skbuff.h 68 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462
  1. /*
  2. * Definitions for the 'struct sk_buff' memory handlers.
  3. *
  4. * Authors:
  5. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  6. * Florian La Roche, <rzsfl@rz.uni-sb.de>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License
  10. * as published by the Free Software Foundation; either version
  11. * 2 of the License, or (at your option) any later version.
  12. */
  13. #ifndef _LINUX_SKBUFF_H
  14. #define _LINUX_SKBUFF_H
  15. #include <linux/kernel.h>
  16. #include <linux/kmemcheck.h>
  17. #include <linux/compiler.h>
  18. #include <linux/time.h>
  19. #include <linux/cache.h>
  20. #include <linux/atomic.h>
  21. #include <asm/types.h>
  22. #include <linux/spinlock.h>
  23. #include <linux/net.h>
  24. #include <linux/textsearch.h>
  25. #include <net/checksum.h>
  26. #include <linux/rcupdate.h>
  27. #include <linux/dmaengine.h>
  28. #include <linux/hrtimer.h>
  29. #include <linux/dma-mapping.h>
  30. /* Don't change this without changing skb_csum_unnecessary! */
  31. #define CHECKSUM_NONE 0
  32. #define CHECKSUM_UNNECESSARY 1
  33. #define CHECKSUM_COMPLETE 2
  34. #define CHECKSUM_PARTIAL 3
  35. #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
  36. ~(SMP_CACHE_BYTES - 1))
  37. #define SKB_WITH_OVERHEAD(X) \
  38. ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  39. #define SKB_MAX_ORDER(X, ORDER) \
  40. SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
  41. #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
  42. #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
  43. /* A. Checksumming of received packets by device.
  44. *
  45. * NONE: device failed to checksum this packet.
  46. * skb->csum is undefined.
  47. *
  48. * UNNECESSARY: device parsed packet and wouldbe verified checksum.
  49. * skb->csum is undefined.
  50. * It is bad option, but, unfortunately, many of vendors do this.
  51. * Apparently with secret goal to sell you new device, when you
  52. * will add new protocol to your host. F.e. IPv6. 8)
  53. *
  54. * COMPLETE: the most generic way. Device supplied checksum of _all_
  55. * the packet as seen by netif_rx in skb->csum.
  56. * NOTE: Even if device supports only some protocols, but
  57. * is able to produce some skb->csum, it MUST use COMPLETE,
  58. * not UNNECESSARY.
  59. *
  60. * PARTIAL: identical to the case for output below. This may occur
  61. * on a packet received directly from another Linux OS, e.g.,
  62. * a virtualised Linux kernel on the same host. The packet can
  63. * be treated in the same way as UNNECESSARY except that on
  64. * output (i.e., forwarding) the checksum must be filled in
  65. * by the OS or the hardware.
  66. *
  67. * B. Checksumming on output.
  68. *
  69. * NONE: skb is checksummed by protocol or csum is not required.
  70. *
  71. * PARTIAL: device is required to csum packet as seen by hard_start_xmit
  72. * from skb->csum_start to the end and to record the checksum
  73. * at skb->csum_start + skb->csum_offset.
  74. *
  75. * Device must show its capabilities in dev->features, set
  76. * at device setup time.
  77. * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
  78. * everything.
  79. * NETIF_F_NO_CSUM - loopback or reliable single hop media.
  80. * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
  81. * TCP/UDP over IPv4. Sigh. Vendors like this
  82. * way by an unknown reason. Though, see comment above
  83. * about CHECKSUM_UNNECESSARY. 8)
  84. * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
  85. *
  86. * Any questions? No questions, good. --ANK
  87. */
  88. struct net_device;
  89. struct scatterlist;
  90. struct pipe_inode_info;
  91. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  92. struct nf_conntrack {
  93. atomic_t use;
  94. };
  95. #endif
  96. #ifdef CONFIG_BRIDGE_NETFILTER
  97. struct nf_bridge_info {
  98. atomic_t use;
  99. struct net_device *physindev;
  100. struct net_device *physoutdev;
  101. unsigned int mask;
  102. unsigned long data[32 / sizeof(unsigned long)];
  103. };
  104. #endif
  105. struct sk_buff_head {
  106. /* These two members must be first. */
  107. struct sk_buff *next;
  108. struct sk_buff *prev;
  109. __u32 qlen;
  110. spinlock_t lock;
  111. };
  112. struct sk_buff;
  113. /* To allow 64K frame to be packed as single skb without frag_list. Since
  114. * GRO uses frags we allocate at least 16 regardless of page size.
  115. */
  116. #if (65536/PAGE_SIZE + 2) < 16
  117. #define MAX_SKB_FRAGS 16UL
  118. #else
  119. #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
  120. #endif
  121. typedef struct skb_frag_struct skb_frag_t;
  122. struct skb_frag_struct {
  123. struct page *page;
  124. #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
  125. __u32 page_offset;
  126. __u32 size;
  127. #else
  128. __u16 page_offset;
  129. __u16 size;
  130. #endif
  131. };
  132. #define HAVE_HW_TIME_STAMP
  133. /**
  134. * struct skb_shared_hwtstamps - hardware time stamps
  135. * @hwtstamp: hardware time stamp transformed into duration
  136. * since arbitrary point in time
  137. * @syststamp: hwtstamp transformed to system time base
  138. *
  139. * Software time stamps generated by ktime_get_real() are stored in
  140. * skb->tstamp. The relation between the different kinds of time
  141. * stamps is as follows:
  142. *
  143. * syststamp and tstamp can be compared against each other in
  144. * arbitrary combinations. The accuracy of a
  145. * syststamp/tstamp/"syststamp from other device" comparison is
  146. * limited by the accuracy of the transformation into system time
  147. * base. This depends on the device driver and its underlying
  148. * hardware.
  149. *
  150. * hwtstamps can only be compared against other hwtstamps from
  151. * the same device.
  152. *
  153. * This structure is attached to packets as part of the
  154. * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
  155. */
  156. struct skb_shared_hwtstamps {
  157. ktime_t hwtstamp;
  158. ktime_t syststamp;
  159. };
  160. /* Definitions for tx_flags in struct skb_shared_info */
  161. enum {
  162. /* generate hardware time stamp */
  163. SKBTX_HW_TSTAMP = 1 << 0,
  164. /* generate software time stamp */
  165. SKBTX_SW_TSTAMP = 1 << 1,
  166. /* device driver is going to provide hardware time stamp */
  167. SKBTX_IN_PROGRESS = 1 << 2,
  168. /* ensure the originating sk reference is available on driver level */
  169. SKBTX_DRV_NEEDS_SK_REF = 1 << 3,
  170. /* device driver supports TX zero-copy buffers */
  171. SKBTX_DEV_ZEROCOPY = 1 << 4,
  172. };
  173. /*
  174. * The callback notifies userspace to release buffers when skb DMA is done in
  175. * lower device, the skb last reference should be 0 when calling this.
  176. * The desc is used to track userspace buffer index.
  177. */
  178. struct ubuf_info {
  179. void (*callback)(void *);
  180. void *arg;
  181. unsigned long desc;
  182. };
  183. /* This data is invariant across clones and lives at
  184. * the end of the header data, ie. at skb->end.
  185. */
  186. struct skb_shared_info {
  187. unsigned short nr_frags;
  188. unsigned short gso_size;
  189. /* Warning: this field is not always filled in (UFO)! */
  190. unsigned short gso_segs;
  191. unsigned short gso_type;
  192. __be32 ip6_frag_id;
  193. __u8 tx_flags;
  194. struct sk_buff *frag_list;
  195. struct skb_shared_hwtstamps hwtstamps;
  196. /*
  197. * Warning : all fields before dataref are cleared in __alloc_skb()
  198. */
  199. atomic_t dataref;
  200. /* Intermediate layers must ensure that destructor_arg
  201. * remains valid until skb destructor */
  202. void * destructor_arg;
  203. /* must be last field, see pskb_expand_head() */
  204. skb_frag_t frags[MAX_SKB_FRAGS];
  205. };
  206. /* We divide dataref into two halves. The higher 16 bits hold references
  207. * to the payload part of skb->data. The lower 16 bits hold references to
  208. * the entire skb->data. A clone of a headerless skb holds the length of
  209. * the header in skb->hdr_len.
  210. *
  211. * All users must obey the rule that the skb->data reference count must be
  212. * greater than or equal to the payload reference count.
  213. *
  214. * Holding a reference to the payload part means that the user does not
  215. * care about modifications to the header part of skb->data.
