kvm_main.c 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86.h"
  19. #include "irq.h"
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/gfp.h>
  25. #include <linux/mm.h>
  26. #include <linux/miscdevice.h>
  27. #include <linux/vmalloc.h>
  28. #include <linux/reboot.h>
  29. #include <linux/debugfs.h>
  30. #include <linux/highmem.h>
  31. #include <linux/file.h>
  32. #include <linux/sysdev.h>
  33. #include <linux/cpu.h>
  34. #include <linux/sched.h>
  35. #include <linux/cpumask.h>
  36. #include <linux/smp.h>
  37. #include <linux/anon_inodes.h>
  38. #include <linux/profile.h>
  39. #include <linux/kvm_para.h>
  40. #include <linux/pagemap.h>
  41. #include <linux/mman.h>
  42. #include <asm/processor.h>
  43. #include <asm/io.h>
  44. #include <asm/uaccess.h>
  45. #include <asm/desc.h>
  46. #include <asm/pgtable.h>
  47. MODULE_AUTHOR("Qumranet");
  48. MODULE_LICENSE("GPL");
  49. DEFINE_SPINLOCK(kvm_lock);
  50. LIST_HEAD(vm_list);
  51. static cpumask_t cpus_hardware_enabled;
  52. struct kmem_cache *kvm_vcpu_cache;
  53. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  54. static __read_mostly struct preempt_ops kvm_preempt_ops;
  55. static struct dentry *debugfs_dir;
  56. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  57. unsigned long arg);
  58. static inline int valid_vcpu(int n)
  59. {
  60. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  61. }
  62. /*
  63. * Switches to specified vcpu, until a matching vcpu_put()
  64. */
  65. void vcpu_load(struct kvm_vcpu *vcpu)
  66. {
  67. int cpu;
  68. mutex_lock(&vcpu->mutex);
  69. cpu = get_cpu();
  70. preempt_notifier_register(&vcpu->preempt_notifier);
  71. kvm_arch_vcpu_load(vcpu, cpu);
  72. put_cpu();
  73. }
  74. void vcpu_put(struct kvm_vcpu *vcpu)
  75. {
  76. preempt_disable();
  77. kvm_arch_vcpu_put(vcpu);
  78. preempt_notifier_unregister(&vcpu->preempt_notifier);
  79. preempt_enable();
  80. mutex_unlock(&vcpu->mutex);
  81. }
  82. static void ack_flush(void *_completed)
  83. {
  84. }
  85. void kvm_flush_remote_tlbs(struct kvm *kvm)
  86. {
  87. int i, cpu;
  88. cpumask_t cpus;
  89. struct kvm_vcpu *vcpu;
  90. cpus_clear(cpus);
  91. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  92. vcpu = kvm->vcpus[i];
  93. if (!vcpu)
  94. continue;
  95. if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  96. continue;
  97. cpu = vcpu->cpu;
  98. if (cpu != -1 && cpu != raw_smp_processor_id())
  99. cpu_set(cpu, cpus);
  100. }
  101. if (cpus_empty(cpus))
  102. return;
  103. ++kvm->stat.remote_tlb_flush;
  104. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  105. }
  106. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  107. {
  108. struct page *page;
  109. int r;
  110. mutex_init(&vcpu->mutex);
  111. vcpu->cpu = -1;
  112. vcpu->kvm = kvm;
  113. vcpu->vcpu_id = id;
  114. init_waitqueue_head(&vcpu->wq);
  115. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  116. if (!page) {
  117. r = -ENOMEM;
  118. goto fail;
  119. }
  120. vcpu->run = page_address(page);
  121. r = kvm_arch_vcpu_init(vcpu);
  122. if (r < 0)
  123. goto fail_free_run;
  124. return 0;
  125. fail_free_run:
  126. free_page((unsigned long)vcpu->run);
  127. fail:
  128. return r;
  129. }
  130. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  131. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  132. {
  133. kvm_arch_vcpu_uninit(vcpu);
  134. free_page((unsigned long)vcpu->run);
  135. }
  136. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  137. static struct kvm *kvm_create_vm(void)
  138. {
  139. struct kvm *kvm = kvm_arch_create_vm();
  140. if (IS_ERR(kvm))
  141. goto out;
  142. kvm->mm = current->mm;
  143. atomic_inc(&kvm->mm->mm_count);
  144. kvm_io_bus_init(&kvm->pio_bus);
  145. mutex_init(&kvm->lock);
  146. kvm_io_bus_init(&kvm->mmio_bus);
  147. spin_lock(&kvm_lock);
  148. list_add(&kvm->vm_list, &vm_list);
  149. spin_unlock(&kvm_lock);
  150. out:
  151. return kvm;
  152. }
  153. /*
  154. * Free any memory in @free but not in @dont.
