_port *uap = data;
  368. struct pl011_dmatx_data *dmatx = &uap->dmatx;
  369. unsigned long flags;
  370. u16 dmacr;
  371. spin_lock_irqsave(&uap->port.lock, flags);
  372. if (uap->dmatx.queued)
  373. dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
  374. DMA_TO_DEVICE);
  375. dmacr = uap->dmacr;
  376. uap->dmacr = dmacr & ~UART011_TXDMAE;
  377. writew(uap->dmacr, uap->port.membase + UART011_DMACR);
  378. /*
  379. * If TX DMA was disabled, it means that we've stopped the DMA for
  380. * some reason (eg, XOFF received, or we want to send an X-char.)
  381. *
  382. * Note: we need to be careful here of a potential race between DMA
  383. * and the rest of the driver - if the driver disables TX DMA while
  384. * a TX buffer completing, we must update the tx queued status to
  385. * get further refills (hence we check dmacr).
  386. */
  387. if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
  388. uart_circ_empty(&uap->port.state->xmit)) {
  389. uap->dmatx.queued = false;
  390. spin_unlock_irqrestore(&uap->port.lock, flags);
  391. return;
  392. }
  393. if (pl011_dma_tx_refill(uap) <= 0) {
  394. /*
  395. * We didn't queue a DMA buffer for some reason, but we
  396. * have data pending to be sent. Re-enable the TX IRQ.
  397. */
  398. uap->im |= UART011_TXIM;
  399. writew(uap->im, uap->port.membase + UART011_IMSC);
  400. }
  401. spin_unlock_irqrestore(&uap->port.lock, flags);
  402. }
  403. /*
  404. * Try to refill the TX DMA buffer.
  405. * Locking: called with port lock held and IRQs disabled.
  406. * Returns:
  407. * 1 if we queued up a TX DMA buffer.
  408. * 0 if we didn't want to handle this by DMA
  409. * <0 on error
  410. */
  411. static int pl011_dma_tx_refill(struct uart_amba_port *uap)
  412. {
  413. struct pl011_dmatx_data *dmatx = &uap->dmatx;
  414. struct dma_chan *chan = dmatx->chan;
  415. struct dma_device *dma_dev = chan->device;
  416. struct dma_async_tx_descriptor *desc;
  417. struct circ_buf *xmit = &uap->port.state->xmit;
  418. unsigned int count;
  419. /*
  420. * Try to avoid the overhead involved in using DMA if the
  421. * transaction fits in the first half of the FIFO, by using
  422. * the standard interrupt handling. This ensures that we
  423. * issue a uart_write_wakeup() at the appropriate time.
  424. */
  425. count = uart_circ_chars_pending(xmit);
  426. if (count < (uap->fifosize >> 1)) {
  427. uap->dmatx.queued = false;
  428. return 0;
  429. }
  430. /*
  431. * Bodge: don't send the last character by DMA, as this
  432. * will prevent XON from notifying us to restart DMA.
  433. */
  434. count -= 1;
  435. /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
  436. if (count > PL011_DMA_BUFFER_SIZE)
  437. count = PL011_DMA_BUFFER_SIZE;
  438. if (xmit->tail < xmit->head)
  439. memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
  440. else {
  441. size_t first = UART_XMIT_SIZE - xmit->tail;
  442. size_t second = xmit->head;
  443. memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
  444. if (second)
  445. memcpy(&dmatx->buf[first], &xmit->buf[0], second);
  446. }
  447. dmatx->sg.length = count;
  448. if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
  449. uap->dmatx.queued = false;
  450. dev_dbg(uap->port.dev, "unable to map TX DMA\n");
  451. return -EBUSY;
  452. }
  453. desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
  454. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  455. if (!desc) {
  456. dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
  457. uap->dmatx.queued = false;
  458. /*
  459. * If DMA cannot be used right now, we complete this
  460. * transaction via IRQ and let the TTY layer retry.
  461. */
  462. dev_dbg(uap->port.dev, "TX DMA busy\n");
  463. return -EBUSY;
  464. }
  465. /* Some data to go along to the callback */
  466. desc->callback = pl011_dma_tx_callback;
  467. desc->callback_param = uap;
  468. /* All errors should happen at prepare time */
  469. dmaengine_submit(desc);
  470. /* Fire the DMA transaction */
  471. dma_dev->device_issue_pending(chan);
  472. uap->dmacr |= UART011_TXDMAE;
  473. writew(uap->dmacr, uap->port.membase + UART011_DMACR);
  474. uap->dmatx.queued = true;
  475. /*
  476. * Now we know that DMA will fire, so advance the ring buffer
  477. * with the stuff we just dispatched.
  478. */
  479. xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
  480. uap->port.icount.tx += count;
  481. if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
  482. uart_write_wakeup(&uap->port);
  483. return 1;
  484. }
  485. /*
  486. * We received a transmit interrupt without a pending X-char but with
  487. * pending characters.
  488. * Locking: called with port lock held and IRQs disabled.
  489. * Returns:
  490. * false if we want to use PIO to transmit
  491. * true if we queued a DMA buffer
  492. */
  493. static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
  494. {
  495. if (!uap->using_tx_dma)
  496. return false;
  497. /*
  498. * If we already have a TX buffer queued, but received a
  499. * TX interrupt, it will be because we've just sent an X-char.
  500. * Ensure the TX DMA is enabled and the TX IRQ is disabled.
  501. */
  502. if (uap->dmatx.queued) {
  503. uap->dmacr |= UART011_TXDMAE;
  504. writew(uap->dmacr, uap->port.membase + UART011_DMACR);
  505. uap->im &= ~UART011_TXIM;
  506. writew(uap->im, uap->port.membase + UART011_IMSC);
  507. return true;
  508. }
  509. /*
  510. * We don't have a TX buffer queued, so try to queue one.
  511. * If we successfully queued a buffer, mask the TX IRQ.
  512. */
  513. if (pl011_dma_tx_refill(uap) > 0) {
  514. uap->im &= ~UART011_TXIM;
  515. writew(uap->im, uap->port.membase + UART011_IMSC);
  516. return true;
  517. }
  518. return false;
  519. }
  520. /*
  521. * Stop the DMA transmit (eg, due to received XOFF).
  522. * Locking: called with port lock held and IRQs disabled.
  523. */
  524. static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
  525. {
  526. if (uap->dmatx.queued) {
  527. uap->dmacr &= ~UART011_TXDMAE;
  528. writew(uap->dmacr, uap->port.membase + UART011_DMACR);
  529. }
  530. }
  531. /*
  532. * Try to start a DMA transmit, or in the case of an XON/OFF
  533. * character queued for send, try to get that character out ASAP.
  534. * Locking: called with port lock held and IRQs disabled.
  535. * Returns:
  536. * false if we want the TX IRQ to be enabled
  537. * true if we have a buffer queued
  538. */
  539. static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
  540. {
  541. u16 dmacr;
  542. if (!uap->using_tx_dma)
  543. return false;
  544. if (!uap->port.x_char) {
  545. /* no X-char, try to push chars out in DMA mode */
  546. bool ret = true;
  547. if (!uap->dmatx.queued) {
  548. if (pl011_dma_tx_refill(uap) > 0) {
  549. uap->im &= ~UART011_TXIM;
  550. ret = true;
  551. } else {
  552. uap->im |= UART011_TXIM;
  553. ret = false;
  554. }
  555. writew(uap->im, uap->port.membase + UART011_IMSC);
  556. } else if (!(uap->dmacr & UART011_TXDMAE)) {
  557. uap->dmacr |= UART011_TXDMAE;
  558. writew(uap->dmacr,
  559. uap->port.membase + UART011_DMACR);
  560. }
  561. return ret;
  562. }
  563. /*
  564. * We have an X-char to send. Disable DMA to prevent it loading
  565. * the TX fifo, and then see if we can stuff it into the FIFO.
