dma-mapping.c 40 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529
  1. /*
  2. * linux/arch/arm/mm/dma-mapping.c
  3. *
  4. * Copyright (C) 2000-2004 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. *
  10. * DMA uncached mapping support.
  11. */
  12. #include <linux/module.h>
  13. #include <linux/mm.h>
  14. #include <linux/gfp.h>
  15. #include <linux/errno.h>
  16. #include <linux/list.h>
  17. #include <linux/init.h>
  18. #include <linux/device.h>
  19. #include <linux/dma-mapping.h>
  20. #include <linux/dma-contiguous.h>
  21. #include <linux/highmem.h>
  22. #include <linux/memblock.h>
  23. #include <linux/slab.h>
  24. #include <linux/iommu.h>
  25. #include <linux/io.h>
  26. #include <linux/vmalloc.h>
  27. #include <asm/memory.h>
  28. #include <asm/highmem.h>
  29. #include <asm/cacheflush.h>
  30. #include <asm/tlbflush.h>
  31. #include <asm/sizes.h>
  32. #include <asm/mach/arch.h>
  33. #include <asm/dma-iommu.h>
  34. #include <asm/mach/map.h>
  35. #include <asm/system_info.h>
  36. #include <asm/dma-contiguous.h>
  37. #include "mm.h"
  38. /*
  39. * The DMA API is built upon the notion of "buffer ownership". A buffer
  40. * is either exclusively owned by the CPU (and therefore may be accessed
  41. * by it) or exclusively owned by the DMA device. These helper functions
  42. * represent the transitions between these two ownership states.
  43. *
  44. * Note, however, that on later ARMs, this notion does not work due to
  45. * speculative prefetches. We model our approach on the assumption that
  46. * the CPU does do speculative prefetches, which means we clean caches
  47. * before transfers and delay cache invalidation until transfer completion.
  48. *
  49. */
  50. static void __dma_page_cpu_to_dev(struct page *, unsigned long,
  51. size_t, enum dma_data_direction);
  52. static void __dma_page_dev_to_cpu(struct page *, unsigned long,
  53. size_t, enum dma_data_direction);
  54. /**
  55. * arm_dma_map_page - map a portion of a page for streaming DMA
  56. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  57. * @page: page that buffer resides in
  58. * @offset: offset into page for start of buffer
  59. * @size: size of buffer to map
  60. * @dir: DMA transfer direction
  61. *
  62. * Ensure that any data held in the cache is appropriately discarded
  63. * or written back.
  64. *
  65. * The device owns this memory once this call has completed. The CPU
  66. * can regain ownership by calling dma_unmap_page().
  67. */
  68. static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
  69. unsigned long offset, size_t size, enum dma_data_direction dir,
  70. struct dma_attrs *attrs)
  71. {
  72. if (!arch_is_coherent())
  73. __dma_page_cpu_to_dev(page, offset, size, dir);
  74. return pfn_to_dma(dev, page_to_pfn(page)) + offset;
  75. }
  76. /**
  77. * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
  78. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  79. * @handle: DMA address of buffer
  80. * @size: size of buffer (same as passed to dma_map_page)
  81. * @dir: DMA transfer direction (same as passed to dma_map_page)
  82. *
  83. * Unmap a page streaming mode DMA translation. The handle and size
  84. * must match what was provided in the previous dma_map_page() call.
  85. * All other usages are undefined.
  86. *
  87. * After this call, reads by the CPU to the buffer are guaranteed to see
  88. * whatever the device wrote there.
  89. */
  90. static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
  91. size_t size, enum dma_data_direction dir,
  92. struct dma_attrs *attrs)
  93. {
  94. if (!arch_is_coherent())
  95. __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
  96. handle & ~PAGE_MASK, size, dir);
  97. }
  98. static void arm_dma_sync_single_for_cpu(struct device *dev,
  99. dma_addr_t handle, size_t size, enum dma_data_direction dir)
  100. {
  101. unsigned int offset = handle & (PAGE_SIZE - 1);
  102. struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
  103. if (!arch_is_coherent())
  104. __dma_page_dev_to_cpu(page, offset, size, dir);
  105. }
  106. static void arm_dma_sync_single_for_device(struct device *dev,
  107. dma_addr_t handle, size_t size, enum dma_data_direction dir)
  108. {
  109. unsigned int offset = handle & (PAGE_SIZE - 1);
  110. struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
  111. if (!arch_is_coherent())
  112. __dma_page_cpu_to_dev(page, offset, size, dir);
  113. }
  114. static int arm_dma_set_mask(struct device *dev, u64 dma_mask);
  115. struct dma_map_ops arm_dma_ops = {
  116. .alloc = arm_dma_alloc,
  117. .free = arm_dma_free,
  118. .mmap = arm_dma_mmap,
  119. .map_page = arm_dma_map_page,
  120. .unmap_page = arm_dma_unmap_page,
  121. .map_sg = arm_dma_map_sg,
  122. .unmap_sg = arm_dma_unmap_sg,
  123. .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
  124. .sync_single_for_device = arm_dma_sync_single_for_device,
  125. .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
  126. .sync_sg_for_device = arm_dma_sync_sg_for_device,
  127. .set_dma_mask = arm_dma_set_mask,
  128. };
  129. EXPORT_SYMBOL(arm_dma_ops);
  130. static u64 get_coherent_dma_mask(struct device *dev)
  131. {
  132. u64 mask = (u64)arm_dma_limit;
  133. if (dev) {
  134. mask = dev->coherent_dma_mask;
  135. /*
  136. * Sanity check the DMA mask - it must be non-zero, and
  137. * must be able to be satisfied by a DMA allocation.
