vmx.c 206 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "irq.h"
  19. #include "mmu.h"
  20. #include "cpuid.h"
  21. #include <linux/kvm_host.h>
  22. #include <linux/module.h>
  23. #include <linux/kernel.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/sched.h>
  27. #include <linux/moduleparam.h>
  28. #include <linux/mod_devicetable.h>
  29. #include <linux/ftrace_event.h>
  30. #include <linux/slab.h>
  31. #include <linux/tboot.h>
  32. #include "kvm_cache_regs.h"
  33. #include "x86.h"
  34. #include <asm/io.h>
  35. #include <asm/desc.h>
  36. #include <asm/vmx.h>
  37. #include <asm/virtext.h>
  38. #include <asm/mce.h>
  39. #include <asm/i387.h>
  40. #include <asm/xcr.h>
  41. #include <asm/perf_event.h>
  42. #include "trace.h"
  43. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  44. #define __ex_clear(x, reg) \
  45. ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
  46. MODULE_AUTHOR("Qumranet");
  47. MODULE_LICENSE("GPL");
  48. static const struct x86_cpu_id vmx_cpu_id[] = {
  49. X86_FEATURE_MATCH(X86_FEATURE_VMX),
  50. {}
  51. };
  52. MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
  53. static bool __read_mostly enable_vpid = 1;
  54. module_param_named(vpid, enable_vpid, bool, 0444);
  55. static bool __read_mostly flexpriority_enabled = 1;
  56. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  57. static bool __read_mostly enable_ept = 1;
  58. module_param_named(ept, enable_ept, bool, S_IRUGO);
  59. static bool __read_mostly enable_unrestricted_guest = 1;
  60. module_param_named(unrestricted_guest,
  61. enable_unrestricted_guest, bool, S_IRUGO);
  62. static bool __read_mostly emulate_invalid_guest_state = 0;
  63. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  64. static bool __read_mostly vmm_exclusive = 1;
  65. module_param(vmm_exclusive, bool, S_IRUGO);
  66. static bool __read_mostly fasteoi = 1;
  67. module_param(fasteoi, bool, S_IRUGO);
  68. /*
  69. * If nested=1, nested virtualization is supported, i.e., guests may use
  70. * VMX and be a hypervisor for its own guests. If nested=0, guests may not
  71. * use VMX instructions.
  72. */
  73. static bool __read_mostly nested = 0;
  74. module_param(nested, bool, S_IRUGO);
  75. #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
  76. (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
  77. #define KVM_GUEST_CR0_MASK \
  78. (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  79. #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
  80. (X86_CR0_WP | X86_CR0_NE)
  81. #define KVM_VM_CR0_ALWAYS_ON \
  82. (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  83. #define KVM_CR4_GUEST_OWNED_BITS \
  84. (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
  85. | X86_CR4_OSXMMEXCPT)
  86. #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
  87. #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
  88. #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
  89. /*
  90. * These 2 parameters are used to config the controls for Pause-Loop Exiting:
  91. * ple_gap: upper bound on the amount of time between two successive
  92. * executions of PAUSE in a loop. Also indicate if ple enabled.
  93. * According to test, this time is usually smaller than 128 cycles.
  94. * ple_window: upper bound on the amount of time a guest is allowed to execute
  95. * in a PAUSE loop. Tests indicate that most spinlocks are held for
  96. * less than 2^12 cycles
  97. * Time is measured based on a counter that runs at the same rate as the TSC,
  98. * refer SDM volume 3b section 21.6.13 & 22.1.3.
  99. */
  100. #define KVM_VMX_DEFAULT_PLE_GAP 128
  101. #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
  102. static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
  103. module_param(ple_gap, int, S_IRUGO);
  104. static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
  105. module_param(ple_window, int, S_IRUGO);
  106. #define NR_AUTOLOAD_MSRS 8
  107. #define VMCS02_POOL_SIZE 1
  108. struct vmcs {
  109. u32 revision_id;
  110. u32 abort;
  111. char data[0];
  112. };
  113. /*
  114. * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
  115. * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
  116. * loaded on this CPU (so we can clear them if the CPU goes down).
  117. */
  118. struct loaded_vmcs {
  119. struct vmcs *vmcs;
  120. int cpu;
  121. int launched;
  122. struct list_head loaded_vmcss_on_cpu_link;
  123. };
  124. struct shared_msr_entry {
  125. unsigned index;
  126. u64 data;
  127. u64 mask;
  128. };
  129. /*
  130. * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
  131. * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
  132. * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
  133. * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
  134. * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
  135. * More than one of these structures may exist, if L1 runs multiple L2 guests.
  136. * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
  137. * underlying hardware which will be used to run L2.
  138. * This structure is packed to ensure that its layout is identical across
  139. * machines (necessary for live migration).
  140. * If there are changes in this struct, VMCS12_REVISION must be changed.
  141. */
  142. typedef u64 natural_width;
  143. struct __packed vmcs12 {
  144. /* According to the Intel spec, a VMCS region must start with the
  145. * following two fields. Then follow implementation-specific data.
  146. */
  147. u32 revision_id;
  148. u32 abort;
  149. u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
  150. u32 padding[7]; /* room for future expansion */
  151. u64 io_bitmap_a;
  152. u64 io_bitmap_b;
  153. u64 msr_bitmap;
  154. u64 vm_exit_msr_store_addr;
  155. u64 vm_exit_msr_load_addr;
  156. u64 vm_entry_msr_load_addr;
  157. u64 tsc_offset;
  158. u64 virtual_apic_page_addr;
  159. u64 apic_access_addr;
  160. u64 ept_pointer;
  161. u64 guest_physical_address;
  162. u64 vmcs_link_pointer;
  163. u64 guest_ia32_debugctl;
  164. u64 guest_ia32_pat;
  165. u64 guest_ia32_efer;
  166. u64 guest_ia32_perf_global_ctrl;
  167. u64 guest_pdptr0;
  168. u64 guest_pdptr1;
  169. u64 guest_pdptr2;
  170. u64 guest_pdptr3;
  171. u64 host_ia32_pat;
  172. u64 host_ia32_efer;
  173. u64 host_ia32_perf_global_ctrl;
  174. u64 padding64[8]; /* room for future expansion */
  175. /*
  176. * To allow migration of L1 (complete with its L2 guests) between
  177. * machines of different natural widths (32 or 64 bit), we cannot have
  178. * unsigned long fields with no explict size. We use u64 (aliased
  179. * natural_width) instead. Luckily, x86 is little-endian.
  180. */
  181. natural_width cr0_guest_host_mask;
  182. natural_width cr4_guest_host_mask;
  183. natural_width cr0_read_shadow;
  184. natural_width cr4_read_shadow;
  185. natural_width cr3_target_value0;
  186. natural_width cr3_target_value1;
  187. natural_width cr3_target_value2;
  188. natural_width cr3_target_value3;
  189. natural_width exit_qualification;
  190. natural_width guest_linear_address;
  191. natural_width guest_cr0;
  192. natural_width guest_cr3;
  193. natural_width guest_cr4;
  194. natural_width guest_es_base;
  195. natural_width guest_cs_base;
  196. natural_width guest_ss_base;
  197. natural_width guest_ds_base;
  198. natural_width guest_fs_base;
  199. natural_width guest_gs_base;
  200. natural_width guest_ldtr_base;
  201. natural_width guest_tr_base;
  202. natural_width guest_gdtr_base;
  203. natural_width guest_idtr_base;
  204. natural_width guest_dr7;
  205. natural_width guest_rsp;
  206. natural_width guest_rip;
  207. natural_width guest_rflags;
  208. natural_width guest_pending_dbg_exceptions;
  209. natural_width guest_sysenter_esp;
  210. natural_width guest_sysenter_eip;
  211. natural_width host_cr0;
  212. natural_width host_cr3;
  213. natural_width host_cr4;
  214. natural_width host_fs_base;
  215. natural_width host_gs_base;
  216. natural_width host_tr_base;
  217. natural_width host_gdtr_base;
  218. natural_width host_idtr_base;
  219. natural_width host_ia32_sysenter_esp;
  220. natural_width host_ia32_sysenter_eip;
  221. natural_width host_rsp;
  222. natural_width host_rip;
  223. natural_width paddingl[8]; /* room for future expansion */
  224. u32 pin_based_vm_exec_control;
  225. u32 cpu_based_vm_exec_control;
  226. u32 exception_bitmap;
  227. u32 page_fault_error_code_mask;
  228. u32 page_fault_error_code_match;
  229. u32 cr3_target_count;
  230. u32 vm_exit_controls;
  231. u32 vm_exit_msr_store_count;
  232. u32 vm_exit_msr_load_count;
  233. u32 vm_entry_controls;
  234. u32 vm_entry_msr_load_count;
  235. u32 vm_entry_intr_info_field;
  236. u32 vm_entry_exception_error_code;
  237. u32 vm_entry_instruction_len;
  238. u32 tpr_threshold;
  239. u32 secondary_vm_exec_control;
  240. u32 vm_instruction_error;
  241. u32 vm_exit_reason;
  242. u32 vm_exit_intr_info;
  243. u32 vm_exit_intr_error_code;
  244. u32 idt_vectoring_info_field;
  245. u32 idt_vectoring_error_code;
  246. u32 vm_exit_instruction_len;
  247. u32 vmx_instruction_info;
  248. u32 guest_es_limit;
  249. u32 guest_cs_limit;
  250. u32 guest_ss_limit;
  251. u32 guest_ds_limit;
  252. u32 guest_fs_limit;
  253. u32 guest_gs_limit;
  254. u32 guest_ldtr_limit;
  255. u32 guest_tr_limit;
  256. u32 guest_gdtr_limit;
  257. u32 guest_idtr_limit;
  258. u32 guest_es_ar_bytes;
  259. u32 guest_cs_ar_bytes;
  260. u32 guest_ss_ar_bytes;
  261. u32 guest_ds_ar_bytes;
  262. u32 guest_fs_ar_bytes;
  263. u32 guest_gs_ar_bytes;
  264. u32 guest_ldtr_ar_bytes;
  265. u32 guest_tr_ar_bytes;
  266. u32 guest_interruptibility_info;
  267. u32 guest_activity_state;
  268. u32 guest_sysenter_cs;
  269. u32 host_ia32_sysenter_cs;
  270. u32 padding32[8]; /* room for future expansion */
  271. u16 virtual_processor_id;
  272. u16 guest_es_selector;
  273. u16 guest_cs_selector;
  274. u16 guest_ss_selector;
  275. u16 guest_ds_selector;
  276. u16 guest_fs_selector;
  277. u16 guest_gs_selector;
  278. u16 guest_ldtr_selector;
  279. u16 guest_tr_selector;
  280. u16 host_es_selector;
  281. u16 host_cs_selector;
  282. u16 host_ss_selector;
  283. u16 host_ds_selector;
  284. u16 host_fs_selector;
  285. u16 host_gs_selector;
  286. u16 host_tr_selector;
  287. };
  288. /*
  289. * VMCS12_REVISION is an arbitrary id that should be changed if the content or
  290. * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
  291. * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
  292. */
  293. #define VMCS12_REVISION 0x11e57ed0
  294. /*
  295. * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
  296. * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
  297. * current implementation, 4K are reserved to avoid future complications.
  298. */
  299. #define VMCS12_SIZE 0x1000
  300. /* Used to remember the last vmcs02 used for some recently used vmcs12s */
  301. struct vmcs02_list {
  302. struct list_head list;
  303. gpa_t vmptr;
  304. struct loaded_vmcs vmcs02;
  305. };
  306. /*
  307. * The nested_vmx structure is part of vcpu_vmx, and holds information we need
  308. * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
  309. */
  310. struct nested_vmx {
  311. /* Has the level1 guest done vmxon? */
  312. bool vmxon;
  313. /* The guest-physical address of the current VMCS L1 keeps for L2 */
  314. gpa_t current_vmptr;
  315. /* The host-usable pointer to the above */
  316. struct page *current_vmcs12_page;
  317. struct vmcs12 *current_vmcs12;
  318. /* vmcs02_list cache of VMCSs recently used to run L2 guests */
  319. struct list_head vmcs02_pool;
  320. int vmcs02_num;
  321. u64 vmcs01_tsc_offset;
  322. /* L2 must run next, and mustn't decide to exit to L1. */
  323. bool nested_run_pending;
  324. /*
  325. * Guest pages referred to in vmcs02 with host-physical pointers, so
  326. * we must keep them pinned while L2 runs.
  327. */
  328. struct page *apic_access_page;
  329. };
  330. struct vcpu_vmx {
  331. struct kvm_vcpu vcpu;
  332. unsigned long host_rsp;
  333. u8 fail;
  334. u8 cpl;
  335. bool nmi_known_unmasked;
  336. u32 exit_intr_info;
  337. u32 idt_vectoring_info;
  338. ulong rflags;
  339. struct shared_msr_entry *guest_msrs;
  340. int nmsrs;
  341. int save_nmsrs;
  342. #ifdef CONFIG_X86_64
  343. u64 msr_host_kernel_gs_base;
  344. u64 msr_guest_kernel_gs_base;
  345. #endif
  346. /*
  347. * loaded_vmcs points to the VMCS currently used in this vcpu. For a
  348. * non-nested (L1) guest, it always points to vmcs01. For a nested
  349. * guest (L2), it points to a different VMCS.
  350. */
  351. struct loaded_vmcs vmcs01;
  352. struct loaded_vmcs *loaded_vmcs;
  353. bool __launched; /* temporary, used in vmx_vcpu_run */
  354. struct msr_autoload {
  355. unsigned nr;
  356. struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
  357. struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
  358. } msr_autoload;
  359. struct {
  360. int loaded;
  361. u16 fs_sel, gs_sel, ldt_sel;
  362. int gs_ldt_reload_needed;
  363. int fs_reload_needed;
  364. } host_state;
  365. struct {
  366. int vm86_active;
  367. ulong save_rflags;
  368. struct kvm_save_segment {
  369. u16 selector;
  370. unsigned long base;
  371. u32 limit;
  372. u32 ar;
  373. } tr, es, ds, fs, gs;
  374. } rmode;
  375. struct {
  376. u32 bitmask; /* 4 bits per segment (1 bit per field) */
  377. struct kvm_save_segment seg[8];
  378. } segment_cache;
  379. int vpid;
  380. bool emulation_required;
  381. /* Support for vnmi-less CPUs */
  382. int soft_vnmi_blocked;
  383. ktime_t entry_time;
  384. s64 vnmi_blocked_time;
  385. u32 exit_reason;
  386. bool rdtscp_enabled;
  387. /* Support for a guest hypervisor (nested VMX) */
  388. struct nested_vmx nested;
  389. };
  390. enum segment_cache_field {
  391. SEG_FIELD_SEL = 0,
  392. SEG_FIELD_BASE = 1,
  393. SEG_FIELD_LIMIT = 2,
  394. SEG_FIELD_AR = 3,
  395. SEG_FIELD_NR = 4
  396. };
  397. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  398. {
  399. return container_of(vcpu, struct vcpu_vmx, vcpu);
  400. }
  401. #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
  402. #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
  403. #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
  404. [number##_HIGH] = VMCS12_OFFSET(name)+4
  405. static unsigned short vmcs_field_to_offset_table[] = {
  406. FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
  407. FIELD(GUEST_ES_SELECTOR, guest_es_selector),
  408. FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
  409. FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
  410. FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
  411. FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
  412. FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
  413. FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
  414. FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
  415. FIELD(HOST_ES_SELECTOR, host_es_selector),
  416. FIELD(HOST_CS_SELECTOR, host_cs_selector),
  417. FIELD(HOST_SS_SELECTOR, host_ss_selector),
  418. FIELD(HOST_DS_SELECTOR, host_ds_selector),
  419. FIELD(HOST_FS_SELECTOR, host_fs_selector),
  420. FIELD(HOST_GS_SELECTOR, host_gs_selector),
  421. FIELD(HOST_TR_SELECTOR, host_tr_selector),
  422. FIELD64(IO_BITMAP_A, io_bitmap_a),
  423. FIELD64(IO_BITMAP_B, io_bitmap_b),
  424. FIELD64(MSR_BITMAP, msr_bitmap),
  425. FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
  426. FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
  427. FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
  428. FIELD64(TSC_OFFSET, tsc_offset),
  429. FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
  430. FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
  431. FIELD64(EPT_POINTER, ept_pointer),
  432. FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
  433. FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
  434. FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
  435. FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
  436. FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
  437. FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
  438. FIELD64(GUEST_PDPTR0, guest_pdptr0),
  439. FIELD64(GUEST_PDPTR1, guest_pdptr1),
  440. FIELD64(GUEST_PDPTR2, guest_pdptr2),
  441. FIELD64(GUEST_PDPTR3, guest_pdptr3),
  442. FIELD64(HOST_IA32_PAT, host_ia32_pat),
  443. FIELD64(HOST_IA32_EFER, host_ia32_efer),
  444. FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
  445. FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
  446. FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
  447. FIELD(EXCEPTION_BITMAP, exception_bitmap),
  448. FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
  449. FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
  450. FIELD(CR3_TARGET_COUNT, cr3_target_count),
  451. FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
  452. FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
  453. FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
  454. FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
  455. FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
  456. FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
  457. FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
  458. FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
  459. FIELD(TPR_THRESHOLD, tpr_threshold),
  460. FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
  461. FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
  462. FIELD(VM_EXIT_REASON, vm_exit_reason),
  463. FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
  464. FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
  465. FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
  466. FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
  467. FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
  468. FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
  469. FIELD(GUEST_ES_LIMIT, guest_es_limit),
  470. FIELD(GUEST_CS_LIMIT, guest_cs_limit),
  471. FIELD(GUEST_SS_LIMIT, guest_ss_limit),
  472. FIELD(GUEST_DS_LIMIT, guest_ds_limit),
  473. FIELD(GUEST_FS_LIMIT, guest_fs_limit),
  474. FIELD(GUEST_GS_LIMIT, guest_gs_limit),
  475. FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
  476. FIELD(GUEST_TR_LIMIT, guest_tr_limit),
  477. FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
  478. FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
  479. FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
  480. FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
  481. FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
  482. FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
  483. FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
  484. FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
  485. FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
  486. FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
  487. FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
  488. FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
  489. FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
  490. FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
  491. FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
  492. FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
  493. FIELD(CR0_READ_SHADOW, cr0_read_shadow),
  494. FIELD(CR4_READ_SHADOW, cr4_read_shadow),
  495. FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
  496. FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
  497. FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
  498. FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
  499. FIELD(EXIT_QUALIFICATION, exit_qualification),
  500. FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
  501. FIELD(GUEST_CR0, guest_cr0),
  502. FIELD(GUEST_CR3, guest_cr3),
  503. FIELD(GUEST_CR4, guest_cr4),
  504. FIELD(GUEST_ES_BASE, guest_es_base),
  505. FIELD(GUEST_CS_BASE, guest_cs_base),
  506. FIELD(GUEST_SS_BASE, guest_ss_base),
  507. FIELD(GUEST_DS_BASE, guest_ds_base),
  508. FIELD(GUEST_FS_BASE, guest_fs_base),
  509. FIELD(GUEST_GS_BASE, guest_gs_base),
  510. FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
  511. FIELD(GUEST_TR_BASE, guest_tr_base),
  512. FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
  513. FIELD(GUEST_IDTR_BASE, guest_idtr_base),
  514. FIELD(GUEST_DR7, guest_dr7),
  515. FIELD(GUEST_RSP, guest_rsp),
  516. FIELD(GUEST_RIP, guest_rip),
  517. FIELD(GUEST_RFLAGS, guest_rflags),
  518. FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
  519. FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
  520. FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
  521. FIELD(HOST_CR0, host_cr0),
  522. FIELD(HOST_CR3, host_cr3),
  523. FIELD(HOST_CR4, host_cr4),
  524. FIELD(HOST_FS_BASE, host_fs_base),
  525. FIELD(HOST_GS_BASE, host_gs_base),
  526. FIELD(HOST_TR_BASE, host_tr_base),
  527. FIELD(HOST_GDTR_BASE, host_gdtr_base),
  528. FIELD(HOST_IDTR_BASE, host_idtr_base),
  529. FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
  530. FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
  531. FIELD(HOST_RSP, host_rsp),
  532. FIELD(HOST_RIP, host_rip),
  533. };
  534. static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
  535. static inline short vmcs_field_to_offset(unsigned long field)
  536. {
  537. if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
  538. return -1;
  539. return vmcs_field_to_offset_table[field];
  540. }
  541. static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
  542. {
  543. return to_vmx(vcpu)->nested.current_vmcs12;
  544. }
  545. static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
  546. {
  547. struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
  548. if (is_error_page(page)) {
  549. kvm_release_page_clean(page);
  550. return NULL;
  551. }
  552. return page;
  553. }
  554. static void nested_release_page(struct page *page)
  555. {
  556. kvm_release_page_dirty(page);
  557. }
  558. static void nested_release_page_clean(struct page *page)
  559. {
  560. kvm_release_page_clean(page);
  561. }
  562. static u64 construct_eptp(unsigned long root_hpa);
  563. static void kvm_cpu_vmxon(u64 addr);
  564. static void kvm_cpu_vmxoff(void);
  565. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
  566. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
  567. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  568. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  569. /*
  570. * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
  571. * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
  572. */
  573. static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
  574. static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
  575. static unsigned long *vmx_io_bitmap_a;
  576. static unsigned long *vmx_io_bitmap_b;
  577. static unsigned long *vmx_msr_bitmap_legacy;
  578. static unsigned long *vmx_msr_bitmap_longmode;
  579. static bool cpu_has_load_ia32_efer;
  580. static bool cpu_has_load_perf_global_ctrl;
  581. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  582. static DEFINE_SPINLOCK(vmx_vpid_lock);
  583. static struct vmcs_config {
  584. int size;
  585. int order;
  586. u32 revision_id;
  587. u32 pin_based_exec_ctrl;
  588. u32 cpu_based_exec_ctrl;
  589. u32 cpu_based_2nd_exec_ctrl;
  590. u32 vmexit_ctrl;
  591. u32 vmentry_ctrl;
  592. } vmcs_config;
  593. static struct vmx_capability {
  594. u32 ept;
  595. u32 vpid;
  596. } vmx_capability;
  597. #define VMX_SEGMENT_FIELD(seg) \
  598. [VCPU_SREG_##seg] = { \
  599. .selector = GUEST_##seg##_SELECTOR, \
  600. .base = GUEST_##seg##_BASE, \
  601. .limit = GUEST_##seg##_LIMIT, \
  602. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  603. }
  604. static struct kvm_vmx_segment_field {
  605. unsigned selector;
  606. unsigned base;
  607. unsigned limit;
  608. unsigned ar_bytes;
  609. } kvm_vmx_segment_fields[] = {
  610. VMX_SEGMENT_FIELD(CS),
  611. VMX_SEGMENT_FIELD(DS),
  612. VMX_SEGMENT_FIELD(ES),
  613. VMX_SEGMENT_FIELD(FS),
  614. VMX_SEGMENT_FIELD(GS),
  615. VMX_SEGMENT_FIELD(SS),
  616. VMX_SEGMENT_FIELD(TR),
  617. VMX_SEGMENT_FIELD(LDTR),
  618. };
  619. static u64 host_efer;
  620. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  621. /*
  622. * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
  623. * away by decrementing the array size.