  566. */
  567. dmacr = uap->dmacr;
  568. uap->dmacr &= ~UART011_TXDMAE;
  569. writew(uap->dmacr, uap->port.membase + UART011_DMACR);
  570. if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) {
  571. /*
  572. * No space in the FIFO, so enable the transmit interrupt
  573. * so we know when there is space. Note that once we've
  574. * loaded the character, we should just re-enable DMA.
  575. */
  576. return false;
  577. }
  578. writew(uap->port.x_char, uap->port.membase + UART01x_DR);
  579. uap->port.icount.tx++;
  580. uap->port.x_char = 0;
  581. /* Success - restore the DMA state */
  582. uap->dmacr = dmacr;
  583. writew(dmacr, uap->port.membase + UART011_DMACR);
  584. return true;
  585. }
  586. /*
  587. * Flush the transmit buffer.
  588. * Locking: called with port lock held and IRQs disabled.
  589. */
  590. static void pl011_dma_flush_buffer(struct uart_port *port)
  591. {
  592. struct uart_amba_port *uap = (struct uart_amba_port *)port;
  593. if (!uap->using_tx_dma)
  594. return;
  595. /* Avoid deadlock with the DMA engine callback */
  596. spin_unlock(&uap->port.lock);
  597. dmaengine_terminate_all(uap->dmatx.chan);
  598. spin_lock(&uap->port.lock);
  599. if (uap->dmatx.queued) {
  600. dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
  601. DMA_TO_DEVICE);
  602. uap->dmatx.queued = false;
  603. uap->dmacr &= ~UART011_TXDMAE;
  604. writew(uap->dmacr, uap->port.membase + UART011_DMACR);
  605. }
  606. }
  607. static void pl011_dma_rx_callback(void *data);
  608. static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
  609. {
  610. struct dma_chan *rxchan = uap->dmarx.chan;
  611. struct pl011_dmarx_data *dmarx = &uap->dmarx;
  612. struct dma_async_tx_descriptor *desc;
  613. struct pl011_sgbuf *sgbuf;
  614. if (!rxchan)
  615. return -EIO;
  616. /* Start the RX DMA job */
  617. sgbuf = uap->dmarx.use_buf_b ?
  618. &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
  619. desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
  620. DMA_DEV_TO_MEM,
  621. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  622. /*
  623. * If the DMA engine is busy and cannot prepare a
  624. * channel, no big deal, the driver will fall back
  625. * to interrupt mode as a result of this error code.
  626. */
  627. if (!desc) {
  628. uap->dmarx.running = false;
  629. dmaengine_terminate_all(rxchan);
  630. return -EBUSY;
  631. }
  632. /* Some data to go along to the callback */
  633. desc->callback = pl011_dma_rx_callback;
  634. desc->callback_param = uap;
  635. dmarx->cookie = dmaengine_submit(desc);
  636. dma_async_issue_pending(rxchan);
  637. uap->dmacr |= UART011_RXDMAE;
  638. writew(uap->dmacr, uap->port.membase + UART011_DMACR);
  639. uap->dmarx.running = true;
  640. uap->im &= ~UART011_RXIM;
  641. writew(uap->im, uap->port.membase + UART011_IMSC);
  642. return 0;
  643. }
  644. /*
  645. * This is called when either the DMA job is complete, or
  646. * the FIFO timeout interrupt occurred. This must be called
  647. * with the port spinlock uap->port.lock held.
  648. */
  649. static void pl011_dma_rx_chars(struct uart_amba_port *uap,
  650. u32 pending, bool use_buf_b,
  651. bool readfifo)
  652. {
  653. struct tty_port *port = &uap->port.state->port;
  654. struct pl011_sgbuf *sgbuf = use_buf_b ?
  655. &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
  656. int dma_count = 0;
  657. u32 fifotaken = 0; /* only used for vdbg() */
  658. struct pl011_dmarx_data *dmarx = &uap->dmarx;
  659. int dmataken = 0;
  660. if (uap->dmarx.poll_rate) {
  661. /* The data can be taken by polling */
  662. dmataken = sgbuf->sg.length - dmarx->last_residue;
  663. /* Recalculate the pending size */
  664. if (pending >= dmataken)
  665. pending -= dmataken;
  666. }
  667. /* Pick the remain data from the DMA */
  668. if (pending) {
  669. /*
  670. * First take all chars in the DMA pipe, then look in the FIFO.
  671. * Note that tty_insert_flip_buf() tries to take as many chars
  672. * as it can.
  673. */
  674. dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
  675. pending);
  676. uap->port.icount.rx += dma_count;
  677. if (dma_count < pending)
  678. dev_warn(uap->port.dev,
  679. "couldn't insert all characters (TTY is full?)\n");
  680. }
  681. /* Reset the last_residue for Rx DMA poll */
  682. if (uap->dmarx.poll_rate)
  683. dmarx->last_residue = sgbuf->sg.length;
  684. /*
  685. * Only continue with trying to read the FIFO if all DMA chars have
  686. * been taken first.
  687. */
  688. if (dma_count == pending && readfifo) {
  689. /* Clear any error flags */
  690. writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
  691. uap->port.membase + UART011_ICR);
  692. /*
  693. * If we read all the DMA'd characters, and we had an
  694. * incomplete buffer, that could be due to an rx error, or
  695. * maybe we just timed out. Read any pending chars and check
  696. * the error status.
  697. *
  698. * Error conditions will only occur in the FIFO, these will
  699. * trigger an immediate interrupt and stop the DMA job, so we
  700. * will always find the error in the FIFO, never in the DMA
  701. * buffer.
  702. */
  703. fifotaken = pl011_fifo_to_tty(uap);
  704. }
  705. spin_unlock(&uap->port.lock);
  706. dev_vdbg(uap->port.dev,
  707. "Took %d chars from DMA buffer and %d chars from the FIFO\n",
  708. dma_count, fifotaken);
  709. tty_flip_buffer_push(port);
  710. spin_lock(&uap->port.lock);
  711. }
  712. static void pl011_dma_rx_irq(struct uart_amba_port *uap)
  713. {
  714. struct pl011_dmarx_data *dmarx = &uap->dmarx;
  715. struct dma_chan *rxchan = dmarx->chan;
  716. struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
  717. &dmarx->sgbuf_b : &dmarx->sgbuf_a;
  718. size_t pending;
  719. struct dma_tx_state state;
  720. enum dma_status dmastat;
  721. /*
  722. * Pause the transfer so we can trust the current counter,
  723. * do this before we pause the PL011 block, else we may
  724. * overflow the FIFO.
  725. */
  726. if (dmaengine_pause(rxchan))
  727. dev_err(uap->port.dev, "unable to pause DMA transfer\n");
  728. dmastat = rxchan->device->device_tx_status(rxchan,
  729. dmarx->cookie, &state);
  730. if (dmastat != DMA_PAUSED)
  731. dev_err(uap->port.dev, "unable to pause DMA transfer\n");
  732. /* Disable RX DMA - incoming data will wait in the FIFO */
  733. uap->dmacr &= ~UART011_RXDMAE;
  734. writew(uap->dmacr, uap->port.membase + UART011_DMACR);
  735. uap->dmarx.running = false;
  736. pending = sgbuf->sg.length - state.residue;
  737. BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
  738. /* Then we terminate the transfer - we now know our residue */
  739. dmaengine_terminate_all(rxchan);
  740. /*
  741. * This will take the chars we have so far and insert
  742. * into the framework.
  743. */
  744. pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
  745. /* Switch buffer & re-trigger DMA job */
  746. dmarx->use_buf_b = !dmarx->use_buf_b;
  747. if (pl011_dma_rx_trigger_dma(uap)) {
  748. dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
  749. "fall back to interrupt mode\n");
  750. uap->im |= UART011_RXIM;
  751. writew(uap->im, uap->port.membase + UART011_IMSC);
  752. }
  753. }
  754. static void pl011_dma_rx_callback(void *data)
  755. {
  756. struct uart_amba_port *uap = data;
  757. struct pl011_dmarx_data *dmarx = &uap->dmarx;
  758. struct dma_chan *rxchan = dmarx->chan;
  759. bool lastbuf = dmarx->use_buf_b;
  760. struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
  761. &dmarx->sgbuf_b : &dmarx->sgbuf_a;
  762. size_t pending;
  763. struct dma_tx_state state;
  764. int ret;
  765. /*
  766. * This completion interrupt occurs typically when the
  767. * RX buffer is totally stuffed but no timeout has yet
  768. * occurred. When that happens, we just want the RX
  769. * routine to flush out the secondary DMA buffer while
  770. * we immediately trigger the next DMA job.