  138. */
  139. if (mask == 0) {
  140. dev_warn(dev, "coherent DMA mask is unset\n");
  141. return 0;
  142. }
  143. if ((~mask) & (u64)arm_dma_limit) {
  144. dev_warn(dev, "coherent DMA mask %#llx is smaller "
  145. "than system GFP_DMA mask %#llx\n",
  146. mask, (u64)arm_dma_limit);
  147. return 0;
  148. }
  149. }
  150. return mask;
  151. }
  152. static void __dma_clear_buffer(struct page *page, size_t size)
  153. {
  154. void *ptr;
  155. /*
  156. * Ensure that the allocated pages are zeroed, and that any data
  157. * lurking in the kernel direct-mapped region is invalidated.
  158. */
  159. ptr = page_address(page);
  160. if (ptr) {
  161. memset(ptr, 0, size);
  162. dmac_flush_range(ptr, ptr + size);
  163. outer_flush_range(__pa(ptr), __pa(ptr) + size);
  164. }
  165. }
  166. /*
  167. * Allocate a DMA buffer for 'dev' of size 'size' using the
  168. * specified gfp mask. Note that 'size' must be page aligned.
  169. */
  170. static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
  171. {
  172. unsigned long order = get_order(size);
  173. struct page *page, *p, *e;
  174. page = alloc_pages(gfp, order);
  175. if (!page)
  176. return NULL;
  177. /*
  178. * Now split the huge page and free the excess pages
  179. */
  180. split_page(page, order);
  181. for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
  182. __free_page(p);
  183. __dma_clear_buffer(page, size);
  184. return page;
  185. }
  186. /*
  187. * Free a DMA buffer. 'size' must be page aligned.
  188. */
  189. static void __dma_free_buffer(struct page *page, size_t size)
  190. {
  191. struct page *e = page + (size >> PAGE_SHIFT);
  192. while (page < e) {
  193. __free_page(page);
  194. page++;
  195. }
  196. }
  197. #ifdef CONFIG_MMU
  198. #ifdef CONFIG_HUGETLB_PAGE
  199. #error ARM Coherent DMA allocator does not (yet) support huge TLB
  200. #endif
  201. static void *__alloc_from_contiguous(struct device *dev, size_t size,
  202. pgprot_t prot, struct page **ret_page);
  203. static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
  204. pgprot_t prot, struct page **ret_page,
  205. const void *caller);
  206. static void *
  207. __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
  208. const void *caller)
  209. {
  210. struct vm_struct *area;
  211. unsigned long addr;
  212. /*
  213. * DMA allocation can be mapped to user space, so lets
  214. * set VM_USERMAP flags too.
  215. */
  216. area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
  217. caller);
  218. if (!area)
  219. return NULL;
  220. addr = (unsigned long)area->addr;
  221. area->phys_addr = __pfn_to_phys(page_to_pfn(page));
  222. if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
  223. vunmap((void *)addr);
  224. return NULL;
  225. }
  226. return (void *)addr;
  227. }
  228. static void __dma_free_remap(void *cpu_addr, size_t size)
  229. {
  230. unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
  231. struct vm_struct *area = find_vm_area(cpu_addr);
  232. if (!area || (area->flags & flags) != flags) {
  233. WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
  234. return;
  235. }
  236. unmap_kernel_range((unsigned long)cpu_addr, size);
  237. vunmap(cpu_addr);
  238. }
  239. struct dma_pool {
  240. size_t size;
  241. spinlock_t lock;
  242. unsigned long *bitmap;
  243. unsigned long nr_pages;
  244. void *vaddr;
  245. struct page *page;
  246. };
  247. static struct dma_pool atomic_pool = {
  248. .size = SZ_256K,
  249. };
  250. static int __init early_coherent_pool(char *p)
  251. {
  252. atomic_pool.size = memparse(p, &p);
  253. return 0;
  254. }
  255. early_param("coherent_pool", early_coherent_pool);
  256. /*
  257. * Initialise the coherent pool for atomic allocations.
  258. */
  259. static int __init atomic_pool_init(void)
  260. {
  261. struct dma_pool *pool = &atomic_pool;
  262. pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
  263. unsigned long nr_pages = pool->size >> PAGE_SHIFT;
  264. unsigned long *bitmap;
  265. struct page *page;
  266. void *ptr;
  267. int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
  268. bitmap = kzalloc(bitmap_size, GFP_KERNEL);
  269. if (!bitmap)
  270. goto no_bitmap;
  271. if (IS_ENABLED(CONFIG_CMA))
  272. ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page);
  273. else
  274. ptr = __alloc_remap_buffer(NULL, pool->size, GFP_KERNEL, prot,
  275. &page, NULL);
  276. if (ptr) {
  277. spin_lock_init(&pool->lock);
  278. pool->vaddr = ptr;
  279. pool->page = page;
  280. pool->bitmap = bitmap;
  281. pool->nr_pages = nr_pages;
  282. pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
  283. (unsigned)pool->size / 1024);
  284. return 0;
  285. }
  286. kfree(bitmap);
  287. no_bitmap:
  288. pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
  289. (unsigned)pool->size / 1024);
  290. return -ENOMEM;
  291. }
  292. /*
  293. * CMA is activated by core_initcall, so we must be called after it.