  624. */
  625. static const u32 vmx_msr_index[] = {
  626. #ifdef CONFIG_X86_64
  627. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
  628. #endif
  629. MSR_EFER, MSR_TSC_AUX, MSR_STAR,
  630. };
  631. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  632. static inline bool is_page_fault(u32 intr_info)
  633. {
  634. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  635. INTR_INFO_VALID_MASK)) ==
  636. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  637. }
  638. static inline bool is_no_device(u32 intr_info)
  639. {
  640. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  641. INTR_INFO_VALID_MASK)) ==
  642. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  643. }
  644. static inline bool is_invalid_opcode(u32 intr_info)
  645. {
  646. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  647. INTR_INFO_VALID_MASK)) ==
  648. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  649. }
  650. static inline bool is_external_interrupt(u32 intr_info)
  651. {
  652. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  653. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  654. }
  655. static inline bool is_machine_check(u32 intr_info)
  656. {
  657. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  658. INTR_INFO_VALID_MASK)) ==
  659. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  660. }
  661. static inline bool cpu_has_vmx_msr_bitmap(void)
  662. {
  663. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  664. }
  665. static inline bool cpu_has_vmx_tpr_shadow(void)
  666. {
  667. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  668. }
  669. static inline bool vm_need_tpr_shadow(struct kvm *kvm)
  670. {
  671. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  672. }
  673. static inline bool cpu_has_secondary_exec_ctrls(void)
  674. {
  675. return vmcs_config.cpu_based_exec_ctrl &
  676. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  677. }
  678. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  679. {
  680. return vmcs_config.cpu_based_2nd_exec_ctrl &
  681. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  682. }
  683. static inline bool cpu_has_vmx_flexpriority(void)
  684. {
  685. return cpu_has_vmx_tpr_shadow() &&
  686. cpu_has_vmx_virtualize_apic_accesses();
  687. }
  688. static inline bool cpu_has_vmx_ept_execute_only(void)
  689. {
  690. return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
  691. }
  692. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  693. {
  694. return vmx_capability.ept & VMX_EPTP_UC_BIT;
  695. }
  696. static inline bool cpu_has_vmx_eptp_writeback(void)
  697. {
  698. return vmx_capability.ept & VMX_EPTP_WB_BIT;
  699. }
  700. static inline bool cpu_has_vmx_ept_2m_page(void)
  701. {
  702. return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
  703. }
  704. static inline bool cpu_has_vmx_ept_1g_page(void)
  705. {
  706. return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
  707. }
  708. static inline bool cpu_has_vmx_ept_4levels(void)
  709. {
  710. return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
  711. }
  712. static inline bool cpu_has_vmx_invept_individual_addr(void)
  713. {
  714. return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
  715. }
  716. static inline bool cpu_has_vmx_invept_context(void)
  717. {
  718. return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
  719. }
  720. static inline bool cpu_has_vmx_invept_global(void)
  721. {
  722. return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
  723. }
  724. static inline bool cpu_has_vmx_invvpid_single(void)
  725. {
  726. return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
  727. }
  728. static inline bool cpu_has_vmx_invvpid_global(void)
  729. {
  730. return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
  731. }
  732. static inline bool cpu_has_vmx_ept(void)
  733. {
  734. return vmcs_config.cpu_based_2nd_exec_ctrl &
  735. SECONDARY_EXEC_ENABLE_EPT;
  736. }
  737. static inline bool cpu_has_vmx_unrestricted_guest(void)
  738. {
  739. return vmcs_config.cpu_based_2nd_exec_ctrl &
  740. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  741. }
  742. static inline bool cpu_has_vmx_ple(void)
  743. {
  744. return vmcs_config.cpu_based_2nd_exec_ctrl &
  745. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  746. }
  747. static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
  748. {
  749. return flexpriority_enabled && irqchip_in_kernel(kvm);
  750. }
  751. static inline bool cpu_has_vmx_vpid(void)
  752. {
  753. return vmcs_config.cpu_based_2nd_exec_ctrl &
  754. SECONDARY_EXEC_ENABLE_VPID;
  755. }
  756. static inline bool cpu_has_vmx_rdtscp(void)
  757. {
  758. return vmcs_config.cpu_based_2nd_exec_ctrl &
  759. SECONDARY_EXEC_RDTSCP;
  760. }
  761. static inline bool cpu_has_virtual_nmis(void)
  762. {
  763. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  764. }
  765. static inline bool cpu_has_vmx_wbinvd_exit(void)
  766. {
  767. return vmcs_config.cpu_based_2nd_exec_ctrl &
  768. SECONDARY_EXEC_WBINVD_EXITING;
  769. }
  770. static inline bool report_flexpriority(void)
  771. {
  772. return flexpriority_enabled;
  773. }
  774. static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
  775. {
  776. return vmcs12->cpu_based_vm_exec_control & bit;
  777. }
  778. static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
  779. {
  780. return (vmcs12->cpu_based_vm_exec_control &
  781. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
  782. (vmcs12->secondary_vm_exec_control & bit);
  783. }
  784. static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
  785. struct kvm_vcpu *vcpu)
  786. {
  787. return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
  788. }
  789. static inline bool is_exception(u32 intr_info)
  790. {
  791. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  792. == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
  793. }
  794. static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
  795. static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
  796. struct vmcs12 *vmcs12,
  797. u32 reason, unsigned long qualification);
  798. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  799. {
  800. int i;
  801. for (i = 0; i < vmx->nmsrs; ++i)
  802. if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
  803. return i;
  804. return -1;
  805. }
  806. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  807. {
  808. struct {
  809. u64 vpid : 16;
  810. u64 rsvd : 48;
  811. u64 gva;
  812. } operand = { vpid, 0, gva };
  813. asm volatile (__ex(ASM_VMX_INVVPID)
  814. /* CF==1 or ZF==1 --> rc = -1 */
  815. "; ja 1f ; ud2 ; 1:"
  816. : : "a"(&operand), "c"(ext) : "cc", "memory");
  817. }
  818. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  819. {
  820. struct {
  821. u64 eptp, gpa;
  822. } operand = {eptp, gpa};
  823. asm volatile (__ex(ASM_VMX_INVEPT)
  824. /* CF==1 or ZF==1 --> rc = -1 */
  825. "; ja 1f ; ud2 ; 1:\n"
  826. : : "a" (&operand), "c" (ext) : "cc", "memory");
  827. }
  828. static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  829. {
  830. int i;
  831. i = __find_msr_index(vmx, msr);
  832. if (i >= 0)
  833. return &vmx->guest_msrs[i];
  834. return NULL;
  835. }
  836. static void vmcs_clear(struct vmcs *vmcs)
  837. {
  838. u64 phys_addr = __pa(vmcs);
  839. u8 error;
  840. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  841. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  842. : "cc", "memory");
  843. if (error)
  844. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  845. vmcs, phys_addr);
  846. }
  847. static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
  848. {
  849. vmcs_clear(loaded_vmcs->vmcs);
  850. loaded_vmcs->cpu = -1;
  851. loaded_vmcs->launched = 0;
  852. }
  853. static void vmcs_load(struct vmcs *vmcs)
  854. {
  855. u64 phys_addr = __pa(vmcs);
  856. u8 error;
  857. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  858. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  859. : "cc", "memory");
  860. if (error)
  861. printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
  862. vmcs, phys_addr);
  863. }
  864. static void __loaded_vmcs_clear(void *arg)
  865. {
  866. struct loaded_vmcs *loaded_vmcs = arg;
  867. int cpu = raw_smp_processor_id();
  868. if (loaded_vmcs->cpu != cpu)
  869. return; /* vcpu migration can race with cpu offline */
  870. if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
  871. per_cpu(current_vmcs, cpu) = NULL;
  872. list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
  873. loaded_vmcs_init(loaded_vmcs);
  874. }
  875. static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
  876. {
  877. if (loaded_vmcs->cpu != -1)
  878. smp_call_function_single(
  879. loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1);
  880. }
  881. static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
  882. {
  883. if (vmx->vpid == 0)
  884. return;
  885. if (cpu_has_vmx_invvpid_single())
  886. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  887. }
  888. static inline void vpid_sync_vcpu_global(void)
  889. {
  890. if (cpu_has_vmx_invvpid_global())
  891. __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
  892. }
  893. static inline void vpid_sync_context(struct vcpu_vmx *vmx)
  894. {
  895. if (cpu_has_vmx_invvpid_single())
  896. vpid_sync_vcpu_single(vmx);
  897. else
  898. vpid_sync_vcpu_global();
  899. }
  900. static inline void ept_sync_global(void)
  901. {
  902. if (cpu_has_vmx_invept_global())
  903. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  904. }
  905. static inline void ept_sync_context(u64 eptp)
  906. {
  907. if (enable_ept) {
  908. if (cpu_has_vmx_invept_context())
  909. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  910. else
  911. ept_sync_global();
  912. }
  913. }
  914. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  915. {
  916. if (enable_ept) {
  917. if (cpu_has_vmx_invept_individual_addr())
  918. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  919. eptp, gpa);
  920. else
  921. ept_sync_context(eptp);
  922. }
  923. }
  924. static __always_inline unsigned long vmcs_readl(unsigned long field)
  925. {
  926. unsigned long value;
  927. asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
  928. : "=a"(value) : "d"(field) : "cc");
  929. return value;
  930. }
  931. static __always_inline u16 vmcs_read16(unsigned long field)
  932. {
  933. return vmcs_readl(field);
  934. }
  935. static __always_inline u32 vmcs_read32(unsigned long field)
  936. {
  937. return vmcs_readl(field);
  938. }
  939. static __always_inline u64 vmcs_read64(unsigned long field)
  940. {
  941. #ifdef CONFIG_X86_64
  942. return vmcs_readl(field);
  943. #else
  944. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  945. #endif
  946. }
  947. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  948. {
  949. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  950. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  951. dump_stack();
  952. }
  953. static void vmcs_writel(unsigned long field, unsigned long value)
  954. {
  955. u8 error;
  956. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  957. : "=q"(error) : "a"(value), "d"(field) : "cc");
  958. if (unlikely(error))
  959. vmwrite_error(field, value);
  960. }
  961. static void vmcs_write16(unsigned long field, u16 value)
  962. {
  963. vmcs_writel(field, value);
  964. }
  965. static void vmcs_write32(unsigned long field, u32 value)
  966. {
  967. vmcs_writel(field, value);
  968. }
  969. static void vmcs_write64(unsigned long field, u64 value)
  970. {
  971. vmcs_writel(field, value);
  972. #ifndef CONFIG_X86_64
  973. asm volatile ("");
  974. vmcs_writel(field+1, value >> 32);
  975. #endif
  976. }
  977. static void vmcs_clear_bits(unsigned long field, u32 mask)
  978. {
  979. vmcs_writel(field, vmcs_readl(field) & ~mask);
  980. }
  981. static void vmcs_set_bits(unsigned long field, u32 mask)
  982. {
  983. vmcs_writel(field, vmcs_readl(field) | mask);
  984. }
  985. static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
  986. {
  987. vmx->segment_cache.bitmask = 0;
  988. }
  989. static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
  990. unsigned field)
  991. {
  992. bool ret;
  993. u32 mask = 1 << (seg * SEG_FIELD_NR + field);
  994. if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
  995. vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
  996. vmx->segment_cache.bitmask = 0;
  997. }
  998. ret = vmx->segment_cache.bitmask & mask;
  999. vmx->segment_cache.bitmask |= mask;
  1000. return ret;
  1001. }
  1002. static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
  1003. {
  1004. u16 *p = &vmx->segment_cache.seg[seg].selector;
  1005. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
  1006. *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
  1007. return *p;
  1008. }
  1009. static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
  1010. {
  1011. ulong *p = &vmx->segment_cache.seg[seg].base;
  1012. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
  1013. *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
  1014. return *p;
  1015. }
  1016. static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
  1017. {
  1018. u32 *p = &vmx->segment_cache.seg[seg].limit;
  1019. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
  1020. *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
  1021. return *p;
  1022. }
  1023. static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
  1024. {
  1025. u32 *p = &vmx->segment_cache.seg[seg].ar;
  1026. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
  1027. *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
  1028. return *p;
  1029. }
  1030. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  1031. {
  1032. u32 eb;
  1033. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
  1034. (1u << NM_VECTOR) | (1u << DB_VECTOR);
  1035. if ((vcpu->guest_debug &
  1036. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
  1037. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
  1038. eb |= 1u << BP_VECTOR;
  1039. if (to_vmx(vcpu)->rmode.vm86_active)
  1040. eb = ~0;
  1041. if (enable_ept)
  1042. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  1043. if (vcpu->fpu_active)
  1044. eb &= ~(1u << NM_VECTOR);
  1045. /* When we are running a nested L2 guest and L1 specified for it a
  1046. * certain exception bitmap, we must trap the same exceptions and pass
  1047. * them to L1. When running L2, we will only handle the exceptions
  1048. * specified above if L1 did not want them.
  1049. */
  1050. if (is_guest_mode(vcpu))
  1051. eb |= get_vmcs12(vcpu)->exception_bitmap;
  1052. vmcs_write32(EXCEPTION_BITMAP, eb);
  1053. }
  1054. static void clear_atomic_switch_msr_special(unsigned long entry,
  1055. unsigned long exit)
  1056. {
  1057. vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
  1058. vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
  1059. }
  1060. static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
  1061. {
  1062. unsigned i;
  1063. struct msr_autoload *m = &vmx->msr_autoload;
  1064. switch (msr) {
  1065. case MSR_EFER:
  1066. if (cpu_has_load_ia32_efer) {
  1067. clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
  1068. VM_EXIT_LOAD_IA32_EFER);
  1069. return;
  1070. }
  1071. break;
  1072. case MSR_CORE_PERF_GLOBAL_CTRL:
  1073. if (cpu_has_load_perf_global_ctrl) {
  1074. clear_atomic_switch_msr_special(
  1075. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
  1076. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
  1077. return;
  1078. }
  1079. break;
  1080. }
  1081. for (i = 0; i < m->nr; ++i)
  1082. if (m->guest[i].index == msr)
  1083. break;
  1084. if (i == m->nr)
  1085. return;
  1086. --m->nr;
  1087. m->guest[i] = m->guest[m->nr];
  1088. m->host[i] = m->host[m->nr];
  1089. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  1090. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  1091. }
  1092. static void add_atomic_switch_msr_special(unsigned long entry,
  1093. unsigned long exit, unsigned long guest_val_vmcs,
  1094. unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
  1095. {
  1096. vmcs_write64(guest_val_vmcs, guest_val);
  1097. vmcs_write64(host_val_vmcs, host_val);
  1098. vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
  1099. vmcs_set_bits(VM_EXIT_CONTROLS, exit);
  1100. }
  1101. static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
  1102. u64 guest_val, u64 host_val)
  1103. {
  1104. unsigned i;
  1105. struct msr_autoload *m = &vmx->msr_autoload;
  1106. switch (msr) {
  1107. case MSR_EFER:
  1108. if (cpu_has_load_ia32_efer) {
  1109. add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
  1110. VM_EXIT_LOAD_IA32_EFER,
  1111. GUEST_IA32_EFER,
  1112. HOST_IA32_EFER,
  1113. guest_val, host_val);
  1114. return;
  1115. }
  1116. break;
  1117. case MSR_CORE_PERF_GLOBAL_CTRL:
  1118. if (cpu_has_load_perf_global_ctrl) {
  1119. add_atomic_switch_msr_special(
  1120. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
  1121. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
  1122. GUEST_IA32_PERF_GLOBAL_CTRL,
  1123. HOST_IA32_PERF_GLOBAL_CTRL,
  1124. guest_val, host_val);
  1125. return;
  1126. }
  1127. break;
  1128. }
  1129. for (i = 0; i < m->nr; ++i)
  1130. if (m->guest[i].index == msr)
  1131. break;
  1132. if (i == NR_AUTOLOAD_MSRS) {
  1133. printk_once(KERN_WARNING"Not enough mst switch entries. "
  1134. "Can't add msr %x\n", msr);
  1135. return;
  1136. } else if (i == m->nr) {
  1137. ++m->nr;
  1138. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  1139. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  1140. }
  1141. m->guest[i].index = msr;
  1142. m->guest[i].value = guest_val;
  1143. m->host[i].index = msr;
  1144. m->host[i].value = host_val;
  1145. }
  1146. static void reload_tss(void)
  1147. {
  1148. /*
  1149. * VT restores TR but not its size. Useless.
  1150. */
  1151. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1152. struct desc_struct *descs;
  1153. descs = (void *)gdt->address;
  1154. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  1155. load_TR_desc();
  1156. }
  1157. static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
  1158. {
  1159. u64 guest_efer;
  1160. u64 ignore_bits;
  1161. guest_efer = vmx->vcpu.arch.efer;
  1162. /*
  1163. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  1164. * outside long mode
  1165. */
  1166. ignore_bits = EFER_NX | EFER_SCE;
  1167. #ifdef CONFIG_X86_64
  1168. ignore_bits |= EFER_LMA | EFER_LME;
  1169. /* SCE is meaningful only in long mode on Intel */
  1170. if (guest_efer & EFER_LMA)
  1171. ignore_bits &= ~(u64)EFER_SCE;
  1172. #endif
  1173. guest_efer &= ~ignore_bits;
  1174. guest_efer |= host_efer & ignore_bits;
  1175. vmx->guest_msrs[efer_offset].data = guest_efer;
  1176. vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
  1177. clear_atomic_switch_msr(vmx, MSR_EFER);
  1178. /* On ept, can't emulate nx, and must switch nx atomically */
  1179. if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
  1180. guest_efer = vmx->vcpu.arch.efer;
  1181. if (!(guest_efer & EFER_LMA))
  1182. guest_efer &= ~EFER_LME;
  1183. add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
  1184. return false;
  1185. }
  1186. return true;
  1187. }
  1188. static unsigned long segment_base(u16 selector)
  1189. {
  1190. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1191. struct desc_struct *d;
  1192. unsigned long table_base;
  1193. unsigned long v;
  1194. if (!(selector & ~3))
  1195. return 0;
  1196. table_base = gdt->address;
  1197. if (selector & 4) { /* from ldt */
  1198. u16 ldt_selector = kvm_read_ldt();
  1199. if (!(ldt_selector & ~3))
  1200. return 0;
  1201. table_base = segment_base(ldt_selector);
  1202. }
  1203. d = (struct desc_struct *)(table_base + (selector & ~7));
  1204. v = get_desc_base(d);
  1205. #ifdef CONFIG_X86_64
  1206. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  1207. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  1208. #endif
  1209. return v;
  1210. }
  1211. static inline unsigned long kvm_read_tr_base(void)
  1212. {
  1213. u16 tr;
  1214. asm("str %0" : "=g"(tr));
  1215. return segment_base(tr);
  1216. }
  1217. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  1218. {
  1219. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1220. int i;
  1221. if (vmx->host_state.loaded)
  1222. return;
  1223. vmx->host_state.loaded = 1;
  1224. /*
  1225. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  1226. * allow segment selectors with cpl > 0 or ti == 1.
  1227. */
  1228. vmx->host_state.ldt_sel = kvm_read_ldt();
  1229. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  1230. savesegment(fs, vmx->host_state.fs_sel);
  1231. if (!(vmx->host_state.fs_sel & 7)) {
  1232. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  1233. vmx->host_state.fs_reload_needed = 0;
  1234. } else {
  1235. vmcs_write16(HOST_FS_SELECTOR, 0);
  1236. vmx->host_state.fs_reload_needed = 1;
  1237. }
  1238. savesegment(gs, vmx->host_state.gs_sel);
  1239. if (!(vmx->host_state.gs_sel & 7))
  1240. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  1241. else {
  1242. vmcs_write16(HOST_GS_SELECTOR, 0);
  1243. vmx->host_state.gs_ldt_reload_needed = 1;
  1244. }
  1245. #ifdef CONFIG_X86_64
  1246. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  1247. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  1248. #else
  1249. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  1250. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  1251. #endif
  1252. #ifdef CONFIG_X86_64
  1253. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  1254. if (is_long_mode(&vmx->vcpu))
  1255. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  1256. #endif
  1257. for (i = 0; i < vmx->save_nmsrs; ++i)
  1258. kvm_set_shared_msr(vmx->guest_msrs[i].index,
  1259. vmx->guest_msrs[i].data,
  1260. vmx->guest_msrs[i].mask);
  1261. }
  1262. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  1263. {
  1264. if (!vmx->host_state.loaded)
  1265. return;
  1266. ++vmx->vcpu.stat.host_state_reload;
  1267. vmx->host_state.loaded = 0;
  1268. #ifdef CONFIG_X86_64
  1269. if (is_long_mode(&vmx->vcpu))
  1270. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  1271. #endif
  1272. if (vmx->host_state.gs_ldt_reload_needed) {
  1273. kvm_load_ldt(vmx->host_state.ldt_sel);
  1274. #ifdef CONFIG_X86_64
  1275. load_gs_index(vmx->host_state.gs_sel);
  1276. #else
  1277. loadsegment(gs, vmx->host_state.gs_sel);
  1278. #endif
  1279. }
  1280. if (vmx->host_state.fs_reload_needed)
  1281. loadsegment(fs, vmx->host_state.fs_sel);
  1282. reload_tss();
  1283. #ifdef CONFIG_X86_64
  1284. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  1285. #endif
  1286. if (user_has_fpu())
  1287. clts();
  1288. load_gdt(&__get_cpu_var(host_gdt));
  1289. }
  1290. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  1291. {
  1292. preempt_disable();
  1293. __vmx_load_host_state(vmx);
  1294. preempt_enable();
  1295. }
  1296. /*
  1297. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  1298. * vcpu mutex is already taken.
  1299. */
  1300. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1301. {
  1302. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1303. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  1304. if (!vmm_exclusive)
  1305. kvm_cpu_vmxon(phys_addr);
  1306. else if (vmx->loaded_vmcs->cpu != cpu)
  1307. loaded_vmcs_clear(vmx->loaded_vmcs);
  1308. if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
  1309. per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
  1310. vmcs_load(vmx->loaded_vmcs->vmcs);
  1311. }
  1312. if (vmx->loaded_vmcs->cpu != cpu) {
  1313. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1314. unsigned long sysenter_esp;
  1315. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  1316. local_irq_disable();
  1317. list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
  1318. &per_cpu(loaded_vmcss_on_cpu, cpu));
  1319. local_irq_enable();
  1320. /*
  1321. * Linux uses per-cpu TSS and GDT, so set these when switching
  1322. * processors.
  1323. */
  1324. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  1325. vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
  1326. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  1327. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  1328. vmx->loaded_vmcs->cpu = cpu;
  1329. }
  1330. }
  1331. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  1332. {
  1333. __vmx_load_host_state(to_vmx(vcpu));
  1334. if (!vmm_exclusive) {
  1335. __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
  1336. vcpu->cpu = -1;
  1337. kvm_cpu_vmxoff();
  1338. }
  1339. }
  1340. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  1341. {
  1342. ulong cr0;
  1343. if (vcpu->fpu_active)
  1344. return;
  1345. vcpu->fpu_active = 1;
  1346. cr0 = vmcs_readl(GUEST_CR0);
  1347. cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
  1348. cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
  1349. vmcs_writel(GUEST_CR0, cr0);
  1350. update_exception_bitmap(vcpu);
  1351. vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
  1352. if (is_guest_mode(vcpu))
  1353. vcpu->arch.cr0_guest_owned_bits &=
  1354. ~get_vmcs12(vcpu)->cr0_guest_host_mask;
  1355. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  1356. }
  1357. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
  1358. /*
  1359. * Return the cr0 value that a nested guest would read. This is a combination
  1360. * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
  1361. * its hypervisor (cr0_read_shadow).
  1362. */
  1363. static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
  1364. {
  1365. return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
  1366. (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
  1367. }
  1368. static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
  1369. {
  1370. return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
  1371. (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
  1372. }
  1373. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  1374. {
  1375. /* Note that there is no vcpu->fpu_active = 0 here. The caller must
  1376. * set this *before* calling this function.
  1377. */
  1378. vmx_decache_cr0_guest_bits(vcpu);
  1379. vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
  1380. update_exception_bitmap(vcpu);
  1381. vcpu->arch.cr0_guest_owned_bits = 0;
  1382. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  1383. if (is_guest_mode(vcpu)) {
  1384. /*
  1385. * L1's specified read shadow might not contain the TS bit,
  1386. * so now that we turned on shadowing of this bit, we need to
  1387. * set this bit of the shadow. Like in nested_vmx_run we need
  1388. * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
  1389. * up-to-date here because we just decached cr0.TS (and we'll
  1390. * only update vmcs12->guest_cr0 on nested exit).
  1391. */
  1392. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  1393. vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
  1394. (vcpu->arch.cr0 & X86_CR0_TS);
  1395. vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
  1396. } else
  1397. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  1398. }
  1399. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  1400. {
  1401. unsigned long rflags, save_rflags;
  1402. if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
  1403. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  1404. rflags = vmcs_readl(GUEST_RFLAGS);
  1405. if (to_vmx(vcpu)->rmode.vm86_active) {
  1406. rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  1407. save_rflags = to_vmx(vcpu)->rmode.save_rflags;
  1408. rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  1409. }
  1410. to_vmx(vcpu)->rflags = rflags;
  1411. }
  1412. return to_vmx(vcpu)->rflags;
  1413. }
  1414. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  1415. {
  1416. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  1417. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  1418. to_vmx(vcpu)->rflags = rflags;
  1419. if (to_vmx(vcpu)->rmode.vm86_active) {
  1420. to_vmx(vcpu)->rmode.save_rflags = rflags;
  1421. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1422. }
  1423. vmcs_writel(GUEST_RFLAGS, rflags);
  1424. }
  1425. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  1426. {
  1427. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  1428. int ret = 0;
  1429. if (interruptibility & GUEST_INTR_STATE_STI)
  1430. ret |= KVM_X86_SHADOW_INT_STI;
  1431. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  1432. ret |= KVM_X86_SHADOW_INT_MOV_SS;
  1433. return ret & mask;
  1434. }
  1435. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  1436. {
  1437. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  1438. u32 interruptibility = interruptibility_old;
  1439. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  1440. if (mask & KVM_X86_SHADOW_INT_MOV_SS)
  1441. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  1442. else if (mask & KVM_X86_SHADOW_INT_STI)
  1443. interruptibility |= GUEST_INTR_STATE_STI;
  1444. if ((interruptibility != interruptibility_old))
  1445. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  1446. }
  1447. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  1448. {
  1449. unsigned long rip;
  1450. rip = kvm_rip_read(vcpu);
  1451. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  1452. kvm_rip_write(vcpu, rip);
  1453. /* skipping an emulated instruction also counts */
  1454. vmx_set_interrupt_shadow(vcpu, 0);
  1455. }
  1456. /*
  1457. * KVM wants to inject page-faults which it got to the guest. This function
  1458. * checks whether in a nested guest, we need to inject them to L1 or L2.
  1459. * This function assumes it is called with the exit reason in vmcs02 being
  1460. * a #PF exception (this is the only case in which KVM injects a #PF when L2
  1461. * is running).
  1462. */
  1463. static int nested_pf_handled(struct kvm_vcpu *vcpu)
  1464. {
  1465. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  1466. /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
  1467. if (!(vmcs12->exception_bitmap & (1u << PF_VECTOR)))
  1468. return 0;
  1469. nested_vmx_vmexit(vcpu);
  1470. return 1;
  1471. }
  1472. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  1473. bool has_error_code, u32 error_code,
  1474. bool reinject)
  1475. {
  1476. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1477. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  1478. if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
  1479. nested_pf_handled(vcpu))
  1480. return;
  1481. if (has_error_code) {
  1482. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  1483. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  1484. }
  1485. if (vmx->rmode.vm86_active) {
  1486. int inc_eip = 0;
  1487. if (kvm_exception_is_soft(nr))
  1488. inc_eip = vcpu->arch.event_exit_inst_len;
  1489. if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
  1490. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  1491. return;
  1492. }
  1493. if (kvm_exception_is_soft(nr)) {
  1494. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  1495. vmx->vcpu.arch.event_exit_inst_len);
  1496. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  1497. } else
  1498. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  1499. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  1500. }
  1501. static bool vmx_rdtscp_supported(void)
  1502. {
  1503. return cpu_has_vmx_rdtscp();
  1504. }
  1505. /*
  1506. * Swap MSR entry in host/guest MSR entry array.
  1507. */
  1508. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  1509. {
  1510. struct shared_msr_entry tmp;
  1511. tmp = vmx->guest_msrs[to];
  1512. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  1513. vmx->guest_msrs[from] = tmp;
  1514. }
  1515. /*
  1516. * Set up the vmcs to automatically save and restore system
  1517. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  1518. * mode, as fiddling with msrs is very expensive.
  1519. */
  1520. static void setup_msrs(struct vcpu_vmx *vmx)
  1521. {
  1522. int save_nmsrs, index;
  1523. unsigned long *msr_bitmap;
  1524. save_nmsrs = 0;
  1525. #ifdef CONFIG_X86_64
  1526. if (is_long_mode(&vmx->vcpu)) {
  1527. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  1528. if (index >= 0)
  1529. move_msr_up(vmx, index, save_nmsrs++);
  1530. index = __find_msr_index(vmx, MSR_LSTAR);
  1531. if (index >= 0)
  1532. move_msr_up(vmx, index, save_nmsrs++);
  1533. index = __find_msr_index(vmx, MSR_CSTAR);
  1534. if (index >= 0)
  1535. move_msr_up(vmx, index, save_nmsrs++);
  1536. index = __find_msr_index(vmx, MSR_TSC_AUX);
  1537. if (index >= 0 && vmx->rdtscp_enabled)
  1538. move_msr_up(vmx, index, save_nmsrs++);
  1539. /*
  1540. * MSR_STAR is only needed on long mode guests, and only
  1541. * if efer.sce is enabled.
  1542. */
  1543. index = __find_msr_index(vmx, MSR_STAR);
  1544. if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
  1545. move_msr_up(vmx, index, save_nmsrs++);
  1546. }
  1547. #endif
  1548. index = __find_msr_index(vmx, MSR_EFER);
  1549. if (index >= 0 && update_transition_efer(vmx, index))
  1550. move_msr_up(vmx, index, save_nmsrs++);
  1551. vmx->save_nmsrs = save_nmsrs;
  1552. if (cpu_has_vmx_msr_bitmap()) {
  1553. if (is_long_mode(&vmx->vcpu))
  1554. msr_bitmap = vmx_msr_bitmap_longmode;
  1555. else
  1556. msr_bitmap = vmx_msr_bitmap_legacy;
  1557. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  1558. }
  1559. }
  1560. /*
  1561. * reads and returns guest's timestamp counter "register"
  1562. * guest_tsc = host_tsc + tsc_offset -- 21.3
  1563. */
  1564. static u64 guest_read_tsc(void)
  1565. {
  1566. u64 host_tsc, tsc_offset;
  1567. rdtscll(host_tsc);
  1568. tsc_offset = vmcs_read64(TSC_OFFSET);
  1569. return host_tsc + tsc_offset;
  1570. }
  1571. /*
  1572. * Like guest_read_tsc, but always returns L1's notion of the timestamp
  1573. * counter, even if a nested guest (L2) is currently running.
  1574. */
  1575. u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu)
  1576. {
  1577. u64 host_tsc, tsc_offset;
  1578. rdtscll(host_tsc);
  1579. tsc_offset = is_guest_mode(vcpu) ?
  1580. to_vmx(vcpu)->nested.vmcs01_tsc_offset :
  1581. vmcs_read64(TSC_OFFSET);
  1582. return host_tsc + tsc_offset;
  1583. }
  1584. /*
  1585. * Engage any workarounds for mis-matched TSC rates. Currently limited to
  1586. * software catchup for faster rates on slower CPUs.