  155. */
  156. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  157. struct kvm_memory_slot *dont)
  158. {
  159. if (!dont || free->rmap != dont->rmap)
  160. vfree(free->rmap);
  161. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  162. vfree(free->dirty_bitmap);
  163. free->npages = 0;
  164. free->dirty_bitmap = NULL;
  165. free->rmap = NULL;
  166. }
  167. void kvm_free_physmem(struct kvm *kvm)
  168. {
  169. int i;
  170. for (i = 0; i < kvm->nmemslots; ++i)
  171. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  172. }
  173. static void kvm_destroy_vm(struct kvm *kvm)
  174. {
  175. struct mm_struct *mm = kvm->mm;
  176. spin_lock(&kvm_lock);
  177. list_del(&kvm->vm_list);
  178. spin_unlock(&kvm_lock);
  179. kvm_io_bus_destroy(&kvm->pio_bus);
  180. kvm_io_bus_destroy(&kvm->mmio_bus);
  181. kvm_arch_destroy_vm(kvm);
  182. mmdrop(mm);
  183. }
  184. static int kvm_vm_release(struct inode *inode, struct file *filp)
  185. {
  186. struct kvm *kvm = filp->private_data;
  187. kvm_destroy_vm(kvm);
  188. return 0;
  189. }
  190. /*
  191. * Allocate some memory and give it an address in the guest physical address
  192. * space.
  193. *
  194. * Discontiguous memory is allowed, mostly for framebuffers.
  195. *
  196. * Must be called holding kvm->lock.
  197. */
  198. int __kvm_set_memory_region(struct kvm *kvm,
  199. struct kvm_userspace_memory_region *mem,
  200. int user_alloc)
  201. {
  202. int r;
  203. gfn_t base_gfn;
  204. unsigned long npages;
  205. unsigned long i;
  206. struct kvm_memory_slot *memslot;
  207. struct kvm_memory_slot old, new;
  208. r = -EINVAL;
  209. /* General sanity checks */
  210. if (mem->memory_size & (PAGE_SIZE - 1))
  211. goto out;
  212. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  213. goto out;
  214. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  215. goto out;
  216. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  217. goto out;
  218. memslot = &kvm->memslots[mem->slot];
  219. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  220. npages = mem->memory_size >> PAGE_SHIFT;
  221. if (!npages)
  222. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  223. new = old = *memslot;
  224. new.base_gfn = base_gfn;
  225. new.npages = npages;
  226. new.flags = mem->flags;
  227. /* Disallow changing a memory slot's size. */
  228. r = -EINVAL;
  229. if (npages && old.npages && npages != old.npages)
  230. goto out_free;
  231. /* Check for overlaps */
  232. r = -EEXIST;
  233. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  234. struct kvm_memory_slot *s = &kvm->memslots[i];
  235. if (s == memslot)
  236. continue;
  237. if (!((base_gfn + npages <= s->base_gfn) ||
  238. (base_gfn >= s->base_gfn + s->npages)))
  239. goto out_free;
  240. }
  241. /* Free page dirty bitmap if unneeded */
  242. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  243. new.dirty_bitmap = NULL;
  244. r = -ENOMEM;
  245. /* Allocate if a slot is being created */
  246. if (npages && !new.rmap) {
  247. new.rmap = vmalloc(npages * sizeof(struct page *));
  248. if (!new.rmap)
  249. goto out_free;
  250. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  251. new.user_alloc = user_alloc;
  252. new.userspace_addr = mem->userspace_addr;
  253. }
  254. /* Allocate page dirty bitmap if needed */
  255. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  256. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  257. new.dirty_bitmap = vmalloc(dirty_bytes);
  258. if (!new.dirty_bitmap)
  259. goto out_free;
  260. memset(new.dirty_bitmap, 0, dirty_bytes);
  261. }
  262. if (mem->slot >= kvm->nmemslots)
  263. kvm->nmemslots = mem->slot + 1;
  264. *memslot = new;
  265. r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
  266. if (r) {
  267. *memslot = old;
  268. goto out_free;
  269. }
  270. kvm_free_physmem_slot(&old, &new);
  271. return 0;
  272. out_free:
  273. kvm_free_physmem_slot(&new, &old);
  274. out:
  275. return r;
  276. }
  277. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  278. int kvm_set_memory_region(struct kvm *kvm,
  279. struct kvm_userspace_memory_region *mem,
  280. int user_alloc)
  281. {
  282. int r;
  283. mutex_lock(&kvm->lock);
  284. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  285. mutex_unlock(&kvm->lock);
  286. return r;
  287. }
  288. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  289. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  290. struct
  291. kvm_userspace_memory_region *mem,
  292. int user_alloc)
  293. {
  294. if (mem->slot >= KVM_MEMORY_SLOTS)
  295. return -EINVAL;
  296. return kvm_set_memory_region(kvm, mem, user_alloc);
  297. }
  298. int kvm_get_dirty_log(struct kvm *kvm,
  299. struct kvm_dirty_log *log, int *is_dirty)
  300. {