  216. */
  217. #define SKB_DATAREF_SHIFT 16
  218. #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
  219. enum {
  220. SKB_FCLONE_UNAVAILABLE,
  221. SKB_FCLONE_ORIG,
  222. SKB_FCLONE_CLONE,
  223. };
  224. enum {
  225. SKB_GSO_TCPV4 = 1 << 0,
  226. SKB_GSO_UDP = 1 << 1,
  227. /* This indicates the skb is from an untrusted source. */
  228. SKB_GSO_DODGY = 1 << 2,
  229. /* This indicates the tcp segment has CWR set. */
  230. SKB_GSO_TCP_ECN = 1 << 3,
  231. SKB_GSO_TCPV6 = 1 << 4,
  232. SKB_GSO_FCOE = 1 << 5,
  233. };
  234. #if BITS_PER_LONG > 32
  235. #define NET_SKBUFF_DATA_USES_OFFSET 1
  236. #endif
  237. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  238. typedef unsigned int sk_buff_data_t;
  239. #else
  240. typedef unsigned char *sk_buff_data_t;
  241. #endif
  242. #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
  243. defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
  244. #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
  245. #endif
  246. /**
  247. * struct sk_buff - socket buffer
  248. * @next: Next buffer in list
  249. * @prev: Previous buffer in list
  250. * @tstamp: Time we arrived
  251. * @sk: Socket we are owned by
  252. * @dev: Device we arrived on/are leaving by
  253. * @cb: Control buffer. Free for use by every layer. Put private vars here
  254. * @_skb_refdst: destination entry (with norefcount bit)
  255. * @sp: the security path, used for xfrm
  256. * @len: Length of actual data
  257. * @data_len: Data length
  258. * @mac_len: Length of link layer header
  259. * @hdr_len: writable header length of cloned skb
  260. * @csum: Checksum (must include start/offset pair)
  261. * @csum_start: Offset from skb->head where checksumming should start
  262. * @csum_offset: Offset from csum_start where checksum should be stored
  263. * @priority: Packet queueing priority
  264. * @local_df: allow local fragmentation
  265. * @cloned: Head may be cloned (check refcnt to be sure)
  266. * @ip_summed: Driver fed us an IP checksum
  267. * @nohdr: Payload reference only, must not modify header
  268. * @nfctinfo: Relationship of this skb to the connection
  269. * @pkt_type: Packet class
  270. * @fclone: skbuff clone status
  271. * @ipvs_property: skbuff is owned by ipvs
  272. * @peeked: this packet has been seen already, so stats have been
  273. * done for it, don't do them again
  274. * @nf_trace: netfilter packet trace flag
  275. * @protocol: Packet protocol from driver
  276. * @destructor: Destruct function
  277. * @nfct: Associated connection, if any
  278. * @nfct_reasm: netfilter conntrack re-assembly pointer
  279. * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
  280. * @skb_iif: ifindex of device we arrived on
  281. * @tc_index: Traffic control index
  282. * @tc_verd: traffic control verdict
  283. * @rxhash: the packet hash computed on receive
  284. * @queue_mapping: Queue mapping for multiqueue devices
  285. * @ndisc_nodetype: router type (from link layer)
  286. * @ooo_okay: allow the mapping of a socket to a queue to be changed
  287. * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
  288. * ports.
  289. * @dma_cookie: a cookie to one of several possible DMA operations
  290. * done by skb DMA functions
  291. * @secmark: security marking
  292. * @mark: Generic packet mark
  293. * @dropcount: total number of sk_receive_queue overflows
  294. * @vlan_tci: vlan tag control information
  295. * @transport_header: Transport layer header
  296. * @network_header: Network layer header
  297. * @mac_header: Link layer header
  298. * @tail: Tail pointer
  299. * @end: End pointer
  300. * @head: Head of buffer
  301. * @data: Data head pointer
  302. * @truesize: Buffer size
  303. * @users: User count - see {datagram,tcp}.c
  304. */
  305. struct sk_buff {
  306. /* These two members must be first. */
  307. struct sk_buff *next;
  308. struct sk_buff *prev;
  309. ktime_t tstamp;
  310. struct sock *sk;
  311. struct net_device *dev;
  312. /*
  313. * This is the control buffer. It is free to use for every
  314. * layer. Please put your private variables there. If you
  315. * want to keep them across layers you have to do a skb_clone()
  316. * first. This is owned by whoever has the skb queued ATM.
  317. */
  318. char cb[48] __aligned(8);
  319. unsigned long _skb_refdst;
  320. #ifdef CONFIG_XFRM
  321. struct sec_path *sp;
  322. #endif
  323. unsigned int len,
  324. data_len;
  325. __u16 mac_len,
  326. hdr_len;
  327. union {
  328. __wsum csum;
  329. struct {
  330. __u16 csum_start;
  331. __u16 csum_offset;
  332. };
  333. };
  334. __u32 priority;
  335. kmemcheck_bitfield_begin(flags1);
  336. __u8 local_df:1,
  337. cloned:1,
  338. ip_summed:2,
  339. nohdr:1,
  340. nfctinfo:3;
  341. __u8 pkt_type:3,
  342. fclone:2,
  343. ipvs_property:1,
  344. peeked:1,
  345. nf_trace:1;
  346. kmemcheck_bitfield_end(flags1);
  347. __be16 protocol;
  348. void (*destructor)(struct sk_buff *skb);
  349. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  350. struct nf_conntrack *nfct;
  351. #endif
  352. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  353. struct sk_buff *nfct_reasm;
  354. #endif
  355. #ifdef CONFIG_BRIDGE_NETFILTER
  356. struct nf_bridge_info *nf_bridge;
  357. #endif
  358. int skb_iif;
  359. #ifdef CONFIG_NET_SCHED
  360. __u16 tc_index; /* traffic control index */
  361. #ifdef CONFIG_NET_CLS_ACT
  362. __u16 tc_verd; /* traffic control verdict */
  363. #endif
  364. #endif
  365. __u32 rxhash;
  366. __u16 queue_mapping;
  367. kmemcheck_bitfield_begin(flags2);
  368. #ifdef CONFIG_IPV6_NDISC_NODETYPE
  369. __u8 ndisc_nodetype:2;
  370. #endif
  371. __u8 ooo_okay:1;
  372. __u8 l4_rxhash:1;
  373. kmemcheck_bitfield_end(flags2);
  374. /* 0/13 bit hole */
  375. #ifdef CONFIG_NET_DMA
  376. dma_cookie_t dma_cookie;
  377. #endif
  378. #ifdef CONFIG_NETWORK_SECMARK
  379. __u32 secmark;
  380. #endif
  381. union {
  382. __u32 mark;
  383. __u32 dropcount;
  384. };
  385. __u16 vlan_tci;
  386. sk_buff_data_t transport_header;
  387. sk_buff_data_t network_header;
  388. sk_buff_data_t mac_header;
  389. /* These elements must be at the end, see alloc_skb() for details. */
  390. sk_buff_data_t tail;
  391. sk_buff_data_t end;
  392. unsigned char *head,
  393. *data;
  394. unsigned int truesize;
  395. atomic_t users;
  396. };
  397. #ifdef __KERNEL__
  398. /*
  399. * Handling routines are only of interest to the kernel
  400. */
  401. #include <linux/slab.h>
  402. #include <asm/system.h>
  403. /*
  404. * skb might have a dst pointer attached, refcounted or not.
  405. * _skb_refdst low order bit is set if refcount was _not_ taken
  406. */
  407. #define SKB_DST_NOREF 1UL
  408. #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
  409. /**
  410. * skb_dst - returns skb dst_entry
  411. * @skb: buffer
  412. *
  413. * Returns skb dst_entry, regardless of reference taken or not.
  414. */
  415. static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
  416. {
  417. /* If refdst was not refcounted, check we still are in a
  418. * rcu_read_lock section
  419. */
  420. WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
  421. !rcu_read_lock_held() &&
  422. !rcu_read_lock_bh_held());
  423. return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
  424. }
  425. /**
  426. * skb_dst_set - sets skb dst
  427. * @skb: buffer
  428. * @dst: dst entry
  429. *
  430. * Sets skb dst, assuming a reference was taken on dst and should
  431. * be released by skb_dst_drop()
  432. */
  433. static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
  434. {
  435. skb->_skb_refdst = (unsigned long)dst;
  436. }
  437. extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
  438. /**
  439. * skb_dst_is_noref - Test if skb dst isn't refcounted
  440. * @skb: buffer
  441. */
  442. static inline bool skb_dst_is_noref(const struct sk_buff *skb)
  443. {
  444. return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
  445. }
  446. static inline struct rtable *skb_rtable(const struct sk_buff *skb)
  447. {
  448. return (struct rtable *)skb_dst(skb);
  449. }
  450. extern void kfree_skb(struct sk_buff *skb);
  451. extern void consume_skb(struct sk_buff *skb);
  452. extern void __kfree_skb(struct sk_buff *skb);
  453. extern struct sk_buff *__alloc_skb(unsigned int size,
  454. gfp_t priority, int fclone, int node);
  455. static inline struct sk_buff *alloc_skb(unsigned int size,
  456. gfp_t priority)
  457. {
  458. return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
  459. }
  460. static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
  461. gfp_t priority)
  462. {
  463. return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
  464. }
  465. extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
  466. extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
  467. extern struct sk_buff *skb_clone(struct sk_buff *skb,
  468. gfp_t priority);
  469. extern struct sk_buff *skb_copy(const struct sk_buff *skb,
  470. gfp_t priority);
  471. extern struct sk_buff *pskb_copy(struct sk_buff *skb,
  472. gfp_t gfp_mask);
  473. extern int pskb_expand_head(struct sk_buff *skb,
  474. int nhead, int ntail,
  475. gfp_t gfp_mask);
  476. extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
  477. unsigned int headroom);
  478. extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
  479. int newheadroom, int newtailroom,
  480. gfp_t priority);
  481. extern int skb_to_sgvec(struct sk_buff *skb,
  482. struct scatterlist *sg, int offset,
  483. int len);
  484. extern int skb_cow_data(struct sk_buff *skb, int tailbits,
  485. struct sk_buff **trailer);
  486. extern int skb_pad(struct sk_buff *skb, int pad);
  487. #define dev_kfree_skb(a) consume_skb(a)
  488. extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
  489. int getfrag(void *from, char *to, int offset,
  490. int len,int odd, struct sk_buff *skb),
  491. void *from, int length);
  492. struct skb_seq_state {
  493. __u32 lower_offset;
  494. __u32 upper_offset;
  495. __u32 frag_idx;
  496. __u32 stepped_offset;
  497. struct sk_buff *root_skb;
  498. struct sk_buff *cur_skb;
  499. __u8 *frag_data;
  500. };
  501. extern void skb_prepare_seq_read(struct sk_buff *skb,
  502. unsigned int from, unsigned int to,
  503. struct skb_seq_state *st);
  504. extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
  505. struct skb_seq_state *st);
  506. extern void skb_abort_seq_read(struct skb_seq_state *st);
  507. extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
  508. unsigned int to, struct ts_config *config,
  509. struct ts_state *state);
  510. extern void __skb_get_rxhash(struct sk_buff *skb);
  511. static inline __u32 skb_get_rxhash(struct sk_buff *skb)
  512. {
  513. if (!skb->rxhash)
  514. __skb_get_rxhash(skb);
  515. return skb->rxhash;
  516. }
  517. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  518. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  519. {
  520. return skb->head + skb->end;
  521. }
  522. #else
  523. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  524. {
  525. return skb->end;
  526. }
  527. #endif
  528. /* Internal */
  529. #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
  530. static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
  531. {
  532. return &skb_shinfo(skb)->hwtstamps;
  533. }
  534. /**
  535. * skb_queue_empty - check if a queue is empty
  536. * @list: queue head
  537. *
  538. * Returns true if the queue is empty, false otherwise.