  1587. */
  1588. static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
  1589. {
  1590. if (!scale)
  1591. return;
  1592. if (user_tsc_khz > tsc_khz) {
  1593. vcpu->arch.tsc_catchup = 1;
  1594. vcpu->arch.tsc_always_catchup = 1;
  1595. } else
  1596. WARN(1, "user requested TSC rate below hardware speed\n");
  1597. }
  1598. /*
  1599. * writes 'offset' into guest's timestamp counter offset register
  1600. */
  1601. static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
  1602. {
  1603. if (is_guest_mode(vcpu)) {
  1604. /*
  1605. * We're here if L1 chose not to trap WRMSR to TSC. According
  1606. * to the spec, this should set L1's TSC; The offset that L1
  1607. * set for L2 remains unchanged, and still needs to be added
  1608. * to the newly set TSC to get L2's TSC.
  1609. */
  1610. struct vmcs12 *vmcs12;
  1611. to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
  1612. /* recalculate vmcs02.TSC_OFFSET: */
  1613. vmcs12 = get_vmcs12(vcpu);
  1614. vmcs_write64(TSC_OFFSET, offset +
  1615. (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
  1616. vmcs12->tsc_offset : 0));
  1617. } else {
  1618. vmcs_write64(TSC_OFFSET, offset);
  1619. }
  1620. }
  1621. static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
  1622. {
  1623. u64 offset = vmcs_read64(TSC_OFFSET);
  1624. vmcs_write64(TSC_OFFSET, offset + adjustment);
  1625. if (is_guest_mode(vcpu)) {
  1626. /* Even when running L2, the adjustment needs to apply to L1 */
  1627. to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
  1628. }
  1629. }
  1630. static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
  1631. {
  1632. return target_tsc - native_read_tsc();
  1633. }
  1634. static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
  1635. {
  1636. struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
  1637. return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
  1638. }
  1639. /*
  1640. * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
  1641. * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
  1642. * all guests if the "nested" module option is off, and can also be disabled
  1643. * for a single guest by disabling its VMX cpuid bit.
  1644. */
  1645. static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
  1646. {
  1647. return nested && guest_cpuid_has_vmx(vcpu);
  1648. }
  1649. /*
  1650. * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
  1651. * returned for the various VMX controls MSRs when nested VMX is enabled.
  1652. * The same values should also be used to verify that vmcs12 control fields are
  1653. * valid during nested entry from L1 to L2.
  1654. * Each of these control msrs has a low and high 32-bit half: A low bit is on
  1655. * if the corresponding bit in the (32-bit) control field *must* be on, and a
  1656. * bit in the high half is on if the corresponding bit in the control field
  1657. * may be on. See also vmx_control_verify().
  1658. * TODO: allow these variables to be modified (downgraded) by module options
  1659. * or other means.
  1660. */
  1661. static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
  1662. static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
  1663. static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
  1664. static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
  1665. static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
  1666. static __init void nested_vmx_setup_ctls_msrs(void)
  1667. {
  1668. /*
  1669. * Note that as a general rule, the high half of the MSRs (bits in
  1670. * the control fields which may be 1) should be initialized by the
  1671. * intersection of the underlying hardware's MSR (i.e., features which
  1672. * can be supported) and the list of features we want to expose -
  1673. * because they are known to be properly supported in our code.
  1674. * Also, usually, the low half of the MSRs (bits which must be 1) can
  1675. * be set to 0, meaning that L1 may turn off any of these bits. The
  1676. * reason is that if one of these bits is necessary, it will appear
  1677. * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
  1678. * fields of vmcs01 and vmcs02, will turn these bits off - and
  1679. * nested_vmx_exit_handled() will not pass related exits to L1.
  1680. * These rules have exceptions below.
  1681. */
  1682. /* pin-based controls */
  1683. /*
  1684. * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
  1685. * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
  1686. */
  1687. nested_vmx_pinbased_ctls_low = 0x16 ;
  1688. nested_vmx_pinbased_ctls_high = 0x16 |
  1689. PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
  1690. PIN_BASED_VIRTUAL_NMIS;
  1691. /* exit controls */
  1692. nested_vmx_exit_ctls_low = 0;
  1693. /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
  1694. #ifdef CONFIG_X86_64
  1695. nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1696. #else
  1697. nested_vmx_exit_ctls_high = 0;
  1698. #endif
  1699. /* entry controls */
  1700. rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
  1701. nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
  1702. nested_vmx_entry_ctls_low = 0;
  1703. nested_vmx_entry_ctls_high &=
  1704. VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
  1705. /* cpu-based controls */
  1706. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
  1707. nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
  1708. nested_vmx_procbased_ctls_low = 0;
  1709. nested_vmx_procbased_ctls_high &=
  1710. CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
  1711. CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
  1712. CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
  1713. CPU_BASED_CR3_STORE_EXITING |
  1714. #ifdef CONFIG_X86_64
  1715. CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
  1716. #endif
  1717. CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
  1718. CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
  1719. CPU_BASED_RDPMC_EXITING |
  1720. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1721. /*
  1722. * We can allow some features even when not supported by the
  1723. * hardware. For example, L1 can specify an MSR bitmap - and we
  1724. * can use it to avoid exits to L1 - even when L0 runs L2
  1725. * without MSR bitmaps.
  1726. */
  1727. nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
  1728. /* secondary cpu-based controls */
  1729. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
  1730. nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
  1731. nested_vmx_secondary_ctls_low = 0;
  1732. nested_vmx_secondary_ctls_high &=
  1733. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1734. }
  1735. static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
  1736. {
  1737. /*
  1738. * Bits 0 in high must be 0, and bits 1 in low must be 1.
  1739. */
  1740. return ((control & high) | low) == control;
  1741. }
  1742. static inline u64 vmx_control_msr(u32 low, u32 high)
  1743. {
  1744. return low | ((u64)high << 32);
  1745. }
  1746. /*
  1747. * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
  1748. * also let it use VMX-specific MSRs.
  1749. * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
  1750. * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
  1751. * like all other MSRs).
  1752. */
  1753. static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1754. {
  1755. if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
  1756. msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
  1757. /*
  1758. * According to the spec, processors which do not support VMX
  1759. * should throw a #GP(0) when VMX capability MSRs are read.
  1760. */
  1761. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  1762. return 1;
  1763. }
  1764. switch (msr_index) {
  1765. case MSR_IA32_FEATURE_CONTROL:
  1766. *pdata = 0;
  1767. break;
  1768. case MSR_IA32_VMX_BASIC:
  1769. /*
  1770. * This MSR reports some information about VMX support. We
  1771. * should return information about the VMX we emulate for the
  1772. * guest, and the VMCS structure we give it - not about the
  1773. * VMX support of the underlying hardware.
  1774. */
  1775. *pdata = VMCS12_REVISION |
  1776. ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
  1777. (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
  1778. break;
  1779. case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
  1780. case MSR_IA32_VMX_PINBASED_CTLS:
  1781. *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
  1782. nested_vmx_pinbased_ctls_high);
  1783. break;
  1784. case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
  1785. case MSR_IA32_VMX_PROCBASED_CTLS:
  1786. *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
  1787. nested_vmx_procbased_ctls_high);
  1788. break;
  1789. case MSR_IA32_VMX_TRUE_EXIT_CTLS:
  1790. case MSR_IA32_VMX_EXIT_CTLS:
  1791. *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
  1792. nested_vmx_exit_ctls_high);
  1793. break;
  1794. case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
  1795. case MSR_IA32_VMX_ENTRY_CTLS:
  1796. *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
  1797. nested_vmx_entry_ctls_high);
  1798. break;
  1799. case MSR_IA32_VMX_MISC:
  1800. *pdata = 0;
  1801. break;
  1802. /*
  1803. * These MSRs specify bits which the guest must keep fixed (on or off)
  1804. * while L1 is in VMXON mode (in L1's root mode, or running an L2).
  1805. * We picked the standard core2 setting.
  1806. */
  1807. #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
  1808. #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
  1809. case MSR_IA32_VMX_CR0_FIXED0:
  1810. *pdata = VMXON_CR0_ALWAYSON;
  1811. break;
  1812. case MSR_IA32_VMX_CR0_FIXED1:
  1813. *pdata = -1ULL;
  1814. break;
  1815. case MSR_IA32_VMX_CR4_FIXED0:
  1816. *pdata = VMXON_CR4_ALWAYSON;
  1817. break;
  1818. case MSR_IA32_VMX_CR4_FIXED1:
  1819. *pdata = -1ULL;
  1820. break;
  1821. case MSR_IA32_VMX_VMCS_ENUM:
  1822. *pdata = 0x1f;
  1823. break;
  1824. case MSR_IA32_VMX_PROCBASED_CTLS2:
  1825. *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
  1826. nested_vmx_secondary_ctls_high);
  1827. break;
  1828. case MSR_IA32_VMX_EPT_VPID_CAP:
  1829. /* Currently, no nested ept or nested vpid */
  1830. *pdata = 0;
  1831. break;
  1832. default:
  1833. return 0;
  1834. }
  1835. return 1;
  1836. }
  1837. static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1838. {
  1839. if (!nested_vmx_allowed(vcpu))
  1840. return 0;
  1841. if (msr_index == MSR_IA32_FEATURE_CONTROL)
  1842. /* TODO: the right thing. */
  1843. return 1;
  1844. /*
  1845. * No need to treat VMX capability MSRs specially: If we don't handle
  1846. * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
  1847. */
  1848. return 0;
  1849. }
  1850. /*
  1851. * Reads an msr value (of 'msr_index') into 'pdata'.
  1852. * Returns 0 on success, non-0 otherwise.
  1853. * Assumes vcpu_load() was already called.
  1854. */
  1855. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1856. {
  1857. u64 data;
  1858. struct shared_msr_entry *msr;
  1859. if (!pdata) {
  1860. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  1861. return -EINVAL;
  1862. }
  1863. switch (msr_index) {
  1864. #ifdef CONFIG_X86_64
  1865. case MSR_FS_BASE:
  1866. data = vmcs_readl(GUEST_FS_BASE);
  1867. break;
  1868. case MSR_GS_BASE:
  1869. data = vmcs_readl(GUEST_GS_BASE);
  1870. break;
  1871. case MSR_KERNEL_GS_BASE:
  1872. vmx_load_host_state(to_vmx(vcpu));
  1873. data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
  1874. break;
  1875. #endif
  1876. case MSR_EFER:
  1877. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1878. case MSR_IA32_TSC:
  1879. data = guest_read_tsc();
  1880. break;
  1881. case MSR_IA32_SYSENTER_CS:
  1882. data = vmcs_read32(GUEST_SYSENTER_CS);
  1883. break;
  1884. case MSR_IA32_SYSENTER_EIP:
  1885. data = vmcs_readl(GUEST_SYSENTER_EIP);
  1886. break;
  1887. case MSR_IA32_SYSENTER_ESP:
  1888. data = vmcs_readl(GUEST_SYSENTER_ESP);
  1889. break;
  1890. case MSR_TSC_AUX:
  1891. if (!to_vmx(vcpu)->rdtscp_enabled)
  1892. return 1;
  1893. /* Otherwise falls through */
  1894. default:
  1895. if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
  1896. return 0;
  1897. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  1898. if (msr) {
  1899. data = msr->data;
  1900. break;
  1901. }
  1902. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1903. }
  1904. *pdata = data;
  1905. return 0;
  1906. }
  1907. /*
  1908. * Writes msr value into into the appropriate "register".
  1909. * Returns 0 on success, non-0 otherwise.
  1910. * Assumes vcpu_load() was already called.
  1911. */
  1912. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1913. {
  1914. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1915. struct shared_msr_entry *msr;
  1916. int ret = 0;
  1917. switch (msr_index) {
  1918. case MSR_EFER:
  1919. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1920. break;
  1921. #ifdef CONFIG_X86_64
  1922. case MSR_FS_BASE:
  1923. vmx_segment_cache_clear(vmx);
  1924. vmcs_writel(GUEST_FS_BASE, data);
  1925. break;
  1926. case MSR_GS_BASE:
  1927. vmx_segment_cache_clear(vmx);
  1928. vmcs_writel(GUEST_GS_BASE, data);
  1929. break;
  1930. case MSR_KERNEL_GS_BASE:
  1931. vmx_load_host_state(vmx);
  1932. vmx->msr_guest_kernel_gs_base = data;
  1933. break;
  1934. #endif
  1935. case MSR_IA32_SYSENTER_CS:
  1936. vmcs_write32(GUEST_SYSENTER_CS, data);
  1937. break;
  1938. case MSR_IA32_SYSENTER_EIP:
  1939. vmcs_writel(GUEST_SYSENTER_EIP, data);
  1940. break;
  1941. case MSR_IA32_SYSENTER_ESP:
  1942. vmcs_writel(GUEST_SYSENTER_ESP, data);
  1943. break;
  1944. case MSR_IA32_TSC:
  1945. kvm_write_tsc(vcpu, data);
  1946. break;
  1947. case MSR_IA32_CR_PAT:
  1948. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  1949. vmcs_write64(GUEST_IA32_PAT, data);
  1950. vcpu->arch.pat = data;
  1951. break;
  1952. }
  1953. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1954. break;
  1955. case MSR_TSC_AUX:
  1956. if (!vmx->rdtscp_enabled)
  1957. return 1;
  1958. /* Check reserved bit, higher 32 bits should be zero */
  1959. if ((data >> 32) != 0)
  1960. return 1;
  1961. /* Otherwise falls through */
  1962. default:
  1963. if (vmx_set_vmx_msr(vcpu, msr_index, data))
  1964. break;
  1965. msr = find_msr_entry(vmx, msr_index);
  1966. if (msr) {
  1967. msr->data = data;
  1968. if (msr - vmx->guest_msrs < vmx->save_nmsrs)
  1969. kvm_set_shared_msr(msr->index, msr->data,
  1970. msr->mask);
  1971. break;
  1972. }
  1973. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1974. }
  1975. return ret;
  1976. }
  1977. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  1978. {
  1979. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  1980. switch (reg) {
  1981. case VCPU_REGS_RSP:
  1982. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  1983. break;
  1984. case VCPU_REGS_RIP:
  1985. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  1986. break;
  1987. case VCPU_EXREG_PDPTR:
  1988. if (enable_ept)
  1989. ept_save_pdptrs(vcpu);
  1990. break;
  1991. default:
  1992. break;
  1993. }
  1994. }
  1995. static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  1996. {
  1997. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  1998. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  1999. else
  2000. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2001. update_exception_bitmap(vcpu);
  2002. }
  2003. static __init int cpu_has_kvm_support(void)
  2004. {
  2005. return cpu_has_vmx();
  2006. }
  2007. static __init int vmx_disabled_by_bios(void)
  2008. {
  2009. u64 msr;
  2010. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  2011. if (msr & FEATURE_CONTROL_LOCKED) {
  2012. /* launched w/ TXT and VMX disabled */
  2013. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  2014. && tboot_enabled())
  2015. return 1;
  2016. /* launched w/o TXT and VMX only enabled w/ TXT */
  2017. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  2018. && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  2019. && !tboot_enabled()) {
  2020. printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
  2021. "activate TXT before enabling KVM\n");
  2022. return 1;
  2023. }
  2024. /* launched w/o TXT and VMX disabled */
  2025. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  2026. && !tboot_enabled())
  2027. return 1;
  2028. }
  2029. return 0;
  2030. }
  2031. static void kvm_cpu_vmxon(u64 addr)
  2032. {
  2033. asm volatile (ASM_VMX_VMXON_RAX
  2034. : : "a"(&addr), "m"(addr)
  2035. : "memory", "cc");
  2036. }
  2037. static int hardware_enable(void *garbage)
  2038. {
  2039. int cpu = raw_smp_processor_id();
  2040. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  2041. u64 old, test_bits;
  2042. if (read_cr4() & X86_CR4_VMXE)
  2043. return -EBUSY;
  2044. INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
  2045. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  2046. test_bits = FEATURE_CONTROL_LOCKED;
  2047. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
  2048. if (tboot_enabled())
  2049. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
  2050. if ((old & test_bits) != test_bits) {
  2051. /* enable and lock */
  2052. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
  2053. }
  2054. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  2055. if (vmm_exclusive) {
  2056. kvm_cpu_vmxon(phys_addr);
  2057. ept_sync_global();
  2058. }
  2059. store_gdt(&__get_cpu_var(host_gdt));
  2060. return 0;
  2061. }
  2062. static void vmclear_local_loaded_vmcss(void)
  2063. {
  2064. int cpu = raw_smp_processor_id();
  2065. struct loaded_vmcs *v, *n;
  2066. list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
  2067. loaded_vmcss_on_cpu_link)
  2068. __loaded_vmcs_clear(v);
  2069. }
  2070. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  2071. * tricks.
  2072. */
  2073. static void kvm_cpu_vmxoff(void)
  2074. {
  2075. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  2076. }
  2077. static void hardware_disable(void *garbage)
  2078. {
  2079. if (vmm_exclusive) {
  2080. vmclear_local_loaded_vmcss();
  2081. kvm_cpu_vmxoff();
  2082. }
  2083. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  2084. }
  2085. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  2086. u32 msr, u32 *result)
  2087. {
  2088. u32 vmx_msr_low, vmx_msr_high;
  2089. u32 ctl = ctl_min | ctl_opt;
  2090. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  2091. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  2092. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  2093. /* Ensure minimum (required) set of control bits are supported. */
  2094. if (ctl_min & ~ctl)
  2095. return -EIO;
  2096. *result = ctl;
  2097. return 0;
  2098. }
  2099. static __init bool allow_1_setting(u32 msr, u32 ctl)
  2100. {
  2101. u32 vmx_msr_low, vmx_msr_high;
  2102. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  2103. return vmx_msr_high & ctl;
  2104. }
  2105. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  2106. {
  2107. u32 vmx_msr_low, vmx_msr_high;
  2108. u32 min, opt, min2, opt2;
  2109. u32 _pin_based_exec_control = 0;
  2110. u32 _cpu_based_exec_control = 0;
  2111. u32 _cpu_based_2nd_exec_control = 0;
  2112. u32 _vmexit_control = 0;
  2113. u32 _vmentry_control = 0;
  2114. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  2115. opt = PIN_BASED_VIRTUAL_NMIS;
  2116. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  2117. &_pin_based_exec_control) < 0)
  2118. return -EIO;
  2119. min = CPU_BASED_HLT_EXITING |
  2120. #ifdef CONFIG_X86_64
  2121. CPU_BASED_CR8_LOAD_EXITING |
  2122. CPU_BASED_CR8_STORE_EXITING |
  2123. #endif
  2124. CPU_BASED_CR3_LOAD_EXITING |
  2125. CPU_BASED_CR3_STORE_EXITING |
  2126. CPU_BASED_USE_IO_BITMAPS |
  2127. CPU_BASED_MOV_DR_EXITING |
  2128. CPU_BASED_USE_TSC_OFFSETING |
  2129. CPU_BASED_MWAIT_EXITING |
  2130. CPU_BASED_MONITOR_EXITING |
  2131. CPU_BASED_INVLPG_EXITING |
  2132. CPU_BASED_RDPMC_EXITING;
  2133. opt = CPU_BASED_TPR_SHADOW |
  2134. CPU_BASED_USE_MSR_BITMAPS |
  2135. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  2136. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  2137. &_cpu_based_exec_control) < 0)
  2138. return -EIO;
  2139. #ifdef CONFIG_X86_64
  2140. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  2141. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  2142. ~CPU_BASED_CR8_STORE_EXITING;
  2143. #endif
  2144. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  2145. min2 = 0;
  2146. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  2147. SECONDARY_EXEC_WBINVD_EXITING |
  2148. SECONDARY_EXEC_ENABLE_VPID |
  2149. SECONDARY_EXEC_ENABLE_EPT |
  2150. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  2151. SECONDARY_EXEC_PAUSE_LOOP_EXITING |
  2152. SECONDARY_EXEC_RDTSCP;
  2153. if (adjust_vmx_controls(min2, opt2,
  2154. MSR_IA32_VMX_PROCBASED_CTLS2,
  2155. &_cpu_based_2nd_exec_control) < 0)
  2156. return -EIO;
  2157. }
  2158. #ifndef CONFIG_X86_64
  2159. if (!(_cpu_based_2nd_exec_control &
  2160. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  2161. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  2162. #endif
  2163. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  2164. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  2165. enabled */
  2166. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  2167. CPU_BASED_CR3_STORE_EXITING |
  2168. CPU_BASED_INVLPG_EXITING);
  2169. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  2170. vmx_capability.ept, vmx_capability.vpid);
  2171. }
  2172. min = 0;
  2173. #ifdef CONFIG_X86_64
  2174. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  2175. #endif
  2176. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  2177. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  2178. &_vmexit_control) < 0)
  2179. return -EIO;
  2180. min = 0;
  2181. opt = VM_ENTRY_LOAD_IA32_PAT;
  2182. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  2183. &_vmentry_control) < 0)
  2184. return -EIO;
  2185. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  2186. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  2187. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  2188. return -EIO;
  2189. #ifdef CONFIG_X86_64
  2190. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  2191. if (vmx_msr_high & (1u<<16))
  2192. return -EIO;
  2193. #endif
  2194. /* Require Write-Back (WB) memory type for VMCS accesses. */
  2195. if (((vmx_msr_high >> 18) & 15) != 6)
  2196. return -EIO;
  2197. vmcs_conf->size = vmx_msr_high & 0x1fff;
  2198. vmcs_conf->order = get_order(vmcs_config.size);
  2199. vmcs_conf->revision_id = vmx_msr_low;
  2200. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  2201. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  2202. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  2203. vmcs_conf->vmexit_ctrl = _vmexit_control;
  2204. vmcs_conf->vmentry_ctrl = _vmentry_control;
  2205. cpu_has_load_ia32_efer =
  2206. allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
  2207. VM_ENTRY_LOAD_IA32_EFER)
  2208. && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
  2209. VM_EXIT_LOAD_IA32_EFER);
  2210. cpu_has_load_perf_global_ctrl =
  2211. allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
  2212. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
  2213. && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
  2214. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
  2215. /*
  2216. * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
  2217. * but due to arrata below it can't be used. Workaround is to use
  2218. * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
  2219. *
  2220. * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
  2221. *
  2222. * AAK155 (model 26)
  2223. * AAP115 (model 30)
  2224. * AAT100 (model 37)
  2225. * BC86,AAY89,BD102 (model 44)
  2226. * BA97 (model 46)
  2227. *
  2228. */
  2229. if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
  2230. switch (boot_cpu_data.x86_model) {
  2231. case 26:
  2232. case 30:
  2233. case 37:
  2234. case 44:
  2235. case 46:
  2236. cpu_has_load_perf_global_ctrl = false;
  2237. printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
  2238. "does not work properly. Using workaround\n");
  2239. break;
  2240. default:
  2241. break;
  2242. }
  2243. }
  2244. return 0;
  2245. }
  2246. static struct vmcs *alloc_vmcs_cpu(int cpu)
  2247. {
  2248. int node = cpu_to_node(cpu);
  2249. struct page *pages;
  2250. struct vmcs *vmcs;
  2251. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  2252. if (!pages)
  2253. return NULL;
  2254. vmcs = page_address(pages);
  2255. memset(vmcs, 0, vmcs_config.size);
  2256. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  2257. return vmcs;
  2258. }
  2259. static struct vmcs *alloc_vmcs(void)
  2260. {
  2261. return alloc_vmcs_cpu(raw_smp_processor_id());
  2262. }
  2263. static void free_vmcs(struct vmcs *vmcs)
  2264. {
  2265. free_pages((unsigned long)vmcs, vmcs_config.order);
  2266. }
  2267. /*
  2268. * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
  2269. */
  2270. static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
  2271. {
  2272. if (!loaded_vmcs->vmcs)
  2273. return;
  2274. loaded_vmcs_clear(loaded_vmcs);
  2275. free_vmcs(loaded_vmcs->vmcs);
  2276. loaded_vmcs->vmcs = NULL;
  2277. }
  2278. static void free_kvm_area(void)
  2279. {
  2280. int cpu;
  2281. for_each_possible_cpu(cpu) {
  2282. free_vmcs(per_cpu(vmxarea, cpu));
  2283. per_cpu(vmxarea, cpu) = NULL;
  2284. }
  2285. }
  2286. static __init int alloc_kvm_area(void)
  2287. {
  2288. int cpu;
  2289. for_each_possible_cpu(cpu) {
  2290. struct vmcs *vmcs;
  2291. vmcs = alloc_vmcs_cpu(cpu);
  2292. if (!vmcs) {
  2293. free_kvm_area();
  2294. return -ENOMEM;
  2295. }
  2296. per_cpu(vmxarea, cpu) = vmcs;
  2297. }
  2298. return 0;
  2299. }
  2300. static __init int hardware_setup(void)
  2301. {
  2302. if (setup_vmcs_config(&vmcs_config) < 0)
  2303. return -EIO;
  2304. if (boot_cpu_has(X86_FEATURE_NX))
  2305. kvm_enable_efer_bits(EFER_NX);
  2306. if (!cpu_has_vmx_vpid())
  2307. enable_vpid = 0;
  2308. if (!cpu_has_vmx_ept() ||
  2309. !cpu_has_vmx_ept_4levels()) {
  2310. enable_ept = 0;
  2311. enable_unrestricted_guest = 0;
  2312. }
  2313. if (!cpu_has_vmx_unrestricted_guest())
  2314. enable_unrestricted_guest = 0;
  2315. if (!cpu_has_vmx_flexpriority())
  2316. flexpriority_enabled = 0;
  2317. if (!cpu_has_vmx_tpr_shadow())
  2318. kvm_x86_ops->update_cr8_intercept = NULL;
  2319. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  2320. kvm_disable_largepages();
  2321. if (!cpu_has_vmx_ple())
  2322. ple_gap = 0;
  2323. if (nested)
  2324. nested_vmx_setup_ctls_msrs();
  2325. return alloc_kvm_area();
  2326. }
  2327. static __exit void hardware_unsetup(void)
  2328. {
  2329. free_kvm_area();
  2330. }
  2331. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  2332. {
  2333. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2334. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  2335. vmcs_write16(sf->selector, save->selector);
  2336. vmcs_writel(sf->base, save->base);
  2337. vmcs_write32(sf->limit, save->limit);
  2338. vmcs_write32(sf->ar_bytes, save->ar);
  2339. } else {
  2340. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  2341. << AR_DPL_SHIFT;
  2342. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  2343. }
  2344. }
  2345. static void enter_pmode(struct kvm_vcpu *vcpu)
  2346. {
  2347. unsigned long flags;
  2348. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2349. vmx->emulation_required = 1;
  2350. vmx->rmode.vm86_active = 0;
  2351. vmx_segment_cache_clear(vmx);
  2352. vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
  2353. vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
  2354. vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
  2355. vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
  2356. flags = vmcs_readl(GUEST_RFLAGS);
  2357. flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  2358. flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  2359. vmcs_writel(GUEST_RFLAGS, flags);
  2360. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  2361. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  2362. update_exception_bitmap(vcpu);
  2363. if (emulate_invalid_guest_state)
  2364. return;
  2365. fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
  2366. fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
  2367. fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
  2368. fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
  2369. vmx_segment_cache_clear(vmx);
  2370. vmcs_write16(GUEST_SS_SELECTOR, 0);
  2371. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  2372. vmcs_write16(GUEST_CS_SELECTOR,
  2373. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  2374. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  2375. }
  2376. static gva_t rmode_tss_base(struct kvm *kvm)
  2377. {
  2378. if (!kvm->arch.tss_addr) {
  2379. struct kvm_memslots *slots;
  2380. struct kvm_memory_slot *slot;
  2381. gfn_t base_gfn;
  2382. slots = kvm_memslots(kvm);
  2383. slot = id_to_memslot(slots, 0);
  2384. base_gfn = slot->base_gfn + slot->npages - 3;
  2385. return base_gfn << PAGE_SHIFT;
  2386. }
  2387. return kvm->arch.tss_addr;
  2388. }
  2389. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  2390. {
  2391. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2392. save->selector = vmcs_read16(sf->selector);
  2393. save->base = vmcs_readl(sf->base);
  2394. save->limit = vmcs_read32(sf->limit);
  2395. save->ar = vmcs_read32(sf->ar_bytes);
  2396. vmcs_write16(sf->selector, save->base >> 4);
  2397. vmcs_write32(sf->base, save->base & 0xffff0);
  2398. vmcs_write32(sf->limit, 0xffff);
  2399. vmcs_write32(sf->ar_bytes, 0xf3);
  2400. if (save->base & 0xf)
  2401. printk_once(KERN_WARNING "kvm: segment base is not paragraph"
  2402. " aligned when entering protected mode (seg=%d)",
  2403. seg);
  2404. }
  2405. static void enter_rmode(struct kvm_vcpu *vcpu)
  2406. {
  2407. unsigned long flags;
  2408. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2409. if (enable_unrestricted_guest)
  2410. return;
  2411. vmx->emulation_required = 1;
  2412. vmx->rmode.vm86_active = 1;
  2413. /*
  2414. * Very old userspace does not call KVM_SET_TSS_ADDR before entering
  2415. * vcpu. Call it here with phys address pointing 16M below 4G.