  771. */
  772. spin_lock_irq(&uap->port.lock);
  773. /*
  774. * Rx data can be taken by the UART interrupts during
  775. * the DMA irq handler. So we check the residue here.
  776. */
  777. rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
  778. pending = sgbuf->sg.length - state.residue;
  779. BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
  780. /* Then we terminate the transfer - we now know our residue */
  781. dmaengine_terminate_all(rxchan);
  782. uap->dmarx.running = false;
  783. dmarx->use_buf_b = !lastbuf;
  784. ret = pl011_dma_rx_trigger_dma(uap);
  785. pl011_dma_rx_chars(uap, pending, lastbuf, false);
  786. spin_unlock_irq(&uap->port.lock);
  787. /*
  788. * Do this check after we picked the DMA chars so we don't
  789. * get some IRQ immediately from RX.
  790. */
  791. if (ret) {
  792. dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
  793. "fall back to interrupt mode\n");
  794. uap->im |= UART011_RXIM;
  795. writew(uap->im, uap->port.membase + UART011_IMSC);
  796. }
  797. }
  798. /*
  799. * Stop accepting received characters, when we're shutting down or
  800. * suspending this port.
  801. * Locking: called with port lock held and IRQs disabled.
  802. */
  803. static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
  804. {
  805. /* FIXME. Just disable the DMA enable */
  806. uap->dmacr &= ~UART011_RXDMAE;
  807. writew(uap->dmacr, uap->port.membase + UART011_DMACR);
  808. }
  809. /*
  810. * Timer handler for Rx DMA polling.
  811. * Every polling, It checks the residue in the dma buffer and transfer
  812. * data to the tty. Also, last_residue is updated for the next polling.
  813. */
  814. static void pl011_dma_rx_poll(unsigned long args)
  815. {
  816. struct uart_amba_port *uap = (struct uart_amba_port *)args;
  817. struct tty_port *port = &uap->port.state->port;
  818. struct pl011_dmarx_data *dmarx = &uap->dmarx;
  819. struct dma_chan *rxchan = uap->dmarx.chan;
  820. unsigned long flags = 0;
  821. unsigned int dmataken = 0;
  822. unsigned int size = 0;
  823. struct pl011_sgbuf *sgbuf;
  824. int dma_count;
  825. struct dma_tx_state state;
  826. sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
  827. rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
  828. if (likely(state.residue < dmarx->last_residue)) {
  829. dmataken = sgbuf->sg.length - dmarx->last_residue;
  830. size = dmarx->last_residue - state.residue;
  831. dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
  832. size);
  833. if (dma_count == size)
  834. dmarx->last_residue = state.residue;
  835. dmarx->last_jiffies = jiffies;
  836. }
  837. tty_flip_buffer_push(port);
  838. /*
  839. * If no data is received in poll_timeout, the driver will fall back
  840. * to interrupt mode. We will retrigger DMA at the first interrupt.
  841. */
  842. if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
  843. > uap->dmarx.poll_timeout) {
  844. spin_lock_irqsave(&uap->port.lock, flags);
  845. pl011_dma_rx_stop(uap);
  846. spin_unlock_irqrestore(&uap->port.lock, flags);
  847. uap->dmarx.running = false;
  848. dmaengine_terminate_all(rxchan);
  849. del_timer(&uap->dmarx.timer);
  850. } else {
  851. mod_timer(&uap->dmarx.timer,
  852. jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
  853. }
  854. }
  855. static void pl011_dma_startup(struct uart_amba_port *uap)
  856. {
  857. int ret;
  858. if (!uap->dmatx.chan)
  859. return;
  860. uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
  861. if (!uap->dmatx.buf) {
  862. dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
  863. uap->port.fifosize = uap->fifosize;
  864. return;
  865. }
  866. sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
  867. /* The DMA buffer is now the FIFO the TTY subsystem can use */
  868. uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
  869. uap->using_tx_dma = true;
  870. if (!uap->dmarx.chan)
  871. goto skip_rx;
  872. /* Allocate and map DMA RX buffers */
  873. ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
  874. DMA_FROM_DEVICE);
  875. if (ret) {
  876. dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
  877. "RX buffer A", ret);
  878. goto skip_rx;
  879. }
  880. ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
  881. DMA_FROM_DEVICE);
  882. if (ret) {
  883. dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
  884. "RX buffer B", ret);
  885. pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
  886. DMA_FROM_DEVICE);
  887. goto skip_rx;
  888. }
  889. uap->using_rx_dma = true;
  890. skip_rx:
  891. /* Turn on DMA error (RX/TX will be enabled on demand) */
  892. uap->dmacr |= UART011_DMAONERR;
  893. writew(uap->dmacr, uap->port.membase + UART011_DMACR);
  894. /*
  895. * ST Micro variants has some specific dma burst threshold
  896. * compensation. Set this to 16 bytes, so burst will only
  897. * be issued above/below 16 bytes.
  898. */
  899. if (uap->vendor->dma_threshold)
  900. writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
  901. uap->port.membase + ST_UART011_DMAWM);
  902. if (uap->using_rx_dma) {
  903. if (pl011_dma_rx_trigger_dma(uap))
  904. dev_dbg(uap->port.dev, "could not trigger initial "
  905. "RX DMA job, fall back to interrupt mode\n");
  906. if (uap->dmarx.poll_rate) {
  907. init_timer(&(uap->dmarx.timer));
  908. uap->dmarx.timer.function = pl011_dma_rx_poll;
  909. uap->dmarx.timer.data = (unsigned long)uap;
  910. mod_timer(&uap->dmarx.timer,
  911. jiffies +
  912. msecs_to_jiffies(uap->dmarx.poll_rate));
  913. uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
  914. uap->dmarx.last_jiffies = jiffies;
  915. }
  916. }
  917. }
  918. static void pl011_dma_shutdown(struct uart_amba_port *uap)
  919. {
  920. if (!(uap->using_tx_dma || uap->using_rx_dma))
  921. return;
  922. /* Disable RX and TX DMA */
  923. while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
  924. barrier();
  925. spin_lock_irq(&uap->port.lock);
  926. uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
  927. writew(uap->dmacr, uap->port.membase + UART011_DMACR);
  928. spin_unlock_irq(&uap->port.lock);
  929. if (uap->using_tx_dma) {
  930. /* In theory, this should already be done by pl011_dma_flush_buffer */
  931. dmaengine_terminate_all(uap->dmatx.chan);
  932. if (uap->dmatx.queued) {
  933. dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
  934. DMA_TO_DEVICE);
  935. uap->dmatx.queued = false;
  936. }
  937. kfree(uap->dmatx.buf);
  938. uap->using_tx_dma = false;
  939. }
  940. if (uap->using_rx_dma) {
  941. dmaengine_terminate_all(uap->dmarx.chan);
  942. /* Clean up the RX DMA */
  943. pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
  944. pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
  945. if (uap->dmarx.poll_rate)
  946. del_timer_sync(&uap->dmarx.timer);
  947. uap->using_rx_dma = false;
  948. }
  949. }
  950. static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
  951. {
  952. return uap->using_rx_dma;
  953. }
  954. static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
  955. {
  956. return uap->using_rx_dma && uap->dmarx.running;
  957. }
  958. #else
  959. /* Blank functions if the DMA engine is not available */
  960. static inline void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap)
  961. {
  962. }
  963. static inline void pl011_dma_remove(struct uart_amba_port *uap)
  964. {
  965. }
  966. static inline void pl011_dma_startup(struct uart_amba_port *uap)
  967. {
  968. }
  969. static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
  970. {
  971. }
  972. static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
  973. {
  974. return false;
  975. }
  976. static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
  977. {
  978. }
  979. static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
  980. {
  981. return false;
  982. }
  983. static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
  984. {
  985. }
  986. static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
  987. {
  988. }
  989. static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
  990. {
  991. return -EIO;
  992. }
  993. static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
  994. {
  995. return false;
  996. }
  997. static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
  998. {
  999. return false;
  1000. }
  1001. #define pl011_dma_flush_buffer NULL
  1002. #endif
  1003. static void pl011_stop_tx(struct uart_port *port)
  1004. {
  1005. struct uart_amba_port *uap = (struct uart_amba_port *)port;
  1006. uap->im &= ~UART011_TXIM;
  1007. writew(uap->im, uap->port.membase + UART011_IMSC);
  1008. pl011_dma_tx_stop(uap);
  1009. }
  1010. static void pl011_start_tx(struct uart_port *port)
  1011. {
  1012. struct uart_amba_port *uap = (struct uart_amba_port *)port;
  1013. if (!pl011_dma_tx_start(uap)) {
  1014. uap->im |= UART011_TXIM;
  1015. writew(uap->im, uap->port.membase + UART011_IMSC);
  1016. }
  1017. }
  1018. static void pl011_stop_rx(struct uart_port *port)
  1019. {
  1020. struct uart_amba_port *uap = (struct uart_amba_port *)port;
  1021. uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
  1022. UART011_PEIM|UART011_BEIM|UART011_OEIM);
  1023. writew(uap->im, uap->port.membase + UART011_IMSC);
  1024. pl011_dma_rx_stop(uap);
  1025. }
  1026. static void pl011_enable_ms(struct uart_port *port)
  1027. {
  1028. struct uart_amba_port *uap = (struct uart_amba_port *)port;
  1029. uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
  1030. writew(uap->im, uap->port.membase + UART011_IMSC);
  1031. }
  1032. static void pl011_rx_chars(struct uart_amba_port *uap)
  1033. {
  1034. pl011_fifo_to_tty(uap);
  1035. spin_unlock(&uap->port.lock);
  1036. tty_flip_buffer_push(&uap->port.state->port);
  1037. /*
  1038. * If we were temporarily out of DMA mode for a while,
  1039. * attempt to switch back to DMA mode again.