  539. */
  540. static inline int skb_queue_empty(const struct sk_buff_head *list)
  541. {
  542. return list->next == (struct sk_buff *)list;
  543. }
  544. /**
  545. * skb_queue_is_last - check if skb is the last entry in the queue
  546. * @list: queue head
  547. * @skb: buffer
  548. *
  549. * Returns true if @skb is the last buffer on the list.
  550. */
  551. static inline bool skb_queue_is_last(const struct sk_buff_head *list,
  552. const struct sk_buff *skb)
  553. {
  554. return skb->next == (struct sk_buff *)list;
  555. }
  556. /**
  557. * skb_queue_is_first - check if skb is the first entry in the queue
  558. * @list: queue head
  559. * @skb: buffer
  560. *
  561. * Returns true if @skb is the first buffer on the list.
  562. */
  563. static inline bool skb_queue_is_first(const struct sk_buff_head *list,
  564. const struct sk_buff *skb)
  565. {
  566. return skb->prev == (struct sk_buff *)list;
  567. }
  568. /**
  569. * skb_queue_next - return the next packet in the queue
  570. * @list: queue head
  571. * @skb: current buffer
  572. *
  573. * Return the next packet in @list after @skb. It is only valid to
  574. * call this if skb_queue_is_last() evaluates to false.
  575. */
  576. static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
  577. const struct sk_buff *skb)
  578. {
  579. /* This BUG_ON may seem severe, but if we just return then we
  580. * are going to dereference garbage.
  581. */
  582. BUG_ON(skb_queue_is_last(list, skb));
  583. return skb->next;
  584. }
  585. /**
  586. * skb_queue_prev - return the prev packet in the queue
  587. * @list: queue head
  588. * @skb: current buffer
  589. *
  590. * Return the prev packet in @list before @skb. It is only valid to
  591. * call this if skb_queue_is_first() evaluates to false.
  592. */
  593. static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
  594. const struct sk_buff *skb)
  595. {
  596. /* This BUG_ON may seem severe, but if we just return then we
  597. * are going to dereference garbage.
  598. */
  599. BUG_ON(skb_queue_is_first(list, skb));
  600. return skb->prev;
  601. }
  602. /**
  603. * skb_get - reference buffer
  604. * @skb: buffer to reference
  605. *
  606. * Makes another reference to a socket buffer and returns a pointer
  607. * to the buffer.
  608. */
  609. static inline struct sk_buff *skb_get(struct sk_buff *skb)
  610. {
  611. atomic_inc(&skb->users);
  612. return skb;
  613. }
  614. /*
  615. * If users == 1, we are the only owner and are can avoid redundant
  616. * atomic change.
  617. */
  618. /**
  619. * skb_cloned - is the buffer a clone
  620. * @skb: buffer to check
  621. *
  622. * Returns true if the buffer was generated with skb_clone() and is
  623. * one of multiple shared copies of the buffer. Cloned buffers are
  624. * shared data so must not be written to under normal circumstances.
  625. */
  626. static inline int skb_cloned(const struct sk_buff *skb)
  627. {
  628. return skb->cloned &&
  629. (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
  630. }
  631. /**
  632. * skb_header_cloned - is the header a clone
  633. * @skb: buffer to check
  634. *
  635. * Returns true if modifying the header part of the buffer requires
  636. * the data to be copied.
  637. */
  638. static inline int skb_header_cloned(const struct sk_buff *skb)
  639. {
  640. int dataref;
  641. if (!skb->cloned)
  642. return 0;
  643. dataref = atomic_read(&skb_shinfo(skb)->dataref);
  644. dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
  645. return dataref != 1;
  646. }
  647. /**
  648. * skb_header_release - release reference to header
  649. * @skb: buffer to operate on
  650. *
  651. * Drop a reference to the header part of the buffer. This is done
  652. * by acquiring a payload reference. You must not read from the header
  653. * part of skb->data after this.
  654. */
  655. static inline void skb_header_release(struct sk_buff *skb)
  656. {
  657. BUG_ON(skb->nohdr);
  658. skb->nohdr = 1;
  659. atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
  660. }
  661. /**
  662. * skb_shared - is the buffer shared
  663. * @skb: buffer to check
  664. *
  665. * Returns true if more than one person has a reference to this
  666. * buffer.
  667. */
  668. static inline int skb_shared(const struct sk_buff *skb)
  669. {
  670. return atomic_read(&skb->users) != 1;
  671. }
  672. /**
  673. * skb_share_check - check if buffer is shared and if so clone it
  674. * @skb: buffer to check
  675. * @pri: priority for memory allocation
  676. *
  677. * If the buffer is shared the buffer is cloned and the old copy
  678. * drops a reference. A new clone with a single reference is returned.
  679. * If the buffer is not shared the original buffer is returned. When
  680. * being called from interrupt status or with spinlocks held pri must
  681. * be GFP_ATOMIC.
  682. *
  683. * NULL is returned on a memory allocation failure.
  684. */
  685. static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
  686. gfp_t pri)
  687. {
  688. might_sleep_if(pri & __GFP_WAIT);
  689. if (skb_shared(skb)) {
  690. struct sk_buff *nskb = skb_clone(skb, pri);
  691. kfree_skb(skb);
  692. skb = nskb;
  693. }
  694. return skb;
  695. }
  696. /*
  697. * Copy shared buffers into a new sk_buff. We effectively do COW on
  698. * packets to handle cases where we have a local reader and forward
  699. * and a couple of other messy ones. The normal one is tcpdumping
  700. * a packet thats being forwarded.
  701. */
  702. /**
  703. * skb_unshare - make a copy of a shared buffer
  704. * @skb: buffer to check
  705. * @pri: priority for memory allocation
  706. *
  707. * If the socket buffer is a clone then this function creates a new
  708. * copy of the data, drops a reference count on the old copy and returns
  709. * the new copy with the reference count at 1. If the buffer is not a clone
  710. * the original buffer is returned. When called with a spinlock held or
  711. * from interrupt state @pri must be %GFP_ATOMIC
  712. *
  713. * %NULL is returned on a memory allocation failure.
  714. */
  715. static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
  716. gfp_t pri)
  717. {
  718. might_sleep_if(pri & __GFP_WAIT);
  719. if (skb_cloned(skb)) {
  720. struct sk_buff *nskb = skb_copy(skb, pri);
  721. kfree_skb(skb); /* Free our shared copy */
  722. skb = nskb;
  723. }
  724. return skb;
  725. }
  726. /**
  727. * skb_peek - peek at the head of an &sk_buff_head
  728. * @list_: list to peek at
  729. *
  730. * Peek an &sk_buff. Unlike most other operations you _MUST_
  731. * be careful with this one. A peek leaves the buffer on the
  732. * list and someone else may run off with it. You must hold
  733. * the appropriate locks or have a private queue to do this.
  734. *
  735. * Returns %NULL for an empty list or a pointer to the head element.
  736. * The reference count is not incremented and the reference is therefore
  737. * volatile. Use with caution.
  738. */
  739. static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
  740. {
  741. struct sk_buff *list = ((struct sk_buff *)list_)->next;
  742. if (list == (struct sk_buff *)list_)
  743. list = NULL;
  744. return list;
  745. }
  746. /**
  747. * skb_peek_tail - peek at the tail of an &sk_buff_head
  748. * @list_: list to peek at
  749. *
  750. * Peek an &sk_buff. Unlike most other operations you _MUST_
  751. * be careful with this one. A peek leaves the buffer on the
  752. * list and someone else may run off with it. You must hold
  753. * the appropriate locks or have a private queue to do this.
  754. *
  755. * Returns %NULL for an empty list or a pointer to the tail element.
  756. * The reference count is not incremented and the reference is therefore
  757. * volatile. Use with caution.
  758. */
  759. static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
  760. {
  761. struct sk_buff *list = ((struct sk_buff *)list_)->prev;
  762. if (list == (struct sk_buff *)list_)
  763. list = NULL;
  764. return list;
  765. }
  766. /**
  767. * skb_queue_len - get queue length
  768. * @list_: list to measure
  769. *
  770. * Return the length of an &sk_buff queue.
  771. */
  772. static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
  773. {
  774. return list_->qlen;
  775. }
  776. /**
  777. * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
  778. * @list: queue to initialize
  779. *
  780. * This initializes only the list and queue length aspects of
  781. * an sk_buff_head object. This allows to initialize the list
  782. * aspects of an sk_buff_head without reinitializing things like
  783. * the spinlock. It can also be used for on-stack sk_buff_head
  784. * objects where the spinlock is known to not be used.