  294. */
  295. postcore_initcall(atomic_pool_init);
  296. struct dma_contig_early_reserve {
  297. phys_addr_t base;
  298. unsigned long size;
  299. };
  300. static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
  301. static int dma_mmu_remap_num __initdata;
  302. void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
  303. {
  304. dma_mmu_remap[dma_mmu_remap_num].base = base;
  305. dma_mmu_remap[dma_mmu_remap_num].size = size;
  306. dma_mmu_remap_num++;
  307. }
  308. void __init dma_contiguous_remap(void)
  309. {
  310. int i;
  311. for (i = 0; i < dma_mmu_remap_num; i++) {
  312. phys_addr_t start = dma_mmu_remap[i].base;
  313. phys_addr_t end = start + dma_mmu_remap[i].size;
  314. struct map_desc map;
  315. unsigned long addr;
  316. if (end > arm_lowmem_limit)
  317. end = arm_lowmem_limit;
  318. if (start >= end)
  319. return;
  320. map.pfn = __phys_to_pfn(start);
  321. map.virtual = __phys_to_virt(start);
  322. map.length = end - start;
  323. map.type = MT_MEMORY_DMA_READY;
  324. /*
  325. * Clear previous low-memory mapping
  326. */
  327. for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
  328. addr += PMD_SIZE)
  329. pmd_clear(pmd_off_k(addr));
  330. iotable_init(&map, 1);
  331. }
  332. }
  333. static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
  334. void *data)
  335. {
  336. struct page *page = virt_to_page(addr);
  337. pgprot_t prot = *(pgprot_t *)data;
  338. set_pte_ext(pte, mk_pte(page, prot), 0);
  339. return 0;
  340. }
  341. static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
  342. {
  343. unsigned long start = (unsigned long) page_address(page);
  344. unsigned end = start + size;
  345. apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
  346. dsb();
  347. flush_tlb_kernel_range(start, end);
  348. }
  349. static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
  350. pgprot_t prot, struct page **ret_page,
  351. const void *caller)
  352. {
  353. struct page *page;
  354. void *ptr;
  355. page = __dma_alloc_buffer(dev, size, gfp);
  356. if (!page)
  357. return NULL;
  358. ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
  359. if (!ptr) {
  360. __dma_free_buffer(page, size);
  361. return NULL;
  362. }
  363. *ret_page = page;
  364. return ptr;
  365. }
  366. static void *__alloc_from_pool(size_t size, struct page **ret_page)
  367. {
  368. struct dma_pool *pool = &atomic_pool;
  369. unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
  370. unsigned int pageno;
  371. unsigned long flags;
  372. void *ptr = NULL;
  373. size_t align;
  374. if (!pool->vaddr) {
  375. WARN(1, "coherent pool not initialised!\n");
  376. return NULL;
  377. }
  378. /*
  379. * Align the region allocation - allocations from pool are rather
  380. * small, so align them to their order in pages, minimum is a page
  381. * size. This helps reduce fragmentation of the DMA space.
  382. */
  383. align = PAGE_SIZE << get_order(size);
  384. spin_lock_irqsave(&pool->lock, flags);
  385. pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
  386. 0, count, (1 << align) - 1);
  387. if (pageno < pool->nr_pages) {
  388. bitmap_set(pool->bitmap, pageno, count);
  389. ptr = pool->vaddr + PAGE_SIZE * pageno;
  390. *ret_page = pool->page + pageno;
  391. }
  392. spin_unlock_irqrestore(&pool->lock, flags);
  393. return ptr;
  394. }
  395. static int __free_from_pool(void *start, size_t size)
  396. {
  397. struct dma_pool *pool = &atomic_pool;
  398. unsigned long pageno, count;
  399. unsigned long flags;
  400. if (start < pool->vaddr || start > pool->vaddr + pool->size)
  401. return 0;
  402. if (start + size > pool->vaddr + pool->size) {
  403. WARN(1, "freeing wrong coherent size from pool\n");
  404. return 0;
  405. }
  406. pageno = (start - pool->vaddr) >> PAGE_SHIFT;
  407. count = size >> PAGE_SHIFT;
  408. spin_lock_irqsave(&pool->lock, flags);
  409. bitmap_clear(pool->bitmap, pageno, count);
  410. spin_unlock_irqrestore(&pool->lock, flags);
  411. return 1;
  412. }
  413. static void *__alloc_from_contiguous(struct device *dev, size_t size,
  414. pgprot_t prot, struct page **ret_page)
  415. {
  416. unsigned long order = get_order(size);
  417. size_t count = size >> PAGE_SHIFT;
  418. struct page *page;
  419. page = dma_alloc_from_contiguous(dev, count, order);
  420. if (!page)
  421. return NULL;
  422. __dma_clear_buffer(page, size);
  423. __dma_remap(page, size, prot);
  424. *ret_page = page;
  425. return page_address(page);
  426. }
  427. static void __free_from_contiguous(struct device *dev, struct page *page,
  428. size_t size)
  429. {
  430. __dma_remap(page, size, pgprot_kernel);
  431. dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
  432. }
  433. static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
  434. {
  435. prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
  436. pgprot_writecombine(prot) :
  437. pgprot_dmacoherent(prot);
  438. return prot;
  439. }
  440. #define nommu() 0
  441. #else /* !CONFIG_MMU */
  442. #define nommu() 1
  443. #define __get_dma_pgprot(attrs, prot) __pgprot(0)
  444. #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL
  445. #define __alloc_from_pool(size, ret_page) NULL
  446. #define __alloc_from_contiguous(dev, size, prot, ret) NULL
  447. #define __free_from_pool(cpu_addr, size) 0
  448. #define __free_from_contiguous(dev, page, size) do { } while (0)
  449. #define __dma_free_remap(cpu_addr, size) do { } while (0)
  450. #endif /* CONFIG_MMU */
  451. static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
  452. struct page **ret_page)
  453. {
  454. struct page *page;
  455. page = __dma_alloc_buffer(dev, size, gfp);
  456. if (!page)
  457. return NULL;
  458. *ret_page = page;
  459. return page_address(page);
  460. }
  461. static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
  462. gfp_t gfp, pgprot_t prot, const void *caller)
  463. {
  464. u64 mask = get_coherent_dma_mask(dev);
  465. struct page *page;
  466. void *addr;
  467. #ifdef CONFIG_DMA_API_DEBUG
  468. u64 limit = (mask + 1) & ~mask;
  469. if (limit && size >= limit) {
  470. dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
  471. size, mask);
  472. return NULL;
  473. }
  474. #endif
  475. if (!mask)
  476. return NULL;
  477. if (mask < 0xffffffffULL)
  478. gfp |= GFP_DMA;
  479. /*
  480. * Following is a work-around (a.k.a. hack) to prevent pages
  481. * with __GFP_COMP being passed to split_page() which cannot
  482. * handle them. The real problem is that this flag probably
  483. * should be 0 on ARM as it is not supported on this
  484. * platform; see CONFIG_HUGETLBFS.