  1040. */
  1041. if (pl011_dma_rx_available(uap)) {
  1042. if (pl011_dma_rx_trigger_dma(uap)) {
  1043. dev_dbg(uap->port.dev, "could not trigger RX DMA job "
  1044. "fall back to interrupt mode again\n");
  1045. uap->im |= UART011_RXIM;
  1046. } else {
  1047. uap->im &= ~UART011_RXIM;
  1048. #ifdef CONFIG_DMA_ENGINE
  1049. /* Start Rx DMA poll */
  1050. if (uap->dmarx.poll_rate) {
  1051. uap->dmarx.last_jiffies = jiffies;
  1052. uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
  1053. mod_timer(&uap->dmarx.timer,
  1054. jiffies +
  1055. msecs_to_jiffies(uap->dmarx.poll_rate));
  1056. }
  1057. #endif
  1058. }
  1059. writew(uap->im, uap->port.membase + UART011_IMSC);
  1060. }
  1061. spin_lock(&uap->port.lock);
  1062. }
  1063. static void pl011_tx_chars(struct uart_amba_port *uap)
  1064. {
  1065. struct circ_buf *xmit = &uap->port.state->xmit;
  1066. int count;
  1067. if (uap->port.x_char) {
  1068. writew(uap->port.x_char, uap->port.membase + UART01x_DR);
  1069. uap->port.icount.tx++;
  1070. uap->port.x_char = 0;
  1071. return;
  1072. }
  1073. if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
  1074. pl011_stop_tx(&uap->port);
  1075. return;
  1076. }
  1077. /* If we are using DMA mode, try to send some characters. */
  1078. if (pl011_dma_tx_irq(uap))
  1079. return;
  1080. count = uap->fifosize >> 1;
  1081. do {
  1082. writew(xmit->buf[xmit->tail], uap->port.membase + UART01x_DR);
  1083. xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
  1084. uap->port.icount.tx++;
  1085. if (uart_circ_empty(xmit))
  1086. break;
  1087. } while (--count > 0);
  1088. if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
  1089. uart_write_wakeup(&uap->port);
  1090. if (uart_circ_empty(xmit))
  1091. pl011_stop_tx(&uap->port);
  1092. }
  1093. static void pl011_modem_status(struct uart_amba_port *uap)
  1094. {
  1095. unsigned int status, delta;
  1096. status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
  1097. delta = status ^ uap->old_status;
  1098. uap->old_status = status;
  1099. if (!delta)
  1100. return;
  1101. if (delta & UART01x_FR_DCD)
  1102. uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
  1103. if (delta & UART01x_FR_DSR)
  1104. uap->port.icount.dsr++;
  1105. if (delta & UART01x_FR_CTS)
  1106. uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS);
  1107. wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
  1108. }
  1109. static irqreturn_t pl011_int(int irq, void *dev_id)
  1110. {
  1111. struct uart_amba_port *uap = dev_id;
  1112. unsigned long flags;
  1113. unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
  1114. int handled = 0;
  1115. unsigned int dummy_read;
  1116. spin_lock_irqsave(&uap->port.lock, flags);
  1117. status = readw(uap->port.membase + UART011_MIS);
  1118. if (status) {
  1119. do {
  1120. if (uap->vendor->cts_event_workaround) {
  1121. /* workaround to make sure that all bits are unlocked.. */
  1122. writew(0x00, uap->port.membase + UART011_ICR);
  1123. /*
  1124. * WA: introduce 26ns(1 uart clk) delay before W1C;
  1125. * single apb access will incur 2 pclk(133.12Mhz) delay,
  1126. * so add 2 dummy reads
  1127. */
  1128. dummy_read = readw(uap->port.membase + UART011_ICR);
  1129. dummy_read = readw(uap->port.membase + UART011_ICR);
  1130. }
  1131. writew(status & ~(UART011_TXIS|UART011_RTIS|
  1132. UART011_RXIS),
  1133. uap->port.membase + UART011_ICR);
  1134. if (status & (UART011_RTIS|UART011_RXIS)) {
  1135. if (pl011_dma_rx_running(uap))
  1136. pl011_dma_rx_irq(uap);
  1137. else
  1138. pl011_rx_chars(uap);
  1139. }
  1140. if (status & (UART011_DSRMIS|UART011_DCDMIS|
  1141. UART011_CTSMIS|UART011_RIMIS))
  1142. pl011_modem_status(uap);
  1143. if (status & UART011_TXIS)
  1144. pl011_tx_chars(uap);
  1145. if (pass_counter-- == 0)
  1146. break;
  1147. status = readw(uap->port.membase + UART011_MIS);
  1148. } while (status != 0);
  1149. handled = 1;
  1150. }
  1151. spin_unlock_irqrestore(&uap->port.lock, flags);
  1152. return IRQ_RETVAL(handled);
  1153. }
  1154. static unsigned int pl011_tx_empty(struct uart_port *port)
  1155. {
  1156. struct uart_amba_port *uap = (struct uart_amba_port *)port;
  1157. unsigned int status = readw(uap->port.membase + UART01x_FR);
  1158. return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT;
  1159. }
  1160. static unsigned int pl011_get_mctrl(struct uart_port *port)
  1161. {
  1162. struct uart_amba_port *uap = (struct uart_amba_port *)port;
  1163. unsigned int result = 0;
  1164. unsigned int status = readw(uap->port.membase + UART01x_FR);
  1165. #define TIOCMBIT(uartbit, tiocmbit) \
  1166. if (status & uartbit) \
  1167. result |= tiocmbit
  1168. TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
  1169. TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR);
  1170. TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS);
  1171. TIOCMBIT(UART011_FR_RI, TIOCM_RNG);
  1172. #undef TIOCMBIT
  1173. return result;
  1174. }
  1175. static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
  1176. {
  1177. struct uart_amba_port *uap = (struct uart_amba_port *)port;
  1178. unsigned int cr;
  1179. cr = readw(uap->port.membase + UART011_CR);
  1180. #define TIOCMBIT(tiocmbit, uartbit) \
  1181. if (mctrl & tiocmbit) \
  1182. cr |= uartbit; \
  1183. else \
  1184. cr &= ~uartbit
  1185. TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
  1186. TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
  1187. TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
  1188. TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
  1189. TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
  1190. if (uap->autorts) {
  1191. /* We need to disable auto-RTS if we want to turn RTS off */
  1192. TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
  1193. }
  1194. #undef TIOCMBIT
  1195. writew(cr, uap->port.membase + UART011_CR);
  1196. }
  1197. static void pl011_break_ctl(struct uart_port *port, int break_state)
  1198. {
  1199. struct uart_amba_port *uap = (struct uart_amba_port *)port;
  1200. unsigned long flags;
  1201. unsigned int lcr_h;
  1202. spin_lock_irqsave(&uap->port.lock, flags);
  1203. lcr_h = readw(uap->port.membase + uap->lcrh_tx);
  1204. if (break_state == -1)
  1205. lcr_h |= UART01x_LCRH_BRK;
  1206. else
  1207. lcr_h &= ~UART01x_LCRH_BRK;
  1208. writew(lcr_h, uap->port.membase + uap->lcrh_tx);
  1209. spin_unlock_irqrestore(&uap->port.lock, flags);
  1210. }
  1211. #ifdef CONFIG_CONSOLE_POLL
  1212. static void pl011_quiesce_irqs(struct uart_port *port)
  1213. {
  1214. struct uart_amba_port *uap = (struct uart_amba_port *)port;
  1215. unsigned char __iomem *regs = uap->port.membase;
  1216. writew(readw(regs + UART011_MIS), regs + UART011_ICR);
  1217. /*
  1218. * There is no way to clear TXIM as this is "ready to transmit IRQ", so
  1219. * we simply mask it. start_tx() will unmask it.