  301. struct kvm_memory_slot *memslot;
  302. int r, i;
  303. int n;
  304. unsigned long any = 0;
  305. r = -EINVAL;
  306. if (log->slot >= KVM_MEMORY_SLOTS)
  307. goto out;
  308. memslot = &kvm->memslots[log->slot];
  309. r = -ENOENT;
  310. if (!memslot->dirty_bitmap)
  311. goto out;
  312. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  313. for (i = 0; !any && i < n/sizeof(long); ++i)
  314. any = memslot->dirty_bitmap[i];
  315. r = -EFAULT;
  316. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  317. goto out;
  318. if (any)
  319. *is_dirty = 1;
  320. r = 0;
  321. out:
  322. return r;
  323. }
  324. int is_error_page(struct page *page)
  325. {
  326. return page == bad_page;
  327. }
  328. EXPORT_SYMBOL_GPL(is_error_page);
  329. static inline unsigned long bad_hva(void)
  330. {
  331. return PAGE_OFFSET;
  332. }
  333. int kvm_is_error_hva(unsigned long addr)
  334. {
  335. return addr == bad_hva();
  336. }
  337. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  338. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  339. {
  340. int i;
  341. for (i = 0; i < kvm->nmemslots; ++i) {
  342. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  343. if (gfn >= memslot->base_gfn
  344. && gfn < memslot->base_gfn + memslot->npages)
  345. return memslot;
  346. }
  347. return NULL;
  348. }
  349. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  350. {
  351. gfn = unalias_gfn(kvm, gfn);
  352. return __gfn_to_memslot(kvm, gfn);
  353. }
  354. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  355. {
  356. int i;
  357. gfn = unalias_gfn(kvm, gfn);
  358. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  359. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  360. if (gfn >= memslot->base_gfn
  361. && gfn < memslot->base_gfn + memslot->npages)
  362. return 1;
  363. }
  364. return 0;
  365. }
  366. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  367. static unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  368. {
  369. struct kvm_memory_slot *slot;
  370. gfn = unalias_gfn(kvm, gfn);
  371. slot = __gfn_to_memslot(kvm, gfn);
  372. if (!slot)
  373. return bad_hva();
  374. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  375. }
  376. /*
  377. * Requires current->mm->mmap_sem to be held
  378. */
  379. static struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn)
  380. {
  381. struct page *page[1];
  382. unsigned long addr;
  383. int npages;
  384. might_sleep();
  385. addr = gfn_to_hva(kvm, gfn);
  386. if (kvm_is_error_hva(addr)) {
  387. get_page(bad_page);
  388. return bad_page;
  389. }
  390. npages = get_user_pages(current, current->mm, addr, 1, 1, 1, page,
  391. NULL);
  392. if (npages != 1) {
  393. get_page(bad_page);
  394. return bad_page;
  395. }
  396. return page[0];
  397. }
  398. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  399. {
  400. struct page *page;
  401. down_read(&current->mm->mmap_sem);
  402. page = __gfn_to_page(kvm, gfn);
  403. up_read(&current->mm->mmap_sem);
  404. return page;
  405. }
  406. EXPORT_SYMBOL_GPL(gfn_to_page);
  407. void kvm_release_page_clean(struct page *page)
  408. {
  409. put_page(page);
  410. }
  411. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  412. void kvm_release_page_dirty(struct page *page)
  413. {
  414. if (!PageReserved(page))
  415. SetPageDirty(page);
  416. put_page(page);
  417. }
  418. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  419. static int next_segment(unsigned long len, int offset)
  420. {
  421. if (len > PAGE_SIZE - offset)
  422. return PAGE_SIZE - offset;
  423. else
  424. return len;
  425. }
  426. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  427. int len)
  428. {
  429. int r;
  430. unsigned long addr;
  431. addr = gfn_to_hva(kvm, gfn);
  432. if (kvm_is_error_hva(addr))
  433. return -EFAULT;
  434. r = copy_from_user(data, (void __user *)addr + offset, len);
  435. if (r)
  436. return -EFAULT;
  437. return 0;
  438. }
  439. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  440. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  441. {
  442. gfn_t gfn = gpa >> PAGE_SHIFT;
  443. int seg;
  444. int offset = offset_in_page(gpa);
  445. int ret;
  446. while ((seg = next_segment(len, offset)) != 0) {
  447. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  448. if (ret < 0)
  449. return ret;
  450. offset = 0;
  451. len -= seg;
  452. data += seg;
  453. ++gfn;
  454. }
  455. return 0;
  456. }
  457. EXPORT_SYMBOL_GPL(kvm_read_guest);
  458. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  459. int offset, int len)
  460. {
  461. int r;
  462. unsigned long addr;
  463. addr = gfn_to_hva(kvm, gfn);
  464. if (kvm_is_error_hva(addr))
  465. return -EFAULT;