  2416. */
  2417. if (!vcpu->kvm->arch.tss_addr) {
  2418. printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
  2419. "called before entering vcpu\n");
  2420. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  2421. vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
  2422. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  2423. }
  2424. vmx_segment_cache_clear(vmx);
  2425. vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
  2426. vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  2427. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  2428. vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  2429. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  2430. vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  2431. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2432. flags = vmcs_readl(GUEST_RFLAGS);
  2433. vmx->rmode.save_rflags = flags;
  2434. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  2435. vmcs_writel(GUEST_RFLAGS, flags);
  2436. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  2437. update_exception_bitmap(vcpu);
  2438. if (emulate_invalid_guest_state)
  2439. goto continue_rmode;
  2440. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  2441. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  2442. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  2443. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  2444. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  2445. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  2446. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  2447. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  2448. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
  2449. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
  2450. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
  2451. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
  2452. continue_rmode:
  2453. kvm_mmu_reset_context(vcpu);
  2454. }
  2455. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  2456. {
  2457. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2458. struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  2459. if (!msr)
  2460. return;
  2461. /*
  2462. * Force kernel_gs_base reloading before EFER changes, as control
  2463. * of this msr depends on is_long_mode().
  2464. */
  2465. vmx_load_host_state(to_vmx(vcpu));
  2466. vcpu->arch.efer = efer;
  2467. if (efer & EFER_LMA) {
  2468. vmcs_write32(VM_ENTRY_CONTROLS,
  2469. vmcs_read32(VM_ENTRY_CONTROLS) |
  2470. VM_ENTRY_IA32E_MODE);
  2471. msr->data = efer;
  2472. } else {
  2473. vmcs_write32(VM_ENTRY_CONTROLS,
  2474. vmcs_read32(VM_ENTRY_CONTROLS) &
  2475. ~VM_ENTRY_IA32E_MODE);
  2476. msr->data = efer & ~EFER_LME;
  2477. }
  2478. setup_msrs(vmx);
  2479. }
  2480. #ifdef CONFIG_X86_64
  2481. static void enter_lmode(struct kvm_vcpu *vcpu)
  2482. {
  2483. u32 guest_tr_ar;
  2484. vmx_segment_cache_clear(to_vmx(vcpu));
  2485. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  2486. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  2487. pr_debug_ratelimited("%s: tss fixup for long mode. \n",
  2488. __func__);
  2489. vmcs_write32(GUEST_TR_AR_BYTES,
  2490. (guest_tr_ar & ~AR_TYPE_MASK)
  2491. | AR_TYPE_BUSY_64_TSS);
  2492. }
  2493. vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
  2494. }
  2495. static void exit_lmode(struct kvm_vcpu *vcpu)
  2496. {
  2497. vmcs_write32(VM_ENTRY_CONTROLS,
  2498. vmcs_read32(VM_ENTRY_CONTROLS)
  2499. & ~VM_ENTRY_IA32E_MODE);
  2500. vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
  2501. }
  2502. #endif
  2503. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  2504. {
  2505. vpid_sync_context(to_vmx(vcpu));
  2506. if (enable_ept) {
  2507. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2508. return;
  2509. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  2510. }
  2511. }
  2512. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
  2513. {
  2514. ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
  2515. vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
  2516. vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
  2517. }
  2518. static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
  2519. {
  2520. if (enable_ept && is_paging(vcpu))
  2521. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2522. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  2523. }
  2524. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  2525. {
  2526. ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
  2527. vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
  2528. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
  2529. }
  2530. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  2531. {
  2532. if (!test_bit(VCPU_EXREG_PDPTR,
  2533. (unsigned long *)&vcpu->arch.regs_dirty))
  2534. return;
  2535. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  2536. vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
  2537. vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
  2538. vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
  2539. vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
  2540. }
  2541. }
  2542. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  2543. {
  2544. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  2545. vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  2546. vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  2547. vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  2548. vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  2549. }
  2550. __set_bit(VCPU_EXREG_PDPTR,
  2551. (unsigned long *)&vcpu->arch.regs_avail);
  2552. __set_bit(VCPU_EXREG_PDPTR,
  2553. (unsigned long *)&vcpu->arch.regs_dirty);
  2554. }
  2555. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  2556. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  2557. unsigned long cr0,
  2558. struct kvm_vcpu *vcpu)
  2559. {
  2560. if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
  2561. vmx_decache_cr3(vcpu);
  2562. if (!(cr0 & X86_CR0_PG)) {
  2563. /* From paging/starting to nonpaging */
  2564. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  2565. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  2566. (CPU_BASED_CR3_LOAD_EXITING |
  2567. CPU_BASED_CR3_STORE_EXITING));
  2568. vcpu->arch.cr0 = cr0;
  2569. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  2570. } else if (!is_paging(vcpu)) {
  2571. /* From nonpaging to paging */
  2572. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  2573. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  2574. ~(CPU_BASED_CR3_LOAD_EXITING |
  2575. CPU_BASED_CR3_STORE_EXITING));
  2576. vcpu->arch.cr0 = cr0;
  2577. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  2578. }
  2579. if (!(cr0 & X86_CR0_WP))
  2580. *hw_cr0 &= ~X86_CR0_WP;
  2581. }
  2582. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  2583. {
  2584. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2585. unsigned long hw_cr0;
  2586. if (enable_unrestricted_guest)
  2587. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
  2588. | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  2589. else
  2590. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
  2591. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  2592. enter_pmode(vcpu);
  2593. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  2594. enter_rmode(vcpu);
  2595. #ifdef CONFIG_X86_64
  2596. if (vcpu->arch.efer & EFER_LME) {
  2597. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  2598. enter_lmode(vcpu);
  2599. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  2600. exit_lmode(vcpu);
  2601. }
  2602. #endif
  2603. if (enable_ept)
  2604. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  2605. if (!vcpu->fpu_active)
  2606. hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
  2607. vmcs_writel(CR0_READ_SHADOW, cr0);
  2608. vmcs_writel(GUEST_CR0, hw_cr0);
  2609. vcpu->arch.cr0 = cr0;
  2610. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2611. }
  2612. static u64 construct_eptp(unsigned long root_hpa)
  2613. {
  2614. u64 eptp;
  2615. /* TODO write the value reading from MSR */
  2616. eptp = VMX_EPT_DEFAULT_MT |
  2617. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  2618. eptp |= (root_hpa & PAGE_MASK);
  2619. return eptp;
  2620. }
  2621. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  2622. {
  2623. unsigned long guest_cr3;
  2624. u64 eptp;
  2625. guest_cr3 = cr3;
  2626. if (enable_ept) {
  2627. eptp = construct_eptp(cr3);
  2628. vmcs_write64(EPT_POINTER, eptp);
  2629. guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
  2630. vcpu->kvm->arch.ept_identity_map_addr;
  2631. ept_load_pdptrs(vcpu);
  2632. }
  2633. vmx_flush_tlb(vcpu);
  2634. vmcs_writel(GUEST_CR3, guest_cr3);
  2635. }
  2636. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  2637. {
  2638. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  2639. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  2640. if (cr4 & X86_CR4_VMXE) {
  2641. /*
  2642. * To use VMXON (and later other VMX instructions), a guest
  2643. * must first be able to turn on cr4.VMXE (see handle_vmon()).
  2644. * So basically the check on whether to allow nested VMX
  2645. * is here.
  2646. */
  2647. if (!nested_vmx_allowed(vcpu))
  2648. return 1;
  2649. } else if (to_vmx(vcpu)->nested.vmxon)
  2650. return 1;
  2651. vcpu->arch.cr4 = cr4;
  2652. if (enable_ept) {
  2653. if (!is_paging(vcpu)) {
  2654. hw_cr4 &= ~X86_CR4_PAE;
  2655. hw_cr4 |= X86_CR4_PSE;
  2656. } else if (!(cr4 & X86_CR4_PAE)) {
  2657. hw_cr4 &= ~X86_CR4_PAE;
  2658. }
  2659. }
  2660. vmcs_writel(CR4_READ_SHADOW, cr4);
  2661. vmcs_writel(GUEST_CR4, hw_cr4);
  2662. return 0;
  2663. }
  2664. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  2665. struct kvm_segment *var, int seg)
  2666. {
  2667. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2668. struct kvm_save_segment *save;
  2669. u32 ar;
  2670. if (vmx->rmode.vm86_active
  2671. && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
  2672. || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
  2673. || seg == VCPU_SREG_GS)
  2674. && !emulate_invalid_guest_state) {
  2675. switch (seg) {
  2676. case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
  2677. case VCPU_SREG_ES: save = &vmx->rmode.es; break;
  2678. case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
  2679. case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
  2680. case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
  2681. default: BUG();
  2682. }
  2683. var->selector = save->selector;
  2684. var->base = save->base;
  2685. var->limit = save->limit;
  2686. ar = save->ar;
  2687. if (seg == VCPU_SREG_TR
  2688. || var->selector == vmx_read_guest_seg_selector(vmx, seg))
  2689. goto use_saved_rmode_seg;
  2690. }
  2691. var->base = vmx_read_guest_seg_base(vmx, seg);
  2692. var->limit = vmx_read_guest_seg_limit(vmx, seg);
  2693. var->selector = vmx_read_guest_seg_selector(vmx, seg);
  2694. ar = vmx_read_guest_seg_ar(vmx, seg);
  2695. use_saved_rmode_seg:
  2696. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  2697. ar = 0;
  2698. var->type = ar & 15;
  2699. var->s = (ar >> 4) & 1;
  2700. var->dpl = (ar >> 5) & 3;
  2701. var->present = (ar >> 7) & 1;
  2702. var->avl = (ar >> 12) & 1;
  2703. var->l = (ar >> 13) & 1;
  2704. var->db = (ar >> 14) & 1;
  2705. var->g = (ar >> 15) & 1;
  2706. var->unusable = (ar >> 16) & 1;
  2707. }
  2708. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2709. {
  2710. struct kvm_segment s;
  2711. if (to_vmx(vcpu)->rmode.vm86_active) {
  2712. vmx_get_segment(vcpu, &s, seg);
  2713. return s.base;
  2714. }
  2715. return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
  2716. }
  2717. static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
  2718. {
  2719. if (!is_protmode(vcpu))
  2720. return 0;
  2721. if (!is_long_mode(vcpu)
  2722. && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
  2723. return 3;
  2724. return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
  2725. }
  2726. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  2727. {
  2728. if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
  2729. __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2730. to_vmx(vcpu)->cpl = __vmx_get_cpl(vcpu);
  2731. }
  2732. return to_vmx(vcpu)->cpl;
  2733. }
  2734. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  2735. {
  2736. u32 ar;
  2737. if (var->unusable)
  2738. ar = 1 << 16;
  2739. else {
  2740. ar = var->type & 15;
  2741. ar |= (var->s & 1) << 4;
  2742. ar |= (var->dpl & 3) << 5;
  2743. ar |= (var->present & 1) << 7;
  2744. ar |= (var->avl & 1) << 12;
  2745. ar |= (var->l & 1) << 13;
  2746. ar |= (var->db & 1) << 14;
  2747. ar |= (var->g & 1) << 15;
  2748. }
  2749. if (ar == 0) /* a 0 value means unusable */
  2750. ar = AR_UNUSABLE_MASK;
  2751. return ar;
  2752. }
  2753. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  2754. struct kvm_segment *var, int seg)
  2755. {
  2756. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2757. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2758. u32 ar;
  2759. vmx_segment_cache_clear(vmx);
  2760. if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
  2761. vmcs_write16(sf->selector, var->selector);
  2762. vmx->rmode.tr.selector = var->selector;
  2763. vmx->rmode.tr.base = var->base;
  2764. vmx->rmode.tr.limit = var->limit;
  2765. vmx->rmode.tr.ar = vmx_segment_access_rights(var);
  2766. return;
  2767. }
  2768. vmcs_writel(sf->base, var->base);
  2769. vmcs_write32(sf->limit, var->limit);
  2770. vmcs_write16(sf->selector, var->selector);
  2771. if (vmx->rmode.vm86_active && var->s) {
  2772. /*
  2773. * Hack real-mode segments into vm86 compatibility.
  2774. */
  2775. if (var->base == 0xffff0000 && var->selector == 0xf000)
  2776. vmcs_writel(sf->base, 0xf0000);
  2777. ar = 0xf3;
  2778. } else
  2779. ar = vmx_segment_access_rights(var);
  2780. /*
  2781. * Fix the "Accessed" bit in AR field of segment registers for older
  2782. * qemu binaries.
  2783. * IA32 arch specifies that at the time of processor reset the
  2784. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  2785. * is setting it to 0 in the usedland code. This causes invalid guest
  2786. * state vmexit when "unrestricted guest" mode is turned on.
  2787. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  2788. * tree. Newer qemu binaries with that qemu fix would not need this
  2789. * kvm hack.
  2790. */
  2791. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  2792. ar |= 0x1; /* Accessed */
  2793. vmcs_write32(sf->ar_bytes, ar);
  2794. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2795. }
  2796. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2797. {
  2798. u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
  2799. *db = (ar >> 14) & 1;
  2800. *l = (ar >> 13) & 1;
  2801. }
  2802. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2803. {
  2804. dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
  2805. dt->address = vmcs_readl(GUEST_IDTR_BASE);
  2806. }
  2807. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2808. {
  2809. vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
  2810. vmcs_writel(GUEST_IDTR_BASE, dt->address);
  2811. }
  2812. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2813. {
  2814. dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
  2815. dt->address = vmcs_readl(GUEST_GDTR_BASE);
  2816. }
  2817. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2818. {
  2819. vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
  2820. vmcs_writel(GUEST_GDTR_BASE, dt->address);
  2821. }
  2822. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  2823. {
  2824. struct kvm_segment var;
  2825. u32 ar;
  2826. vmx_get_segment(vcpu, &var, seg);
  2827. ar = vmx_segment_access_rights(&var);
  2828. if (var.base != (var.selector << 4))
  2829. return false;
  2830. if (var.limit != 0xffff)
  2831. return false;
  2832. if (ar != 0xf3)
  2833. return false;
  2834. return true;
  2835. }
  2836. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  2837. {
  2838. struct kvm_segment cs;
  2839. unsigned int cs_rpl;
  2840. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  2841. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  2842. if (cs.unusable)
  2843. return false;
  2844. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  2845. return false;
  2846. if (!cs.s)
  2847. return false;
  2848. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  2849. if (cs.dpl > cs_rpl)
  2850. return false;
  2851. } else {
  2852. if (cs.dpl != cs_rpl)
  2853. return false;
  2854. }
  2855. if (!cs.present)
  2856. return false;
  2857. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  2858. return true;
  2859. }
  2860. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  2861. {
  2862. struct kvm_segment ss;
  2863. unsigned int ss_rpl;
  2864. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  2865. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  2866. if (ss.unusable)
  2867. return true;
  2868. if (ss.type != 3 && ss.type != 7)
  2869. return false;
  2870. if (!ss.s)
  2871. return false;
  2872. if (ss.dpl != ss_rpl) /* DPL != RPL */
  2873. return false;
  2874. if (!ss.present)
  2875. return false;
  2876. return true;
  2877. }
  2878. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  2879. {
  2880. struct kvm_segment var;
  2881. unsigned int rpl;
  2882. vmx_get_segment(vcpu, &var, seg);
  2883. rpl = var.selector & SELECTOR_RPL_MASK;
  2884. if (var.unusable)
  2885. return true;
  2886. if (!var.s)
  2887. return false;
  2888. if (!var.present)
  2889. return false;
  2890. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  2891. if (var.dpl < rpl) /* DPL < RPL */
  2892. return false;
  2893. }
  2894. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  2895. * rights flags
  2896. */
  2897. return true;
  2898. }
  2899. static bool tr_valid(struct kvm_vcpu *vcpu)
  2900. {
  2901. struct kvm_segment tr;
  2902. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  2903. if (tr.unusable)
  2904. return false;
  2905. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  2906. return false;
  2907. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  2908. return false;
  2909. if (!tr.present)
  2910. return false;
  2911. return true;
  2912. }
  2913. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  2914. {
  2915. struct kvm_segment ldtr;
  2916. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  2917. if (ldtr.unusable)
  2918. return true;
  2919. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  2920. return false;
  2921. if (ldtr.type != 2)
  2922. return false;
  2923. if (!ldtr.present)
  2924. return false;
  2925. return true;
  2926. }
  2927. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  2928. {
  2929. struct kvm_segment cs, ss;
  2930. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  2931. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  2932. return ((cs.selector & SELECTOR_RPL_MASK) ==
  2933. (ss.selector & SELECTOR_RPL_MASK));
  2934. }
  2935. /*
  2936. * Check if guest state is valid. Returns true if valid, false if
  2937. * not.
  2938. * We assume that registers are always usable
  2939. */
  2940. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  2941. {
  2942. /* real mode guest state checks */
  2943. if (!is_protmode(vcpu)) {
  2944. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  2945. return false;
  2946. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  2947. return false;
  2948. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  2949. return false;
  2950. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  2951. return false;
  2952. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  2953. return false;
  2954. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  2955. return false;
  2956. } else {
  2957. /* protected mode guest state checks */
  2958. if (!cs_ss_rpl_check(vcpu))
  2959. return false;
  2960. if (!code_segment_valid(vcpu))
  2961. return false;
  2962. if (!stack_segment_valid(vcpu))
  2963. return false;
  2964. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  2965. return false;
  2966. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  2967. return false;
  2968. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  2969. return false;
  2970. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  2971. return false;
  2972. if (!tr_valid(vcpu))
  2973. return false;
  2974. if (!ldtr_valid(vcpu))
  2975. return false;
  2976. }
  2977. /* TODO:
  2978. * - Add checks on RIP
  2979. * - Add checks on RFLAGS
  2980. */
  2981. return true;
  2982. }
  2983. static int init_rmode_tss(struct kvm *kvm)
  2984. {
  2985. gfn_t fn;
  2986. u16 data = 0;
  2987. int r, idx, ret = 0;
  2988. idx = srcu_read_lock(&kvm->srcu);
  2989. fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  2990. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  2991. if (r < 0)
  2992. goto out;
  2993. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  2994. r = kvm_write_guest_page(kvm, fn++, &data,
  2995. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  2996. if (r < 0)
  2997. goto out;
  2998. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  2999. if (r < 0)
  3000. goto out;
  3001. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  3002. if (r < 0)
  3003. goto out;
  3004. data = ~0;
  3005. r = kvm_write_guest_page(kvm, fn, &data,
  3006. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  3007. sizeof(u8));
  3008. if (r < 0)
  3009. goto out;
  3010. ret = 1;
  3011. out:
  3012. srcu_read_unlock(&kvm->srcu, idx);
  3013. return ret;
  3014. }
  3015. static int init_rmode_identity_map(struct kvm *kvm)
  3016. {
  3017. int i, idx, r, ret;
  3018. pfn_t identity_map_pfn;
  3019. u32 tmp;
  3020. if (!enable_ept)
  3021. return 1;
  3022. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  3023. printk(KERN_ERR "EPT: identity-mapping pagetable "
  3024. "haven't been allocated!\n");
  3025. return 0;
  3026. }
  3027. if (likely(kvm->arch.ept_identity_pagetable_done))
  3028. return 1;
  3029. ret = 0;
  3030. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  3031. idx = srcu_read_lock(&kvm->srcu);
  3032. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  3033. if (r < 0)
  3034. goto out;
  3035. /* Set up identity-mapping pagetable for EPT in real mode */
  3036. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  3037. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  3038. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  3039. r = kvm_write_guest_page(kvm, identity_map_pfn,
  3040. &tmp, i * sizeof(tmp), sizeof(tmp));
  3041. if (r < 0)
  3042. goto out;
  3043. }
  3044. kvm->arch.ept_identity_pagetable_done = true;
  3045. ret = 1;
  3046. out:
  3047. srcu_read_unlock(&kvm->srcu, idx);
  3048. return ret;
  3049. }
  3050. static void seg_setup(int seg)
  3051. {
  3052. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  3053. unsigned int ar;
  3054. vmcs_write16(sf->selector, 0);
  3055. vmcs_writel(sf->base, 0);
  3056. vmcs_write32(sf->limit, 0xffff);
  3057. if (enable_unrestricted_guest) {
  3058. ar = 0x93;
  3059. if (seg == VCPU_SREG_CS)
  3060. ar |= 0x08; /* code segment */
  3061. } else
  3062. ar = 0xf3;
  3063. vmcs_write32(sf->ar_bytes, ar);
  3064. }
  3065. static int alloc_apic_access_page(struct kvm *kvm)
  3066. {
  3067. struct kvm_userspace_memory_region kvm_userspace_mem;
  3068. int r = 0;
  3069. mutex_lock(&kvm->slots_lock);
  3070. if (kvm->arch.apic_access_page)
  3071. goto out;
  3072. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  3073. kvm_userspace_mem.flags = 0;
  3074. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  3075. kvm_userspace_mem.memory_size = PAGE_SIZE;
  3076. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  3077. if (r)
  3078. goto out;
  3079. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  3080. out:
  3081. mutex_unlock(&kvm->slots_lock);
  3082. return r;
  3083. }
  3084. static int alloc_identity_pagetable(struct kvm *kvm)
  3085. {
  3086. struct kvm_userspace_memory_region kvm_userspace_mem;
  3087. int r = 0;
  3088. mutex_lock(&kvm->slots_lock);
  3089. if (kvm->arch.ept_identity_pagetable)
  3090. goto out;
  3091. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  3092. kvm_userspace_mem.flags = 0;
  3093. kvm_userspace_mem.guest_phys_addr =
  3094. kvm->arch.ept_identity_map_addr;
  3095. kvm_userspace_mem.memory_size = PAGE_SIZE;
  3096. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  3097. if (r)
  3098. goto out;
  3099. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  3100. kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  3101. out:
  3102. mutex_unlock(&kvm->slots_lock);
  3103. return r;
  3104. }
  3105. static void allocate_vpid(struct vcpu_vmx *vmx)
  3106. {
  3107. int vpid;
  3108. vmx->vpid = 0;
  3109. if (!enable_vpid)
  3110. return;
  3111. spin_lock(&vmx_vpid_lock);
  3112. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  3113. if (vpid < VMX_NR_VPIDS) {
  3114. vmx->vpid = vpid;
  3115. __set_bit(vpid, vmx_vpid_bitmap);
  3116. }
  3117. spin_unlock(&vmx_vpid_lock);
  3118. }
  3119. static void free_vpid(struct vcpu_vmx *vmx)
  3120. {
  3121. if (!enable_vpid)
  3122. return;
  3123. spin_lock(&vmx_vpid_lock);
  3124. if (vmx->vpid != 0)
  3125. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3126. spin_unlock(&vmx_vpid_lock);
  3127. }
  3128. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  3129. {
  3130. int f = sizeof(unsigned long);
  3131. if (!cpu_has_vmx_msr_bitmap())
  3132. return;
  3133. /*
  3134. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  3135. * have the write-low and read-high bitmap offsets the wrong way round.
  3136. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  3137. */
  3138. if (msr <= 0x1fff) {
  3139. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  3140. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  3141. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  3142. msr &= 0x1fff;
  3143. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  3144. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  3145. }
  3146. }
  3147. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  3148. {
  3149. if (!longmode_only)
  3150. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  3151. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  3152. }
  3153. /*
  3154. * Set up the vmcs's constant host-state fields, i.e., host-state fields that
  3155. * will not change in the lifetime of the guest.
  3156. * Note that host-state that does change is set elsewhere. E.g., host-state
  3157. * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
  3158. */
  3159. static void vmx_set_constant_host_state(void)
  3160. {
  3161. u32 low32, high32;
  3162. unsigned long tmpl;
  3163. struct desc_ptr dt;
  3164. vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
  3165. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  3166. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  3167. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  3168. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3169. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3170. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3171. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  3172. native_store_idt(&dt);
  3173. vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
  3174. asm("mov $.Lkvm_vmx_return, %0" : "=r"(tmpl));
  3175. vmcs_writel(HOST_RIP, tmpl); /* 22.2.5 */
  3176. rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
  3177. vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
  3178. rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
  3179. vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
  3180. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  3181. rdmsr(MSR_IA32_CR_PAT, low32, high32);
  3182. vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
  3183. }
  3184. }
  3185. static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
  3186. {
  3187. vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
  3188. if (enable_ept)
  3189. vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
  3190. if (is_guest_mode(&vmx->vcpu))
  3191. vmx->vcpu.arch.cr4_guest_owned_bits &=
  3192. ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
  3193. vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
  3194. }
  3195. static u32 vmx_exec_control(struct vcpu_vmx *vmx)
  3196. {
  3197. u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
  3198. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  3199. exec_control &= ~CPU_BASED_TPR_SHADOW;
  3200. #ifdef CONFIG_X86_64
  3201. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  3202. CPU_BASED_CR8_LOAD_EXITING;
  3203. #endif
  3204. }
  3205. if (!enable_ept)
  3206. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  3207. CPU_BASED_CR3_LOAD_EXITING |
  3208. CPU_BASED_INVLPG_EXITING;
  3209. return exec_control;
  3210. }
  3211. static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
  3212. {
  3213. u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  3214. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  3215. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  3216. if (vmx->vpid == 0)
  3217. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  3218. if (!enable_ept) {
  3219. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  3220. enable_unrestricted_guest = 0;
  3221. }
  3222. if (!enable_unrestricted_guest)
  3223. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  3224. if (!ple_gap)
  3225. exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  3226. return exec_control;
  3227. }
  3228. static void ept_set_mmio_spte_mask(void)
  3229. {
  3230. /*
  3231. * EPT Misconfigurations can be generated if the value of bits 2:0
  3232. * of an EPT paging-structure entry is 110b (write/execute).
  3233. * Also, magic bits (0xffull << 49) is set to quickly identify mmio
  3234. * spte.
  3235. */
  3236. kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
  3237. }
  3238. /*
  3239. * Sets up the vmcs for emulated real mode.