  1220. *
  1221. * Note we can race with start_tx(), and if the race happens, the
  1222. * polling user might get another interrupt just after we clear it.
  1223. * But it should be OK and can happen even w/o the race, e.g.
  1224. * controller immediately got some new data and raised the IRQ.
  1225. *
  1226. * And whoever uses polling routines assumes that it manages the device
  1227. * (including tx queue), so we're also fine with start_tx()'s caller
  1228. * side.
  1229. */
  1230. writew(readw(regs + UART011_IMSC) & ~UART011_TXIM, regs + UART011_IMSC);
  1231. }
  1232. static int pl011_get_poll_char(struct uart_port *port)
  1233. {
  1234. struct uart_amba_port *uap = (struct uart_amba_port *)port;
  1235. unsigned int status;
  1236. /*
  1237. * The caller might need IRQs lowered, e.g. if used with KDB NMI
  1238. * debugger.
  1239. */
  1240. pl011_quiesce_irqs(port);
  1241. status = readw(uap->port.membase + UART01x_FR);
  1242. if (status & UART01x_FR_RXFE)
  1243. return NO_POLL_CHAR;
  1244. return readw(uap->port.membase + UART01x_DR);
  1245. }
  1246. static void pl011_put_poll_char(struct uart_port *port,
  1247. unsigned char ch)
  1248. {
  1249. struct uart_amba_port *uap = (struct uart_amba_port *)port;
  1250. while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
  1251. barrier();
  1252. writew(ch, uap->port.membase + UART01x_DR);
  1253. }
  1254. #endif /* CONFIG_CONSOLE_POLL */
  1255. static int pl011_hwinit(struct uart_port *port)
  1256. {
  1257. struct uart_amba_port *uap = (struct uart_amba_port *)port;
  1258. int retval;
  1259. /* Optionaly enable pins to be muxed in and configured */
  1260. if (!IS_ERR(uap->pins_default)) {
  1261. retval = pinctrl_select_state(uap->pinctrl, uap->pins_default);
  1262. if (retval)
  1263. dev_err(port->dev,
  1264. "could not set default pins\n");
  1265. }
  1266. /*
  1267. * Try to enable the clock producer.
  1268. */
  1269. retval = clk_prepare_enable(uap->clk);
  1270. if (retval)
  1271. goto out;
  1272. uap->port.uartclk = clk_get_rate(uap->clk);
  1273. /* Clear pending error and receive interrupts */
  1274. writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS |
  1275. UART011_RTIS | UART011_RXIS, uap->port.membase + UART011_ICR);
  1276. /*
  1277. * Save interrupts enable mask, and enable RX interrupts in case if
  1278. * the interrupt is used for NMI entry.
  1279. */
  1280. uap->im = readw(uap->port.membase + UART011_IMSC);
  1281. writew(UART011_RTIM | UART011_RXIM, uap->port.membase + UART011_IMSC);
  1282. if (uap->port.dev->platform_data) {
  1283. struct amba_pl011_data *plat;
  1284. plat = uap->port.dev->platform_data;
  1285. if (plat->init)
  1286. plat->init();
  1287. }
  1288. return 0;
  1289. out:
  1290. return retval;
  1291. }
  1292. static int pl011_startup(struct uart_port *port)
  1293. {
  1294. struct uart_amba_port *uap = (struct uart_amba_port *)port;
  1295. unsigned int cr;
  1296. int retval;
  1297. retval = pl011_hwinit(port);
  1298. if (retval)
  1299. goto clk_dis;
  1300. writew(uap->im, uap->port.membase + UART011_IMSC);
  1301. /*
  1302. * Allocate the IRQ
  1303. */
  1304. retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
  1305. if (retval)
  1306. goto clk_dis;
  1307. writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS);
  1308. /*
  1309. * Provoke TX FIFO interrupt into asserting.
  1310. */
  1311. cr = UART01x_CR_UARTEN | UART011_CR_TXE | UART011_CR_LBE;
  1312. writew(cr, uap->port.membase + UART011_CR);
  1313. writew(0, uap->port.membase + UART011_FBRD);
  1314. writew(1, uap->port.membase + UART011_IBRD);
  1315. writew(0, uap->port.membase + uap->lcrh_rx);
  1316. if (uap->lcrh_tx != uap->lcrh_rx) {
  1317. int i;
  1318. /*
  1319. * Wait 10 PCLKs before writing LCRH_TX register,
  1320. * to get this delay write read only register 10 times
  1321. */
  1322. for (i = 0; i < 10; ++i)
  1323. writew(0xff, uap->port.membase + UART011_MIS);
  1324. writew(0, uap->port.membase + uap->lcrh_tx);
  1325. }
  1326. writew(0, uap->port.membase + UART01x_DR);
  1327. while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
  1328. barrier();
  1329. /* restore RTS and DTR */
  1330. cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
  1331. cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
  1332. writew(cr, uap->port.membase + UART011_CR);
  1333. /*
  1334. * initialise the old status of the modem signals
  1335. */
  1336. uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
  1337. /* Startup DMA */
  1338. pl011_dma_startup(uap);
  1339. /*
  1340. * Finally, enable interrupts, only timeouts when using DMA
  1341. * if initial RX DMA job failed, start in interrupt mode
  1342. * as well.