  785. */
  786. static inline void __skb_queue_head_init(struct sk_buff_head *list)
  787. {
  788. list->prev = list->next = (struct sk_buff *)list;
  789. list->qlen = 0;
  790. }
  791. /*
  792. * This function creates a split out lock class for each invocation;
  793. * this is needed for now since a whole lot of users of the skb-queue
  794. * infrastructure in drivers have different locking usage (in hardirq)
  795. * than the networking core (in softirq only). In the long run either the
  796. * network layer or drivers should need annotation to consolidate the
  797. * main types of usage into 3 classes.
  798. */
  799. static inline void skb_queue_head_init(struct sk_buff_head *list)
  800. {
  801. spin_lock_init(&list->lock);
  802. __skb_queue_head_init(list);
  803. }
  804. static inline void skb_queue_head_init_class(struct sk_buff_head *list,
  805. struct lock_class_key *class)
  806. {
  807. skb_queue_head_init(list);
  808. lockdep_set_class(&list->lock, class);
  809. }
  810. /*
  811. * Insert an sk_buff on a list.
  812. *
  813. * The "__skb_xxxx()" functions are the non-atomic ones that
  814. * can only be called with interrupts disabled.
  815. */
  816. extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
  817. static inline void __skb_insert(struct sk_buff *newsk,
  818. struct sk_buff *prev, struct sk_buff *next,
  819. struct sk_buff_head *list)
  820. {
  821. newsk->next = next;
  822. newsk->prev = prev;
  823. next->prev = prev->next = newsk;
  824. list->qlen++;
  825. }
  826. static inline void __skb_queue_splice(const struct sk_buff_head *list,
  827. struct sk_buff *prev,
  828. struct sk_buff *next)
  829. {
  830. struct sk_buff *first = list->next;
  831. struct sk_buff *last = list->prev;
  832. first->prev = prev;
  833. prev->next = first;
  834. last->next = next;
  835. next->prev = last;
  836. }
  837. /**
  838. * skb_queue_splice - join two skb lists, this is designed for stacks
  839. * @list: the new list to add
  840. * @head: the place to add it in the first list
  841. */
  842. static inline void skb_queue_splice(const struct sk_buff_head *list,
  843. struct sk_buff_head *head)
  844. {
  845. if (!skb_queue_empty(list)) {
  846. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  847. head->qlen += list->qlen;
  848. }
  849. }
  850. /**
  851. * skb_queue_splice - join two skb lists and reinitialise the emptied list
  852. * @list: the new list to add
  853. * @head: the place to add it in the first list
  854. *
  855. * The list at @list is reinitialised
  856. */
  857. static inline void skb_queue_splice_init(struct sk_buff_head *list,
  858. struct sk_buff_head *head)
  859. {
  860. if (!skb_queue_empty(list)) {
  861. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  862. head->qlen += list->qlen;
  863. __skb_queue_head_init(list);
  864. }
  865. }
  866. /**
  867. * skb_queue_splice_tail - join two skb lists, each list being a queue
  868. * @list: the new list to add
  869. * @head: the place to add it in the first list
  870. */
  871. static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
  872. struct sk_buff_head *head)
  873. {
  874. if (!skb_queue_empty(list)) {
  875. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  876. head->qlen += list->qlen;
  877. }
  878. }
  879. /**
  880. * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
  881. * @list: the new list to add
  882. * @head: the place to add it in the first list
  883. *
  884. * Each of the lists is a queue.
  885. * The list at @list is reinitialised
  886. */
  887. static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
  888. struct sk_buff_head *head)
  889. {
  890. if (!skb_queue_empty(list)) {
  891. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  892. head->qlen += list->qlen;
  893. __skb_queue_head_init(list);
  894. }
  895. }
  896. /**
  897. * __skb_queue_after - queue a buffer at the list head
  898. * @list: list to use
  899. * @prev: place after this buffer
  900. * @newsk: buffer to queue
  901. *
  902. * Queue a buffer int the middle of a list. This function takes no locks
  903. * and you must therefore hold required locks before calling it.
  904. *
  905. * A buffer cannot be placed on two lists at the same time.
  906. */
  907. static inline void __skb_queue_after(struct sk_buff_head *list,
  908. struct sk_buff *prev,
  909. struct sk_buff *newsk)
  910. {
  911. __skb_insert(newsk, prev, prev->next, list);
  912. }
  913. extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
  914. struct sk_buff_head *list);
  915. static inline void __skb_queue_before(struct sk_buff_head *list,
  916. struct sk_buff *next,
  917. struct sk_buff *newsk)
  918. {
  919. __skb_insert(newsk, next->prev, next, list);
  920. }
  921. /**
  922. * __skb_queue_head - queue a buffer at the list head
  923. * @list: list to use
  924. * @newsk: buffer to queue
  925. *
  926. * Queue a buffer at the start of a list. This function takes no locks
  927. * and you must therefore hold required locks before calling it.
  928. *
  929. * A buffer cannot be placed on two lists at the same time.
  930. */
  931. extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
  932. static inline void __skb_queue_head(struct sk_buff_head *list,
  933. struct sk_buff *newsk)
  934. {
  935. __skb_queue_after(list, (struct sk_buff *)list, newsk);
  936. }
  937. /**
  938. * __skb_queue_tail - queue a buffer at the list tail
  939. * @list: list to use
  940. * @newsk: buffer to queue
  941. *
  942. * Queue a buffer at the end of a list. This function takes no locks
  943. * and you must therefore hold required locks before calling it.
  944. *
  945. * A buffer cannot be placed on two lists at the same time.
  946. */
  947. extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
  948. static inline void __skb_queue_tail(struct sk_buff_head *list,
  949. struct sk_buff *newsk)
  950. {
  951. __skb_queue_before(list, (struct sk_buff *)list, newsk);
  952. }
  953. /*
  954. * remove sk_buff from list. _Must_ be called atomically, and with
  955. * the list known..
  956. */
  957. extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
  958. static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
  959. {
  960. struct sk_buff *next, *prev;
  961. list->qlen--;
  962. next = skb->next;
  963. prev = skb->prev;
  964. skb->next = skb->prev = NULL;
  965. next->prev = prev;
  966. prev->next = next;
  967. }
  968. /**
  969. * __skb_dequeue - remove from the head of the queue
  970. * @list: list to dequeue from
  971. *
  972. * Remove the head of the list. This function does not take any locks
  973. * so must be used with appropriate locks held only. The head item is
  974. * returned or %NULL if the list is empty.
  975. */
  976. extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
  977. static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
  978. {
  979. struct sk_buff *skb = skb_peek(list);
  980. if (skb)
  981. __skb_unlink(skb, list);
  982. return skb;
  983. }
  984. /**
  985. * __skb_dequeue_tail - remove from the tail of the queue
  986. * @list: list to dequeue from
  987. *
  988. * Remove the tail of the list. This function does not take any locks
  989. * so must be used with appropriate locks held only. The tail item is
  990. * returned or %NULL if the list is empty.
  991. */
  992. extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
  993. static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
  994. {
  995. struct sk_buff *skb = skb_peek_tail(list);
  996. if (skb)
  997. __skb_unlink(skb, list);
  998. return skb;
  999. }
  1000. static inline int skb_is_nonlinear(const struct sk_buff *skb)
  1001. {
  1002. return skb->data_len;
  1003. }
  1004. static inline unsigned int skb_headlen(const struct sk_buff *skb)
  1005. {
  1006. return skb->len - skb->data_len;
  1007. }
  1008. static inline int skb_pagelen(const struct sk_buff *skb)
  1009. {
  1010. int i, len = 0;
  1011. for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
  1012. len += skb_shinfo(skb)->frags[i].size;
  1013. return len + skb_headlen(skb);
  1014. }
  1015. /**
  1016. * __skb_fill_page_desc - initialise a paged fragment in an skb
  1017. * @skb: buffer containing fragment to be initialised
  1018. * @i: paged fragment index to initialise
  1019. * @page: the page to use for this fragment
  1020. * @off: the offset to the data with @page
  1021. * @size: the length of the data
  1022. *
  1023. * Initialises the @i'th fragment of @skb to point to &size bytes at
  1024. * offset @off within @page.
  1025. *
  1026. * Does not take any additional reference on the fragment.
  1027. */
  1028. static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
  1029. struct page *page, int off, int size)
  1030. {
  1031. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1032. frag->page = page;
  1033. frag->page_offset = off;
  1034. frag->size = size;
  1035. }
  1036. /**
  1037. * skb_fill_page_desc - initialise a paged fragment in an skb
  1038. * @skb: buffer containing fragment to be initialised
  1039. * @i: paged fragment index to initialise
  1040. * @page: the page to use for this fragment
  1041. * @off: the offset to the data with @page
  1042. * @size: the length of the data
  1043. *
  1044. * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
  1045. * @skb to point to &size bytes at offset @off within @page. In
  1046. * addition updates @skb such that @i is the last fragment.
  1047. *
  1048. * Does not take any additional reference on the fragment.