  3240. */
  3241. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  3242. {
  3243. #ifdef CONFIG_X86_64
  3244. unsigned long a;
  3245. #endif
  3246. int i;
  3247. /* I/O */
  3248. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  3249. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  3250. if (cpu_has_vmx_msr_bitmap())
  3251. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  3252. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  3253. /* Control */
  3254. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  3255. vmcs_config.pin_based_exec_ctrl);
  3256. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
  3257. if (cpu_has_secondary_exec_ctrls()) {
  3258. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  3259. vmx_secondary_exec_control(vmx));
  3260. }
  3261. if (ple_gap) {
  3262. vmcs_write32(PLE_GAP, ple_gap);
  3263. vmcs_write32(PLE_WINDOW, ple_window);
  3264. }
  3265. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  3266. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  3267. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  3268. vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
  3269. vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
  3270. vmx_set_constant_host_state();
  3271. #ifdef CONFIG_X86_64
  3272. rdmsrl(MSR_FS_BASE, a);
  3273. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  3274. rdmsrl(MSR_GS_BASE, a);
  3275. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  3276. #else
  3277. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  3278. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  3279. #endif
  3280. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  3281. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  3282. vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
  3283. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  3284. vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
  3285. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  3286. u32 msr_low, msr_high;
  3287. u64 host_pat;
  3288. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  3289. host_pat = msr_low | ((u64) msr_high << 32);
  3290. /* Write the default value follow host pat */
  3291. vmcs_write64(GUEST_IA32_PAT, host_pat);
  3292. /* Keep arch.pat sync with GUEST_IA32_PAT */
  3293. vmx->vcpu.arch.pat = host_pat;
  3294. }
  3295. for (i = 0; i < NR_VMX_MSR; ++i) {
  3296. u32 index = vmx_msr_index[i];
  3297. u32 data_low, data_high;
  3298. int j = vmx->nmsrs;
  3299. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  3300. continue;
  3301. if (wrmsr_safe(index, data_low, data_high) < 0)
  3302. continue;
  3303. vmx->guest_msrs[j].index = i;
  3304. vmx->guest_msrs[j].data = 0;
  3305. vmx->guest_msrs[j].mask = -1ull;
  3306. ++vmx->nmsrs;
  3307. }
  3308. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  3309. /* 22.2.1, 20.8.1 */
  3310. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  3311. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  3312. set_cr4_guest_host_mask(vmx);
  3313. kvm_write_tsc(&vmx->vcpu, 0);
  3314. return 0;
  3315. }
  3316. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  3317. {
  3318. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3319. u64 msr;
  3320. int ret;
  3321. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  3322. vmx->rmode.vm86_active = 0;
  3323. vmx->soft_vnmi_blocked = 0;
  3324. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  3325. kvm_set_cr8(&vmx->vcpu, 0);
  3326. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  3327. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  3328. msr |= MSR_IA32_APICBASE_BSP;
  3329. kvm_set_apic_base(&vmx->vcpu, msr);
  3330. ret = fx_init(&vmx->vcpu);
  3331. if (ret != 0)
  3332. goto out;
  3333. vmx_segment_cache_clear(vmx);
  3334. seg_setup(VCPU_SREG_CS);
  3335. /*
  3336. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  3337. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  3338. */
  3339. if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
  3340. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  3341. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  3342. } else {
  3343. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  3344. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  3345. }
  3346. seg_setup(VCPU_SREG_DS);
  3347. seg_setup(VCPU_SREG_ES);
  3348. seg_setup(VCPU_SREG_FS);
  3349. seg_setup(VCPU_SREG_GS);
  3350. seg_setup(VCPU_SREG_SS);
  3351. vmcs_write16(GUEST_TR_SELECTOR, 0);
  3352. vmcs_writel(GUEST_TR_BASE, 0);
  3353. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  3354. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  3355. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  3356. vmcs_writel(GUEST_LDTR_BASE, 0);
  3357. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  3358. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  3359. vmcs_write32(GUEST_SYSENTER_CS, 0);
  3360. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  3361. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  3362. vmcs_writel(GUEST_RFLAGS, 0x02);
  3363. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  3364. kvm_rip_write(vcpu, 0xfff0);
  3365. else
  3366. kvm_rip_write(vcpu, 0);
  3367. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  3368. vmcs_writel(GUEST_DR7, 0x400);
  3369. vmcs_writel(GUEST_GDTR_BASE, 0);
  3370. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  3371. vmcs_writel(GUEST_IDTR_BASE, 0);
  3372. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  3373. vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
  3374. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  3375. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  3376. /* Special registers */
  3377. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  3378. setup_msrs(vmx);
  3379. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  3380. if (cpu_has_vmx_tpr_shadow()) {
  3381. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  3382. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  3383. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  3384. __pa(vmx->vcpu.arch.apic->regs));
  3385. vmcs_write32(TPR_THRESHOLD, 0);
  3386. }
  3387. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  3388. vmcs_write64(APIC_ACCESS_ADDR,
  3389. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  3390. if (vmx->vpid != 0)
  3391. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  3392. vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  3393. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  3394. vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
  3395. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  3396. vmx_set_cr4(&vmx->vcpu, 0);
  3397. vmx_set_efer(&vmx->vcpu, 0);
  3398. vmx_fpu_activate(&vmx->vcpu);
  3399. update_exception_bitmap(&vmx->vcpu);
  3400. vpid_sync_context(vmx);
  3401. ret = 0;
  3402. /* HACK: Don't enable emulation on guest boot/reset */
  3403. vmx->emulation_required = 0;
  3404. out:
  3405. return ret;
  3406. }
  3407. /*
  3408. * In nested virtualization, check if L1 asked to exit on external interrupts.
  3409. * For most existing hypervisors, this will always return true.
  3410. */
  3411. static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
  3412. {
  3413. return get_vmcs12(vcpu)->pin_based_vm_exec_control &
  3414. PIN_BASED_EXT_INTR_MASK;
  3415. }
  3416. static void enable_irq_window(struct kvm_vcpu *vcpu)
  3417. {
  3418. u32 cpu_based_vm_exec_control;
  3419. if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
  3420. /*
  3421. * We get here if vmx_interrupt_allowed() said we can't
  3422. * inject to L1 now because L2 must run. Ask L2 to exit
  3423. * right after entry, so we can inject to L1 more promptly.
  3424. */
  3425. kvm_make_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
  3426. return;
  3427. }
  3428. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3429. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  3430. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3431. }
  3432. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  3433. {
  3434. u32 cpu_based_vm_exec_control;
  3435. if (!cpu_has_virtual_nmis()) {
  3436. enable_irq_window(vcpu);
  3437. return;
  3438. }
  3439. if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
  3440. enable_irq_window(vcpu);
  3441. return;
  3442. }
  3443. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3444. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  3445. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3446. }
  3447. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  3448. {
  3449. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3450. uint32_t intr;
  3451. int irq = vcpu->arch.interrupt.nr;
  3452. trace_kvm_inj_virq(irq);
  3453. ++vcpu->stat.irq_injections;
  3454. if (vmx->rmode.vm86_active) {
  3455. int inc_eip = 0;
  3456. if (vcpu->arch.interrupt.soft)
  3457. inc_eip = vcpu->arch.event_exit_inst_len;
  3458. if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
  3459. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  3460. return;
  3461. }
  3462. intr = irq | INTR_INFO_VALID_MASK;
  3463. if (vcpu->arch.interrupt.soft) {
  3464. intr |= INTR_TYPE_SOFT_INTR;
  3465. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  3466. vmx->vcpu.arch.event_exit_inst_len);
  3467. } else
  3468. intr |= INTR_TYPE_EXT_INTR;
  3469. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  3470. }
  3471. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  3472. {
  3473. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3474. if (is_guest_mode(vcpu))
  3475. return;
  3476. if (!cpu_has_virtual_nmis()) {
  3477. /*
  3478. * Tracking the NMI-blocked state in software is built upon
  3479. * finding the next open IRQ window. This, in turn, depends on
  3480. * well-behaving guests: They have to keep IRQs disabled at
  3481. * least as long as the NMI handler runs. Otherwise we may
  3482. * cause NMI nesting, maybe breaking the guest. But as this is
  3483. * highly unlikely, we can live with the residual risk.
  3484. */
  3485. vmx->soft_vnmi_blocked = 1;
  3486. vmx->vnmi_blocked_time = 0;
  3487. }
  3488. ++vcpu->stat.nmi_injections;
  3489. vmx->nmi_known_unmasked = false;
  3490. if (vmx->rmode.vm86_active) {
  3491. if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
  3492. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  3493. return;
  3494. }
  3495. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  3496. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  3497. }
  3498. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  3499. {
  3500. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  3501. return 0;
  3502. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  3503. (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
  3504. | GUEST_INTR_STATE_NMI));
  3505. }
  3506. static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
  3507. {
  3508. if (!cpu_has_virtual_nmis())
  3509. return to_vmx(vcpu)->soft_vnmi_blocked;
  3510. if (to_vmx(vcpu)->nmi_known_unmasked)
  3511. return false;
  3512. return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
  3513. }
  3514. static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  3515. {
  3516. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3517. if (!cpu_has_virtual_nmis()) {
  3518. if (vmx->soft_vnmi_blocked != masked) {
  3519. vmx->soft_vnmi_blocked = masked;
  3520. vmx->vnmi_blocked_time = 0;
  3521. }
  3522. } else {
  3523. vmx->nmi_known_unmasked = !masked;
  3524. if (masked)
  3525. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3526. GUEST_INTR_STATE_NMI);
  3527. else
  3528. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  3529. GUEST_INTR_STATE_NMI);
  3530. }
  3531. }
  3532. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  3533. {
  3534. if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
  3535. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  3536. if (to_vmx(vcpu)->nested.nested_run_pending ||
  3537. (vmcs12->idt_vectoring_info_field &
  3538. VECTORING_INFO_VALID_MASK))
  3539. return 0;
  3540. nested_vmx_vmexit(vcpu);
  3541. vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT;
  3542. vmcs12->vm_exit_intr_info = 0;
  3543. /* fall through to normal code, but now in L1, not L2 */
  3544. }
  3545. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  3546. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  3547. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  3548. }
  3549. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  3550. {
  3551. int ret;
  3552. struct kvm_userspace_memory_region tss_mem = {
  3553. .slot = TSS_PRIVATE_MEMSLOT,
  3554. .guest_phys_addr = addr,
  3555. .memory_size = PAGE_SIZE * 3,
  3556. .flags = 0,
  3557. };
  3558. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  3559. if (ret)
  3560. return ret;
  3561. kvm->arch.tss_addr = addr;
  3562. if (!init_rmode_tss(kvm))
  3563. return -ENOMEM;
  3564. return 0;
  3565. }
  3566. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  3567. int vec, u32 err_code)
  3568. {
  3569. /*
  3570. * Instruction with address size override prefix opcode 0x67
  3571. * Cause the #SS fault with 0 error code in VM86 mode.
  3572. */
  3573. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  3574. if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
  3575. return 1;
  3576. /*
  3577. * Forward all other exceptions that are valid in real mode.
  3578. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  3579. * the required debugging infrastructure rework.
  3580. */
  3581. switch (vec) {
  3582. case DB_VECTOR:
  3583. if (vcpu->guest_debug &
  3584. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  3585. return 0;
  3586. kvm_queue_exception(vcpu, vec);
  3587. return 1;
  3588. case BP_VECTOR:
  3589. /*
  3590. * Update instruction length as we may reinject the exception
  3591. * from user space while in guest debugging mode.
  3592. */
  3593. to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
  3594. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3595. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  3596. return 0;
  3597. /* fall through */
  3598. case DE_VECTOR:
  3599. case OF_VECTOR:
  3600. case BR_VECTOR:
  3601. case UD_VECTOR:
  3602. case DF_VECTOR:
  3603. case SS_VECTOR:
  3604. case GP_VECTOR:
  3605. case MF_VECTOR:
  3606. kvm_queue_exception(vcpu, vec);
  3607. return 1;
  3608. }
  3609. return 0;
  3610. }
  3611. /*
  3612. * Trigger machine check on the host. We assume all the MSRs are already set up
  3613. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  3614. * We pass a fake environment to the machine check handler because we want
  3615. * the guest to be always treated like user space, no matter what context
  3616. * it used internally.
  3617. */
  3618. static void kvm_machine_check(void)
  3619. {
  3620. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  3621. struct pt_regs regs = {
  3622. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  3623. .flags = X86_EFLAGS_IF,
  3624. };
  3625. do_machine_check(&regs, 0);
  3626. #endif
  3627. }
  3628. static int handle_machine_check(struct kvm_vcpu *vcpu)
  3629. {
  3630. /* already handled by vcpu_run */
  3631. return 1;
  3632. }
  3633. static int handle_exception(struct kvm_vcpu *vcpu)
  3634. {
  3635. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3636. struct kvm_run *kvm_run = vcpu->run;
  3637. u32 intr_info, ex_no, error_code;
  3638. unsigned long cr2, rip, dr6;
  3639. u32 vect_info;
  3640. enum emulation_result er;
  3641. vect_info = vmx->idt_vectoring_info;
  3642. intr_info = vmx->exit_intr_info;
  3643. if (is_machine_check(intr_info))
  3644. return handle_machine_check(vcpu);
  3645. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  3646. !is_page_fault(intr_info)) {
  3647. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3648. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
  3649. vcpu->run->internal.ndata = 2;
  3650. vcpu->run->internal.data[0] = vect_info;
  3651. vcpu->run->internal.data[1] = intr_info;
  3652. return 0;
  3653. }
  3654. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  3655. return 1; /* already handled by vmx_vcpu_run() */
  3656. if (is_no_device(intr_info)) {
  3657. vmx_fpu_activate(vcpu);
  3658. return 1;
  3659. }
  3660. if (is_invalid_opcode(intr_info)) {
  3661. er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
  3662. if (er != EMULATE_DONE)
  3663. kvm_queue_exception(vcpu, UD_VECTOR);
  3664. return 1;
  3665. }
  3666. error_code = 0;
  3667. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  3668. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  3669. if (is_page_fault(intr_info)) {
  3670. /* EPT won't cause page fault directly */
  3671. BUG_ON(enable_ept);
  3672. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  3673. trace_kvm_page_fault(cr2, error_code);
  3674. if (kvm_event_needs_reinjection(vcpu))
  3675. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  3676. return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
  3677. }
  3678. if (vmx->rmode.vm86_active &&
  3679. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  3680. error_code)) {
  3681. if (vcpu->arch.halt_request) {
  3682. vcpu->arch.halt_request = 0;
  3683. return kvm_emulate_halt(vcpu);
  3684. }
  3685. return 1;
  3686. }
  3687. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  3688. switch (ex_no) {
  3689. case DB_VECTOR:
  3690. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  3691. if (!(vcpu->guest_debug &
  3692. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  3693. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  3694. kvm_queue_exception(vcpu, DB_VECTOR);
  3695. return 1;
  3696. }
  3697. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  3698. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  3699. /* fall through */
  3700. case BP_VECTOR:
  3701. /*
  3702. * Update instruction length as we may reinject #BP from
  3703. * user space while in guest debugging mode. Reading it for
  3704. * #DB as well causes no harm, it is not used in that case.
  3705. */
  3706. vmx->vcpu.arch.event_exit_inst_len =
  3707. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3708. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  3709. rip = kvm_rip_read(vcpu);
  3710. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  3711. kvm_run->debug.arch.exception = ex_no;
  3712. break;
  3713. default:
  3714. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  3715. kvm_run->ex.exception = ex_no;
  3716. kvm_run->ex.error_code = error_code;
  3717. break;
  3718. }
  3719. return 0;
  3720. }
  3721. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  3722. {
  3723. ++vcpu->stat.irq_exits;
  3724. return 1;
  3725. }
  3726. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  3727. {
  3728. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  3729. return 0;
  3730. }
  3731. static int handle_io(struct kvm_vcpu *vcpu)
  3732. {
  3733. unsigned long exit_qualification;
  3734. int size, in, string;
  3735. unsigned port;
  3736. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3737. string = (exit_qualification & 16) != 0;
  3738. in = (exit_qualification & 8) != 0;
  3739. ++vcpu->stat.io_exits;
  3740. if (string || in)
  3741. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  3742. port = exit_qualification >> 16;
  3743. size = (exit_qualification & 7) + 1;
  3744. skip_emulated_instruction(vcpu);
  3745. return kvm_fast_pio_out(vcpu, size, port);
  3746. }
  3747. static void
  3748. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  3749. {
  3750. /*
  3751. * Patch in the VMCALL instruction:
  3752. */
  3753. hypercall[0] = 0x0f;
  3754. hypercall[1] = 0x01;
  3755. hypercall[2] = 0xc1;
  3756. }
  3757. /* called to set cr0 as approriate for a mov-to-cr0 exit. */
  3758. static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
  3759. {
  3760. if (to_vmx(vcpu)->nested.vmxon &&
  3761. ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
  3762. return 1;
  3763. if (is_guest_mode(vcpu)) {
  3764. /*
  3765. * We get here when L2 changed cr0 in a way that did not change
  3766. * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
  3767. * but did change L0 shadowed bits. This can currently happen
  3768. * with the TS bit: L0 may want to leave TS on (for lazy fpu
  3769. * loading) while pretending to allow the guest to change it.
  3770. */
  3771. if (kvm_set_cr0(vcpu, (val & vcpu->arch.cr0_guest_owned_bits) |
  3772. (vcpu->arch.cr0 & ~vcpu->arch.cr0_guest_owned_bits)))
  3773. return 1;
  3774. vmcs_writel(CR0_READ_SHADOW, val);
  3775. return 0;
  3776. } else
  3777. return kvm_set_cr0(vcpu, val);
  3778. }
  3779. static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
  3780. {
  3781. if (is_guest_mode(vcpu)) {
  3782. if (kvm_set_cr4(vcpu, (val & vcpu->arch.cr4_guest_owned_bits) |
  3783. (vcpu->arch.cr4 & ~vcpu->arch.cr4_guest_owned_bits)))
  3784. return 1;
  3785. vmcs_writel(CR4_READ_SHADOW, val);
  3786. return 0;
  3787. } else
  3788. return kvm_set_cr4(vcpu, val);
  3789. }
  3790. /* called to set cr0 as approriate for clts instruction exit. */
  3791. static void handle_clts(struct kvm_vcpu *vcpu)
  3792. {
  3793. if (is_guest_mode(vcpu)) {
  3794. /*
  3795. * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
  3796. * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
  3797. * just pretend it's off (also in arch.cr0 for fpu_activate).
  3798. */
  3799. vmcs_writel(CR0_READ_SHADOW,
  3800. vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
  3801. vcpu->arch.cr0 &= ~X86_CR0_TS;
  3802. } else
  3803. vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  3804. }
  3805. static int handle_cr(struct kvm_vcpu *vcpu)
  3806. {
  3807. unsigned long exit_qualification, val;
  3808. int cr;
  3809. int reg;
  3810. int err;
  3811. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3812. cr = exit_qualification & 15;
  3813. reg = (exit_qualification >> 8) & 15;
  3814. switch ((exit_qualification >> 4) & 3) {
  3815. case 0: /* mov to cr */
  3816. val = kvm_register_read(vcpu, reg);
  3817. trace_kvm_cr_write(cr, val);
  3818. switch (cr) {
  3819. case 0:
  3820. err = handle_set_cr0(vcpu, val);
  3821. kvm_complete_insn_gp(vcpu, err);
  3822. return 1;
  3823. case 3:
  3824. err = kvm_set_cr3(vcpu, val);
  3825. kvm_complete_insn_gp(vcpu, err);
  3826. return 1;
  3827. case 4:
  3828. err = handle_set_cr4(vcpu, val);
  3829. kvm_complete_insn_gp(vcpu, err);
  3830. return 1;
  3831. case 8: {
  3832. u8 cr8_prev = kvm_get_cr8(vcpu);
  3833. u8 cr8 = kvm_register_read(vcpu, reg);
  3834. err = kvm_set_cr8(vcpu, cr8);
  3835. kvm_complete_insn_gp(vcpu, err);
  3836. if (irqchip_in_kernel(vcpu->kvm))
  3837. return 1;
  3838. if (cr8_prev <= cr8)
  3839. return 1;
  3840. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  3841. return 0;
  3842. }
  3843. };
  3844. break;
  3845. case 2: /* clts */
  3846. handle_clts(vcpu);
  3847. trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
  3848. skip_emulated_instruction(vcpu);
  3849. vmx_fpu_activate(vcpu);
  3850. return 1;
  3851. case 1: /*mov from cr*/
  3852. switch (cr) {
  3853. case 3:
  3854. val = kvm_read_cr3(vcpu);
  3855. kvm_register_write(vcpu, reg, val);
  3856. trace_kvm_cr_read(cr, val);
  3857. skip_emulated_instruction(vcpu);
  3858. return 1;
  3859. case 8:
  3860. val = kvm_get_cr8(vcpu);
  3861. kvm_register_write(vcpu, reg, val);
  3862. trace_kvm_cr_read(cr, val);
  3863. skip_emulated_instruction(vcpu);
  3864. return 1;
  3865. }
  3866. break;
  3867. case 3: /* lmsw */
  3868. val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
  3869. trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
  3870. kvm_lmsw(vcpu, val);
  3871. skip_emulated_instruction(vcpu);
  3872. return 1;
  3873. default:
  3874. break;
  3875. }
  3876. vcpu->run->exit_reason = 0;
  3877. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  3878. (int)(exit_qualification >> 4) & 3, cr);
  3879. return 0;
  3880. }
  3881. static int handle_dr(struct kvm_vcpu *vcpu)
  3882. {
  3883. unsigned long exit_qualification;
  3884. int dr, reg;
  3885. /* Do not handle if the CPL > 0, will trigger GP on re-entry */
  3886. if (!kvm_require_cpl(vcpu, 0))
  3887. return 1;
  3888. dr = vmcs_readl(GUEST_DR7);
  3889. if (dr & DR7_GD) {
  3890. /*
  3891. * As the vm-exit takes precedence over the debug trap, we
  3892. * need to emulate the latter, either for the host or the
  3893. * guest debugging itself.
  3894. */
  3895. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  3896. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  3897. vcpu->run->debug.arch.dr7 = dr;
  3898. vcpu->run->debug.arch.pc =
  3899. vmcs_readl(GUEST_CS_BASE) +
  3900. vmcs_readl(GUEST_RIP);
  3901. vcpu->run->debug.arch.exception = DB_VECTOR;
  3902. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  3903. return 0;
  3904. } else {
  3905. vcpu->arch.dr7 &= ~DR7_GD;
  3906. vcpu->arch.dr6 |= DR6_BD;
  3907. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  3908. kvm_queue_exception(vcpu, DB_VECTOR);
  3909. return 1;
  3910. }
  3911. }
  3912. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3913. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  3914. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  3915. if (exit_qualification & TYPE_MOV_FROM_DR) {
  3916. unsigned long val;
  3917. if (!kvm_get_dr(vcpu, dr, &val))
  3918. kvm_register_write(vcpu, reg, val);
  3919. } else
  3920. kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
  3921. skip_emulated_instruction(vcpu);
  3922. return 1;
  3923. }
  3924. static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
  3925. {
  3926. vmcs_writel(GUEST_DR7, val);
  3927. }
  3928. static int handle_cpuid(struct kvm_vcpu *vcpu)
  3929. {
  3930. kvm_emulate_cpuid(vcpu);
  3931. return 1;
  3932. }
  3933. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  3934. {
  3935. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  3936. u64 data;
  3937. if (vmx_get_msr(vcpu, ecx, &data)) {
  3938. trace_kvm_msr_read_ex(ecx);
  3939. kvm_inject_gp(vcpu, 0);
  3940. return 1;
  3941. }
  3942. trace_kvm_msr_read(ecx, data);
  3943. /* FIXME: handling of bits 32:63 of rax, rdx */
  3944. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  3945. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  3946. skip_emulated_instruction(vcpu);
  3947. return 1;
  3948. }
  3949. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  3950. {
  3951. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  3952. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  3953. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  3954. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  3955. trace_kvm_msr_write_ex(ecx, data);
  3956. kvm_inject_gp(vcpu, 0);
  3957. return 1;
  3958. }
  3959. trace_kvm_msr_write(ecx, data);
  3960. skip_emulated_instruction(vcpu);
  3961. return 1;
  3962. }
  3963. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  3964. {
  3965. kvm_make_request(KVM_REQ_EVENT, vcpu);
  3966. return 1;
  3967. }
  3968. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  3969. {
  3970. u32 cpu_based_vm_exec_control;
  3971. /* clear pending irq */
  3972. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3973. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  3974. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3975. kvm_make_request(KVM_REQ_EVENT, vcpu);
  3976. ++vcpu->stat.irq_window_exits;
  3977. /*
  3978. * If the user space waits to inject interrupts, exit as soon as
  3979. * possible
  3980. */
  3981. if (!irqchip_in_kernel(vcpu->kvm) &&
  3982. vcpu->run->request_interrupt_window &&
  3983. !kvm_cpu_has_interrupt(vcpu)) {
  3984. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  3985. return 0;
  3986. }
  3987. return 1;
  3988. }
  3989. static int handle_halt(struct kvm_vcpu *vcpu)
  3990. {
  3991. skip_emulated_instruction(vcpu);
  3992. return kvm_emulate_halt(vcpu);
  3993. }
  3994. static int handle_vmcall(struct kvm_vcpu *vcpu)
  3995. {
  3996. skip_emulated_instruction(vcpu);
  3997. kvm_emulate_hypercall(vcpu);
  3998. return 1;
  3999. }
  4000. static int handle_invd(struct kvm_vcpu *vcpu)
  4001. {
  4002. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  4003. }
  4004. static int handle_invlpg(struct kvm_vcpu *vcpu)
  4005. {
  4006. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4007. kvm_mmu_invlpg(vcpu, exit_qualification);
  4008. skip_emulated_instruction(vcpu);
  4009. return 1;
  4010. }
  4011. static int handle_rdpmc(struct kvm_vcpu *vcpu)
  4012. {
  4013. int err;
  4014. err = kvm_rdpmc(vcpu);
  4015. kvm_complete_insn_gp(vcpu, err);
  4016. return 1;
  4017. }
  4018. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  4019. {
  4020. skip_emulated_instruction(vcpu);
  4021. kvm_emulate_wbinvd(vcpu);
  4022. return 1;
  4023. }
  4024. static int handle_xsetbv(struct kvm_vcpu *vcpu)
  4025. {
  4026. u64 new_bv = kvm_read_edx_eax(vcpu);
  4027. u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4028. if (kvm_set_xcr(vcpu, index, new_bv) == 0)
  4029. skip_emulated_instruction(vcpu);
  4030. return 1;
  4031. }
  4032. static int handle_apic_access(struct kvm_vcpu *vcpu)
  4033. {
  4034. if (likely(fasteoi)) {
  4035. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4036. int access_type, offset;
  4037. access_type = exit_qualification & APIC_ACCESS_TYPE;
  4038. offset = exit_qualification & APIC_ACCESS_OFFSET;
  4039. /*
  4040. * Sane guest uses MOV to write EOI, with written value
  4041. * not cared. So make a short-circuit here by avoiding
  4042. * heavy instruction emulation.
  4043. */
  4044. if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
  4045. (offset == APIC_EOI)) {
  4046. kvm_lapic_set_eoi(vcpu);
  4047. skip_emulated_instruction(vcpu);
  4048. return 1;
  4049. }
  4050. }
  4051. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  4052. }
  4053. static int handle_task_switch(struct kvm_vcpu *vcpu)
  4054. {
  4055. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4056. unsigned long exit_qualification;
  4057. bool has_error_code = false;
  4058. u32 error_code = 0;
  4059. u16 tss_selector;
  4060. int reason, type, idt_v, idt_index;
  4061. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  4062. idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
  4063. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  4064. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4065. reason = (u32)exit_qualification >> 30;
  4066. if (reason == TASK_SWITCH_GATE && idt_v) {
  4067. switch (type) {
  4068. case INTR_TYPE_NMI_INTR:
  4069. vcpu->arch.nmi_injected = false;
  4070. vmx_set_nmi_mask(vcpu, true);
  4071. break;
  4072. case INTR_TYPE_EXT_INTR:
  4073. case INTR_TYPE_SOFT_INTR:
  4074. kvm_clear_interrupt_queue(vcpu);
  4075. break;
  4076. case INTR_TYPE_HARD_EXCEPTION:
  4077. if (vmx->idt_vectoring_info &
  4078. VECTORING_INFO_DELIVER_CODE_MASK) {
  4079. has_error_code = true;
  4080. error_code =
  4081. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  4082. }
  4083. /* fall through */
  4084. case INTR_TYPE_SOFT_EXCEPTION:
  4085. kvm_clear_exception_queue(vcpu);
  4086. break;
  4087. default:
  4088. break;
  4089. }
  4090. }
  4091. tss_selector = exit_qualification;
  4092. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  4093. type != INTR_TYPE_EXT_INTR &&
  4094. type != INTR_TYPE_NMI_INTR))
  4095. skip_emulated_instruction(vcpu);
  4096. if (kvm_task_switch(vcpu, tss_selector,
  4097. type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
  4098. has_error_code, error_code) == EMULATE_FAIL) {
  4099. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  4100. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  4101. vcpu->run->internal.ndata = 0;
  4102. return 0;
  4103. }
  4104. /* clear all local breakpoint enable flags */
  4105. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  4106. /*
  4107. * TODO: What about debug traps on tss switch?