  1343. */
  1344. spin_lock_irq(&uap->port.lock);
  1345. /* Clear out any spuriously appearing RX interrupts */
  1346. writew(UART011_RTIS | UART011_RXIS,
  1347. uap->port.membase + UART011_ICR);
  1348. uap->im = UART011_RTIM;
  1349. if (!pl011_dma_rx_running(uap))
  1350. uap->im |= UART011_RXIM;
  1351. writew(uap->im, uap->port.membase + UART011_IMSC);
  1352. spin_unlock_irq(&uap->port.lock);
  1353. return 0;
  1354. clk_dis:
  1355. clk_disable_unprepare(uap->clk);
  1356. return retval;
  1357. }
  1358. static void pl011_shutdown_channel(struct uart_amba_port *uap,
  1359. unsigned int lcrh)
  1360. {
  1361. unsigned long val;
  1362. val = readw(uap->port.membase + lcrh);
  1363. val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
  1364. writew(val, uap->port.membase + lcrh);
  1365. }
  1366. static void pl011_shutdown(struct uart_port *port)
  1367. {
  1368. struct uart_amba_port *uap = (struct uart_amba_port *)port;
  1369. unsigned int cr;
  1370. int retval;
  1371. /*
  1372. * disable all interrupts
  1373. */
  1374. spin_lock_irq(&uap->port.lock);
  1375. uap->im = 0;
  1376. writew(uap->im, uap->port.membase + UART011_IMSC);
  1377. writew(0xffff, uap->port.membase + UART011_ICR);
  1378. spin_unlock_irq(&uap->port.lock);
  1379. pl011_dma_shutdown(uap);
  1380. /*
  1381. * Free the interrupt
  1382. */
  1383. free_irq(uap->port.irq, uap);
  1384. /*
  1385. * disable the port
  1386. * disable the port. It should not disable RTS and DTR.
  1387. * Also RTS and DTR state should be preserved to restore
  1388. * it during startup().
  1389. */
  1390. uap->autorts = false;
  1391. cr = readw(uap->port.membase + UART011_CR);
  1392. uap->old_cr = cr;
  1393. cr &= UART011_CR_RTS | UART011_CR_DTR;
  1394. cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
  1395. writew(cr, uap->port.membase + UART011_CR);
  1396. /*
  1397. * disable break condition and fifos
  1398. */
  1399. pl011_shutdown_channel(uap, uap->lcrh_rx);
  1400. if (uap->lcrh_rx != uap->lcrh_tx)
  1401. pl011_shutdown_channel(uap, uap->lcrh_tx);
  1402. /*
  1403. * Shut down the clock producer
  1404. */
  1405. clk_disable_unprepare(uap->clk);
  1406. /* Optionally let pins go into sleep states */
  1407. if (!IS_ERR(uap->pins_sleep)) {
  1408. retval = pinctrl_select_state(uap->pinctrl, uap->pins_sleep);
  1409. if (retval)
  1410. dev_err(port->dev,
  1411. "could not set pins to sleep state\n");
  1412. }
  1413. if (uap->port.dev->platform_data) {
  1414. struct amba_pl011_data *plat;
  1415. plat = uap->port.dev->platform_data;
  1416. if (plat->exit)
  1417. plat->exit();
  1418. }
  1419. }
  1420. static void
  1421. pl011_set_termios(struct uart_port *port, struct ktermios *termios,
  1422. struct ktermios *old)
  1423. {
  1424. struct uart_amba_port *uap = (struct uart_amba_port *)port;
  1425. unsigned int lcr_h, old_cr;
  1426. unsigned long flags;
  1427. unsigned int baud, quot, clkdiv;
  1428. if (uap->vendor->oversampling)
  1429. clkdiv = 8;
  1430. else
  1431. clkdiv = 16;
  1432. /*
  1433. * Ask the core to calculate the divisor for us.
  1434. */
  1435. baud = uart_get_baud_rate(port, termios, old, 0,
  1436. port->uartclk / clkdiv);
  1437. #ifdef CONFIG_DMA_ENGINE
  1438. /*
  1439. * Adjust RX DMA polling rate with baud rate if not specified.
  1440. */
  1441. if (uap->dmarx.auto_poll_rate)
  1442. uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
  1443. #endif
  1444. if (baud > port->uartclk/16)
  1445. quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
  1446. else
  1447. quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
  1448. switch (termios->c_cflag & CSIZE) {
  1449. case CS5:
  1450. lcr_h = UART01x_LCRH_WLEN_5;
  1451. break;
  1452. case CS6:
  1453. lcr_h = UART01x_LCRH_WLEN_6;
  1454. break;
  1455. case CS7:
  1456. lcr_h = UART01x_LCRH_WLEN_7;
  1457. break;
  1458. default: // CS8
  1459. lcr_h = UART01x_LCRH_WLEN_8;
  1460. break;
  1461. }
  1462. if (termios->c_cflag & CSTOPB)
  1463. lcr_h |= UART01x_LCRH_STP2;
  1464. if (termios->c_cflag & PARENB) {
  1465. lcr_h |= UART01x_LCRH_PEN;
  1466. if (!(termios->c_cflag & PARODD))
  1467. lcr_h |= UART01x_LCRH_EPS;
  1468. }
  1469. if (uap->fifosize > 1)
  1470. lcr_h |= UART01x_LCRH_FEN;
  1471. spin_lock_irqsave(&port->lock, flags);
  1472. /*
  1473. * Update the per-port timeout.
  1474. */
  1475. uart_update_timeout(port, termios->c_cflag, baud);
  1476. port->read_status_mask = UART011_DR_OE | 255;
  1477. if (termios->c_iflag & INPCK)
  1478. port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
  1479. if (termios->c_iflag & (BRKINT | PARMRK))
  1480. port->read_status_mask |= UART011_DR_BE;
  1481. /*
  1482. * Characters to ignore
  1483. */
  1484. port->ignore_status_mask = 0;
  1485. if (termios->c_iflag & IGNPAR)
  1486. port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
  1487. if (termios->c_iflag & IGNBRK) {
  1488. port->ignore_status_mask |= UART011_DR_BE;
  1489. /*
  1490. * If we're ignoring parity and break indicators,
  1491. * ignore overruns too (for real raw support).
  1492. */
  1493. if (termios->c_iflag & IGNPAR)
  1494. port->ignore_status_mask |= UART011_DR_OE;
  1495. }
  1496. /*
  1497. * Ignore all characters if CREAD is not set.
  1498. */
  1499. if ((termios->c_cflag & CREAD) == 0)
  1500. port->ignore_status_mask |= UART_DUMMY_DR_RX;
  1501. if (UART_ENABLE_MS(port, termios->c_cflag))
  1502. pl011_enable_ms(port);
  1503. /* first, disable everything */
  1504. old_cr = readw(port->membase + UART011_CR);
  1505. writew(0, port->membase + UART011_CR);
  1506. if (termios->c_cflag & CRTSCTS) {
  1507. if (old_cr & UART011_CR_RTS)
  1508. old_cr |= UART011_CR_RTSEN;
  1509. old_cr |= UART011_CR_CTSEN;
  1510. uap->autorts = true;
  1511. } else {
  1512. old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
  1513. uap->autorts = false;
  1514. }
  1515. if (uap->vendor->oversampling) {
  1516. if (baud > port->uartclk / 16)
  1517. old_cr |= ST_UART011_CR_OVSFACT;
  1518. else
  1519. old_cr &= ~ST_UART011_CR_OVSFACT;
  1520. }
  1521. /*
  1522. * Workaround for the ST Micro oversampling variants to
  1523. * increase the bitrate slightly, by lowering the divisor,
  1524. * to avoid delayed sampling of start bit at high speeds,
  1525. * else we see data corruption.
  1526. */
  1527. if (uap->vendor->oversampling) {
  1528. if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
  1529. quot -= 1;
  1530. else if ((baud > 3250000) && (quot > 2))
  1531. quot -= 2;
  1532. }
  1533. /* Set baud rate */
  1534. writew(quot & 0x3f, port->membase + UART011_FBRD);
  1535. writew(quot >> 6, port->membase + UART011_IBRD);
  1536. /*
  1537. * ----------v----------v----------v----------v-----
  1538. * NOTE: lcrh_tx and lcrh_rx MUST BE WRITTEN AFTER
  1539. * UART011_FBRD & UART011_IBRD.