  466. r = copy_to_user((void __user *)addr + offset, data, len);
  467. if (r)
  468. return -EFAULT;
  469. mark_page_dirty(kvm, gfn);
  470. return 0;
  471. }
  472. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  473. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  474. unsigned long len)
  475. {
  476. gfn_t gfn = gpa >> PAGE_SHIFT;
  477. int seg;
  478. int offset = offset_in_page(gpa);
  479. int ret;
  480. while ((seg = next_segment(len, offset)) != 0) {
  481. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  482. if (ret < 0)
  483. return ret;
  484. offset = 0;
  485. len -= seg;
  486. data += seg;
  487. ++gfn;
  488. }
  489. return 0;
  490. }
  491. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  492. {
  493. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  494. }
  495. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  496. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  497. {
  498. gfn_t gfn = gpa >> PAGE_SHIFT;
  499. int seg;
  500. int offset = offset_in_page(gpa);
  501. int ret;
  502. while ((seg = next_segment(len, offset)) != 0) {
  503. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  504. if (ret < 0)
  505. return ret;
  506. offset = 0;
  507. len -= seg;
  508. ++gfn;
  509. }
  510. return 0;
  511. }
  512. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  513. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  514. {
  515. struct kvm_memory_slot *memslot;
  516. gfn = unalias_gfn(kvm, gfn);
  517. memslot = __gfn_to_memslot(kvm, gfn);
  518. if (memslot && memslot->dirty_bitmap) {
  519. unsigned long rel_gfn = gfn - memslot->base_gfn;
  520. /* avoid RMW */
  521. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  522. set_bit(rel_gfn, memslot->dirty_bitmap);
  523. }
  524. }
  525. /*
  526. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  527. */
  528. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  529. {
  530. DECLARE_WAITQUEUE(wait, current);
  531. add_wait_queue(&vcpu->wq, &wait);
  532. /*
  533. * We will block until either an interrupt or a signal wakes us up
  534. */
  535. while (!kvm_cpu_has_interrupt(vcpu)
  536. && !signal_pending(current)
  537. && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
  538. && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
  539. set_current_state(TASK_INTERRUPTIBLE);
  540. vcpu_put(vcpu);
  541. schedule();
  542. vcpu_load(vcpu);
  543. }
  544. __set_current_state(TASK_RUNNING);
  545. remove_wait_queue(&vcpu->wq, &wait);
  546. }
  547. void kvm_resched(struct kvm_vcpu *vcpu)
  548. {
  549. if (!need_resched())
  550. return;
  551. cond_resched();
  552. }
  553. EXPORT_SYMBOL_GPL(kvm_resched);
  554. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  555. struct kvm_interrupt *irq)
  556. {
  557. if (irq->irq < 0 || irq->irq >= 256)
  558. return -EINVAL;
  559. if (irqchip_in_kernel(vcpu->kvm))
  560. return -ENXIO;
  561. vcpu_load(vcpu);
  562. set_bit(irq->irq, vcpu->irq_pending);
  563. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  564. vcpu_put(vcpu);
  565. return 0;
  566. }
  567. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  568. unsigned long address,
  569. int *type)
  570. {
  571. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  572. unsigned long pgoff;
  573. struct page *page;
  574. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  575. if (pgoff == 0)
  576. page = virt_to_page(vcpu->run);
  577. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  578. page = virt_to_page(vcpu->pio_data);
  579. else
  580. return NOPAGE_SIGBUS;
  581. get_page(page);
  582. if (type != NULL)
  583. *type = VM_FAULT_MINOR;
  584. return page;
  585. }
  586. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  587. .nopage = kvm_vcpu_nopage,
  588. };
  589. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  590. {
  591. vma->vm_ops = &kvm_vcpu_vm_ops;
  592. return 0;
  593. }
  594. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  595. {
  596. struct kvm_vcpu *vcpu = filp->private_data;
  597. fput(vcpu->kvm->filp);
  598. return 0;
  599. }
  600. static struct file_operations kvm_vcpu_fops = {
  601. .release = kvm_vcpu_release,
  602. .unlocked_ioctl = kvm_vcpu_ioctl,
  603. .compat_ioctl = kvm_vcpu_ioctl,
  604. .mmap = kvm_vcpu_mmap,
  605. };
  606. /*
  607. * Allocates an inode for the vcpu.
  608. */
  609. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  610. {
  611. int fd, r;
  612. struct inode *inode;
  613. struct file *file;
  614. r = anon_inode_getfd(&fd, &inode, &file,
  615. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  616. if (r)
  617. return r;
  618. atomic_inc(&vcpu->kvm->filp->f_count);
  619. return fd;
  620. }
  621. /*
  622. * Creates some virtual cpus. Good luck creating more than one.