  485. */
  486. gfp &= ~(__GFP_COMP);
  487. *handle = DMA_ERROR_CODE;
  488. size = PAGE_ALIGN(size);
  489. if (arch_is_coherent() || nommu())
  490. addr = __alloc_simple_buffer(dev, size, gfp, &page);
  491. else if (gfp & GFP_ATOMIC)
  492. addr = __alloc_from_pool(size, &page);
  493. else if (!IS_ENABLED(CONFIG_CMA))
  494. addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
  495. else
  496. addr = __alloc_from_contiguous(dev, size, prot, &page);
  497. if (addr)
  498. *handle = pfn_to_dma(dev, page_to_pfn(page));
  499. return addr;
  500. }
  501. /*
  502. * Allocate DMA-coherent memory space and return both the kernel remapped
  503. * virtual and bus address for that space.
  504. */
  505. void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
  506. gfp_t gfp, struct dma_attrs *attrs)
  507. {
  508. pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
  509. void *memory;
  510. if (dma_alloc_from_coherent(dev, size, handle, &memory))
  511. return memory;
  512. return __dma_alloc(dev, size, handle, gfp, prot,
  513. __builtin_return_address(0));
  514. }
  515. /*
  516. * Create userspace mapping for the DMA-coherent memory.
  517. */
  518. int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
  519. void *cpu_addr, dma_addr_t dma_addr, size_t size,
  520. struct dma_attrs *attrs)
  521. {
  522. int ret = -ENXIO;
  523. #ifdef CONFIG_MMU
  524. unsigned long pfn = dma_to_pfn(dev, dma_addr);
  525. vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
  526. if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
  527. return ret;
  528. ret = remap_pfn_range(vma, vma->vm_start,
  529. pfn + vma->vm_pgoff,
  530. vma->vm_end - vma->vm_start,
  531. vma->vm_page_prot);
  532. #endif /* CONFIG_MMU */
  533. return ret;
  534. }
  535. /*
  536. * Free a buffer as defined by the above mapping.
  537. */
  538. void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
  539. dma_addr_t handle, struct dma_attrs *attrs)
  540. {
  541. struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
  542. if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
  543. return;
  544. size = PAGE_ALIGN(size);
  545. if (arch_is_coherent() || nommu()) {
  546. __dma_free_buffer(page, size);
  547. } else if (!IS_ENABLED(CONFIG_CMA)) {
  548. __dma_free_remap(cpu_addr, size);
  549. __dma_free_buffer(page, size);
  550. } else {
  551. if (__free_from_pool(cpu_addr, size))
  552. return;
  553. /*
  554. * Non-atomic allocations cannot be freed with IRQs disabled
  555. */
  556. WARN_ON(irqs_disabled());
  557. __free_from_contiguous(dev, page, size);
  558. }
  559. }
  560. static void dma_cache_maint_page(struct page *page, unsigned long offset,
  561. size_t size, enum dma_data_direction dir,
  562. void (*op)(const void *, size_t, int))
  563. {
  564. /*
  565. * A single sg entry may refer to multiple physically contiguous
  566. * pages. But we still need to process highmem pages individually.
  567. * If highmem is not configured then the bulk of this loop gets
  568. * optimized out.
  569. */
  570. size_t left = size;
  571. do {
  572. size_t len = left;
  573. void *vaddr;
  574. if (PageHighMem(page)) {
  575. if (len + offset > PAGE_SIZE) {
  576. if (offset >= PAGE_SIZE) {
  577. page += offset / PAGE_SIZE;
  578. offset %= PAGE_SIZE;
  579. }
  580. len = PAGE_SIZE - offset;
  581. }
  582. vaddr = kmap_high_get(page);
  583. if (vaddr) {
  584. vaddr += offset;
  585. op(vaddr, len, dir);
  586. kunmap_high(page);
  587. } else if (cache_is_vipt()) {
  588. /* unmapped pages might still be cached */
  589. vaddr = kmap_atomic(page);
  590. op(vaddr + offset, len, dir);
  591. kunmap_atomic(vaddr);
  592. }
  593. } else {
  594. vaddr = page_address(page) + offset;
  595. op(vaddr, len, dir);
  596. }
  597. offset = 0;
  598. page++;
  599. left -= len;
  600. } while (left);
  601. }
  602. /*
  603. * Make an area consistent for devices.
  604. * Note: Drivers should NOT use this function directly, as it will break
  605. * platforms with CONFIG_DMABOUNCE.
  606. * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
  607. */
  608. static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
  609. size_t size, enum dma_data_direction dir)
  610. {
  611. unsigned long paddr;
  612. dma_cache_maint_page(page, off, size, dir, dmac_map_area);
  613. paddr = page_to_phys(page) + off;
  614. if (dir == DMA_FROM_DEVICE) {
  615. outer_inv_range(paddr, paddr + size);
  616. } else {
  617. outer_clean_range(paddr, paddr + size);
  618. }
  619. /* FIXME: non-speculating: flush on bidirectional mappings? */
  620. }
  621. static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
  622. size_t size, enum dma_data_direction dir)
  623. {
  624. unsigned long paddr = page_to_phys(page) + off;
  625. /* FIXME: non-speculating: not required */
  626. /* don't bother invalidating if DMA to device */
  627. if (dir != DMA_TO_DEVICE)
  628. outer_inv_range(paddr, paddr + size);
  629. dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
  630. /*
  631. * Mark the D-cache clean for this page to avoid extra flushing.
  632. */
  633. if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
  634. set_bit(PG_dcache_clean, &page->flags);
  635. }
  636. /**
  637. * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
  638. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  639. * @sg: list of buffers
  640. * @nents: number of buffers to map
  641. * @dir: DMA transfer direction
  642. *
  643. * Map a set of buffers described by scatterlist in streaming mode for DMA.
  644. * This is the scatter-gather version of the dma_map_single interface.
  645. * Here the scatter gather list elements are each tagged with the
  646. * appropriate dma address and length. They are obtained via
  647. * sg_dma_{address,length}.