  4108. * Are we supposed to inject them and update dr6?
  4109. */
  4110. return 1;
  4111. }
  4112. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  4113. {
  4114. unsigned long exit_qualification;
  4115. gpa_t gpa;
  4116. int gla_validity;
  4117. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4118. if (exit_qualification & (1 << 6)) {
  4119. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  4120. return -EINVAL;
  4121. }
  4122. gla_validity = (exit_qualification >> 7) & 0x3;
  4123. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  4124. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  4125. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  4126. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  4127. vmcs_readl(GUEST_LINEAR_ADDRESS));
  4128. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  4129. (long unsigned int)exit_qualification);
  4130. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  4131. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  4132. return 0;
  4133. }
  4134. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  4135. trace_kvm_page_fault(gpa, exit_qualification);
  4136. return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0);
  4137. }
  4138. static u64 ept_rsvd_mask(u64 spte, int level)
  4139. {
  4140. int i;
  4141. u64 mask = 0;
  4142. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  4143. mask |= (1ULL << i);
  4144. if (level > 2)
  4145. /* bits 7:3 reserved */
  4146. mask |= 0xf8;
  4147. else if (level == 2) {
  4148. if (spte & (1ULL << 7))
  4149. /* 2MB ref, bits 20:12 reserved */
  4150. mask |= 0x1ff000;
  4151. else
  4152. /* bits 6:3 reserved */
  4153. mask |= 0x78;
  4154. }
  4155. return mask;
  4156. }
  4157. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  4158. int level)
  4159. {
  4160. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  4161. /* 010b (write-only) */
  4162. WARN_ON((spte & 0x7) == 0x2);
  4163. /* 110b (write/execute) */
  4164. WARN_ON((spte & 0x7) == 0x6);
  4165. /* 100b (execute-only) and value not supported by logical processor */
  4166. if (!cpu_has_vmx_ept_execute_only())
  4167. WARN_ON((spte & 0x7) == 0x4);
  4168. /* not 000b */
  4169. if ((spte & 0x7)) {
  4170. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  4171. if (rsvd_bits != 0) {
  4172. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  4173. __func__, rsvd_bits);
  4174. WARN_ON(1);
  4175. }
  4176. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  4177. u64 ept_mem_type = (spte & 0x38) >> 3;
  4178. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  4179. ept_mem_type == 7) {
  4180. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  4181. __func__, ept_mem_type);
  4182. WARN_ON(1);
  4183. }
  4184. }
  4185. }
  4186. }
  4187. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  4188. {
  4189. u64 sptes[4];
  4190. int nr_sptes, i, ret;
  4191. gpa_t gpa;
  4192. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  4193. ret = handle_mmio_page_fault_common(vcpu, gpa, true);
  4194. if (likely(ret == 1))
  4195. return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
  4196. EMULATE_DONE;
  4197. if (unlikely(!ret))
  4198. return 1;
  4199. /* It is the real ept misconfig */
  4200. printk(KERN_ERR "EPT: Misconfiguration.\n");
  4201. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  4202. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  4203. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  4204. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  4205. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  4206. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  4207. return 0;
  4208. }
  4209. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  4210. {
  4211. u32 cpu_based_vm_exec_control;
  4212. /* clear pending NMI */
  4213. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4214. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  4215. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  4216. ++vcpu->stat.nmi_window_exits;
  4217. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4218. return 1;
  4219. }
  4220. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  4221. {
  4222. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4223. enum emulation_result err = EMULATE_DONE;
  4224. int ret = 1;
  4225. u32 cpu_exec_ctrl;
  4226. bool intr_window_requested;
  4227. cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4228. intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
  4229. while (!guest_state_valid(vcpu)) {
  4230. if (intr_window_requested
  4231. && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
  4232. return handle_interrupt_window(&vmx->vcpu);
  4233. err = emulate_instruction(vcpu, 0);
  4234. if (err == EMULATE_DO_MMIO) {
  4235. ret = 0;
  4236. goto out;
  4237. }
  4238. if (err != EMULATE_DONE)
  4239. return 0;
  4240. if (signal_pending(current))
  4241. goto out;
  4242. if (need_resched())
  4243. schedule();
  4244. }
  4245. vmx->emulation_required = 0;
  4246. out:
  4247. return ret;
  4248. }
  4249. /*
  4250. * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
  4251. * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
  4252. */
  4253. static int handle_pause(struct kvm_vcpu *vcpu)
  4254. {
  4255. skip_emulated_instruction(vcpu);
  4256. kvm_vcpu_on_spin(vcpu);
  4257. return 1;
  4258. }
  4259. static int handle_invalid_op(struct kvm_vcpu *vcpu)
  4260. {
  4261. kvm_queue_exception(vcpu, UD_VECTOR);
  4262. return 1;
  4263. }
  4264. /*
  4265. * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
  4266. * We could reuse a single VMCS for all the L2 guests, but we also want the
  4267. * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
  4268. * allows keeping them loaded on the processor, and in the future will allow
  4269. * optimizations where prepare_vmcs02 doesn't need to set all the fields on
  4270. * every entry if they never change.
  4271. * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
  4272. * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
  4273. *
  4274. * The following functions allocate and free a vmcs02 in this pool.
  4275. */
  4276. /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
  4277. static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
  4278. {
  4279. struct vmcs02_list *item;
  4280. list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
  4281. if (item->vmptr == vmx->nested.current_vmptr) {
  4282. list_move(&item->list, &vmx->nested.vmcs02_pool);
  4283. return &item->vmcs02;
  4284. }
  4285. if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
  4286. /* Recycle the least recently used VMCS. */
  4287. item = list_entry(vmx->nested.vmcs02_pool.prev,
  4288. struct vmcs02_list, list);
  4289. item->vmptr = vmx->nested.current_vmptr;
  4290. list_move(&item->list, &vmx->nested.vmcs02_pool);
  4291. return &item->vmcs02;
  4292. }
  4293. /* Create a new VMCS */
  4294. item = (struct vmcs02_list *)
  4295. kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
  4296. if (!item)
  4297. return NULL;
  4298. item->vmcs02.vmcs = alloc_vmcs();
  4299. if (!item->vmcs02.vmcs) {
  4300. kfree(item);
  4301. return NULL;
  4302. }
  4303. loaded_vmcs_init(&item->vmcs02);
  4304. item->vmptr = vmx->nested.current_vmptr;
  4305. list_add(&(item->list), &(vmx->nested.vmcs02_pool));
  4306. vmx->nested.vmcs02_num++;
  4307. return &item->vmcs02;
  4308. }
  4309. /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
  4310. static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
  4311. {
  4312. struct vmcs02_list *item;
  4313. list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
  4314. if (item->vmptr == vmptr) {
  4315. free_loaded_vmcs(&item->vmcs02);
  4316. list_del(&item->list);
  4317. kfree(item);
  4318. vmx->nested.vmcs02_num--;
  4319. return;
  4320. }
  4321. }
  4322. /*
  4323. * Free all VMCSs saved for this vcpu, except the one pointed by
  4324. * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
  4325. * currently used, if running L2), and vmcs01 when running L2.
  4326. */
  4327. static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
  4328. {
  4329. struct vmcs02_list *item, *n;
  4330. list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
  4331. if (vmx->loaded_vmcs != &item->vmcs02)
  4332. free_loaded_vmcs(&item->vmcs02);
  4333. list_del(&item->list);
  4334. kfree(item);
  4335. }
  4336. vmx->nested.vmcs02_num = 0;
  4337. if (vmx->loaded_vmcs != &vmx->vmcs01)
  4338. free_loaded_vmcs(&vmx->vmcs01);
  4339. }
  4340. /*
  4341. * Emulate the VMXON instruction.
  4342. * Currently, we just remember that VMX is active, and do not save or even
  4343. * inspect the argument to VMXON (the so-called "VMXON pointer") because we
  4344. * do not currently need to store anything in that guest-allocated memory
  4345. * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
  4346. * argument is different from the VMXON pointer (which the spec says they do).
  4347. */
  4348. static int handle_vmon(struct kvm_vcpu *vcpu)
  4349. {
  4350. struct kvm_segment cs;
  4351. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4352. /* The Intel VMX Instruction Reference lists a bunch of bits that
  4353. * are prerequisite to running VMXON, most notably cr4.VMXE must be
  4354. * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
  4355. * Otherwise, we should fail with #UD. We test these now:
  4356. */
  4357. if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
  4358. !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
  4359. (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
  4360. kvm_queue_exception(vcpu, UD_VECTOR);
  4361. return 1;
  4362. }
  4363. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4364. if (is_long_mode(vcpu) && !cs.l) {
  4365. kvm_queue_exception(vcpu, UD_VECTOR);
  4366. return 1;
  4367. }
  4368. if (vmx_get_cpl(vcpu)) {
  4369. kvm_inject_gp(vcpu, 0);
  4370. return 1;
  4371. }
  4372. INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
  4373. vmx->nested.vmcs02_num = 0;
  4374. vmx->nested.vmxon = true;
  4375. skip_emulated_instruction(vcpu);
  4376. return 1;
  4377. }
  4378. /*
  4379. * Intel's VMX Instruction Reference specifies a common set of prerequisites
  4380. * for running VMX instructions (except VMXON, whose prerequisites are
  4381. * slightly different). It also specifies what exception to inject otherwise.
  4382. */
  4383. static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
  4384. {
  4385. struct kvm_segment cs;
  4386. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4387. if (!vmx->nested.vmxon) {
  4388. kvm_queue_exception(vcpu, UD_VECTOR);
  4389. return 0;
  4390. }
  4391. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4392. if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
  4393. (is_long_mode(vcpu) && !cs.l)) {
  4394. kvm_queue_exception(vcpu, UD_VECTOR);
  4395. return 0;
  4396. }
  4397. if (vmx_get_cpl(vcpu)) {
  4398. kvm_inject_gp(vcpu, 0);
  4399. return 0;
  4400. }
  4401. return 1;
  4402. }
  4403. /*
  4404. * Free whatever needs to be freed from vmx->nested when L1 goes down, or
  4405. * just stops using VMX.
  4406. */
  4407. static void free_nested(struct vcpu_vmx *vmx)
  4408. {
  4409. if (!vmx->nested.vmxon)
  4410. return;
  4411. vmx->nested.vmxon = false;
  4412. if (vmx->nested.current_vmptr != -1ull) {
  4413. kunmap(vmx->nested.current_vmcs12_page);
  4414. nested_release_page(vmx->nested.current_vmcs12_page);
  4415. vmx->nested.current_vmptr = -1ull;
  4416. vmx->nested.current_vmcs12 = NULL;
  4417. }
  4418. /* Unpin physical memory we referred to in current vmcs02 */
  4419. if (vmx->nested.apic_access_page) {
  4420. nested_release_page(vmx->nested.apic_access_page);
  4421. vmx->nested.apic_access_page = 0;
  4422. }
  4423. nested_free_all_saved_vmcss(vmx);
  4424. }
  4425. /* Emulate the VMXOFF instruction */
  4426. static int handle_vmoff(struct kvm_vcpu *vcpu)
  4427. {
  4428. if (!nested_vmx_check_permission(vcpu))
  4429. return 1;
  4430. free_nested(to_vmx(vcpu));
  4431. skip_emulated_instruction(vcpu);
  4432. return 1;
  4433. }
  4434. /*
  4435. * Decode the memory-address operand of a vmx instruction, as recorded on an
  4436. * exit caused by such an instruction (run by a guest hypervisor).
  4437. * On success, returns 0. When the operand is invalid, returns 1 and throws
  4438. * #UD or #GP.
  4439. */
  4440. static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
  4441. unsigned long exit_qualification,
  4442. u32 vmx_instruction_info, gva_t *ret)
  4443. {
  4444. /*
  4445. * According to Vol. 3B, "Information for VM Exits Due to Instruction
  4446. * Execution", on an exit, vmx_instruction_info holds most of the
  4447. * addressing components of the operand. Only the displacement part
  4448. * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
  4449. * For how an actual address is calculated from all these components,
  4450. * refer to Vol. 1, "Operand Addressing".
  4451. */
  4452. int scaling = vmx_instruction_info & 3;
  4453. int addr_size = (vmx_instruction_info >> 7) & 7;
  4454. bool is_reg = vmx_instruction_info & (1u << 10);
  4455. int seg_reg = (vmx_instruction_info >> 15) & 7;
  4456. int index_reg = (vmx_instruction_info >> 18) & 0xf;
  4457. bool index_is_valid = !(vmx_instruction_info & (1u << 22));
  4458. int base_reg = (vmx_instruction_info >> 23) & 0xf;
  4459. bool base_is_valid = !(vmx_instruction_info & (1u << 27));
  4460. if (is_reg) {
  4461. kvm_queue_exception(vcpu, UD_VECTOR);
  4462. return 1;
  4463. }
  4464. /* Addr = segment_base + offset */
  4465. /* offset = base + [index * scale] + displacement */
  4466. *ret = vmx_get_segment_base(vcpu, seg_reg);
  4467. if (base_is_valid)
  4468. *ret += kvm_register_read(vcpu, base_reg);
  4469. if (index_is_valid)
  4470. *ret += kvm_register_read(vcpu, index_reg)<<scaling;
  4471. *ret += exit_qualification; /* holds the displacement */
  4472. if (addr_size == 1) /* 32 bit */
  4473. *ret &= 0xffffffff;
  4474. /*
  4475. * TODO: throw #GP (and return 1) in various cases that the VM*
  4476. * instructions require it - e.g., offset beyond segment limit,
  4477. * unusable or unreadable/unwritable segment, non-canonical 64-bit
  4478. * address, and so on. Currently these are not checked.
  4479. */
  4480. return 0;
  4481. }
  4482. /*
  4483. * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
  4484. * set the success or error code of an emulated VMX instruction, as specified
  4485. * by Vol 2B, VMX Instruction Reference, "Conventions".
  4486. */
  4487. static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
  4488. {
  4489. vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
  4490. & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  4491. X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
  4492. }
  4493. static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
  4494. {
  4495. vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
  4496. & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
  4497. X86_EFLAGS_SF | X86_EFLAGS_OF))
  4498. | X86_EFLAGS_CF);
  4499. }
  4500. static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
  4501. u32 vm_instruction_error)
  4502. {
  4503. if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
  4504. /*
  4505. * failValid writes the error number to the current VMCS, which
  4506. * can't be done there isn't a current VMCS.
  4507. */
  4508. nested_vmx_failInvalid(vcpu);
  4509. return;
  4510. }
  4511. vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
  4512. & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  4513. X86_EFLAGS_SF | X86_EFLAGS_OF))
  4514. | X86_EFLAGS_ZF);
  4515. get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
  4516. }
  4517. /* Emulate the VMCLEAR instruction */
  4518. static int handle_vmclear(struct kvm_vcpu *vcpu)
  4519. {
  4520. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4521. gva_t gva;
  4522. gpa_t vmptr;
  4523. struct vmcs12 *vmcs12;
  4524. struct page *page;
  4525. struct x86_exception e;
  4526. if (!nested_vmx_check_permission(vcpu))
  4527. return 1;
  4528. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  4529. vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
  4530. return 1;
  4531. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
  4532. sizeof(vmptr), &e)) {
  4533. kvm_inject_page_fault(vcpu, &e);
  4534. return 1;
  4535. }
  4536. if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
  4537. nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
  4538. skip_emulated_instruction(vcpu);
  4539. return 1;
  4540. }
  4541. if (vmptr == vmx->nested.current_vmptr) {
  4542. kunmap(vmx->nested.current_vmcs12_page);
  4543. nested_release_page(vmx->nested.current_vmcs12_page);
  4544. vmx->nested.current_vmptr = -1ull;
  4545. vmx->nested.current_vmcs12 = NULL;
  4546. }
  4547. page = nested_get_page(vcpu, vmptr);
  4548. if (page == NULL) {
  4549. /*
  4550. * For accurate processor emulation, VMCLEAR beyond available
  4551. * physical memory should do nothing at all. However, it is
  4552. * possible that a nested vmx bug, not a guest hypervisor bug,
  4553. * resulted in this case, so let's shut down before doing any
  4554. * more damage:
  4555. */
  4556. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  4557. return 1;
  4558. }
  4559. vmcs12 = kmap(page);
  4560. vmcs12->launch_state = 0;
  4561. kunmap(page);
  4562. nested_release_page(page);
  4563. nested_free_vmcs02(vmx, vmptr);
  4564. skip_emulated_instruction(vcpu);
  4565. nested_vmx_succeed(vcpu);
  4566. return 1;
  4567. }
  4568. static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
  4569. /* Emulate the VMLAUNCH instruction */
  4570. static int handle_vmlaunch(struct kvm_vcpu *vcpu)
  4571. {
  4572. return nested_vmx_run(vcpu, true);
  4573. }
  4574. /* Emulate the VMRESUME instruction */
  4575. static int handle_vmresume(struct kvm_vcpu *vcpu)
  4576. {
  4577. return nested_vmx_run(vcpu, false);
  4578. }
  4579. enum vmcs_field_type {
  4580. VMCS_FIELD_TYPE_U16 = 0,
  4581. VMCS_FIELD_TYPE_U64 = 1,
  4582. VMCS_FIELD_TYPE_U32 = 2,
  4583. VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
  4584. };
  4585. static inline int vmcs_field_type(unsigned long field)
  4586. {
  4587. if (0x1 & field) /* the *_HIGH fields are all 32 bit */
  4588. return VMCS_FIELD_TYPE_U32;
  4589. return (field >> 13) & 0x3 ;
  4590. }
  4591. static inline int vmcs_field_readonly(unsigned long field)
  4592. {
  4593. return (((field >> 10) & 0x3) == 1);
  4594. }
  4595. /*
  4596. * Read a vmcs12 field. Since these can have varying lengths and we return
  4597. * one type, we chose the biggest type (u64) and zero-extend the return value
  4598. * to that size. Note that the caller, handle_vmread, might need to use only
  4599. * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
  4600. * 64-bit fields are to be returned).
  4601. */
  4602. static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
  4603. unsigned long field, u64 *ret)
  4604. {
  4605. short offset = vmcs_field_to_offset(field);
  4606. char *p;
  4607. if (offset < 0)
  4608. return 0;
  4609. p = ((char *)(get_vmcs12(vcpu))) + offset;
  4610. switch (vmcs_field_type(field)) {
  4611. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  4612. *ret = *((natural_width *)p);
  4613. return 1;
  4614. case VMCS_FIELD_TYPE_U16:
  4615. *ret = *((u16 *)p);
  4616. return 1;
  4617. case VMCS_FIELD_TYPE_U32:
  4618. *ret = *((u32 *)p);
  4619. return 1;
  4620. case VMCS_FIELD_TYPE_U64:
  4621. *ret = *((u64 *)p);
  4622. return 1;
  4623. default:
  4624. return 0; /* can never happen. */
  4625. }
  4626. }
  4627. /*
  4628. * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
  4629. * used before) all generate the same failure when it is missing.
  4630. */
  4631. static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
  4632. {
  4633. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4634. if (vmx->nested.current_vmptr == -1ull) {
  4635. nested_vmx_failInvalid(vcpu);
  4636. skip_emulated_instruction(vcpu);
  4637. return 0;
  4638. }
  4639. return 1;
  4640. }
  4641. static int handle_vmread(struct kvm_vcpu *vcpu)
  4642. {
  4643. unsigned long field;
  4644. u64 field_value;
  4645. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4646. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4647. gva_t gva = 0;
  4648. if (!nested_vmx_check_permission(vcpu) ||
  4649. !nested_vmx_check_vmcs12(vcpu))
  4650. return 1;
  4651. /* Decode instruction info and find the field to read */
  4652. field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
  4653. /* Read the field, zero-extended to a u64 field_value */
  4654. if (!vmcs12_read_any(vcpu, field, &field_value)) {
  4655. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4656. skip_emulated_instruction(vcpu);
  4657. return 1;
  4658. }
  4659. /*
  4660. * Now copy part of this value to register or memory, as requested.
  4661. * Note that the number of bits actually copied is 32 or 64 depending
  4662. * on the guest's mode (32 or 64 bit), not on the given field's length.
  4663. */
  4664. if (vmx_instruction_info & (1u << 10)) {
  4665. kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
  4666. field_value);
  4667. } else {
  4668. if (get_vmx_mem_address(vcpu, exit_qualification,
  4669. vmx_instruction_info, &gva))
  4670. return 1;
  4671. /* _system ok, as nested_vmx_check_permission verified cpl=0 */
  4672. kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
  4673. &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
  4674. }
  4675. nested_vmx_succeed(vcpu);
  4676. skip_emulated_instruction(vcpu);
  4677. return 1;
  4678. }
  4679. static int handle_vmwrite(struct kvm_vcpu *vcpu)
  4680. {
  4681. unsigned long field;
  4682. gva_t gva;
  4683. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4684. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4685. char *p;
  4686. short offset;
  4687. /* The value to write might be 32 or 64 bits, depending on L1's long
  4688. * mode, and eventually we need to write that into a field of several
  4689. * possible lengths. The code below first zero-extends the value to 64
  4690. * bit (field_value), and then copies only the approriate number of
  4691. * bits into the vmcs12 field.
  4692. */
  4693. u64 field_value = 0;
  4694. struct x86_exception e;
  4695. if (!nested_vmx_check_permission(vcpu) ||
  4696. !nested_vmx_check_vmcs12(vcpu))
  4697. return 1;
  4698. if (vmx_instruction_info & (1u << 10))
  4699. field_value = kvm_register_read(vcpu,
  4700. (((vmx_instruction_info) >> 3) & 0xf));
  4701. else {
  4702. if (get_vmx_mem_address(vcpu, exit_qualification,
  4703. vmx_instruction_info, &gva))
  4704. return 1;
  4705. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
  4706. &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
  4707. kvm_inject_page_fault(vcpu, &e);
  4708. return 1;
  4709. }
  4710. }
  4711. field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
  4712. if (vmcs_field_readonly(field)) {
  4713. nested_vmx_failValid(vcpu,
  4714. VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
  4715. skip_emulated_instruction(vcpu);
  4716. return 1;
  4717. }
  4718. offset = vmcs_field_to_offset(field);
  4719. if (offset < 0) {
  4720. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4721. skip_emulated_instruction(vcpu);
  4722. return 1;
  4723. }
  4724. p = ((char *) get_vmcs12(vcpu)) + offset;
  4725. switch (vmcs_field_type(field)) {
  4726. case VMCS_FIELD_TYPE_U16:
  4727. *(u16 *)p = field_value;
  4728. break;
  4729. case VMCS_FIELD_TYPE_U32:
  4730. *(u32 *)p = field_value;
  4731. break;
  4732. case VMCS_FIELD_TYPE_U64:
  4733. *(u64 *)p = field_value;
  4734. break;
  4735. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  4736. *(natural_width *)p = field_value;
  4737. break;
  4738. default:
  4739. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4740. skip_emulated_instruction(vcpu);
  4741. return 1;
  4742. }
  4743. nested_vmx_succeed(vcpu);
  4744. skip_emulated_instruction(vcpu);
  4745. return 1;
  4746. }
  4747. /* Emulate the VMPTRLD instruction */
  4748. static int handle_vmptrld(struct kvm_vcpu *vcpu)
  4749. {
  4750. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4751. gva_t gva;
  4752. gpa_t vmptr;
  4753. struct x86_exception e;
  4754. if (!nested_vmx_check_permission(vcpu))
  4755. return 1;
  4756. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  4757. vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
  4758. return 1;
  4759. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
  4760. sizeof(vmptr), &e)) {
  4761. kvm_inject_page_fault(vcpu, &e);
  4762. return 1;
  4763. }
  4764. if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
  4765. nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
  4766. skip_emulated_instruction(vcpu);
  4767. return 1;
  4768. }
  4769. if (vmx->nested.current_vmptr != vmptr) {
  4770. struct vmcs12 *new_vmcs12;
  4771. struct page *page;
  4772. page = nested_get_page(vcpu, vmptr);
  4773. if (page == NULL) {
  4774. nested_vmx_failInvalid(vcpu);
  4775. skip_emulated_instruction(vcpu);
  4776. return 1;
  4777. }
  4778. new_vmcs12 = kmap(page);
  4779. if (new_vmcs12->revision_id != VMCS12_REVISION) {
  4780. kunmap(page);
  4781. nested_release_page_clean(page);
  4782. nested_vmx_failValid(vcpu,
  4783. VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
  4784. skip_emulated_instruction(vcpu);
  4785. return 1;
  4786. }
  4787. if (vmx->nested.current_vmptr != -1ull) {
  4788. kunmap(vmx->nested.current_vmcs12_page);
  4789. nested_release_page(vmx->nested.current_vmcs12_page);
  4790. }
  4791. vmx->nested.current_vmptr = vmptr;
  4792. vmx->nested.current_vmcs12 = new_vmcs12;
  4793. vmx->nested.current_vmcs12_page = page;
  4794. }
  4795. nested_vmx_succeed(vcpu);
  4796. skip_emulated_instruction(vcpu);
  4797. return 1;
  4798. }
  4799. /* Emulate the VMPTRST instruction */
  4800. static int handle_vmptrst(struct kvm_vcpu *vcpu)
  4801. {
  4802. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4803. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4804. gva_t vmcs_gva;
  4805. struct x86_exception e;
  4806. if (!nested_vmx_check_permission(vcpu))
  4807. return 1;
  4808. if (get_vmx_mem_address(vcpu, exit_qualification,
  4809. vmx_instruction_info, &vmcs_gva))
  4810. return 1;
  4811. /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
  4812. if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
  4813. (void *)&to_vmx(vcpu)->nested.current_vmptr,
  4814. sizeof(u64), &e)) {
  4815. kvm_inject_page_fault(vcpu, &e);
  4816. return 1;
  4817. }
  4818. nested_vmx_succeed(vcpu);
  4819. skip_emulated_instruction(vcpu);
  4820. return 1;
  4821. }
  4822. /*
  4823. * The exit handlers return 1 if the exit was handled fully and guest execution
  4824. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  4825. * to be done to userspace and return 0.