  1049. */
  1050. static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
  1051. struct page *page, int off, int size)
  1052. {
  1053. __skb_fill_page_desc(skb, i, page, off, size);
  1054. skb_shinfo(skb)->nr_frags = i + 1;
  1055. }
  1056. extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
  1057. int off, int size);
  1058. #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
  1059. #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
  1060. #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
  1061. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  1062. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  1063. {
  1064. return skb->head + skb->tail;
  1065. }
  1066. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  1067. {
  1068. skb->tail = skb->data - skb->head;
  1069. }
  1070. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  1071. {
  1072. skb_reset_tail_pointer(skb);
  1073. skb->tail += offset;
  1074. }
  1075. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  1076. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  1077. {
  1078. return skb->tail;
  1079. }
  1080. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  1081. {
  1082. skb->tail = skb->data;
  1083. }
  1084. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  1085. {
  1086. skb->tail = skb->data + offset;
  1087. }
  1088. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  1089. /*
  1090. * Add data to an sk_buff
  1091. */
  1092. extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
  1093. static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
  1094. {
  1095. unsigned char *tmp = skb_tail_pointer(skb);
  1096. SKB_LINEAR_ASSERT(skb);
  1097. skb->tail += len;
  1098. skb->len += len;
  1099. return tmp;
  1100. }
  1101. extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
  1102. static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
  1103. {
  1104. skb->data -= len;
  1105. skb->len += len;
  1106. return skb->data;
  1107. }
  1108. extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
  1109. static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
  1110. {
  1111. skb->len -= len;
  1112. BUG_ON(skb->len < skb->data_len);
  1113. return skb->data += len;
  1114. }
  1115. static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
  1116. {
  1117. return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
  1118. }
  1119. extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
  1120. static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
  1121. {
  1122. if (len > skb_headlen(skb) &&
  1123. !__pskb_pull_tail(skb, len - skb_headlen(skb)))
  1124. return NULL;
  1125. skb->len -= len;
  1126. return skb->data += len;
  1127. }
  1128. static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
  1129. {
  1130. return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
  1131. }
  1132. static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
  1133. {
  1134. if (likely(len <= skb_headlen(skb)))
  1135. return 1;
  1136. if (unlikely(len > skb->len))
  1137. return 0;
  1138. return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
  1139. }
  1140. /**
  1141. * skb_headroom - bytes at buffer head
  1142. * @skb: buffer to check
  1143. *
  1144. * Return the number of bytes of free space at the head of an &sk_buff.
  1145. */
  1146. static inline unsigned int skb_headroom(const struct sk_buff *skb)
  1147. {
  1148. return skb->data - skb->head;
  1149. }
  1150. /**
  1151. * skb_tailroom - bytes at buffer end
  1152. * @skb: buffer to check
  1153. *
  1154. * Return the number of bytes of free space at the tail of an sk_buff
  1155. */
  1156. static inline int skb_tailroom(const struct sk_buff *skb)
  1157. {
  1158. return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
  1159. }
  1160. /**
  1161. * skb_reserve - adjust headroom
  1162. * @skb: buffer to alter
  1163. * @len: bytes to move
  1164. *
  1165. * Increase the headroom of an empty &sk_buff by reducing the tail
  1166. * room. This is only allowed for an empty buffer.
  1167. */
  1168. static inline void skb_reserve(struct sk_buff *skb, int len)
  1169. {
  1170. skb->data += len;
  1171. skb->tail += len;
  1172. }
  1173. static inline void skb_reset_mac_len(struct sk_buff *skb)
  1174. {
  1175. skb->mac_len = skb->network_header - skb->mac_header;
  1176. }
  1177. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  1178. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  1179. {
  1180. return skb->head + skb->transport_header;
  1181. }
  1182. static inline void skb_reset_transport_header(struct sk_buff *skb)
  1183. {
  1184. skb->transport_header = skb->data - skb->head;
  1185. }
  1186. static inline void skb_set_transport_header(struct sk_buff *skb,
  1187. const int offset)
  1188. {
  1189. skb_reset_transport_header(skb);
  1190. skb->transport_header += offset;
  1191. }
  1192. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  1193. {
  1194. return skb->head + skb->network_header;
  1195. }
  1196. static inline void skb_reset_network_header(struct sk_buff *skb)
  1197. {
  1198. skb->network_header = skb->data - skb->head;
  1199. }
  1200. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  1201. {
  1202. skb_reset_network_header(skb);
  1203. skb->network_header += offset;
  1204. }
  1205. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  1206. {
  1207. return skb->head + skb->mac_header;
  1208. }
  1209. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  1210. {
  1211. return skb->mac_header != ~0U;
  1212. }
  1213. static inline void skb_reset_mac_header(struct sk_buff *skb)
  1214. {
  1215. skb->mac_header = skb->data - skb->head;
  1216. }
  1217. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  1218. {
  1219. skb_reset_mac_header(skb);
  1220. skb->mac_header += offset;
  1221. }
  1222. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  1223. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  1224. {
  1225. return skb->transport_header;
  1226. }
  1227. static inline void skb_reset_transport_header(struct sk_buff *skb)
  1228. {
  1229. skb->transport_header = skb->data;
  1230. }
  1231. static inline void skb_set_transport_header(struct sk_buff *skb,
  1232. const int offset)
  1233. {
  1234. skb->transport_header = skb->data + offset;
  1235. }
  1236. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  1237. {
  1238. return skb->network_header;
  1239. }
  1240. static inline void skb_reset_network_header(struct sk_buff *skb)
  1241. {
  1242. skb->network_header = skb->data;
  1243. }
  1244. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  1245. {
  1246. skb->network_header = skb->data + offset;
  1247. }
  1248. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  1249. {
  1250. return skb->mac_header;
  1251. }
  1252. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  1253. {
  1254. return skb->mac_header != NULL;
  1255. }
  1256. static inline void skb_reset_mac_header(struct sk_buff *skb)
  1257. {
  1258. skb->mac_header = skb->data;
  1259. }
  1260. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  1261. {
  1262. skb->mac_header = skb->data + offset;
  1263. }
  1264. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  1265. static inline int skb_checksum_start_offset(const struct sk_buff *skb)
  1266. {
  1267. return skb->csum_start - skb_headroom(skb);
  1268. }
  1269. static inline int skb_transport_offset(const struct sk_buff *skb)
  1270. {
  1271. return skb_transport_header(skb) - skb->data;
  1272. }
  1273. static inline u32 skb_network_header_len(const struct sk_buff *skb)
  1274. {
  1275. return skb->transport_header - skb->network_header;
  1276. }
  1277. static inline int skb_network_offset(const struct sk_buff *skb)
  1278. {
  1279. return skb_network_header(skb) - skb->data;
  1280. }
  1281. static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
  1282. {
  1283. return pskb_may_pull(skb, skb_network_offset(skb) + len);
  1284. }
  1285. /*
  1286. * CPUs often take a performance hit when accessing unaligned memory
  1287. * locations. The actual performance hit varies, it can be small if the
  1288. * hardware handles it or large if we have to take an exception and fix it
  1289. * in software.
  1290. *
  1291. * Since an ethernet header is 14 bytes network drivers often end up with
  1292. * the IP header at an unaligned offset. The IP header can be aligned by
  1293. * shifting the start of the packet by 2 bytes. Drivers should do this
  1294. * with:
  1295. *
  1296. * skb_reserve(skb, NET_IP_ALIGN);
  1297. *
  1298. * The downside to this alignment of the IP header is that the DMA is now
  1299. * unaligned. On some architectures the cost of an unaligned DMA is high
  1300. * and this cost outweighs the gains made by aligning the IP header.
  1301. *
  1302. * Since this trade off varies between architectures, we allow NET_IP_ALIGN
  1303. * to be overridden.
  1304. */
  1305. #ifndef NET_IP_ALIGN
  1306. #define NET_IP_ALIGN 2
  1307. #endif
  1308. /*
  1309. * The networking layer reserves some headroom in skb data (via
  1310. * dev_alloc_skb). This is used to avoid having to reallocate skb data when
  1311. * the header has to grow. In the default case, if the header has to grow
  1312. * 32 bytes or less we avoid the reallocation.
  1313. *
  1314. * Unfortunately this headroom changes the DMA alignment of the resulting
  1315. * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
  1316. * on some architectures. An architecture can override this value,
  1317. * perhaps setting it to a cacheline in size (since that will maintain
  1318. * cacheline alignment of the DMA). It must be a power of 2.
  1319. *
  1320. * Various parts of the networking layer expect at least 32 bytes of
  1321. * headroom, you should not reduce this.
  1322. *
  1323. * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
  1324. * to reduce average number of cache lines per packet.
  1325. * get_rps_cpus() for example only access one 64 bytes aligned block :
  1326. * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
  1327. */
  1328. #ifndef NET_SKB_PAD
  1329. #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
  1330. #endif
  1331. extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
  1332. static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
  1333. {
  1334. if (unlikely(skb_is_nonlinear(skb))) {
  1335. WARN_ON(1);
  1336. return;
  1337. }
  1338. skb->len = len;
  1339. skb_set_tail_pointer(skb, len);
  1340. }
  1341. extern void skb_trim(struct sk_buff *skb, unsigned int len);
  1342. static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
  1343. {
  1344. if (skb->data_len)
  1345. return ___pskb_trim(skb, len);
  1346. __skb_trim(skb, len);
  1347. return 0;
  1348. }
  1349. static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
  1350. {
  1351. return (len < skb->len) ? __pskb_trim(skb, len) : 0;
  1352. }
  1353. /**
  1354. * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
  1355. * @skb: buffer to alter
  1356. * @len: new length
  1357. *
  1358. * This is identical to pskb_trim except that the caller knows that
  1359. * the skb is not cloned so we should never get an error due to out-
  1360. * of-memory.
  1361. */
  1362. static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
  1363. {
  1364. int err = pskb_trim(skb, len);
  1365. BUG_ON(err);
  1366. }
  1367. /**
  1368. * skb_orphan - orphan a buffer
  1369. * @skb: buffer to orphan
  1370. *
  1371. * If a buffer currently has an owner then we call the owner's
  1372. * destructor function and make the @skb unowned. The buffer continues
  1373. * to exist but is no longer charged to its former owner.
  1374. */
  1375. static inline void skb_orphan(struct sk_buff *skb)
  1376. {
  1377. if (skb->destructor)
  1378. skb->destructor(skb);
  1379. skb->destructor = NULL;
  1380. skb->sk = NULL;
  1381. }
  1382. /**
  1383. * __skb_queue_purge - empty a list
  1384. * @list: list to empty
  1385. *
  1386. * Delete all buffers on an &sk_buff list. Each buffer is removed from
  1387. * the list and one reference dropped. This function does not take the
  1388. * list lock and the caller must hold the relevant locks to use it.