  648. *
  649. * Device ownership issues as mentioned for dma_map_single are the same
  650. * here.
  651. */
  652. int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
  653. enum dma_data_direction dir, struct dma_attrs *attrs)
  654. {
  655. struct dma_map_ops *ops = get_dma_ops(dev);
  656. struct scatterlist *s;
  657. int i, j;
  658. for_each_sg(sg, s, nents, i) {
  659. #ifdef CONFIG_NEED_SG_DMA_LENGTH
  660. s->dma_length = s->length;
  661. #endif
  662. s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
  663. s->length, dir, attrs);
  664. if (dma_mapping_error(dev, s->dma_address))
  665. goto bad_mapping;
  666. }
  667. return nents;
  668. bad_mapping:
  669. for_each_sg(sg, s, i, j)
  670. ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
  671. return 0;
  672. }
  673. /**
  674. * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
  675. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  676. * @sg: list of buffers
  677. * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
  678. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  679. *
  680. * Unmap a set of streaming mode DMA translations. Again, CPU access
  681. * rules concerning calls here are the same as for dma_unmap_single().
  682. */
  683. void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
  684. enum dma_data_direction dir, struct dma_attrs *attrs)
  685. {
  686. struct dma_map_ops *ops = get_dma_ops(dev);
  687. struct scatterlist *s;
  688. int i;
  689. for_each_sg(sg, s, nents, i)
  690. ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
  691. }
  692. /**
  693. * arm_dma_sync_sg_for_cpu
  694. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  695. * @sg: list of buffers
  696. * @nents: number of buffers to map (returned from dma_map_sg)
  697. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  698. */
  699. void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
  700. int nents, enum dma_data_direction dir)
  701. {
  702. struct dma_map_ops *ops = get_dma_ops(dev);
  703. struct scatterlist *s;
  704. int i;
  705. for_each_sg(sg, s, nents, i)
  706. ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
  707. dir);
  708. }
  709. /**
  710. * arm_dma_sync_sg_for_device
  711. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  712. * @sg: list of buffers
  713. * @nents: number of buffers to map (returned from dma_map_sg)
  714. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  715. */
  716. void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
  717. int nents, enum dma_data_direction dir)
  718. {
  719. struct dma_map_ops *ops = get_dma_ops(dev);
  720. struct scatterlist *s;
  721. int i;
  722. for_each_sg(sg, s, nents, i)
  723. ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
  724. dir);
  725. }
  726. /*
  727. * Return whether the given device DMA address mask can be supported
  728. * properly. For example, if your device can only drive the low 24-bits
  729. * during bus mastering, then you would pass 0x00ffffff as the mask
  730. * to this function.
  731. */
  732. int dma_supported(struct device *dev, u64 mask)
  733. {
  734. if (mask < (u64)arm_dma_limit)
  735. return 0;
  736. return 1;
  737. }
  738. EXPORT_SYMBOL(dma_supported);
  739. static int arm_dma_set_mask(struct device *dev, u64 dma_mask)
  740. {
  741. if (!dev->dma_mask || !dma_supported(dev, dma_mask))
  742. return -EIO;
  743. *dev->dma_mask = dma_mask;
  744. return 0;
  745. }
  746. #define PREALLOC_DMA_DEBUG_ENTRIES 4096
  747. static int __init dma_debug_do_init(void)
  748. {
  749. dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
  750. return 0;
  751. }
  752. fs_initcall(dma_debug_do_init);
  753. #ifdef CONFIG_ARM_DMA_USE_IOMMU
  754. /* IOMMU */
  755. static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
  756. size_t size)
  757. {
  758. unsigned int order = get_order(size);
  759. unsigned int align = 0;
  760. unsigned int count, start;
  761. unsigned long flags;
  762. count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
  763. (1 << mapping->order) - 1) >> mapping->order;
  764. if (order > mapping->order)
  765. align = (1 << (order - mapping->order)) - 1;
  766. spin_lock_irqsave(&mapping->lock, flags);
  767. start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
  768. count, align);
  769. if (start > mapping->bits) {
  770. spin_unlock_irqrestore(&mapping->lock, flags);
  771. return DMA_ERROR_CODE;
  772. }
  773. bitmap_set(mapping->bitmap, start, count);
  774. spin_unlock_irqrestore(&mapping->lock, flags);
  775. return mapping->base + (start << (mapping->order + PAGE_SHIFT));
  776. }
  777. static inline void __free_iova(struct dma_iommu_mapping *mapping,
  778. dma_addr_t addr, size_t size)
  779. {
  780. unsigned int start = (addr - mapping->base) >>
  781. (mapping->order + PAGE_SHIFT);
  782. unsigned int count = ((size >> PAGE_SHIFT) +
  783. (1 << mapping->order) - 1) >> mapping->order;
  784. unsigned long flags;
  785. spin_lock_irqsave(&mapping->lock, flags);
  786. bitmap_clear(mapping->bitmap, start, count);
  787. spin_unlock_irqrestore(&mapping->lock, flags);
  788. }
  789. static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
  790. {
  791. struct page **pages;
  792. int count = size >> PAGE_SHIFT;
  793. int array_size = count * sizeof(struct page *);
  794. int i = 0;
  795. if (array_size <= PAGE_SIZE)
  796. pages = kzalloc(array_size, gfp);
  797. else
  798. pages = vzalloc(array_size);
  799. if (!pages)
  800. return NULL;
  801. while (count) {