  4826. */
  4827. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  4828. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  4829. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  4830. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  4831. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  4832. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  4833. [EXIT_REASON_CR_ACCESS] = handle_cr,
  4834. [EXIT_REASON_DR_ACCESS] = handle_dr,
  4835. [EXIT_REASON_CPUID] = handle_cpuid,
  4836. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  4837. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  4838. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  4839. [EXIT_REASON_HLT] = handle_halt,
  4840. [EXIT_REASON_INVD] = handle_invd,
  4841. [EXIT_REASON_INVLPG] = handle_invlpg,
  4842. [EXIT_REASON_RDPMC] = handle_rdpmc,
  4843. [EXIT_REASON_VMCALL] = handle_vmcall,
  4844. [EXIT_REASON_VMCLEAR] = handle_vmclear,
  4845. [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
  4846. [EXIT_REASON_VMPTRLD] = handle_vmptrld,
  4847. [EXIT_REASON_VMPTRST] = handle_vmptrst,
  4848. [EXIT_REASON_VMREAD] = handle_vmread,
  4849. [EXIT_REASON_VMRESUME] = handle_vmresume,
  4850. [EXIT_REASON_VMWRITE] = handle_vmwrite,
  4851. [EXIT_REASON_VMOFF] = handle_vmoff,
  4852. [EXIT_REASON_VMON] = handle_vmon,
  4853. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  4854. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  4855. [EXIT_REASON_WBINVD] = handle_wbinvd,
  4856. [EXIT_REASON_XSETBV] = handle_xsetbv,
  4857. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  4858. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  4859. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  4860. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  4861. [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
  4862. [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
  4863. [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
  4864. };
  4865. static const int kvm_vmx_max_exit_handlers =
  4866. ARRAY_SIZE(kvm_vmx_exit_handlers);
  4867. /*
  4868. * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
  4869. * rather than handle it ourselves in L0. I.e., check whether L1 expressed
  4870. * disinterest in the current event (read or write a specific MSR) by using an
  4871. * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
  4872. */
  4873. static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
  4874. struct vmcs12 *vmcs12, u32 exit_reason)
  4875. {
  4876. u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
  4877. gpa_t bitmap;
  4878. if (!nested_cpu_has(get_vmcs12(vcpu), CPU_BASED_USE_MSR_BITMAPS))
  4879. return 1;
  4880. /*
  4881. * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
  4882. * for the four combinations of read/write and low/high MSR numbers.
  4883. * First we need to figure out which of the four to use:
  4884. */
  4885. bitmap = vmcs12->msr_bitmap;
  4886. if (exit_reason == EXIT_REASON_MSR_WRITE)
  4887. bitmap += 2048;
  4888. if (msr_index >= 0xc0000000) {
  4889. msr_index -= 0xc0000000;
  4890. bitmap += 1024;
  4891. }
  4892. /* Then read the msr_index'th bit from this bitmap: */
  4893. if (msr_index < 1024*8) {
  4894. unsigned char b;
  4895. kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1);
  4896. return 1 & (b >> (msr_index & 7));
  4897. } else
  4898. return 1; /* let L1 handle the wrong parameter */
  4899. }
  4900. /*
  4901. * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
  4902. * rather than handle it ourselves in L0. I.e., check if L1 wanted to
  4903. * intercept (via guest_host_mask etc.) the current event.
  4904. */
  4905. static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
  4906. struct vmcs12 *vmcs12)
  4907. {
  4908. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4909. int cr = exit_qualification & 15;
  4910. int reg = (exit_qualification >> 8) & 15;
  4911. unsigned long val = kvm_register_read(vcpu, reg);
  4912. switch ((exit_qualification >> 4) & 3) {
  4913. case 0: /* mov to cr */
  4914. switch (cr) {
  4915. case 0:
  4916. if (vmcs12->cr0_guest_host_mask &
  4917. (val ^ vmcs12->cr0_read_shadow))
  4918. return 1;
  4919. break;
  4920. case 3:
  4921. if ((vmcs12->cr3_target_count >= 1 &&
  4922. vmcs12->cr3_target_value0 == val) ||
  4923. (vmcs12->cr3_target_count >= 2 &&
  4924. vmcs12->cr3_target_value1 == val) ||
  4925. (vmcs12->cr3_target_count >= 3 &&
  4926. vmcs12->cr3_target_value2 == val) ||
  4927. (vmcs12->cr3_target_count >= 4 &&
  4928. vmcs12->cr3_target_value3 == val))
  4929. return 0;
  4930. if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
  4931. return 1;
  4932. break;
  4933. case 4:
  4934. if (vmcs12->cr4_guest_host_mask &
  4935. (vmcs12->cr4_read_shadow ^ val))
  4936. return 1;
  4937. break;
  4938. case 8:
  4939. if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
  4940. return 1;
  4941. break;
  4942. }
  4943. break;
  4944. case 2: /* clts */
  4945. if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
  4946. (vmcs12->cr0_read_shadow & X86_CR0_TS))
  4947. return 1;
  4948. break;
  4949. case 1: /* mov from cr */
  4950. switch (cr) {
  4951. case 3:
  4952. if (vmcs12->cpu_based_vm_exec_control &
  4953. CPU_BASED_CR3_STORE_EXITING)
  4954. return 1;
  4955. break;
  4956. case 8:
  4957. if (vmcs12->cpu_based_vm_exec_control &
  4958. CPU_BASED_CR8_STORE_EXITING)
  4959. return 1;
  4960. break;
  4961. }
  4962. break;
  4963. case 3: /* lmsw */
  4964. /*
  4965. * lmsw can change bits 1..3 of cr0, and only set bit 0 of
  4966. * cr0. Other attempted changes are ignored, with no exit.
  4967. */
  4968. if (vmcs12->cr0_guest_host_mask & 0xe &
  4969. (val ^ vmcs12->cr0_read_shadow))
  4970. return 1;
  4971. if ((vmcs12->cr0_guest_host_mask & 0x1) &&
  4972. !(vmcs12->cr0_read_shadow & 0x1) &&
  4973. (val & 0x1))
  4974. return 1;
  4975. break;
  4976. }
  4977. return 0;
  4978. }
  4979. /*
  4980. * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
  4981. * should handle it ourselves in L0 (and then continue L2). Only call this
  4982. * when in is_guest_mode (L2).
  4983. */
  4984. static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
  4985. {
  4986. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  4987. u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  4988. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4989. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  4990. if (vmx->nested.nested_run_pending)
  4991. return 0;
  4992. if (unlikely(vmx->fail)) {
  4993. pr_info_ratelimited("%s failed vm entry %x\n", __func__,
  4994. vmcs_read32(VM_INSTRUCTION_ERROR));
  4995. return 1;
  4996. }
  4997. switch (exit_reason) {
  4998. case EXIT_REASON_EXCEPTION_NMI:
  4999. if (!is_exception(intr_info))
  5000. return 0;
  5001. else if (is_page_fault(intr_info))
  5002. return enable_ept;
  5003. return vmcs12->exception_bitmap &
  5004. (1u << (intr_info & INTR_INFO_VECTOR_MASK));
  5005. case EXIT_REASON_EXTERNAL_INTERRUPT:
  5006. return 0;
  5007. case EXIT_REASON_TRIPLE_FAULT:
  5008. return 1;
  5009. case EXIT_REASON_PENDING_INTERRUPT:
  5010. case EXIT_REASON_NMI_WINDOW:
  5011. /*
  5012. * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit
  5013. * (aka Interrupt Window Exiting) only when L1 turned it on,
  5014. * so if we got a PENDING_INTERRUPT exit, this must be for L1.
  5015. * Same for NMI Window Exiting.
  5016. */
  5017. return 1;
  5018. case EXIT_REASON_TASK_SWITCH:
  5019. return 1;
  5020. case EXIT_REASON_CPUID:
  5021. return 1;
  5022. case EXIT_REASON_HLT:
  5023. return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
  5024. case EXIT_REASON_INVD:
  5025. return 1;
  5026. case EXIT_REASON_INVLPG:
  5027. return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
  5028. case EXIT_REASON_RDPMC:
  5029. return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
  5030. case EXIT_REASON_RDTSC:
  5031. return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
  5032. case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
  5033. case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
  5034. case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
  5035. case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
  5036. case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
  5037. /*
  5038. * VMX instructions trap unconditionally. This allows L1 to
  5039. * emulate them for its L2 guest, i.e., allows 3-level nesting!
  5040. */
  5041. return 1;
  5042. case EXIT_REASON_CR_ACCESS:
  5043. return nested_vmx_exit_handled_cr(vcpu, vmcs12);
  5044. case EXIT_REASON_DR_ACCESS:
  5045. return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
  5046. case EXIT_REASON_IO_INSTRUCTION:
  5047. /* TODO: support IO bitmaps */
  5048. return 1;
  5049. case EXIT_REASON_MSR_READ:
  5050. case EXIT_REASON_MSR_WRITE:
  5051. return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
  5052. case EXIT_REASON_INVALID_STATE:
  5053. return 1;
  5054. case EXIT_REASON_MWAIT_INSTRUCTION:
  5055. return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
  5056. case EXIT_REASON_MONITOR_INSTRUCTION:
  5057. return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
  5058. case EXIT_REASON_PAUSE_INSTRUCTION:
  5059. return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
  5060. nested_cpu_has2(vmcs12,
  5061. SECONDARY_EXEC_PAUSE_LOOP_EXITING);
  5062. case EXIT_REASON_MCE_DURING_VMENTRY:
  5063. return 0;
  5064. case EXIT_REASON_TPR_BELOW_THRESHOLD:
  5065. return 1;
  5066. case EXIT_REASON_APIC_ACCESS:
  5067. return nested_cpu_has2(vmcs12,
  5068. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  5069. case EXIT_REASON_EPT_VIOLATION:
  5070. case EXIT_REASON_EPT_MISCONFIG:
  5071. return 0;
  5072. case EXIT_REASON_WBINVD:
  5073. return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
  5074. case EXIT_REASON_XSETBV:
  5075. return 1;
  5076. default:
  5077. return 1;
  5078. }
  5079. }
  5080. static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
  5081. {
  5082. *info1 = vmcs_readl(EXIT_QUALIFICATION);
  5083. *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
  5084. }
  5085. /*
  5086. * The guest has exited. See if we can fix it or if we need userspace
  5087. * assistance.
  5088. */
  5089. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  5090. {
  5091. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5092. u32 exit_reason = vmx->exit_reason;
  5093. u32 vectoring_info = vmx->idt_vectoring_info;
  5094. /* If guest state is invalid, start emulating */
  5095. if (vmx->emulation_required && emulate_invalid_guest_state)
  5096. return handle_invalid_guest_state(vcpu);
  5097. /*
  5098. * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
  5099. * we did not inject a still-pending event to L1 now because of
  5100. * nested_run_pending, we need to re-enable this bit.
  5101. */
  5102. if (vmx->nested.nested_run_pending)
  5103. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5104. if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
  5105. exit_reason == EXIT_REASON_VMRESUME))
  5106. vmx->nested.nested_run_pending = 1;
  5107. else
  5108. vmx->nested.nested_run_pending = 0;
  5109. if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
  5110. nested_vmx_vmexit(vcpu);
  5111. return 1;
  5112. }
  5113. if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
  5114. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  5115. vcpu->run->fail_entry.hardware_entry_failure_reason
  5116. = exit_reason;
  5117. return 0;
  5118. }
  5119. if (unlikely(vmx->fail)) {
  5120. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  5121. vcpu->run->fail_entry.hardware_entry_failure_reason
  5122. = vmcs_read32(VM_INSTRUCTION_ERROR);
  5123. return 0;
  5124. }
  5125. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  5126. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  5127. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  5128. exit_reason != EXIT_REASON_TASK_SWITCH))
  5129. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  5130. "(0x%x) and exit reason is 0x%x\n",
  5131. __func__, vectoring_info, exit_reason);
  5132. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
  5133. !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
  5134. get_vmcs12(vcpu), vcpu)))) {
  5135. if (vmx_interrupt_allowed(vcpu)) {
  5136. vmx->soft_vnmi_blocked = 0;
  5137. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  5138. vcpu->arch.nmi_pending) {
  5139. /*
  5140. * This CPU don't support us in finding the end of an
  5141. * NMI-blocked window if the guest runs with IRQs
  5142. * disabled. So we pull the trigger after 1 s of
  5143. * futile waiting, but inform the user about this.
  5144. */
  5145. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  5146. "state on VCPU %d after 1 s timeout\n",
  5147. __func__, vcpu->vcpu_id);
  5148. vmx->soft_vnmi_blocked = 0;
  5149. }
  5150. }
  5151. if (exit_reason < kvm_vmx_max_exit_handlers
  5152. && kvm_vmx_exit_handlers[exit_reason])
  5153. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  5154. else {
  5155. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  5156. vcpu->run->hw.hardware_exit_reason = exit_reason;
  5157. }
  5158. return 0;
  5159. }
  5160. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  5161. {
  5162. if (irr == -1 || tpr < irr) {
  5163. vmcs_write32(TPR_THRESHOLD, 0);
  5164. return;
  5165. }
  5166. vmcs_write32(TPR_THRESHOLD, irr);
  5167. }
  5168. static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
  5169. {
  5170. u32 exit_intr_info;
  5171. if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
  5172. || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
  5173. return;
  5174. vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5175. exit_intr_info = vmx->exit_intr_info;
  5176. /* Handle machine checks before interrupts are enabled */
  5177. if (is_machine_check(exit_intr_info))
  5178. kvm_machine_check();
  5179. /* We need to handle NMIs before interrupts are enabled */
  5180. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  5181. (exit_intr_info & INTR_INFO_VALID_MASK)) {
  5182. kvm_before_handle_nmi(&vmx->vcpu);
  5183. asm("int $2");
  5184. kvm_after_handle_nmi(&vmx->vcpu);
  5185. }
  5186. }
  5187. static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
  5188. {
  5189. u32 exit_intr_info;
  5190. bool unblock_nmi;
  5191. u8 vector;
  5192. bool idtv_info_valid;
  5193. idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  5194. if (cpu_has_virtual_nmis()) {
  5195. if (vmx->nmi_known_unmasked)
  5196. return;
  5197. /*
  5198. * Can't use vmx->exit_intr_info since we're not sure what
  5199. * the exit reason is.
  5200. */
  5201. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5202. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  5203. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  5204. /*
  5205. * SDM 3: 27.7.1.2 (September 2008)
  5206. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  5207. * a guest IRET fault.
  5208. * SDM 3: 23.2.2 (September 2008)
  5209. * Bit 12 is undefined in any of the following cases:
  5210. * If the VM exit sets the valid bit in the IDT-vectoring
  5211. * information field.
  5212. * If the VM exit is due to a double fault.
  5213. */
  5214. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  5215. vector != DF_VECTOR && !idtv_info_valid)
  5216. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  5217. GUEST_INTR_STATE_NMI);
  5218. else
  5219. vmx->nmi_known_unmasked =
  5220. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
  5221. & GUEST_INTR_STATE_NMI);
  5222. } else if (unlikely(vmx->soft_vnmi_blocked))
  5223. vmx->vnmi_blocked_time +=
  5224. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  5225. }
  5226. static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
  5227. u32 idt_vectoring_info,
  5228. int instr_len_field,
  5229. int error_code_field)
  5230. {
  5231. u8 vector;
  5232. int type;
  5233. bool idtv_info_valid;
  5234. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  5235. vmx->vcpu.arch.nmi_injected = false;
  5236. kvm_clear_exception_queue(&vmx->vcpu);
  5237. kvm_clear_interrupt_queue(&vmx->vcpu);
  5238. if (!idtv_info_valid)
  5239. return;
  5240. kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
  5241. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  5242. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  5243. switch (type) {
  5244. case INTR_TYPE_NMI_INTR:
  5245. vmx->vcpu.arch.nmi_injected = true;
  5246. /*
  5247. * SDM 3: 27.7.1.2 (September 2008)
  5248. * Clear bit "block by NMI" before VM entry if a NMI
  5249. * delivery faulted.
  5250. */
  5251. vmx_set_nmi_mask(&vmx->vcpu, false);
  5252. break;
  5253. case INTR_TYPE_SOFT_EXCEPTION:
  5254. vmx->vcpu.arch.event_exit_inst_len =
  5255. vmcs_read32(instr_len_field);
  5256. /* fall through */
  5257. case INTR_TYPE_HARD_EXCEPTION:
  5258. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  5259. u32 err = vmcs_read32(error_code_field);
  5260. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  5261. } else
  5262. kvm_queue_exception(&vmx->vcpu, vector);
  5263. break;
  5264. case INTR_TYPE_SOFT_INTR:
  5265. vmx->vcpu.arch.event_exit_inst_len =
  5266. vmcs_read32(instr_len_field);
  5267. /* fall through */
  5268. case INTR_TYPE_EXT_INTR:
  5269. kvm_queue_interrupt(&vmx->vcpu, vector,
  5270. type == INTR_TYPE_SOFT_INTR);
  5271. break;
  5272. default:
  5273. break;
  5274. }
  5275. }
  5276. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  5277. {
  5278. if (is_guest_mode(&vmx->vcpu))
  5279. return;
  5280. __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
  5281. VM_EXIT_INSTRUCTION_LEN,
  5282. IDT_VECTORING_ERROR_CODE);
  5283. }
  5284. static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
  5285. {
  5286. if (is_guest_mode(vcpu))
  5287. return;
  5288. __vmx_complete_interrupts(to_vmx(vcpu),
  5289. vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
  5290. VM_ENTRY_INSTRUCTION_LEN,
  5291. VM_ENTRY_EXCEPTION_ERROR_CODE);
  5292. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
  5293. }
  5294. static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
  5295. {
  5296. int i, nr_msrs;
  5297. struct perf_guest_switch_msr *msrs;
  5298. msrs = perf_guest_get_msrs(&nr_msrs);
  5299. if (!msrs)
  5300. return;
  5301. for (i = 0; i < nr_msrs; i++)
  5302. if (msrs[i].host == msrs[i].guest)
  5303. clear_atomic_switch_msr(vmx, msrs[i].msr);
  5304. else
  5305. add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
  5306. msrs[i].host);
  5307. }
  5308. #ifdef CONFIG_X86_64
  5309. #define R "r"
  5310. #define Q "q"
  5311. #else
  5312. #define R "e"
  5313. #define Q "l"
  5314. #endif
  5315. static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
  5316. {
  5317. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5318. if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) {
  5319. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5320. if (vmcs12->idt_vectoring_info_field &
  5321. VECTORING_INFO_VALID_MASK) {
  5322. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  5323. vmcs12->idt_vectoring_info_field);
  5324. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  5325. vmcs12->vm_exit_instruction_len);
  5326. if (vmcs12->idt_vectoring_info_field &
  5327. VECTORING_INFO_DELIVER_CODE_MASK)
  5328. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  5329. vmcs12->idt_vectoring_error_code);
  5330. }
  5331. }
  5332. /* Record the guest's net vcpu time for enforced NMI injections. */
  5333. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  5334. vmx->entry_time = ktime_get();
  5335. /* Don't enter VMX if guest state is invalid, let the exit handler
  5336. start emulation until we arrive back to a valid state */
  5337. if (vmx->emulation_required && emulate_invalid_guest_state)
  5338. return;
  5339. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  5340. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  5341. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  5342. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  5343. /* When single-stepping over STI and MOV SS, we must clear the
  5344. * corresponding interruptibility bits in the guest state. Otherwise
  5345. * vmentry fails as it then expects bit 14 (BS) in pending debug
  5346. * exceptions being set, but that's not correct for the guest debugging
  5347. * case. */
  5348. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  5349. vmx_set_interrupt_shadow(vcpu, 0);
  5350. atomic_switch_perf_msrs(vmx);
  5351. vmx->__launched = vmx->loaded_vmcs->launched;
  5352. asm(
  5353. /* Store host registers */
  5354. "push %%"R"dx; push %%"R"bp;"
  5355. "push %%"R"cx \n\t" /* placeholder for guest rcx */
  5356. "push %%"R"cx \n\t"
  5357. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  5358. "je 1f \n\t"
  5359. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  5360. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  5361. "1: \n\t"
  5362. /* Reload cr2 if changed */
  5363. "mov %c[cr2](%0), %%"R"ax \n\t"
  5364. "mov %%cr2, %%"R"dx \n\t"
  5365. "cmp %%"R"ax, %%"R"dx \n\t"
  5366. "je 2f \n\t"
  5367. "mov %%"R"ax, %%cr2 \n\t"
  5368. "2: \n\t"
  5369. /* Check if vmlaunch of vmresume is needed */
  5370. "cmpl $0, %c[launched](%0) \n\t"
  5371. /* Load guest registers. Don't clobber flags. */
  5372. "mov %c[rax](%0), %%"R"ax \n\t"
  5373. "mov %c[rbx](%0), %%"R"bx \n\t"
  5374. "mov %c[rdx](%0), %%"R"dx \n\t"
  5375. "mov %c[rsi](%0), %%"R"si \n\t"
  5376. "mov %c[rdi](%0), %%"R"di \n\t"
  5377. "mov %c[rbp](%0), %%"R"bp \n\t"
  5378. #ifdef CONFIG_X86_64
  5379. "mov %c[r8](%0), %%r8 \n\t"
  5380. "mov %c[r9](%0), %%r9 \n\t"
  5381. "mov %c[r10](%0), %%r10 \n\t"
  5382. "mov %c[r11](%0), %%r11 \n\t"
  5383. "mov %c[r12](%0), %%r12 \n\t"
  5384. "mov %c[r13](%0), %%r13 \n\t"
  5385. "mov %c[r14](%0), %%r14 \n\t"
  5386. "mov %c[r15](%0), %%r15 \n\t"
  5387. #endif
  5388. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  5389. /* Enter guest mode */
  5390. "jne .Llaunched \n\t"
  5391. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  5392. "jmp .Lkvm_vmx_return \n\t"
  5393. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  5394. ".Lkvm_vmx_return: "
  5395. /* Save guest registers, load host registers, keep flags */
  5396. "mov %0, %c[wordsize](%%"R"sp) \n\t"
  5397. "pop %0 \n\t"
  5398. "mov %%"R"ax, %c[rax](%0) \n\t"
  5399. "mov %%"R"bx, %c[rbx](%0) \n\t"
  5400. "pop"Q" %c[rcx](%0) \n\t"
  5401. "mov %%"R"dx, %c[rdx](%0) \n\t"
  5402. "mov %%"R"si, %c[rsi](%0) \n\t"
  5403. "mov %%"R"di, %c[rdi](%0) \n\t"
  5404. "mov %%"R"bp, %c[rbp](%0) \n\t"
  5405. #ifdef CONFIG_X86_64
  5406. "mov %%r8, %c[r8](%0) \n\t"
  5407. "mov %%r9, %c[r9](%0) \n\t"
  5408. "mov %%r10, %c[r10](%0) \n\t"
  5409. "mov %%r11, %c[r11](%0) \n\t"
  5410. "mov %%r12, %c[r12](%0) \n\t"
  5411. "mov %%r13, %c[r13](%0) \n\t"
  5412. "mov %%r14, %c[r14](%0) \n\t"
  5413. "mov %%r15, %c[r15](%0) \n\t"
  5414. #endif
  5415. "mov %%cr2, %%"R"ax \n\t"
  5416. "mov %%"R"ax, %c[cr2](%0) \n\t"
  5417. "pop %%"R"bp; pop %%"R"dx \n\t"
  5418. "setbe %c[fail](%0) \n\t"
  5419. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  5420. [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
  5421. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  5422. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  5423. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  5424. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  5425. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  5426. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  5427. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  5428. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  5429. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  5430. #ifdef CONFIG_X86_64
  5431. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  5432. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  5433. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  5434. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  5435. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  5436. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  5437. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  5438. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  5439. #endif
  5440. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
  5441. [wordsize]"i"(sizeof(ulong))
  5442. : "cc", "memory"
  5443. , R"ax", R"bx", R"di", R"si"
  5444. #ifdef CONFIG_X86_64
  5445. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  5446. #endif
  5447. );
  5448. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  5449. | (1 << VCPU_EXREG_RFLAGS)
  5450. | (1 << VCPU_EXREG_CPL)
  5451. | (1 << VCPU_EXREG_PDPTR)
  5452. | (1 << VCPU_EXREG_SEGMENTS)
  5453. | (1 << VCPU_EXREG_CR3));
  5454. vcpu->arch.regs_dirty = 0;
  5455. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  5456. if (is_guest_mode(vcpu)) {
  5457. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5458. vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info;
  5459. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  5460. vmcs12->idt_vectoring_error_code =
  5461. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  5462. vmcs12->vm_exit_instruction_len =
  5463. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  5464. }
  5465. }
  5466. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  5467. vmx->loaded_vmcs->launched = 1;
  5468. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  5469. trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
  5470. vmx_complete_atomic_exit(vmx);
  5471. vmx_recover_nmi_blocking(vmx);
  5472. vmx_complete_interrupts(vmx);
  5473. }
  5474. #undef R
  5475. #undef Q
  5476. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  5477. {
  5478. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5479. free_vpid(vmx);
  5480. free_nested(vmx);
  5481. free_loaded_vmcs(vmx->loaded_vmcs);
  5482. kfree(vmx->guest_msrs);
  5483. kvm_vcpu_uninit(vcpu);
  5484. kmem_cache_free(kvm_vcpu_cache, vmx);
  5485. }
  5486. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  5487. {
  5488. int err;
  5489. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  5490. int cpu;
  5491. if (!vmx)
  5492. return ERR_PTR(-ENOMEM);
  5493. allocate_vpid(vmx);
  5494. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  5495. if (err)
  5496. goto free_vcpu;
  5497. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  5498. err = -ENOMEM;
  5499. if (!vmx->guest_msrs) {
  5500. goto uninit_vcpu;
  5501. }
  5502. vmx->loaded_vmcs = &vmx->vmcs01;
  5503. vmx->loaded_vmcs->vmcs = alloc_vmcs();
  5504. if (!vmx->loaded_vmcs->vmcs)
  5505. goto free_msrs;
  5506. if (!vmm_exclusive)
  5507. kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
  5508. loaded_vmcs_init(vmx->loaded_vmcs);
  5509. if (!vmm_exclusive)
  5510. kvm_cpu_vmxoff();
  5511. cpu = get_cpu();
  5512. vmx_vcpu_load(&vmx->vcpu, cpu);
  5513. vmx->vcpu.cpu = cpu;
  5514. err = vmx_vcpu_setup(vmx);
  5515. vmx_vcpu_put(&vmx->vcpu);
  5516. put_cpu();
  5517. if (err)
  5518. goto free_vmcs;
  5519. if (vm_need_virtualize_apic_accesses(kvm))
  5520. err = alloc_apic_access_page(kvm);
  5521. if (err)
  5522. goto free_vmcs;
  5523. if (enable_ept) {
  5524. if (!kvm->arch.ept_identity_map_addr)
  5525. kvm->arch.ept_identity_map_addr =
  5526. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  5527. err = -ENOMEM;
  5528. if (alloc_identity_pagetable(kvm) != 0)
  5529. goto free_vmcs;
  5530. if (!init_rmode_identity_map(kvm))
  5531. goto free_vmcs;
  5532. }
  5533. vmx->nested.current_vmptr = -1ull;
  5534. vmx->nested.current_vmcs12 = NULL;
  5535. return &vmx->vcpu;
  5536. free_vmcs:
  5537. free_vmcs(vmx->loaded_vmcs->vmcs);
  5538. free_msrs:
  5539. kfree(vmx->guest_msrs);
  5540. uninit_vcpu:
  5541. kvm_vcpu_uninit(&vmx->vcpu);
  5542. free_vcpu:
  5543. free_vpid(vmx);
  5544. kmem_cache_free(kvm_vcpu_cache, vmx);
  5545. return ERR_PTR(err);
  5546. }
  5547. static void __init vmx_check_processor_compat(void *rtn)
  5548. {
  5549. struct vmcs_config vmcs_conf;
  5550. *(int *)rtn = 0;
  5551. if (setup_vmcs_config(&vmcs_conf) < 0)
  5552. *(int *)rtn = -EIO;
  5553. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  5554. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  5555. smp_processor_id());
  5556. *(int *)rtn = -EIO;
  5557. }
  5558. }
  5559. static int get_ept_level(void)
  5560. {
  5561. return VMX_EPT_DEFAULT_GAW + 1;
  5562. }
  5563. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  5564. {
  5565. u64 ret;
  5566. /* For VT-d and EPT combination
  5567. * 1. MMIO: always map as UC
  5568. * 2. EPT with VT-d:
  5569. * a. VT-d without snooping control feature: can't guarantee the
  5570. * result, try to trust guest.