  1389. */
  1390. extern void skb_queue_purge(struct sk_buff_head *list);
  1391. static inline void __skb_queue_purge(struct sk_buff_head *list)
  1392. {
  1393. struct sk_buff *skb;
  1394. while ((skb = __skb_dequeue(list)) != NULL)
  1395. kfree_skb(skb);
  1396. }
  1397. /**
  1398. * __dev_alloc_skb - allocate an skbuff for receiving
  1399. * @length: length to allocate
  1400. * @gfp_mask: get_free_pages mask, passed to alloc_skb
  1401. *
  1402. * Allocate a new &sk_buff and assign it a usage count of one. The
  1403. * buffer has unspecified headroom built in. Users should allocate
  1404. * the headroom they think they need without accounting for the
  1405. * built in space. The built in space is used for optimisations.
  1406. *
  1407. * %NULL is returned if there is no free memory.
  1408. */
  1409. static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
  1410. gfp_t gfp_mask)
  1411. {
  1412. struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
  1413. if (likely(skb))
  1414. skb_reserve(skb, NET_SKB_PAD);
  1415. return skb;
  1416. }
  1417. extern struct sk_buff *dev_alloc_skb(unsigned int length);
  1418. extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
  1419. unsigned int length, gfp_t gfp_mask);
  1420. /**
  1421. * netdev_alloc_skb - allocate an skbuff for rx on a specific device
  1422. * @dev: network device to receive on
  1423. * @length: length to allocate
  1424. *
  1425. * Allocate a new &sk_buff and assign it a usage count of one. The
  1426. * buffer has unspecified headroom built in. Users should allocate
  1427. * the headroom they think they need without accounting for the
  1428. * built in space. The built in space is used for optimisations.
  1429. *
  1430. * %NULL is returned if there is no free memory. Although this function
  1431. * allocates memory it can be called from an interrupt.
  1432. */
  1433. static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
  1434. unsigned int length)
  1435. {
  1436. return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
  1437. }
  1438. static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
  1439. unsigned int length, gfp_t gfp)
  1440. {
  1441. struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
  1442. if (NET_IP_ALIGN && skb)
  1443. skb_reserve(skb, NET_IP_ALIGN);
  1444. return skb;
  1445. }
  1446. static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
  1447. unsigned int length)
  1448. {
  1449. return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
  1450. }
  1451. /**
  1452. * __netdev_alloc_page - allocate a page for ps-rx on a specific device
  1453. * @dev: network device to receive on
  1454. * @gfp_mask: alloc_pages_node mask
  1455. *
  1456. * Allocate a new page. dev currently unused.
  1457. *
  1458. * %NULL is returned if there is no free memory.
  1459. */
  1460. static inline struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
  1461. {
  1462. return alloc_pages_node(NUMA_NO_NODE, gfp_mask, 0);
  1463. }
  1464. /**
  1465. * netdev_alloc_page - allocate a page for ps-rx on a specific device
  1466. * @dev: network device to receive on
  1467. *
  1468. * Allocate a new page. dev currently unused.
  1469. *
  1470. * %NULL is returned if there is no free memory.
  1471. */
  1472. static inline struct page *netdev_alloc_page(struct net_device *dev)
  1473. {
  1474. return __netdev_alloc_page(dev, GFP_ATOMIC);
  1475. }
  1476. static inline void netdev_free_page(struct net_device *dev, struct page *page)
  1477. {
  1478. __free_page(page);
  1479. }
  1480. /**
  1481. * skb_frag_page - retrieve the page refered to by a paged fragment
  1482. * @frag: the paged fragment
  1483. *
  1484. * Returns the &struct page associated with @frag.
  1485. */
  1486. static inline struct page *skb_frag_page(const skb_frag_t *frag)
  1487. {
  1488. return frag->page;
  1489. }
  1490. /**
  1491. * __skb_frag_ref - take an addition reference on a paged fragment.
  1492. * @frag: the paged fragment
  1493. *
  1494. * Takes an additional reference on the paged fragment @frag.
  1495. */
  1496. static inline void __skb_frag_ref(skb_frag_t *frag)
  1497. {
  1498. get_page(skb_frag_page(frag));
  1499. }
  1500. /**
  1501. * skb_frag_ref - take an addition reference on a paged fragment of an skb.
  1502. * @skb: the buffer
  1503. * @f: the fragment offset.
  1504. *
  1505. * Takes an additional reference on the @f'th paged fragment of @skb.
  1506. */
  1507. static inline void skb_frag_ref(struct sk_buff *skb, int f)
  1508. {
  1509. __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
  1510. }
  1511. /**
  1512. * __skb_frag_unref - release a reference on a paged fragment.
  1513. * @frag: the paged fragment
  1514. *
  1515. * Releases a reference on the paged fragment @frag.
  1516. */
  1517. static inline void __skb_frag_unref(skb_frag_t *frag)
  1518. {
  1519. put_page(skb_frag_page(frag));
  1520. }
  1521. /**
  1522. * skb_frag_unref - release a reference on a paged fragment of an skb.
  1523. * @skb: the buffer
  1524. * @f: the fragment offset
  1525. *
  1526. * Releases a reference on the @f'th paged fragment of @skb.
  1527. */
  1528. static inline void skb_frag_unref(struct sk_buff *skb, int f)
  1529. {
  1530. __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
  1531. }
  1532. /**
  1533. * skb_frag_address - gets the address of the data contained in a paged fragment
  1534. * @frag: the paged fragment buffer
  1535. *
  1536. * Returns the address of the data within @frag. The page must already
  1537. * be mapped.
  1538. */
  1539. static inline void *skb_frag_address(const skb_frag_t *frag)
  1540. {
  1541. return page_address(skb_frag_page(frag)) + frag->page_offset;
  1542. }
  1543. /**
  1544. * skb_frag_address_safe - gets the address of the data contained in a paged fragment
  1545. * @frag: the paged fragment buffer
  1546. *
  1547. * Returns the address of the data within @frag. Checks that the page
  1548. * is mapped and returns %NULL otherwise.
  1549. */
  1550. static inline void *skb_frag_address_safe(const skb_frag_t *frag)
  1551. {
  1552. void *ptr = page_address(skb_frag_page(frag));
  1553. if (unlikely(!ptr))
  1554. return NULL;
  1555. return ptr + frag->page_offset;
  1556. }
  1557. /**
  1558. * __skb_frag_set_page - sets the page contained in a paged fragment
  1559. * @frag: the paged fragment
  1560. * @page: the page to set
  1561. *
  1562. * Sets the fragment @frag to contain @page.
  1563. */
  1564. static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
  1565. {
  1566. frag->page = page;
  1567. __skb_frag_ref(frag);
  1568. }
  1569. /**
  1570. * skb_frag_set_page - sets the page contained in a paged fragment of an skb
  1571. * @skb: the buffer
  1572. * @f: the fragment offset
  1573. * @page: the page to set
  1574. *
  1575. * Sets the @f'th fragment of @skb to contain @page.
  1576. */
  1577. static inline void skb_frag_set_page(struct sk_buff *skb, int f,
  1578. struct page *page)
  1579. {
  1580. __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
  1581. }
  1582. /**
  1583. * skb_frag_dma_map - maps a paged fragment via the DMA API
  1584. * @device: the device to map the fragment to
  1585. * @frag: the paged fragment to map
  1586. * @offset: the offset within the fragment (starting at the
  1587. * fragment's own offset)
  1588. * @size: the number of bytes to map
  1589. * @direction: the direction of the mapping (%PCI_DMA_*)
  1590. *
  1591. * Maps the page associated with @frag to @device.
  1592. */
  1593. static inline dma_addr_t skb_frag_dma_map(struct device *dev,
  1594. const skb_frag_t *frag,
  1595. size_t offset, size_t size,
  1596. enum dma_data_direction dir)
  1597. {
  1598. return dma_map_page(dev, skb_frag_page(frag),
  1599. frag->page_offset + offset, size, dir);
  1600. }
  1601. /**
  1602. * skb_clone_writable - is the header of a clone writable
  1603. * @skb: buffer to check
  1604. * @len: length up to which to write
  1605. *
  1606. * Returns true if modifying the header part of the cloned buffer
  1607. * does not requires the data to be copied.
  1608. */
  1609. static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
  1610. {
  1611. return !skb_header_cloned(skb) &&
  1612. skb_headroom(skb) + len <= skb->hdr_len;
  1613. }
  1614. static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
  1615. int cloned)
  1616. {
  1617. int delta = 0;
  1618. if (headroom < NET_SKB_PAD)
  1619. headroom = NET_SKB_PAD;
  1620. if (headroom > skb_headroom(skb))
  1621. delta = headroom - skb_headroom(skb);
  1622. if (delta || cloned)
  1623. return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
  1624. GFP_ATOMIC);
  1625. return 0;
  1626. }
  1627. /**
  1628. * skb_cow - copy header of skb when it is required
  1629. * @skb: buffer to cow
  1630. * @headroom: needed headroom
  1631. *
  1632. * If the skb passed lacks sufficient headroom or its data part
  1633. * is shared, data is reallocated. If reallocation fails, an error
  1634. * is returned and original skb is not changed.
  1635. *
  1636. * The result is skb with writable area skb->head...skb->tail
  1637. * and at least @headroom of space at head.
  1638. */
  1639. static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
  1640. {
  1641. return __skb_cow(skb, headroom, skb_cloned(skb));
  1642. }
  1643. /**
  1644. * skb_cow_head - skb_cow but only making the head writable
  1645. * @skb: buffer to cow
  1646. * @headroom: needed headroom
  1647. *
  1648. * This function is identical to skb_cow except that we replace the
  1649. * skb_cloned check by skb_header_cloned. It should be used when
  1650. * you only need to push on some header and do not need to modify
  1651. * the data.