  623. */
  624. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  625. {
  626. int r;
  627. struct kvm_vcpu *vcpu;
  628. if (!valid_vcpu(n))
  629. return -EINVAL;
  630. vcpu = kvm_arch_vcpu_create(kvm, n);
  631. if (IS_ERR(vcpu))
  632. return PTR_ERR(vcpu);
  633. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  634. r = kvm_arch_vcpu_setup(vcpu);
  635. if (r)
  636. goto vcpu_destroy;
  637. mutex_lock(&kvm->lock);
  638. if (kvm->vcpus[n]) {
  639. r = -EEXIST;
  640. mutex_unlock(&kvm->lock);
  641. goto vcpu_destroy;
  642. }
  643. kvm->vcpus[n] = vcpu;
  644. mutex_unlock(&kvm->lock);
  645. /* Now it's all set up, let userspace reach it */
  646. r = create_vcpu_fd(vcpu);
  647. if (r < 0)
  648. goto unlink;
  649. return r;
  650. unlink:
  651. mutex_lock(&kvm->lock);
  652. kvm->vcpus[n] = NULL;
  653. mutex_unlock(&kvm->lock);
  654. vcpu_destroy:
  655. kvm_arch_vcpu_destroy(vcpu);
  656. return r;
  657. }
  658. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  659. {
  660. if (sigset) {
  661. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  662. vcpu->sigset_active = 1;
  663. vcpu->sigset = *sigset;
  664. } else
  665. vcpu->sigset_active = 0;
  666. return 0;
  667. }
  668. static long kvm_vcpu_ioctl(struct file *filp,
  669. unsigned int ioctl, unsigned long arg)
  670. {
  671. struct kvm_vcpu *vcpu = filp->private_data;
  672. void __user *argp = (void __user *)arg;
  673. int r;
  674. if (vcpu->kvm->mm != current->mm)
  675. return -EIO;
  676. switch (ioctl) {
  677. case KVM_RUN:
  678. r = -EINVAL;
  679. if (arg)
  680. goto out;
  681. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  682. break;
  683. case KVM_GET_REGS: {
  684. struct kvm_regs kvm_regs;
  685. memset(&kvm_regs, 0, sizeof kvm_regs);
  686. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  687. if (r)
  688. goto out;
  689. r = -EFAULT;
  690. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  691. goto out;
  692. r = 0;
  693. break;
  694. }
  695. case KVM_SET_REGS: {
  696. struct kvm_regs kvm_regs;
  697. r = -EFAULT;
  698. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  699. goto out;
  700. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  701. if (r)
  702. goto out;
  703. r = 0;
  704. break;
  705. }
  706. case KVM_GET_SREGS: {
  707. struct kvm_sregs kvm_sregs;
  708. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  709. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  710. if (r)
  711. goto out;
  712. r = -EFAULT;
  713. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  714. goto out;
  715. r = 0;
  716. break;
  717. }
  718. case KVM_SET_SREGS: {
  719. struct kvm_sregs kvm_sregs;
  720. r = -EFAULT;
  721. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  722. goto out;
  723. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  724. if (r)
  725. goto out;
  726. r = 0;
  727. break;
  728. }
  729. case KVM_TRANSLATE: {
  730. struct kvm_translation tr;
  731. r = -EFAULT;
  732. if (copy_from_user(&tr, argp, sizeof tr))
  733. goto out;
  734. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  735. if (r)
  736. goto out;
  737. r = -EFAULT;
  738. if (copy_to_user(argp, &tr, sizeof tr))
  739. goto out;
  740. r = 0;
  741. break;
  742. }
  743. case KVM_INTERRUPT: {
  744. struct kvm_interrupt irq;
  745. r = -EFAULT;
  746. if (copy_from_user(&irq, argp, sizeof irq))
  747. goto out;
  748. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  749. if (r)
  750. goto out;
  751. r = 0;
  752. break;
  753. }
  754. case KVM_DEBUG_GUEST: {
  755. struct kvm_debug_guest dbg;
  756. r = -EFAULT;
  757. if (copy_from_user(&dbg, argp, sizeof dbg))
  758. goto out;
  759. r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
  760. if (r)
  761. goto out;
  762. r = 0;
  763. break;
  764. }
  765. case KVM_SET_SIGNAL_MASK: {
  766. struct kvm_signal_mask __user *sigmask_arg = argp;
  767. struct kvm_signal_mask kvm_sigmask;
  768. sigset_t sigset, *p;
  769. p = NULL;
  770. if (argp) {
  771. r = -EFAULT;
  772. if (copy_from_user(&kvm_sigmask, argp,
  773. sizeof kvm_sigmask))
  774. goto out;
  775. r = -EINVAL;
  776. if (kvm_sigmask.len != sizeof sigset)
  777. goto out;
  778. r = -EFAULT;