  1540. * ----------^----------^----------^----------^-----
  1541. */
  1542. writew(lcr_h, port->membase + uap->lcrh_rx);
  1543. if (uap->lcrh_rx != uap->lcrh_tx) {
  1544. int i;
  1545. /*
  1546. * Wait 10 PCLKs before writing LCRH_TX register,
  1547. * to get this delay write read only register 10 times
  1548. */
  1549. for (i = 0; i < 10; ++i)
  1550. writew(0xff, uap->port.membase + UART011_MIS);
  1551. writew(lcr_h, port->membase + uap->lcrh_tx);
  1552. }
  1553. writew(old_cr, port->membase + UART011_CR);
  1554. spin_unlock_irqrestore(&port->lock, flags);
  1555. }
  1556. static const char *pl011_type(struct uart_port *port)
  1557. {
  1558. struct uart_amba_port *uap = (struct uart_amba_port *)port;
  1559. return uap->port.type == PORT_AMBA ? uap->type : NULL;
  1560. }
  1561. /*
  1562. * Release the memory region(s) being used by 'port'
  1563. */
  1564. static void pl011_release_port(struct uart_port *port)
  1565. {
  1566. release_mem_region(port->mapbase, SZ_4K);
  1567. }
  1568. /*
  1569. * Request the memory region(s) being used by 'port'
  1570. */
  1571. static int pl011_request_port(struct uart_port *port)
  1572. {
  1573. return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
  1574. != NULL ? 0 : -EBUSY;
  1575. }
  1576. /*
  1577. * Configure/autoconfigure the port.
  1578. */
  1579. static void pl011_config_port(struct uart_port *port, int flags)
  1580. {
  1581. if (flags & UART_CONFIG_TYPE) {
  1582. port->type = PORT_AMBA;
  1583. pl011_request_port(port);
  1584. }
  1585. }
  1586. /*
  1587. * verify the new serial_struct (for TIOCSSERIAL).
  1588. */
  1589. static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
  1590. {
  1591. int ret = 0;
  1592. if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
  1593. ret = -EINVAL;
  1594. if (ser->irq < 0 || ser->irq >= nr_irqs)
  1595. ret = -EINVAL;
  1596. if (ser->baud_base < 9600)
  1597. ret = -EINVAL;
  1598. return ret;
  1599. }
  1600. static struct uart_ops amba_pl011_pops = {
  1601. .tx_empty = pl011_tx_empty,
  1602. .set_mctrl = pl011_set_mctrl,
  1603. .get_mctrl = pl011_get_mctrl,
  1604. .stop_tx = pl011_stop_tx,
  1605. .start_tx = pl011_start_tx,
  1606. .stop_rx = pl011_stop_rx,
  1607. .enable_ms = pl011_enable_ms,
  1608. .break_ctl = pl011_break_ctl,
  1609. .startup = pl011_startup,
  1610. .shutdown = pl011_shutdown,
  1611. .flush_buffer = pl011_dma_flush_buffer,
  1612. .set_termios = pl011_set_termios,
  1613. .type = pl011_type,
  1614. .release_port = pl011_release_port,
  1615. .request_port = pl011_request_port,
  1616. .config_port = pl011_config_port,
  1617. .verify_port = pl011_verify_port,
  1618. #ifdef CONFIG_CONSOLE_POLL
  1619. .poll_init = pl011_hwinit,
  1620. .poll_get_char = pl011_get_poll_char,
  1621. .poll_put_char = pl011_put_poll_char,
  1622. #endif
  1623. };
  1624. static struct uart_amba_port *amba_ports[UART_NR];
  1625. #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
  1626. static void pl011_console_putchar(struct uart_port *port, int ch)
  1627. {
  1628. struct uart_amba_port *uap = (struct uart_amba_port *)port;
  1629. while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
  1630. barrier();
  1631. writew(ch, uap->port.membase + UART01x_DR);
  1632. }
  1633. static void
  1634. pl011_console_write(struct console *co, const char *s, unsigned int count)
  1635. {
  1636. struct uart_amba_port *uap = amba_ports[co->index];
  1637. unsigned int status, old_cr, new_cr;
  1638. unsigned long flags;
  1639. int locked = 1;
  1640. clk_enable(uap->clk);
  1641. local_irq_save(flags);
  1642. if (uap->port.sysrq)
  1643. locked = 0;
  1644. else if (oops_in_progress)
  1645. locked = spin_trylock(&uap->port.lock);
  1646. else
  1647. spin_lock(&uap->port.lock);
  1648. /*
  1649. * First save the CR then disable the interrupts
  1650. */
  1651. old_cr = readw(uap->port.membase + UART011_CR);
  1652. new_cr = old_cr & ~UART011_CR_CTSEN;
  1653. new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
  1654. writew(new_cr, uap->port.membase + UART011_CR);
  1655. uart_console_write(&uap->port, s, count, pl011_console_putchar);
  1656. /*
  1657. * Finally, wait for transmitter to become empty
  1658. * and restore the TCR
  1659. */
  1660. do {
  1661. status = readw(uap->port.membase + UART01x_FR);
  1662. } while (status & UART01x_FR_BUSY);
  1663. writew(old_cr, uap->port.membase + UART011_CR);
  1664. if (locked)
  1665. spin_unlock(&uap->port.lock);
  1666. local_irq_restore(flags);
  1667. clk_disable(uap->clk);
  1668. }
  1669. static void __init
  1670. pl011_console_get_options(struct uart_amba_port *uap, int *baud,
  1671. int *parity, int *bits)
  1672. {
  1673. if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) {
  1674. unsigned int lcr_h, ibrd, fbrd;
  1675. lcr_h = readw(uap->port.membase + uap->lcrh_tx);
  1676. *parity = 'n';
  1677. if (lcr_h & UART01x_LCRH_PEN) {
  1678. if (lcr_h & UART01x_LCRH_EPS)
  1679. *parity = 'e';
  1680. else
  1681. *parity = 'o';
  1682. }
  1683. if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
  1684. *bits = 7;
  1685. else
  1686. *bits = 8;
  1687. ibrd = readw(uap->port.membase + UART011_IBRD);
  1688. fbrd = readw(uap->port.membase + UART011_FBRD);
  1689. *baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
  1690. if (uap->vendor->oversampling) {
  1691. if (readw(uap->port.membase + UART011_CR)
  1692. & ST_UART011_CR_OVSFACT)
  1693. *baud *= 2;
  1694. }
  1695. }
  1696. }
  1697. static int __init pl011_console_setup(struct console *co, char *options)
  1698. {
  1699. struct uart_amba_port *uap;
  1700. int baud = 38400;
  1701. int bits = 8;
  1702. int parity = 'n';
  1703. int flow = 'n';
  1704. int ret;
  1705. /*
  1706. * Check whether an invalid uart number has been specified, and
  1707. * if so, search for the first available port that does have
  1708. * console support.