  1652. */
  1653. static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
  1654. {
  1655. return __skb_cow(skb, headroom, skb_header_cloned(skb));
  1656. }
  1657. /**
  1658. * skb_padto - pad an skbuff up to a minimal size
  1659. * @skb: buffer to pad
  1660. * @len: minimal length
  1661. *
  1662. * Pads up a buffer to ensure the trailing bytes exist and are
  1663. * blanked. If the buffer already contains sufficient data it
  1664. * is untouched. Otherwise it is extended. Returns zero on
  1665. * success. The skb is freed on error.
  1666. */
  1667. static inline int skb_padto(struct sk_buff *skb, unsigned int len)
  1668. {
  1669. unsigned int size = skb->len;
  1670. if (likely(size >= len))
  1671. return 0;
  1672. return skb_pad(skb, len - size);
  1673. }
  1674. static inline int skb_add_data(struct sk_buff *skb,
  1675. char __user *from, int copy)
  1676. {
  1677. const int off = skb->len;
  1678. if (skb->ip_summed == CHECKSUM_NONE) {
  1679. int err = 0;
  1680. __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
  1681. copy, 0, &err);
  1682. if (!err) {
  1683. skb->csum = csum_block_add(skb->csum, csum, off);
  1684. return 0;
  1685. }
  1686. } else if (!copy_from_user(skb_put(skb, copy), from, copy))
  1687. return 0;
  1688. __skb_trim(skb, off);
  1689. return -EFAULT;
  1690. }
  1691. static inline int skb_can_coalesce(struct sk_buff *skb, int i,
  1692. const struct page *page, int off)
  1693. {
  1694. if (i) {
  1695. struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
  1696. return page == skb_frag_page(frag) &&
  1697. off == frag->page_offset + frag->size;
  1698. }
  1699. return 0;
  1700. }
  1701. static inline int __skb_linearize(struct sk_buff *skb)
  1702. {
  1703. return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
  1704. }
  1705. /**
  1706. * skb_linearize - convert paged skb to linear one
  1707. * @skb: buffer to linarize
  1708. *
  1709. * If there is no free memory -ENOMEM is returned, otherwise zero
  1710. * is returned and the old skb data released.
  1711. */
  1712. static inline int skb_linearize(struct sk_buff *skb)
  1713. {
  1714. return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
  1715. }
  1716. /**
  1717. * skb_linearize_cow - make sure skb is linear and writable
  1718. * @skb: buffer to process
  1719. *
  1720. * If there is no free memory -ENOMEM is returned, otherwise zero
  1721. * is returned and the old skb data released.
  1722. */
  1723. static inline int skb_linearize_cow(struct sk_buff *skb)
  1724. {
  1725. return skb_is_nonlinear(skb) || skb_cloned(skb) ?
  1726. __skb_linearize(skb) : 0;
  1727. }
  1728. /**
  1729. * skb_postpull_rcsum - update checksum for received skb after pull
  1730. * @skb: buffer to update
  1731. * @start: start of data before pull
  1732. * @len: length of data pulled
  1733. *
  1734. * After doing a pull on a received packet, you need to call this to
  1735. * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
  1736. * CHECKSUM_NONE so that it can be recomputed from scratch.
  1737. */
  1738. static inline void skb_postpull_rcsum(struct sk_buff *skb,
  1739. const void *start, unsigned int len)
  1740. {
  1741. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1742. skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
  1743. }
  1744. unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
  1745. /**
  1746. * pskb_trim_rcsum - trim received skb and update checksum
  1747. * @skb: buffer to trim
  1748. * @len: new length
  1749. *
  1750. * This is exactly the same as pskb_trim except that it ensures the
  1751. * checksum of received packets are still valid after the operation.
  1752. */
  1753. static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
  1754. {
  1755. if (likely(len >= skb->len))
  1756. return 0;
  1757. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1758. skb->ip_summed = CHECKSUM_NONE;
  1759. return __pskb_trim(skb, len);
  1760. }
  1761. #define skb_queue_walk(queue, skb) \
  1762. for (skb = (queue)->next; \
  1763. skb != (struct sk_buff *)(queue); \
  1764. skb = skb->next)
  1765. #define skb_queue_walk_safe(queue, skb, tmp) \
  1766. for (skb = (queue)->next, tmp = skb->next; \
  1767. skb != (struct sk_buff *)(queue); \
  1768. skb = tmp, tmp = skb->next)
  1769. #define skb_queue_walk_from(queue, skb) \
  1770. for (; skb != (struct sk_buff *)(queue); \
  1771. skb = skb->next)
  1772. #define skb_queue_walk_from_safe(queue, skb, tmp) \
  1773. for (tmp = skb->next; \
  1774. skb != (struct sk_buff *)(queue); \
  1775. skb = tmp, tmp = skb->next)
  1776. #define skb_queue_reverse_walk(queue, skb) \
  1777. for (skb = (queue)->prev; \
  1778. skb != (struct sk_buff *)(queue); \
  1779. skb = skb->prev)
  1780. #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
  1781. for (skb = (queue)->prev, tmp = skb->prev; \
  1782. skb != (struct sk_buff *)(queue); \
  1783. skb = tmp, tmp = skb->prev)
  1784. #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
  1785. for (tmp = skb->prev; \
  1786. skb != (struct sk_buff *)(queue); \
  1787. skb = tmp, tmp = skb->prev)
  1788. static inline bool skb_has_frag_list(const struct sk_buff *skb)
  1789. {
  1790. return skb_shinfo(skb)->frag_list != NULL;
  1791. }
  1792. static inline void skb_frag_list_init(struct sk_buff *skb)
  1793. {
  1794. skb_shinfo(skb)->frag_list = NULL;
  1795. }
  1796. static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
  1797. {
  1798. frag->next = skb_shinfo(skb)->frag_list;
  1799. skb_shinfo(skb)->frag_list = frag;
  1800. }
  1801. #define skb_walk_frags(skb, iter) \
  1802. for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
  1803. extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
  1804. int *peeked, int *err);
  1805. extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
  1806. int noblock, int *err);
  1807. extern unsigned int datagram_poll(struct file *file, struct socket *sock,
  1808. struct poll_table_struct *wait);
  1809. extern int skb_copy_datagram_iovec(const struct sk_buff *from,
  1810. int offset, struct iovec *to,
  1811. int size);
  1812. extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
  1813. int hlen,
  1814. struct iovec *iov);
  1815. extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
  1816. int offset,
  1817. const struct iovec *from,
  1818. int from_offset,
  1819. int len);
  1820. extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
  1821. int offset,
  1822. const struct iovec *to,
  1823. int to_offset,
  1824. int size);
  1825. extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
  1826. extern void skb_free_datagram_locked(struct sock *sk,
  1827. struct sk_buff *skb);
  1828. extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
  1829. unsigned int flags);
  1830. extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
  1831. int len, __wsum csum);
  1832. extern int skb_copy_bits(const struct sk_buff *skb, int offset,
  1833. void *to, int len);
  1834. extern int skb_store_bits(struct sk_buff *skb, int offset,
  1835. const void *from, int len);
  1836. extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
  1837. int offset, u8 *to, int len,
  1838. __wsum csum);
  1839. extern int skb_splice_bits(struct sk_buff *skb,
  1840. unsigned int offset,
  1841. struct pipe_inode_info *pipe,
  1842. unsigned int len,
  1843. unsigned int flags);
  1844. extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
  1845. extern void skb_split(struct sk_buff *skb,
  1846. struct sk_buff *skb1, const u32 len);
  1847. extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
  1848. int shiftlen);
  1849. extern struct sk_buff *skb_segment(struct sk_buff *skb, u32 features);
  1850. static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
  1851. int len, void *buffer)
  1852. {
  1853. int hlen = skb_headlen(skb);
  1854. if (hlen - offset >= len)
  1855. return skb->data + offset;
  1856. if (skb_copy_bits(skb, offset, buffer, len) < 0)
  1857. return NULL;
  1858. return buffer;
  1859. }
  1860. static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
  1861. void *to,
  1862. const unsigned int len)
  1863. {
  1864. memcpy(to, skb->data, len);
  1865. }
  1866. static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
  1867. const int offset, void *to,
  1868. const unsigned int len)
  1869. {
  1870. memcpy(to, skb->data + offset, len);
  1871. }
  1872. static inline void skb_copy_to_linear_data(struct sk_buff *skb,
  1873. const void *from,
  1874. const unsigned int len)
  1875. {
  1876. memcpy(skb->data, from, len);
  1877. }
  1878. static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
  1879. const int offset,
  1880. const void *from,
  1881. const unsigned int len)
  1882. {
  1883. memcpy(skb->data + offset, from, len);
  1884. }
  1885. extern void skb_init(void);
  1886. static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
  1887. {
  1888. return skb->tstamp;
  1889. }
  1890. /**
  1891. * skb_get_timestamp - get timestamp from a skb
  1892. * @skb: skb to get stamp from
  1893. * @stamp: pointer to struct timeval to store stamp in
  1894. *
  1895. * Timestamps are stored in the skb as offsets to a base timestamp.
  1896. * This function converts the offset back to a struct timeval and stores
  1897. * it in stamp.