  779. if (copy_from_user(&sigset, sigmask_arg->sigset,
  780. sizeof sigset))
  781. goto out;
  782. p = &sigset;
  783. }
  784. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  785. break;
  786. }
  787. case KVM_GET_FPU: {
  788. struct kvm_fpu fpu;
  789. memset(&fpu, 0, sizeof fpu);
  790. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, &fpu);
  791. if (r)
  792. goto out;
  793. r = -EFAULT;
  794. if (copy_to_user(argp, &fpu, sizeof fpu))
  795. goto out;
  796. r = 0;
  797. break;
  798. }
  799. case KVM_SET_FPU: {
  800. struct kvm_fpu fpu;
  801. r = -EFAULT;
  802. if (copy_from_user(&fpu, argp, sizeof fpu))
  803. goto out;
  804. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, &fpu);
  805. if (r)
  806. goto out;
  807. r = 0;
  808. break;
  809. }
  810. default:
  811. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  812. }
  813. out:
  814. return r;
  815. }
  816. static long kvm_vm_ioctl(struct file *filp,
  817. unsigned int ioctl, unsigned long arg)
  818. {
  819. struct kvm *kvm = filp->private_data;
  820. void __user *argp = (void __user *)arg;
  821. int r;
  822. if (kvm->mm != current->mm)
  823. return -EIO;
  824. switch (ioctl) {
  825. case KVM_CREATE_VCPU:
  826. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  827. if (r < 0)
  828. goto out;
  829. break;
  830. case KVM_SET_USER_MEMORY_REGION: {
  831. struct kvm_userspace_memory_region kvm_userspace_mem;
  832. r = -EFAULT;
  833. if (copy_from_user(&kvm_userspace_mem, argp,
  834. sizeof kvm_userspace_mem))
  835. goto out;
  836. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  837. if (r)
  838. goto out;
  839. break;
  840. }
  841. case KVM_GET_DIRTY_LOG: {
  842. struct kvm_dirty_log log;
  843. r = -EFAULT;
  844. if (copy_from_user(&log, argp, sizeof log))
  845. goto out;
  846. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  847. if (r)
  848. goto out;
  849. break;
  850. }
  851. default:
  852. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  853. }
  854. out:
  855. return r;
  856. }
  857. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  858. unsigned long address,
  859. int *type)
  860. {
  861. struct kvm *kvm = vma->vm_file->private_data;
  862. unsigned long pgoff;
  863. struct page *page;
  864. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  865. if (!kvm_is_visible_gfn(kvm, pgoff))
  866. return NOPAGE_SIGBUS;
  867. /* current->mm->mmap_sem is already held so call lockless version */
  868. page = __gfn_to_page(kvm, pgoff);
  869. if (is_error_page(page)) {
  870. kvm_release_page_clean(page);
  871. return NOPAGE_SIGBUS;
  872. }
  873. if (type != NULL)
  874. *type = VM_FAULT_MINOR;
  875. return page;
  876. }
  877. static struct vm_operations_struct kvm_vm_vm_ops = {
  878. .nopage = kvm_vm_nopage,
  879. };
  880. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  881. {
  882. vma->vm_ops = &kvm_vm_vm_ops;
  883. return 0;
  884. }
  885. static struct file_operations kvm_vm_fops = {
  886. .release = kvm_vm_release,
  887. .unlocked_ioctl = kvm_vm_ioctl,
  888. .compat_ioctl = kvm_vm_ioctl,
  889. .mmap = kvm_vm_mmap,
  890. };
  891. static int kvm_dev_ioctl_create_vm(void)
  892. {
  893. int fd, r;
  894. struct inode *inode;
  895. struct file *file;
  896. struct kvm *kvm;
  897. kvm = kvm_create_vm();
  898. if (IS_ERR(kvm))
  899. return PTR_ERR(kvm);
  900. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  901. if (r) {
  902. kvm_destroy_vm(kvm);
  903. return r;
  904. }
  905. kvm->filp = file;
  906. return fd;
  907. }
  908. static long kvm_dev_ioctl(struct file *filp,
  909. unsigned int ioctl, unsigned long arg)
  910. {
  911. void __user *argp = (void __user *)arg;
  912. long r = -EINVAL;
  913. switch (ioctl) {
  914. case KVM_GET_API_VERSION:
  915. r = -EINVAL;
  916. if (arg)
  917. goto out;
  918. r = KVM_API_VERSION;
  919. break;
  920. case KVM_CREATE_VM:
  921. r = -EINVAL;
  922. if (arg)
  923. goto out;
  924. r = kvm_dev_ioctl_create_vm();
  925. break;
  926. case KVM_CHECK_EXTENSION:
  927. r = kvm_dev_ioctl_check_extension((long)argp);
  928. break;
  929. case KVM_GET_VCPU_MMAP_SIZE:
  930. r = -EINVAL;
  931. if (arg)
  932. goto out;
  933. r = 2 * PAGE_SIZE;
  934. break;
  935. default:
  936. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  937. }
  938. out:
  939. return r;
  940. }
  941. static struct file_operations kvm_chardev_ops = {
  942. .unlocked_ioctl = kvm_dev_ioctl,
  943. .compat_ioctl = kvm_dev_ioctl,
  944. };
  945. static struct miscdevice kvm_dev = {
  946. KVM_MINOR,
  947. "kvm",
  948. &kvm_chardev_ops,
  949. };
  950. static void hardware_enable(void *junk)
  951. {
  952. int cpu = raw_smp_processor_id();
  953. if (cpu_isset(cpu, cpus_hardware_enabled))
  954. return;
  955. cpu_set(cpu, cpus_hardware_enabled);
  956. kvm_arch_hardware_enable(NULL);
  957. }
  958. static void hardware_disable(void *junk)
  959. {
  960. int cpu = raw_smp_processor_id();
  961. if (!cpu_isset(cpu, cpus_hardware_enabled))
  962. return;
  963. cpu_clear(cpu, cpus_hardware_enabled);
  964. decache_vcpus_on_cpu(cpu);
  965. kvm_arch_hardware_disable(NULL);
  966. }
  967. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  968. void *v)
  969. {
  970. int cpu = (long)v;
  971. val &= ~CPU_TASKS_FROZEN;
  972. switch (val) {
  973. case CPU_DYING:
  974. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  975. cpu);
  976. hardware_disable(NULL);
  977. break;
  978. case CPU_UP_CANCELED:
  979. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  980. cpu);
  981. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  982. break;
  983. case CPU_ONLINE:
  984. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  985. cpu);
  986. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  987. break;
  988. }
  989. return NOTIFY_OK;
  990. }
  991. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  992. void *v)
  993. {
  994. if (val == SYS_RESTART) {
  995. /*
  996. * Some (well, at least mine) BIOSes hang on reboot if
  997. * in vmx root mode.
  998. */
  999. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1000. on_each_cpu(hardware_disable, NULL, 0, 1);
  1001. }
  1002. return NOTIFY_OK;
  1003. }
  1004. static struct notifier_block kvm_reboot_notifier = {
  1005. .notifier_call = kvm_reboot,
  1006. .priority = 0,
  1007. };
  1008. void kvm_io_bus_init(struct kvm_io_bus *bus)
  1009. {
  1010. memset(bus, 0, sizeof(*bus));
  1011. }
  1012. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1013. {
  1014. int i;
  1015. for (i = 0; i < bus->dev_count; i++) {
  1016. struct kvm_io_device *pos = bus->devs[i];
  1017. kvm_iodevice_destructor(pos);
  1018. }
  1019. }
  1020. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  1021. {
  1022. int i;
  1023. for (i = 0; i < bus->dev_count; i++) {
  1024. struct kvm_io_device *pos = bus->devs[i];
  1025. if (pos->in_range(pos, addr))
  1026. return pos;
  1027. }
  1028. return NULL;
  1029. }
  1030. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  1031. {
  1032. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  1033. bus->devs[bus->dev_count++] = dev;
  1034. }
  1035. static struct notifier_block kvm_cpu_notifier = {
  1036. .notifier_call = kvm_cpu_hotplug,
  1037. .priority = 20, /* must be > scheduler priority */
  1038. };
  1039. static u64 vm_stat_get(void *_offset)
  1040. {
  1041. unsigned offset = (long)_offset;
  1042. u64 total = 0;
  1043. struct kvm *kvm;
  1044. spin_lock(&kvm_lock);
  1045. list_for_each_entry(kvm, &vm_list, vm_list)
  1046. total += *(u32 *)((void *)kvm + offset);
  1047. spin_unlock(&kvm_lock);
  1048. return total;
  1049. }
  1050. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  1051. static u64 vcpu_stat_get(void *_offset)
  1052. {
  1053. unsigned offset = (long)_offset;
  1054. u64 total = 0;
  1055. struct kvm *kvm;
  1056. struct kvm_vcpu *vcpu;
  1057. int i;
  1058. spin_lock(&kvm_lock);
  1059. list_for_each_entry(kvm, &vm_list, vm_list)
  1060. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1061. vcpu = kvm->vcpus[i];
  1062. if (vcpu)
  1063. total += *(u32 *)((void *)vcpu + offset);
  1064. }
  1065. spin_unlock(&kvm_lock);
  1066. return total;
  1067. }
  1068. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  1069. static struct file_operations *stat_fops[] = {
  1070. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  1071. [KVM_STAT_VM] = &vm_stat_fops,
  1072. };
  1073. static void kvm_init_debug(void)
  1074. {