  1709. */
  1710. if (co->index >= UART_NR)
  1711. co->index = 0;
  1712. uap = amba_ports[co->index];
  1713. if (!uap)
  1714. return -ENODEV;
  1715. /* Allow pins to be muxed in and configured */
  1716. if (!IS_ERR(uap->pins_default)) {
  1717. ret = pinctrl_select_state(uap->pinctrl, uap->pins_default);
  1718. if (ret)
  1719. dev_err(uap->port.dev,
  1720. "could not set default pins\n");
  1721. }
  1722. ret = clk_prepare(uap->clk);
  1723. if (ret)
  1724. return ret;
  1725. if (uap->port.dev->platform_data) {
  1726. struct amba_pl011_data *plat;
  1727. plat = uap->port.dev->platform_data;
  1728. if (plat->init)
  1729. plat->init();
  1730. }
  1731. uap->port.uartclk = clk_get_rate(uap->clk);
  1732. if (options)
  1733. uart_parse_options(options, &baud, &parity, &bits, &flow);
  1734. else
  1735. pl011_console_get_options(uap, &baud, &parity, &bits);
  1736. return uart_set_options(&uap->port, co, baud, parity, bits, flow);
  1737. }
  1738. static struct uart_driver amba_reg;
  1739. static struct console amba_console = {
  1740. .name = "ttyAMA",
  1741. .write = pl011_console_write,
  1742. .device = uart_console_device,
  1743. .setup = pl011_console_setup,
  1744. .flags = CON_PRINTBUFFER,
  1745. .index = -1,
  1746. .data = &amba_reg,
  1747. };
  1748. #define AMBA_CONSOLE (&amba_console)
  1749. #else
  1750. #define AMBA_CONSOLE NULL
  1751. #endif
  1752. static struct uart_driver amba_reg = {
  1753. .owner = THIS_MODULE,
  1754. .driver_name = "ttyAMA",
  1755. .dev_name = "ttyAMA",
  1756. .major = SERIAL_AMBA_MAJOR,
  1757. .minor = SERIAL_AMBA_MINOR,
  1758. .nr = UART_NR,
  1759. .cons = AMBA_CONSOLE,
  1760. };
  1761. static int pl011_probe_dt_alias(int index, struct device *dev)
  1762. {
  1763. struct device_node *np;
  1764. static bool seen_dev_with_alias = false;
  1765. static bool seen_dev_without_alias = false;
  1766. int ret = index;
  1767. if (!IS_ENABLED(CONFIG_OF))
  1768. return ret;
  1769. np = dev->of_node;
  1770. if (!np)
  1771. return ret;
  1772. ret = of_alias_get_id(np, "serial");
  1773. if (IS_ERR_VALUE(ret)) {
  1774. seen_dev_without_alias = true;
  1775. ret = index;
  1776. } else {
  1777. seen_dev_with_alias = true;
  1778. if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
  1779. dev_warn(dev, "requested serial port %d not available.\n", ret);
  1780. ret = index;
  1781. }
  1782. }
  1783. if (seen_dev_with_alias && seen_dev_without_alias)
  1784. dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
  1785. return ret;
  1786. }
  1787. static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
  1788. {
  1789. struct uart_amba_port *uap;
  1790. struct vendor_data *vendor = id->data;
  1791. void __iomem *base;
  1792. int i, ret;
  1793. for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
  1794. if (amba_ports[i] == NULL)
  1795. break;
  1796. if (i == ARRAY_SIZE(amba_ports)) {
  1797. ret = -EBUSY;
  1798. goto out;
  1799. }
  1800. uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
  1801. GFP_KERNEL);
  1802. if (uap == NULL) {
  1803. ret = -ENOMEM;
  1804. goto out;
  1805. }
  1806. i = pl011_probe_dt_alias(i, &dev->dev);
  1807. base = devm_ioremap(&dev->dev, dev->res.start,
  1808. resource_size(&dev->res));
  1809. if (!base) {
  1810. ret = -ENOMEM;
  1811. goto out;
  1812. }
  1813. uap->pinctrl = devm_pinctrl_get(&dev->dev);
  1814. if (IS_ERR(uap->pinctrl)) {
  1815. ret = PTR_ERR(uap->pinctrl);
  1816. goto out;
  1817. }
  1818. uap->pins_default = pinctrl_lookup_state(uap->pinctrl,
  1819. PINCTRL_STATE_DEFAULT);
  1820. if (IS_ERR(uap->pins_default))
  1821. dev_err(&dev->dev, "could not get default pinstate\n");
  1822. uap->pins_sleep = pinctrl_lookup_state(uap->pinctrl,
  1823. PINCTRL_STATE_SLEEP);
  1824. if (IS_ERR(uap->pins_sleep))
  1825. dev_dbg(&dev->dev, "could not get sleep pinstate\n");
  1826. uap->clk = devm_clk_get(&dev->dev, NULL);
  1827. if (IS_ERR(uap->clk)) {
  1828. ret = PTR_ERR(uap->clk);
  1829. goto out;
  1830. }
  1831. uap->vendor = vendor;
  1832. uap->lcrh_rx = vendor->lcrh_rx;
  1833. uap->lcrh_tx = vendor->lcrh_tx;
  1834. uap->old_cr = 0;
  1835. uap->fifosize = vendor->get_fifosize(dev);
  1836. uap->port.dev = &dev->dev;
  1837. uap->port.mapbase = dev->res.start;
  1838. uap->port.membase = base;
  1839. uap->port.iotype = UPIO_MEM;
  1840. uap->port.irq = dev->irq[0];
  1841. uap->port.fifosize = uap->fifosize;
  1842. uap->port.ops = &amba_pl011_pops;
  1843. uap->port.flags = UPF_BOOT_AUTOCONF;
  1844. uap->port.line = i;
  1845. pl011_dma_probe(&dev->dev, uap);
  1846. /* Ensure interrupts from this UART are masked and cleared */
  1847. writew(0, uap->port.membase + UART011_IMSC);
  1848. writew(0xffff, uap->port.membase + UART011_ICR);
  1849. snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
  1850. amba_ports[i] = uap;
  1851. amba_set_drvdata(dev, uap);
  1852. ret = uart_add_one_port(&amba_reg, &uap->port);
  1853. if (ret) {
  1854. amba_set_drvdata(dev, NULL);
  1855. amba_ports[i] = NULL;
  1856. pl011_dma_remove(uap);
  1857. }
  1858. out:
  1859. return ret;
  1860. }
  1861. static int pl011_remove(struct amba_device *dev)
  1862. {
  1863. struct uart_amba_port *uap = amba_get_drvdata(dev);
  1864. int i;
  1865. amba_set_drvdata(dev, NULL);
  1866. uart_remove_one_port(&amba_reg, &uap->port);
  1867. for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
  1868. if (amba_ports[i] == uap)
  1869. amba_ports[i] = NULL;
  1870. pl011_dma_remove(uap);
  1871. return 0;
  1872. }
  1873. #ifdef CONFIG_PM
  1874. static int pl011_suspend(struct amba_device *dev, pm_message_t state)
  1875. {
  1876. struct uart_amba_port *uap = amba_get_drvdata(dev);
  1877. if (!uap)
  1878. return -EINVAL;
  1879. return uart_suspend_port(&amba_reg, &uap->port);
  1880. }
  1881. static int pl011_resume(struct amba_device *dev)
  1882. {
  1883. struct uart_amba_port *uap = amba_get_drvdata(dev);
  1884. if (!uap)
  1885. return -EINVAL;
  1886. return uart_resume_port(&amba_reg, &uap->port);
  1887. }
  1888. #endif
  1889. static struct amba_id pl011_ids[] = {
  1890. {
  1891. .id = 0x00041011,
  1892. .mask = 0x000fffff,
  1893. .data = &vendor_arm,
  1894. },
  1895. {
  1896. .id = 0x00380802,
  1897. .mask = 0x00ffffff,
  1898. .data = &vendor_st,
  1899. },
  1900. { 0, 0 },
  1901. };
  1902. MODULE_DEVICE_TABLE(amba, pl011_ids);
  1903. static struct amba_driver pl011_driver = {
  1904. .drv = {
  1905. .name = "uart-pl011",
  1906. },
  1907. .id_table = pl011_ids,
  1908. .probe = pl011_probe,
  1909. .remove = pl011_remove,
  1910. #ifdef CONFIG_PM
  1911. .suspend = pl011_suspend,
  1912. .resume = pl011_resume,
  1913. #endif
  1914. };
  1915. static int __init pl011_init(void)
  1916. {
  1917. int ret;
  1918. printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
  1919. ret = uart_register_driver(&amba_reg);
  1920. if (ret == 0) {
  1921. ret = amba_driver_register(&pl011_driver);
  1922. if (ret)
  1923. uart_unregister_driver(&amba_reg);
  1924. }
  1925. return ret;
  1926. }
  1927. static void __exit pl011_exit(void)
  1928. {
  1929. amba_driver_unregister(&pl011_driver);
  1930. uart_unregister_driver(&amba_reg);
  1931. }
  1932. /*
  1933. * While this can be a module, if builtin it's most likely the console
  1934. * So let's leave module_exit but move module_init to an earlier place
  1935. */
  1936. arch_initcall(pl011_init);
  1937. module_exit(pl011_exit);
  1938. MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
  1939. MODULE_DESCRIPTION("ARM AMBA serial port driver");
  1940. MODULE_LICENSE("GPL");