  1898. */
  1899. static inline void skb_get_timestamp(const struct sk_buff *skb,
  1900. struct timeval *stamp)
  1901. {
  1902. *stamp = ktime_to_timeval(skb->tstamp);
  1903. }
  1904. static inline void skb_get_timestampns(const struct sk_buff *skb,
  1905. struct timespec *stamp)
  1906. {
  1907. *stamp = ktime_to_timespec(skb->tstamp);
  1908. }
  1909. static inline void __net_timestamp(struct sk_buff *skb)
  1910. {
  1911. skb->tstamp = ktime_get_real();
  1912. }
  1913. static inline ktime_t net_timedelta(ktime_t t)
  1914. {
  1915. return ktime_sub(ktime_get_real(), t);
  1916. }
  1917. static inline ktime_t net_invalid_timestamp(void)
  1918. {
  1919. return ktime_set(0, 0);
  1920. }
  1921. extern void skb_timestamping_init(void);
  1922. #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
  1923. extern void skb_clone_tx_timestamp(struct sk_buff *skb);
  1924. extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
  1925. #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
  1926. static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
  1927. {
  1928. }
  1929. static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
  1930. {
  1931. return false;
  1932. }
  1933. #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
  1934. /**
  1935. * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
  1936. *
  1937. * @skb: clone of the the original outgoing packet
  1938. * @hwtstamps: hardware time stamps
  1939. *
  1940. */
  1941. void skb_complete_tx_timestamp(struct sk_buff *skb,
  1942. struct skb_shared_hwtstamps *hwtstamps);
  1943. /**
  1944. * skb_tstamp_tx - queue clone of skb with send time stamps
  1945. * @orig_skb: the original outgoing packet
  1946. * @hwtstamps: hardware time stamps, may be NULL if not available
  1947. *
  1948. * If the skb has a socket associated, then this function clones the
  1949. * skb (thus sharing the actual data and optional structures), stores
  1950. * the optional hardware time stamping information (if non NULL) or
  1951. * generates a software time stamp (otherwise), then queues the clone
  1952. * to the error queue of the socket. Errors are silently ignored.
  1953. */
  1954. extern void skb_tstamp_tx(struct sk_buff *orig_skb,
  1955. struct skb_shared_hwtstamps *hwtstamps);
  1956. static inline void sw_tx_timestamp(struct sk_buff *skb)
  1957. {
  1958. if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
  1959. !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
  1960. skb_tstamp_tx(skb, NULL);
  1961. }
  1962. /**
  1963. * skb_tx_timestamp() - Driver hook for transmit timestamping
  1964. *
  1965. * Ethernet MAC Drivers should call this function in their hard_xmit()
  1966. * function immediately before giving the sk_buff to the MAC hardware.
  1967. *
  1968. * @skb: A socket buffer.
  1969. */
  1970. static inline void skb_tx_timestamp(struct sk_buff *skb)
  1971. {
  1972. skb_clone_tx_timestamp(skb);
  1973. sw_tx_timestamp(skb);
  1974. }
  1975. extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
  1976. extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
  1977. static inline int skb_csum_unnecessary(const struct sk_buff *skb)
  1978. {
  1979. return skb->ip_summed & CHECKSUM_UNNECESSARY;
  1980. }
  1981. /**
  1982. * skb_checksum_complete - Calculate checksum of an entire packet
  1983. * @skb: packet to process
  1984. *
  1985. * This function calculates the checksum over the entire packet plus
  1986. * the value of skb->csum. The latter can be used to supply the
  1987. * checksum of a pseudo header as used by TCP/UDP. It returns the
  1988. * checksum.
  1989. *
  1990. * For protocols that contain complete checksums such as ICMP/TCP/UDP,
  1991. * this function can be used to verify that checksum on received
  1992. * packets. In that case the function should return zero if the
  1993. * checksum is correct. In particular, this function will return zero
  1994. * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
  1995. * hardware has already verified the correctness of the checksum.
  1996. */
  1997. static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
  1998. {
  1999. return skb_csum_unnecessary(skb) ?
  2000. 0 : __skb_checksum_complete(skb);
  2001. }
  2002. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2003. extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
  2004. static inline void nf_conntrack_put(struct nf_conntrack *nfct)
  2005. {
  2006. if (nfct && atomic_dec_and_test(&nfct->use))
  2007. nf_conntrack_destroy(nfct);
  2008. }
  2009. static inline void nf_conntrack_get(struct nf_conntrack *nfct)
  2010. {
  2011. if (nfct)
  2012. atomic_inc(&nfct->use);
  2013. }
  2014. #endif
  2015. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2016. static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
  2017. {
  2018. if (skb)
  2019. atomic_inc(&skb->users);
  2020. }
  2021. static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
  2022. {
  2023. if (skb)
  2024. kfree_skb(skb);
  2025. }
  2026. #endif
  2027. #ifdef CONFIG_BRIDGE_NETFILTER
  2028. static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
  2029. {
  2030. if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
  2031. kfree(nf_bridge);
  2032. }
  2033. static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
  2034. {
  2035. if (nf_bridge)
  2036. atomic_inc(&nf_bridge->use);
  2037. }
  2038. #endif /* CONFIG_BRIDGE_NETFILTER */
  2039. static inline void nf_reset(struct sk_buff *skb)
  2040. {
  2041. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2042. nf_conntrack_put(skb->nfct);
  2043. skb->nfct = NULL;
  2044. #endif
  2045. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2046. nf_conntrack_put_reasm(skb->nfct_reasm);
  2047. skb->nfct_reasm = NULL;
  2048. #endif
  2049. #ifdef CONFIG_BRIDGE_NETFILTER
  2050. nf_bridge_put(skb->nf_bridge);
  2051. skb->nf_bridge = NULL;
  2052. #endif
  2053. }
  2054. /* Note: This doesn't put any conntrack and bridge info in dst. */
  2055. static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  2056. {
  2057. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2058. dst->nfct = src->nfct;
  2059. nf_conntrack_get(src->nfct);
  2060. dst->nfctinfo = src->nfctinfo;
  2061. #endif
  2062. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2063. dst->nfct_reasm = src->nfct_reasm;
  2064. nf_conntrack_get_reasm(src->nfct_reasm);
  2065. #endif
  2066. #ifdef CONFIG_BRIDGE_NETFILTER
  2067. dst->nf_bridge = src->nf_bridge;
  2068. nf_bridge_get(src->nf_bridge);
  2069. #endif
  2070. }
  2071. static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  2072. {
  2073. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2074. nf_conntrack_put(dst->nfct);
  2075. #endif
  2076. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2077. nf_conntrack_put_reasm(dst->nfct_reasm);
  2078. #endif
  2079. #ifdef CONFIG_BRIDGE_NETFILTER
  2080. nf_bridge_put(dst->nf_bridge);
  2081. #endif
  2082. __nf_copy(dst, src);
  2083. }
  2084. #ifdef CONFIG_NETWORK_SECMARK
  2085. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  2086. {
  2087. to->secmark = from->secmark;
  2088. }
  2089. static inline void skb_init_secmark(struct sk_buff *skb)
  2090. {
  2091. skb->secmark = 0;
  2092. }
  2093. #else
  2094. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  2095. { }
  2096. static inline void skb_init_secmark(struct sk_buff *skb)
  2097. { }
  2098. #endif
  2099. static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
  2100. {
  2101. skb->queue_mapping = queue_mapping;
  2102. }
  2103. static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
  2104. {
  2105. return skb->queue_mapping;
  2106. }
  2107. static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
  2108. {
  2109. to->queue_mapping = from->queue_mapping;
  2110. }
  2111. static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
  2112. {
  2113. skb->queue_mapping = rx_queue + 1;
  2114. }
  2115. static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
  2116. {
  2117. return skb->queue_mapping - 1;
  2118. }
  2119. static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
  2120. {
  2121. return skb->queue_mapping != 0;
  2122. }
  2123. extern u16 __skb_tx_hash(const struct net_device *dev,
  2124. const struct sk_buff *skb,
  2125. unsigned int num_tx_queues);
  2126. #ifdef CONFIG_XFRM
  2127. static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
  2128. {
  2129. return skb->sp;
  2130. }
  2131. #else
  2132. static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
  2133. {
  2134. return NULL;
  2135. }
  2136. #endif
  2137. static inline int skb_is_gso(const struct sk_buff *skb)
  2138. {
  2139. return skb_shinfo(skb)->gso_size;
  2140. }
  2141. static inline int skb_is_gso_v6(const struct sk_buff *skb)
  2142. {
  2143. return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
  2144. }
  2145. extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
  2146. static inline bool skb_warn_if_lro(const struct sk_buff *skb)
  2147. {
  2148. /* LRO sets gso_size but not gso_type, whereas if GSO is really
  2149. * wanted then gso_type will be set. */
  2150. struct skb_shared_info *shinfo = skb_shinfo(skb);
  2151. if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
  2152. unlikely(shinfo->gso_type == 0)) {
  2153. __skb_warn_lro_forwarding(skb);
  2154. return true;
  2155. }
  2156. return false;
  2157. }
  2158. static inline void skb_forward_csum(struct sk_buff *skb)
  2159. {
  2160. /* Unfortunately we don't support this one. Any brave souls? */
  2161. if (skb->ip_summed == CHECKSUM_COMPLETE)
  2162. skb->ip_summed = CHECKSUM_NONE;
  2163. }
  2164. /**
  2165. * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
  2166. * @skb: skb to check
  2167. *
  2168. * fresh skbs have their ip_summed set to CHECKSUM_NONE.
  2169. * Instead of forcing ip_summed to CHECKSUM_NONE, we can
  2170. * use this helper, to document places where we make this assertion.
  2171. */
  2172. static inline void skb_checksum_none_assert(struct sk_buff *skb)
  2173. {
  2174. #ifdef DEBUG
  2175. BUG_ON(skb->ip_summed != CHECKSUM_NONE);
  2176. #endif
  2177. }
  2178. bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
  2179. #endif /* __KERNEL__ */
  2180. #endif /* _LINUX_SKBUFF_H */