  802. int j, order = __fls(count);
  803. pages[i] = alloc_pages(gfp | __GFP_NOWARN, order);
  804. while (!pages[i] && order)
  805. pages[i] = alloc_pages(gfp | __GFP_NOWARN, --order);
  806. if (!pages[i])
  807. goto error;
  808. if (order)
  809. split_page(pages[i], order);
  810. j = 1 << order;
  811. while (--j)
  812. pages[i + j] = pages[i] + j;
  813. __dma_clear_buffer(pages[i], PAGE_SIZE << order);
  814. i += 1 << order;
  815. count -= 1 << order;
  816. }
  817. return pages;
  818. error:
  819. while (--i)
  820. if (pages[i])
  821. __free_pages(pages[i], 0);
  822. if (array_size <= PAGE_SIZE)
  823. kfree(pages);
  824. else
  825. vfree(pages);
  826. return NULL;
  827. }
  828. static int __iommu_free_buffer(struct device *dev, struct page **pages, size_t size)
  829. {
  830. int count = size >> PAGE_SHIFT;
  831. int array_size = count * sizeof(struct page *);
  832. int i;
  833. for (i = 0; i < count; i++)
  834. if (pages[i])
  835. __free_pages(pages[i], 0);
  836. if (array_size <= PAGE_SIZE)
  837. kfree(pages);
  838. else
  839. vfree(pages);
  840. return 0;
  841. }
  842. /*
  843. * Create a CPU mapping for a specified pages
  844. */
  845. static void *
  846. __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
  847. const void *caller)
  848. {
  849. unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
  850. struct vm_struct *area;
  851. unsigned long p;
  852. area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
  853. caller);
  854. if (!area)
  855. return NULL;
  856. area->pages = pages;
  857. area->nr_pages = nr_pages;
  858. p = (unsigned long)area->addr;
  859. for (i = 0; i < nr_pages; i++) {
  860. phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
  861. if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
  862. goto err;
  863. p += PAGE_SIZE;
  864. }
  865. return area->addr;
  866. err:
  867. unmap_kernel_range((unsigned long)area->addr, size);
  868. vunmap(area->addr);
  869. return NULL;
  870. }
  871. /*
  872. * Create a mapping in device IO address space for specified pages
  873. */
  874. static dma_addr_t
  875. __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
  876. {
  877. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  878. unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
  879. dma_addr_t dma_addr, iova;
  880. int i, ret = DMA_ERROR_CODE;
  881. dma_addr = __alloc_iova(mapping, size);
  882. if (dma_addr == DMA_ERROR_CODE)
  883. return dma_addr;
  884. iova = dma_addr;
  885. for (i = 0; i < count; ) {
  886. unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
  887. phys_addr_t phys = page_to_phys(pages[i]);
  888. unsigned int len, j;
  889. for (j = i + 1; j < count; j++, next_pfn++)
  890. if (page_to_pfn(pages[j]) != next_pfn)
  891. break;
  892. len = (j - i) << PAGE_SHIFT;
  893. ret = iommu_map(mapping->domain, iova, phys, len, 0);
  894. if (ret < 0)
  895. goto fail;
  896. iova += len;
  897. i = j;
  898. }
  899. return dma_addr;
  900. fail:
  901. iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
  902. __free_iova(mapping, dma_addr, size);
  903. return DMA_ERROR_CODE;
  904. }
  905. static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
  906. {
  907. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  908. /*
  909. * add optional in-page offset from iova to size and align
  910. * result to page size
  911. */
  912. size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
  913. iova &= PAGE_MASK;
  914. iommu_unmap(mapping->domain, iova, size);
  915. __free_iova(mapping, iova, size);
  916. return 0;
  917. }
  918. static struct page **__iommu_get_pages(void *cpu_addr)
  919. {
  920. struct vm_struct *area;
  921. area = find_vm_area(cpu_addr);
  922. if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
  923. return area->pages;
  924. return NULL;
  925. }
  926. static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
  927. dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
  928. {
  929. pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
  930. struct page **pages;
  931. void *addr = NULL;
  932. *handle = DMA_ERROR_CODE;
  933. size = PAGE_ALIGN(size);
  934. pages = __iommu_alloc_buffer(dev, size, gfp);
  935. if (!pages)
  936. return NULL;
  937. *handle = __iommu_create_mapping(dev, pages, size);
  938. if (*handle == DMA_ERROR_CODE)
  939. goto err_buffer;
  940. addr = __iommu_alloc_remap(pages, size, gfp, prot,
  941. __builtin_return_address(0));
  942. if (!addr)
  943. goto err_mapping;
  944. return addr;
  945. err_mapping:
  946. __iommu_remove_mapping(dev, *handle, size);
  947. err_buffer:
  948. __iommu_free_buffer(dev, pages, size);
  949. return NULL;
  950. }
  951. static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
  952. void *cpu_addr, dma_addr_t dma_addr, size_t size,
  953. struct dma_attrs *attrs)
  954. {
  955. unsigned long uaddr = vma->vm_start;
  956. unsigned long usize = vma->vm_end - vma->vm_start;
  957. struct page **pages = __iommu_get_pages(cpu_addr);
  958. vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
  959. if (!pages)
  960. return -ENXIO;
  961. do {
  962. int ret = vm_insert_page(vma, uaddr, *pages++);
  963. if (ret) {
  964. pr_err("Remapping memory failed: %d\n", ret);
  965. return ret;
  966. }
  967. uaddr += PAGE_SIZE;
  968. usize -= PAGE_SIZE;
  969. } while (usize > 0);
  970. return 0;
  971. }
  972. /*
  973. * free a page as defined by the above mapping.
  974. * Must not be called with IRQs disabled.