  1075. struct kvm_stats_debugfs_item *p;
  1076. debugfs_dir = debugfs_create_dir("kvm", NULL);
  1077. for (p = debugfs_entries; p->name; ++p)
  1078. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  1079. (void *)(long)p->offset,
  1080. stat_fops[p->kind]);
  1081. }
  1082. static void kvm_exit_debug(void)
  1083. {
  1084. struct kvm_stats_debugfs_item *p;
  1085. for (p = debugfs_entries; p->name; ++p)
  1086. debugfs_remove(p->dentry);
  1087. debugfs_remove(debugfs_dir);
  1088. }
  1089. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1090. {
  1091. hardware_disable(NULL);
  1092. return 0;
  1093. }
  1094. static int kvm_resume(struct sys_device *dev)
  1095. {
  1096. hardware_enable(NULL);
  1097. return 0;
  1098. }
  1099. static struct sysdev_class kvm_sysdev_class = {
  1100. .name = "kvm",
  1101. .suspend = kvm_suspend,
  1102. .resume = kvm_resume,
  1103. };
  1104. static struct sys_device kvm_sysdev = {
  1105. .id = 0,
  1106. .cls = &kvm_sysdev_class,
  1107. };
  1108. struct page *bad_page;
  1109. static inline
  1110. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  1111. {
  1112. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  1113. }
  1114. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  1115. {
  1116. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1117. kvm_arch_vcpu_load(vcpu, cpu);
  1118. }
  1119. static void kvm_sched_out(struct preempt_notifier *pn,
  1120. struct task_struct *next)
  1121. {
  1122. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1123. kvm_arch_vcpu_put(vcpu);
  1124. }
  1125. int kvm_init(void *opaque, unsigned int vcpu_size,
  1126. struct module *module)
  1127. {
  1128. int r;
  1129. int cpu;
  1130. kvm_init_debug();
  1131. r = kvm_arch_init(opaque);
  1132. if (r)
  1133. goto out4;
  1134. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1135. if (bad_page == NULL) {
  1136. r = -ENOMEM;
  1137. goto out;
  1138. }
  1139. r = kvm_arch_hardware_setup();
  1140. if (r < 0)
  1141. goto out;
  1142. for_each_online_cpu(cpu) {
  1143. smp_call_function_single(cpu,
  1144. kvm_arch_check_processor_compat,
  1145. &r, 0, 1);
  1146. if (r < 0)
  1147. goto out_free_0;
  1148. }
  1149. on_each_cpu(hardware_enable, NULL, 0, 1);
  1150. r = register_cpu_notifier(&kvm_cpu_notifier);
  1151. if (r)
  1152. goto out_free_1;
  1153. register_reboot_notifier(&kvm_reboot_notifier);
  1154. r = sysdev_class_register(&kvm_sysdev_class);
  1155. if (r)
  1156. goto out_free_2;
  1157. r = sysdev_register(&kvm_sysdev);
  1158. if (r)
  1159. goto out_free_3;
  1160. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  1161. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  1162. __alignof__(struct kvm_vcpu),
  1163. 0, NULL);
  1164. if (!kvm_vcpu_cache) {
  1165. r = -ENOMEM;
  1166. goto out_free_4;
  1167. }
  1168. kvm_chardev_ops.owner = module;
  1169. r = misc_register(&kvm_dev);
  1170. if (r) {
  1171. printk(KERN_ERR "kvm: misc device register failed\n");
  1172. goto out_free;
  1173. }
  1174. kvm_preempt_ops.sched_in = kvm_sched_in;
  1175. kvm_preempt_ops.sched_out = kvm_sched_out;
  1176. return 0;
  1177. out_free:
  1178. kmem_cache_destroy(kvm_vcpu_cache);
  1179. out_free_4:
  1180. sysdev_unregister(&kvm_sysdev);
  1181. out_free_3:
  1182. sysdev_class_unregister(&kvm_sysdev_class);
  1183. out_free_2:
  1184. unregister_reboot_notifier(&kvm_reboot_notifier);
  1185. unregister_cpu_notifier(&kvm_cpu_notifier);
  1186. out_free_1:
  1187. on_each_cpu(hardware_disable, NULL, 0, 1);
  1188. out_free_0:
  1189. kvm_arch_hardware_unsetup();
  1190. out:
  1191. kvm_arch_exit();
  1192. kvm_exit_debug();
  1193. out4:
  1194. return r;
  1195. }
  1196. EXPORT_SYMBOL_GPL(kvm_init);
  1197. void kvm_exit(void)
  1198. {
  1199. misc_deregister(&kvm_dev);
  1200. kmem_cache_destroy(kvm_vcpu_cache);
  1201. sysdev_unregister(&kvm_sysdev);
  1202. sysdev_class_unregister(&kvm_sysdev_class);
  1203. unregister_reboot_notifier(&kvm_reboot_notifier);
  1204. unregister_cpu_notifier(&kvm_cpu_notifier);
  1205. on_each_cpu(hardware_disable, NULL, 0, 1);
  1206. kvm_arch_hardware_unsetup();
  1207. kvm_arch_exit();
  1208. kvm_exit_debug();
  1209. __free_page(bad_page);
  1210. }
  1211. EXPORT_SYMBOL_GPL(kvm_exit);