  5571. * b. VT-d with snooping control feature: snooping control feature of
  5572. * VT-d engine can guarantee the cache correctness. Just set it
  5573. * to WB to keep consistent with host. So the same as item 3.
  5574. * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
  5575. * consistent with host MTRR
  5576. */
  5577. if (is_mmio)
  5578. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  5579. else if (vcpu->kvm->arch.iommu_domain &&
  5580. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  5581. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  5582. VMX_EPT_MT_EPTE_SHIFT;
  5583. else
  5584. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  5585. | VMX_EPT_IPAT_BIT;
  5586. return ret;
  5587. }
  5588. static int vmx_get_lpage_level(void)
  5589. {
  5590. if (enable_ept && !cpu_has_vmx_ept_1g_page())
  5591. return PT_DIRECTORY_LEVEL;
  5592. else
  5593. /* For shadow and EPT supported 1GB page */
  5594. return PT_PDPE_LEVEL;
  5595. }
  5596. static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
  5597. {
  5598. struct kvm_cpuid_entry2 *best;
  5599. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5600. u32 exec_control;
  5601. vmx->rdtscp_enabled = false;
  5602. if (vmx_rdtscp_supported()) {
  5603. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  5604. if (exec_control & SECONDARY_EXEC_RDTSCP) {
  5605. best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  5606. if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
  5607. vmx->rdtscp_enabled = true;
  5608. else {
  5609. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  5610. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  5611. exec_control);
  5612. }
  5613. }
  5614. }
  5615. }
  5616. static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
  5617. {
  5618. if (func == 1 && nested)
  5619. entry->ecx |= bit(X86_FEATURE_VMX);
  5620. }
  5621. /*
  5622. * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
  5623. * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
  5624. * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
  5625. * guest in a way that will both be appropriate to L1's requests, and our
  5626. * needs. In addition to modifying the active vmcs (which is vmcs02), this
  5627. * function also has additional necessary side-effects, like setting various
  5628. * vcpu->arch fields.
  5629. */
  5630. static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  5631. {
  5632. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5633. u32 exec_control;
  5634. vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
  5635. vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
  5636. vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
  5637. vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
  5638. vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
  5639. vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
  5640. vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
  5641. vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
  5642. vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
  5643. vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
  5644. vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
  5645. vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
  5646. vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
  5647. vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
  5648. vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
  5649. vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
  5650. vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
  5651. vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
  5652. vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
  5653. vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
  5654. vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
  5655. vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
  5656. vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
  5657. vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
  5658. vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
  5659. vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
  5660. vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
  5661. vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
  5662. vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
  5663. vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
  5664. vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
  5665. vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
  5666. vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
  5667. vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
  5668. vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
  5669. vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
  5670. vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
  5671. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  5672. vmcs12->vm_entry_intr_info_field);
  5673. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  5674. vmcs12->vm_entry_exception_error_code);
  5675. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  5676. vmcs12->vm_entry_instruction_len);
  5677. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  5678. vmcs12->guest_interruptibility_info);
  5679. vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
  5680. vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
  5681. vmcs_writel(GUEST_DR7, vmcs12->guest_dr7);
  5682. vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
  5683. vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
  5684. vmcs12->guest_pending_dbg_exceptions);
  5685. vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
  5686. vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
  5687. vmcs_write64(VMCS_LINK_POINTER, -1ull);
  5688. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  5689. (vmcs_config.pin_based_exec_ctrl |
  5690. vmcs12->pin_based_vm_exec_control));
  5691. /*
  5692. * Whether page-faults are trapped is determined by a combination of
  5693. * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
  5694. * If enable_ept, L0 doesn't care about page faults and we should
  5695. * set all of these to L1's desires. However, if !enable_ept, L0 does
  5696. * care about (at least some) page faults, and because it is not easy
  5697. * (if at all possible?) to merge L0 and L1's desires, we simply ask
  5698. * to exit on each and every L2 page fault. This is done by setting
  5699. * MASK=MATCH=0 and (see below) EB.PF=1.
  5700. * Note that below we don't need special code to set EB.PF beyond the
  5701. * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
  5702. * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
  5703. * !enable_ept, EB.PF is 1, so the "or" will always be 1.
  5704. *
  5705. * A problem with this approach (when !enable_ept) is that L1 may be
  5706. * injected with more page faults than it asked for. This could have
  5707. * caused problems, but in practice existing hypervisors don't care.
  5708. * To fix this, we will need to emulate the PFEC checking (on the L1
  5709. * page tables), using walk_addr(), when injecting PFs to L1.
  5710. */
  5711. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
  5712. enable_ept ? vmcs12->page_fault_error_code_mask : 0);
  5713. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
  5714. enable_ept ? vmcs12->page_fault_error_code_match : 0);
  5715. if (cpu_has_secondary_exec_ctrls()) {
  5716. u32 exec_control = vmx_secondary_exec_control(vmx);
  5717. if (!vmx->rdtscp_enabled)
  5718. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  5719. /* Take the following fields only from vmcs12 */
  5720. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  5721. if (nested_cpu_has(vmcs12,
  5722. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
  5723. exec_control |= vmcs12->secondary_vm_exec_control;
  5724. if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
  5725. /*
  5726. * Translate L1 physical address to host physical
  5727. * address for vmcs02. Keep the page pinned, so this
  5728. * physical address remains valid. We keep a reference
  5729. * to it so we can release it later.
  5730. */
  5731. if (vmx->nested.apic_access_page) /* shouldn't happen */
  5732. nested_release_page(vmx->nested.apic_access_page);
  5733. vmx->nested.apic_access_page =
  5734. nested_get_page(vcpu, vmcs12->apic_access_addr);
  5735. /*
  5736. * If translation failed, no matter: This feature asks
  5737. * to exit when accessing the given address, and if it
  5738. * can never be accessed, this feature won't do
  5739. * anything anyway.
  5740. */
  5741. if (!vmx->nested.apic_access_page)
  5742. exec_control &=
  5743. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  5744. else
  5745. vmcs_write64(APIC_ACCESS_ADDR,
  5746. page_to_phys(vmx->nested.apic_access_page));
  5747. }
  5748. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  5749. }
  5750. /*
  5751. * Set host-state according to L0's settings (vmcs12 is irrelevant here)
  5752. * Some constant fields are set here by vmx_set_constant_host_state().
  5753. * Other fields are different per CPU, and will be set later when
  5754. * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
  5755. */
  5756. vmx_set_constant_host_state();
  5757. /*
  5758. * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
  5759. * entry, but only if the current (host) sp changed from the value
  5760. * we wrote last (vmx->host_rsp). This cache is no longer relevant
  5761. * if we switch vmcs, and rather than hold a separate cache per vmcs,
  5762. * here we just force the write to happen on entry.
  5763. */
  5764. vmx->host_rsp = 0;
  5765. exec_control = vmx_exec_control(vmx); /* L0's desires */
  5766. exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  5767. exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  5768. exec_control &= ~CPU_BASED_TPR_SHADOW;
  5769. exec_control |= vmcs12->cpu_based_vm_exec_control;
  5770. /*
  5771. * Merging of IO and MSR bitmaps not currently supported.
  5772. * Rather, exit every time.
  5773. */
  5774. exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
  5775. exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
  5776. exec_control |= CPU_BASED_UNCOND_IO_EXITING;
  5777. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  5778. /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
  5779. * bitwise-or of what L1 wants to trap for L2, and what we want to
  5780. * trap. Note that CR0.TS also needs updating - we do this later.
  5781. */
  5782. update_exception_bitmap(vcpu);
  5783. vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
  5784. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  5785. /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
  5786. vmcs_write32(VM_EXIT_CONTROLS,
  5787. vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
  5788. vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
  5789. (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
  5790. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
  5791. vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
  5792. else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
  5793. vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
  5794. set_cr4_guest_host_mask(vmx);
  5795. if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
  5796. vmcs_write64(TSC_OFFSET,
  5797. vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
  5798. else
  5799. vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
  5800. if (enable_vpid) {
  5801. /*
  5802. * Trivially support vpid by letting L2s share their parent
  5803. * L1's vpid. TODO: move to a more elaborate solution, giving
  5804. * each L2 its own vpid and exposing the vpid feature to L1.
  5805. */
  5806. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  5807. vmx_flush_tlb(vcpu);
  5808. }
  5809. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
  5810. vcpu->arch.efer = vmcs12->guest_ia32_efer;
  5811. if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
  5812. vcpu->arch.efer |= (EFER_LMA | EFER_LME);
  5813. else
  5814. vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
  5815. /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
  5816. vmx_set_efer(vcpu, vcpu->arch.efer);
  5817. /*
  5818. * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
  5819. * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
  5820. * The CR0_READ_SHADOW is what L2 should have expected to read given
  5821. * the specifications by L1; It's not enough to take
  5822. * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
  5823. * have more bits than L1 expected.
  5824. */
  5825. vmx_set_cr0(vcpu, vmcs12->guest_cr0);
  5826. vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
  5827. vmx_set_cr4(vcpu, vmcs12->guest_cr4);
  5828. vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
  5829. /* shadow page tables on either EPT or shadow page tables */
  5830. kvm_set_cr3(vcpu, vmcs12->guest_cr3);
  5831. kvm_mmu_reset_context(vcpu);
  5832. kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
  5833. kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
  5834. }
  5835. /*
  5836. * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
  5837. * for running an L2 nested guest.
  5838. */
  5839. static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
  5840. {
  5841. struct vmcs12 *vmcs12;
  5842. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5843. int cpu;
  5844. struct loaded_vmcs *vmcs02;
  5845. if (!nested_vmx_check_permission(vcpu) ||
  5846. !nested_vmx_check_vmcs12(vcpu))
  5847. return 1;
  5848. skip_emulated_instruction(vcpu);
  5849. vmcs12 = get_vmcs12(vcpu);
  5850. /*
  5851. * The nested entry process starts with enforcing various prerequisites
  5852. * on vmcs12 as required by the Intel SDM, and act appropriately when
  5853. * they fail: As the SDM explains, some conditions should cause the
  5854. * instruction to fail, while others will cause the instruction to seem
  5855. * to succeed, but return an EXIT_REASON_INVALID_STATE.
  5856. * To speed up the normal (success) code path, we should avoid checking
  5857. * for misconfigurations which will anyway be caught by the processor
  5858. * when using the merged vmcs02.
  5859. */
  5860. if (vmcs12->launch_state == launch) {
  5861. nested_vmx_failValid(vcpu,
  5862. launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
  5863. : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
  5864. return 1;
  5865. }
  5866. if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
  5867. !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
  5868. /*TODO: Also verify bits beyond physical address width are 0*/
  5869. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  5870. return 1;
  5871. }
  5872. if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
  5873. !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
  5874. /*TODO: Also verify bits beyond physical address width are 0*/
  5875. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  5876. return 1;
  5877. }
  5878. if (vmcs12->vm_entry_msr_load_count > 0 ||
  5879. vmcs12->vm_exit_msr_load_count > 0 ||
  5880. vmcs12->vm_exit_msr_store_count > 0) {
  5881. pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
  5882. __func__);
  5883. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  5884. return 1;
  5885. }
  5886. if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
  5887. nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
  5888. !vmx_control_verify(vmcs12->secondary_vm_exec_control,
  5889. nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
  5890. !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
  5891. nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
  5892. !vmx_control_verify(vmcs12->vm_exit_controls,
  5893. nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
  5894. !vmx_control_verify(vmcs12->vm_entry_controls,
  5895. nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
  5896. {
  5897. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  5898. return 1;
  5899. }
  5900. if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
  5901. ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
  5902. nested_vmx_failValid(vcpu,
  5903. VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
  5904. return 1;
  5905. }
  5906. if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
  5907. ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
  5908. nested_vmx_entry_failure(vcpu, vmcs12,
  5909. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
  5910. return 1;
  5911. }
  5912. if (vmcs12->vmcs_link_pointer != -1ull) {
  5913. nested_vmx_entry_failure(vcpu, vmcs12,
  5914. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
  5915. return 1;
  5916. }
  5917. /*
  5918. * We're finally done with prerequisite checking, and can start with
  5919. * the nested entry.
  5920. */
  5921. vmcs02 = nested_get_current_vmcs02(vmx);
  5922. if (!vmcs02)
  5923. return -ENOMEM;
  5924. enter_guest_mode(vcpu);
  5925. vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
  5926. cpu = get_cpu();
  5927. vmx->loaded_vmcs = vmcs02;
  5928. vmx_vcpu_put(vcpu);
  5929. vmx_vcpu_load(vcpu, cpu);
  5930. vcpu->cpu = cpu;
  5931. put_cpu();
  5932. vmcs12->launch_state = 1;
  5933. prepare_vmcs02(vcpu, vmcs12);
  5934. /*
  5935. * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
  5936. * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
  5937. * returned as far as L1 is concerned. It will only return (and set
  5938. * the success flag) when L2 exits (see nested_vmx_vmexit()).
  5939. */
  5940. return 1;
  5941. }
  5942. /*
  5943. * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
  5944. * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
  5945. * This function returns the new value we should put in vmcs12.guest_cr0.
  5946. * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
  5947. * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
  5948. * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
  5949. * didn't trap the bit, because if L1 did, so would L0).
  5950. * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
  5951. * been modified by L2, and L1 knows it. So just leave the old value of
  5952. * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
  5953. * isn't relevant, because if L0 traps this bit it can set it to anything.
  5954. * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
  5955. * changed these bits, and therefore they need to be updated, but L0
  5956. * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
  5957. * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
  5958. */
  5959. static inline unsigned long
  5960. vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  5961. {
  5962. return
  5963. /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
  5964. /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
  5965. /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
  5966. vcpu->arch.cr0_guest_owned_bits));
  5967. }
  5968. static inline unsigned long
  5969. vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  5970. {
  5971. return
  5972. /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
  5973. /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
  5974. /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
  5975. vcpu->arch.cr4_guest_owned_bits));
  5976. }
  5977. /*
  5978. * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
  5979. * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
  5980. * and this function updates it to reflect the changes to the guest state while
  5981. * L2 was running (and perhaps made some exits which were handled directly by L0
  5982. * without going back to L1), and to reflect the exit reason.
  5983. * Note that we do not have to copy here all VMCS fields, just those that
  5984. * could have changed by the L2 guest or the exit - i.e., the guest-state and
  5985. * exit-information fields only. Other fields are modified by L1 with VMWRITE,
  5986. * which already writes to vmcs12 directly.
  5987. */
  5988. void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  5989. {
  5990. /* update guest state fields: */
  5991. vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
  5992. vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
  5993. kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
  5994. vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  5995. vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
  5996. vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
  5997. vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
  5998. vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
  5999. vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
  6000. vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
  6001. vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
  6002. vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
  6003. vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
  6004. vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
  6005. vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
  6006. vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
  6007. vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  6008. vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
  6009. vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
  6010. vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
  6011. vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
  6012. vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
  6013. vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
  6014. vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
  6015. vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
  6016. vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
  6017. vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
  6018. vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
  6019. vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
  6020. vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
  6021. vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
  6022. vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
  6023. vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
  6024. vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
  6025. vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
  6026. vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
  6027. vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
  6028. vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
  6029. vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
  6030. vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
  6031. vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
  6032. vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
  6033. vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
  6034. vmcs12->guest_interruptibility_info =
  6035. vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  6036. vmcs12->guest_pending_dbg_exceptions =
  6037. vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
  6038. /* TODO: These cannot have changed unless we have MSR bitmaps and
  6039. * the relevant bit asks not to trap the change */
  6040. vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
  6041. if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT)
  6042. vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
  6043. vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
  6044. vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
  6045. vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
  6046. /* update exit information fields: */
  6047. vmcs12->vm_exit_reason = vmcs_read32(VM_EXIT_REASON);
  6048. vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  6049. vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  6050. vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  6051. vmcs12->idt_vectoring_info_field =
  6052. vmcs_read32(IDT_VECTORING_INFO_FIELD);
  6053. vmcs12->idt_vectoring_error_code =
  6054. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  6055. vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  6056. vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  6057. /* clear vm-entry fields which are to be cleared on exit */
  6058. if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
  6059. vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
  6060. }
  6061. /*
  6062. * A part of what we need to when the nested L2 guest exits and we want to
  6063. * run its L1 parent, is to reset L1's guest state to the host state specified
  6064. * in vmcs12.
  6065. * This function is to be called not only on normal nested exit, but also on
  6066. * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
  6067. * Failures During or After Loading Guest State").
  6068. * This function should be called when the active VMCS is L1's (vmcs01).
  6069. */
  6070. void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6071. {
  6072. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
  6073. vcpu->arch.efer = vmcs12->host_ia32_efer;
  6074. if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
  6075. vcpu->arch.efer |= (EFER_LMA | EFER_LME);
  6076. else
  6077. vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
  6078. vmx_set_efer(vcpu, vcpu->arch.efer);
  6079. kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
  6080. kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
  6081. /*
  6082. * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
  6083. * actually changed, because it depends on the current state of
  6084. * fpu_active (which may have changed).
  6085. * Note that vmx_set_cr0 refers to efer set above.
  6086. */
  6087. kvm_set_cr0(vcpu, vmcs12->host_cr0);
  6088. /*
  6089. * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
  6090. * to apply the same changes to L1's vmcs. We just set cr0 correctly,
  6091. * but we also need to update cr0_guest_host_mask and exception_bitmap.
  6092. */
  6093. update_exception_bitmap(vcpu);
  6094. vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
  6095. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  6096. /*
  6097. * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
  6098. * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
  6099. */
  6100. vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
  6101. kvm_set_cr4(vcpu, vmcs12->host_cr4);
  6102. /* shadow page tables on either EPT or shadow page tables */
  6103. kvm_set_cr3(vcpu, vmcs12->host_cr3);
  6104. kvm_mmu_reset_context(vcpu);
  6105. if (enable_vpid) {
  6106. /*
  6107. * Trivially support vpid by letting L2s share their parent
  6108. * L1's vpid. TODO: move to a more elaborate solution, giving
  6109. * each L2 its own vpid and exposing the vpid feature to L1.
  6110. */
  6111. vmx_flush_tlb(vcpu);
  6112. }
  6113. vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
  6114. vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
  6115. vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
  6116. vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
  6117. vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
  6118. vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
  6119. vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
  6120. vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
  6121. vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
  6122. vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
  6123. vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
  6124. vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
  6125. vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
  6126. vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
  6127. vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
  6128. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
  6129. vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
  6130. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
  6131. vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
  6132. vmcs12->host_ia32_perf_global_ctrl);
  6133. }
  6134. /*
  6135. * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
  6136. * and modify vmcs12 to make it see what it would expect to see there if
  6137. * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
  6138. */
  6139. static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
  6140. {
  6141. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6142. int cpu;
  6143. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  6144. leave_guest_mode(vcpu);
  6145. prepare_vmcs12(vcpu, vmcs12);
  6146. cpu = get_cpu();
  6147. vmx->loaded_vmcs = &vmx->vmcs01;
  6148. vmx_vcpu_put(vcpu);
  6149. vmx_vcpu_load(vcpu, cpu);
  6150. vcpu->cpu = cpu;
  6151. put_cpu();
  6152. /* if no vmcs02 cache requested, remove the one we used */
  6153. if (VMCS02_POOL_SIZE == 0)
  6154. nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
  6155. load_vmcs12_host_state(vcpu, vmcs12);
  6156. /* Update TSC_OFFSET if TSC was changed while L2 ran */
  6157. vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
  6158. /* This is needed for same reason as it was needed in prepare_vmcs02 */
  6159. vmx->host_rsp = 0;
  6160. /* Unpin physical memory we referred to in vmcs02 */
  6161. if (vmx->nested.apic_access_page) {
  6162. nested_release_page(vmx->nested.apic_access_page);
  6163. vmx->nested.apic_access_page = 0;
  6164. }
  6165. /*
  6166. * Exiting from L2 to L1, we're now back to L1 which thinks it just
  6167. * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
  6168. * success or failure flag accordingly.
  6169. */
  6170. if (unlikely(vmx->fail)) {
  6171. vmx->fail = 0;
  6172. nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
  6173. } else
  6174. nested_vmx_succeed(vcpu);
  6175. }
  6176. /*
  6177. * L1's failure to enter L2 is a subset of a normal exit, as explained in
  6178. * 23.7 "VM-entry failures during or after loading guest state" (this also
  6179. * lists the acceptable exit-reason and exit-qualification parameters).
  6180. * It should only be called before L2 actually succeeded to run, and when
  6181. * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
  6182. */
  6183. static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
  6184. struct vmcs12 *vmcs12,
  6185. u32 reason, unsigned long qualification)
  6186. {
  6187. load_vmcs12_host_state(vcpu, vmcs12);
  6188. vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
  6189. vmcs12->exit_qualification = qualification;
  6190. nested_vmx_succeed(vcpu);
  6191. }
  6192. static int vmx_check_intercept(struct kvm_vcpu *vcpu,
  6193. struct x86_instruction_info *info,
  6194. enum x86_intercept_stage stage)
  6195. {
  6196. return X86EMUL_CONTINUE;
  6197. }
  6198. static struct kvm_x86_ops vmx_x86_ops = {
  6199. .cpu_has_kvm_support = cpu_has_kvm_support,
  6200. .disabled_by_bios = vmx_disabled_by_bios,
  6201. .hardware_setup = hardware_setup,
  6202. .hardware_unsetup = hardware_unsetup,
  6203. .check_processor_compatibility = vmx_check_processor_compat,
  6204. .hardware_enable = hardware_enable,
  6205. .hardware_disable = hardware_disable,
  6206. .cpu_has_accelerated_tpr = report_flexpriority,
  6207. .vcpu_create = vmx_create_vcpu,
  6208. .vcpu_free = vmx_free_vcpu,
  6209. .vcpu_reset = vmx_vcpu_reset,
  6210. .prepare_guest_switch = vmx_save_host_state,
  6211. .vcpu_load = vmx_vcpu_load,
  6212. .vcpu_put = vmx_vcpu_put,
  6213. .set_guest_debug = set_guest_debug,
  6214. .get_msr = vmx_get_msr,
  6215. .set_msr = vmx_set_msr,
  6216. .get_segment_base = vmx_get_segment_base,
  6217. .get_segment = vmx_get_segment,
  6218. .set_segment = vmx_set_segment,
  6219. .get_cpl = vmx_get_cpl,
  6220. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  6221. .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
  6222. .decache_cr3 = vmx_decache_cr3,
  6223. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  6224. .set_cr0 = vmx_set_cr0,
  6225. .set_cr3 = vmx_set_cr3,
  6226. .set_cr4 = vmx_set_cr4,
  6227. .set_efer = vmx_set_efer,
  6228. .get_idt = vmx_get_idt,
  6229. .set_idt = vmx_set_idt,
  6230. .get_gdt = vmx_get_gdt,
  6231. .set_gdt = vmx_set_gdt,
  6232. .set_dr7 = vmx_set_dr7,
  6233. .cache_reg = vmx_cache_reg,
  6234. .get_rflags = vmx_get_rflags,
  6235. .set_rflags = vmx_set_rflags,
  6236. .fpu_activate = vmx_fpu_activate,
  6237. .fpu_deactivate = vmx_fpu_deactivate,
  6238. .tlb_flush = vmx_flush_tlb,
  6239. .run = vmx_vcpu_run,
  6240. .handle_exit = vmx_handle_exit,
  6241. .skip_emulated_instruction = skip_emulated_instruction,
  6242. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  6243. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  6244. .patch_hypercall = vmx_patch_hypercall,
  6245. .set_irq = vmx_inject_irq,
  6246. .set_nmi = vmx_inject_nmi,
  6247. .queue_exception = vmx_queue_exception,
  6248. .cancel_injection = vmx_cancel_injection,
  6249. .interrupt_allowed = vmx_interrupt_allowed,
  6250. .nmi_allowed = vmx_nmi_allowed,
  6251. .get_nmi_mask = vmx_get_nmi_mask,
  6252. .set_nmi_mask = vmx_set_nmi_mask,
  6253. .enable_nmi_window = enable_nmi_window,
  6254. .enable_irq_window = enable_irq_window,
  6255. .update_cr8_intercept = update_cr8_intercept,
  6256. .set_tss_addr = vmx_set_tss_addr,
  6257. .get_tdp_level = get_ept_level,
  6258. .get_mt_mask = vmx_get_mt_mask,
  6259. .get_exit_info = vmx_get_exit_info,
  6260. .get_lpage_level = vmx_get_lpage_level,
  6261. .cpuid_update = vmx_cpuid_update,
  6262. .rdtscp_supported = vmx_rdtscp_supported,
  6263. .set_supported_cpuid = vmx_set_supported_cpuid,
  6264. .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
  6265. .set_tsc_khz = vmx_set_tsc_khz,
  6266. .write_tsc_offset = vmx_write_tsc_offset,
  6267. .adjust_tsc_offset = vmx_adjust_tsc_offset,
  6268. .compute_tsc_offset = vmx_compute_tsc_offset,
  6269. .read_l1_tsc = vmx_read_l1_tsc,
  6270. .set_tdp_cr3 = vmx_set_cr3,
  6271. .check_intercept = vmx_check_intercept,
  6272. };
  6273. static int __init vmx_init(void)
  6274. {
  6275. int r, i;
  6276. rdmsrl_safe(MSR_EFER, &host_efer);
  6277. for (i = 0; i < NR_VMX_MSR; ++i)
  6278. kvm_define_shared_msr(i, vmx_msr_index[i]);
  6279. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  6280. if (!vmx_io_bitmap_a)
  6281. return -ENOMEM;
  6282. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  6283. if (!vmx_io_bitmap_b) {
  6284. r = -ENOMEM;
  6285. goto out;
  6286. }
  6287. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  6288. if (!vmx_msr_bitmap_legacy) {
  6289. r = -ENOMEM;
  6290. goto out1;
  6291. }
  6292. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  6293. if (!vmx_msr_bitmap_longmode) {
  6294. r = -ENOMEM;
  6295. goto out2;
  6296. }
  6297. /*
  6298. * Allow direct access to the PC debug port (it is often used for I/O
  6299. * delays, but the vmexits simply slow things down).
  6300. */
  6301. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  6302. clear_bit(0x80, vmx_io_bitmap_a);
  6303. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  6304. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  6305. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  6306. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  6307. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
  6308. __alignof__(struct vcpu_vmx), THIS_MODULE);
  6309. if (r)
  6310. goto out3;
  6311. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  6312. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  6313. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  6314. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  6315. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  6316. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  6317. if (enable_ept) {
  6318. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  6319. VMX_EPT_EXECUTABLE_MASK);
  6320. ept_set_mmio_spte_mask();
  6321. kvm_enable_tdp();
  6322. } else
  6323. kvm_disable_tdp();
  6324. return 0;
  6325. out3:
  6326. free_page((unsigned long)vmx_msr_bitmap_longmode);
  6327. out2:
  6328. free_page((unsigned long)vmx_msr_bitmap_legacy);
  6329. out1:
  6330. free_page((unsigned long)vmx_io_bitmap_b);
  6331. out:
  6332. free_page((unsigned long)vmx_io_bitmap_a);
  6333. return r;
  6334. }
  6335. static void __exit vmx_exit(void)
  6336. {
  6337. free_page((unsigned long)vmx_msr_bitmap_legacy);
  6338. free_page((unsigned long)vmx_msr_bitmap_longmode);
  6339. free_page((unsigned long)vmx_io_bitmap_b);
  6340. free_page((unsigned long)vmx_io_bitmap_a);
  6341. kvm_exit();
  6342. }
  6343. module_init(vmx_init)
  6344. module_exit(vmx_exit)