  975. */
  976. void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
  977. dma_addr_t handle, struct dma_attrs *attrs)
  978. {
  979. struct page **pages = __iommu_get_pages(cpu_addr);
  980. size = PAGE_ALIGN(size);
  981. if (!pages) {
  982. WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
  983. return;
  984. }
  985. unmap_kernel_range((unsigned long)cpu_addr, size);
  986. vunmap(cpu_addr);
  987. __iommu_remove_mapping(dev, handle, size);
  988. __iommu_free_buffer(dev, pages, size);
  989. }
  990. /*
  991. * Map a part of the scatter-gather list into contiguous io address space
  992. */
  993. static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
  994. size_t size, dma_addr_t *handle,
  995. enum dma_data_direction dir)
  996. {
  997. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  998. dma_addr_t iova, iova_base;
  999. int ret = 0;
  1000. unsigned int count;
  1001. struct scatterlist *s;
  1002. size = PAGE_ALIGN(size);
  1003. *handle = DMA_ERROR_CODE;
  1004. iova_base = iova = __alloc_iova(mapping, size);
  1005. if (iova == DMA_ERROR_CODE)
  1006. return -ENOMEM;
  1007. for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
  1008. phys_addr_t phys = page_to_phys(sg_page(s));
  1009. unsigned int len = PAGE_ALIGN(s->offset + s->length);
  1010. if (!arch_is_coherent())
  1011. __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
  1012. ret = iommu_map(mapping->domain, iova, phys, len, 0);
  1013. if (ret < 0)
  1014. goto fail;
  1015. count += len >> PAGE_SHIFT;
  1016. iova += len;
  1017. }
  1018. *handle = iova_base;
  1019. return 0;
  1020. fail:
  1021. iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
  1022. __free_iova(mapping, iova_base, size);
  1023. return ret;
  1024. }
  1025. /**
  1026. * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
  1027. * @dev: valid struct device pointer
  1028. * @sg: list of buffers
  1029. * @nents: number of buffers to map
  1030. * @dir: DMA transfer direction
  1031. *
  1032. * Map a set of buffers described by scatterlist in streaming mode for DMA.
  1033. * The scatter gather list elements are merged together (if possible) and
  1034. * tagged with the appropriate dma address and length. They are obtained via
  1035. * sg_dma_{address,length}.
  1036. */
  1037. int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
  1038. enum dma_data_direction dir, struct dma_attrs *attrs)
  1039. {
  1040. struct scatterlist *s = sg, *dma = sg, *start = sg;
  1041. int i, count = 0;
  1042. unsigned int offset = s->offset;
  1043. unsigned int size = s->offset + s->length;
  1044. unsigned int max = dma_get_max_seg_size(dev);
  1045. for (i = 1; i < nents; i++) {
  1046. s = sg_next(s);
  1047. s->dma_address = DMA_ERROR_CODE;
  1048. s->dma_length = 0;
  1049. if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
  1050. if (__map_sg_chunk(dev, start, size, &dma->dma_address,
  1051. dir) < 0)
  1052. goto bad_mapping;
  1053. dma->dma_address += offset;
  1054. dma->dma_length = size - offset;
  1055. size = offset = s->offset;
  1056. start = s;
  1057. dma = sg_next(dma);
  1058. count += 1;
  1059. }
  1060. size += s->length;
  1061. }
  1062. if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir) < 0)
  1063. goto bad_mapping;
  1064. dma->dma_address += offset;
  1065. dma->dma_length = size - offset;
  1066. return count+1;
  1067. bad_mapping:
  1068. for_each_sg(sg, s, count, i)
  1069. __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
  1070. return 0;
  1071. }
  1072. /**
  1073. * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
  1074. * @dev: valid struct device pointer
  1075. * @sg: list of buffers
  1076. * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
  1077. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  1078. *
  1079. * Unmap a set of streaming mode DMA translations. Again, CPU access
  1080. * rules concerning calls here are the same as for dma_unmap_single().
  1081. */
  1082. void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
  1083. enum dma_data_direction dir, struct dma_attrs *attrs)
  1084. {
  1085. struct scatterlist *s;
  1086. int i;
  1087. for_each_sg(sg, s, nents, i) {
  1088. if (sg_dma_len(s))
  1089. __iommu_remove_mapping(dev, sg_dma_address(s),
  1090. sg_dma_len(s));
  1091. if (!arch_is_coherent())
  1092. __dma_page_dev_to_cpu(sg_page(s), s->offset,
  1093. s->length, dir);
  1094. }
  1095. }
  1096. /**
  1097. * arm_iommu_sync_sg_for_cpu
  1098. * @dev: valid struct device pointer
  1099. * @sg: list of buffers
  1100. * @nents: number of buffers to map (returned from dma_map_sg)
  1101. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  1102. */
  1103. void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
  1104. int nents, enum dma_data_direction dir)
  1105. {
  1106. struct scatterlist *s;
  1107. int i;
  1108. for_each_sg(sg, s, nents, i)
  1109. if (!arch_is_coherent())
  1110. __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
  1111. }
  1112. /**
  1113. * arm_iommu_sync_sg_for_device
  1114. * @dev: valid struct device pointer
  1115. * @sg: list of buffers
  1116. * @nents: number of buffers to map (returned from dma_map_sg)
  1117. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  1118. */
  1119. void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
  1120. int nents, enum dma_data_direction dir)
  1121. {
  1122. struct scatterlist *s;
  1123. int i;
  1124. for_each_sg(sg, s, nents, i)
  1125. if (!arch_is_coherent())
  1126. __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
  1127. }
  1128. /**
  1129. * arm_iommu_map_page
  1130. * @dev: valid struct device pointer
  1131. * @page: page that buffer resides in
  1132. * @offset: offset into page for start of buffer
  1133. * @size: size of buffer to map
  1134. * @dir: DMA transfer direction
  1135. *
  1136. * IOMMU aware version of arm_dma_map_page()
  1137. */
  1138. static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
  1139. unsigned long offset, size_t size, enum dma_data_direction dir,
  1140. struct dma_attrs *attrs)
  1141. {
  1142. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  1143. dma_addr_t dma_addr;
  1144. int ret, len = PAGE_ALIGN(size + offset);
  1145. if (!arch_is_coherent())
  1146. __dma_page_cpu_to_dev(page, offset, size, dir);
  1147. dma_addr = __alloc_iova(mapping, len);
  1148. if (dma_addr == DMA_ERROR_CODE)
  1149. return dma_addr;
  1150. ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, 0);
  1151. if (ret < 0)
  1152. goto fail;
  1153. return dma_addr + offset;
  1154. fail:
  1155. __free_iova(mapping, dma_addr, len);
  1156. return DMA_ERROR_CODE;
  1157. }
  1158. /**
  1159. * arm_iommu_unmap_page
  1160. * @dev: valid struct device pointer
  1161. * @handle: DMA address of buffer
  1162. * @size: size of buffer (same as passed to dma_map_page)
  1163. * @dir: DMA transfer direction (same as passed to dma_map_page)
  1164. *
  1165. * IOMMU aware version of arm_dma_unmap_page()
  1166. */
  1167. static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
  1168. size_t size, enum dma_data_direction dir,
  1169. struct dma_attrs *attrs)
  1170. {
  1171. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  1172. dma_addr_t iova = handle & PAGE_MASK;
  1173. struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
  1174. int offset = handle & ~PAGE_MASK;
  1175. int len = PAGE_ALIGN(size + offset);
  1176. if (!iova)
  1177. return;
  1178. if (!arch_is_coherent())
  1179. __dma_page_dev_to_cpu(page, offset, size, dir);
  1180. iommu_unmap(mapping->domain, iova, len);
  1181. __free_iova(mapping, iova, len);
  1182. }
  1183. static void arm_iommu_sync_single_for_cpu(struct device *dev,
  1184. dma_addr_t handle, size_t size, enum dma_data_direction dir)
  1185. {
  1186. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  1187. dma_addr_t iova = handle & PAGE_MASK;
  1188. struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
  1189. unsigned int offset = handle & ~PAGE_MASK;
  1190. if (!iova)
  1191. return;
  1192. if (!arch_is_coherent())
  1193. __dma_page_dev_to_cpu(page, offset, size, dir);
  1194. }
  1195. static void arm_iommu_sync_single_for_device(struct device *dev,
  1196. dma_addr_t handle, size_t size, enum dma_data_direction dir)
  1197. {
  1198. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  1199. dma_addr_t iova = handle & PAGE_MASK;
  1200. struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
  1201. unsigned int offset = handle & ~PAGE_MASK;
  1202. if (!iova)
  1203. return;
  1204. __dma_page_cpu_to_dev(page, offset, size, dir);
  1205. }
  1206. struct dma_map_ops iommu_ops = {
  1207. .alloc = arm_iommu_alloc_attrs,
  1208. .free = arm_iommu_free_attrs,
  1209. .mmap = arm_iommu_mmap_attrs,
  1210. .map_page = arm_iommu_map_page,
  1211. .unmap_page = arm_iommu_unmap_page,
  1212. .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
  1213. .sync_single_for_device = arm_iommu_sync_single_for_device,
  1214. .map_sg = arm_iommu_map_sg,
  1215. .unmap_sg = arm_iommu_unmap_sg,
  1216. .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
  1217. .sync_sg_for_device = arm_iommu_sync_sg_for_device,
  1218. };
  1219. /**
  1220. * arm_iommu_create_mapping
  1221. * @bus: pointer to the bus holding the client device (for IOMMU calls)
  1222. * @base: start address of the valid IO address space
  1223. * @size: size of the valid IO address space
  1224. * @order: accuracy of the IO addresses allocations
  1225. *
  1226. * Creates a mapping structure which holds information about used/unused
  1227. * IO address ranges, which is required to perform memory allocation and
  1228. * mapping with IOMMU aware functions.
  1229. *
  1230. * The client device need to be attached to the mapping with
  1231. * arm_iommu_attach_device function.
  1232. */
  1233. struct dma_iommu_mapping *
  1234. arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
  1235. int order)
  1236. {
  1237. unsigned int count = size >> (PAGE_SHIFT + order);
  1238. unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
  1239. struct dma_iommu_mapping *mapping;
  1240. int err = -ENOMEM;
  1241. if (!count)
  1242. return ERR_PTR(-EINVAL);
  1243. mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
  1244. if (!mapping)
  1245. goto err;
  1246. mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
  1247. if (!mapping->bitmap)
  1248. goto err2;
  1249. mapping->base = base;
  1250. mapping->bits = BITS_PER_BYTE * bitmap_size;
  1251. mapping->order = order;
  1252. spin_lock_init(&mapping->lock);
  1253. mapping->domain = iommu_domain_alloc(bus);
  1254. if (!mapping->domain)
  1255. goto err3;
  1256. kref_init(&mapping->kref);
  1257. return mapping;
  1258. err3:
  1259. kfree(mapping->bitmap);
  1260. err2:
  1261. kfree(mapping);
  1262. err:
  1263. return ERR_PTR(err);
  1264. }
  1265. static void release_iommu_mapping(struct kref *kref)
  1266. {
  1267. struct dma_iommu_mapping *mapping =
  1268. container_of(kref, struct dma_iommu_mapping, kref);
  1269. iommu_domain_free(mapping->domain);
  1270. kfree(mapping->bitmap);
  1271. kfree(mapping);
  1272. }
  1273. void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
  1274. {
  1275. if (mapping)
  1276. kref_put(&mapping->kref, release_iommu_mapping);
  1277. }
  1278. /**
  1279. * arm_iommu_attach_device
  1280. * @dev: valid struct device pointer
  1281. * @mapping: io address space mapping structure (returned from
  1282. * arm_iommu_create_mapping)
  1283. *
  1284. * Attaches specified io address space mapping to the provided device,
  1285. * this replaces the dma operations (dma_map_ops pointer) with the
  1286. * IOMMU aware version. More than one client might be attached to
  1287. * the same io address space mapping.
  1288. */
  1289. int arm_iommu_attach_device(struct device *dev,
  1290. struct dma_iommu_mapping *mapping)
  1291. {
  1292. int err;
  1293. err = iommu_attach_device(mapping->domain, dev);
  1294. if (err)
  1295. return err;
  1296. kref_get(&mapping->kref);
  1297. dev->archdata.mapping = mapping;
  1298. set_dma_ops(dev, &iommu_ops);
  1299. pr_info("Attached IOMMU controller to %s device.\n", dev_name(dev));
  1300. return 0;
  1301. }
  1302. #endif