page_alloc.c 133 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/compiler.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/suspend.h>
  27. #include <linux/pagevec.h>
  28. #include <linux/blkdev.h>
  29. #include <linux/slab.h>
  30. #include <linux/oom.h>
  31. #include <linux/notifier.h>
  32. #include <linux/topology.h>
  33. #include <linux/sysctl.h>
  34. #include <linux/cpu.h>
  35. #include <linux/cpuset.h>
  36. #include <linux/memory_hotplug.h>
  37. #include <linux/nodemask.h>
  38. #include <linux/vmalloc.h>
  39. #include <linux/mempolicy.h>
  40. #include <linux/stop_machine.h>
  41. #include <linux/sort.h>
  42. #include <linux/pfn.h>
  43. #include <linux/backing-dev.h>
  44. #include <linux/fault-inject.h>
  45. #include <linux/page-isolation.h>
  46. #include <linux/page_cgroup.h>
  47. #include <linux/debugobjects.h>
  48. #include <linux/kmemleak.h>
  49. #include <asm/tlbflush.h>
  50. #include <asm/div64.h>
  51. #include "internal.h"
  52. /*
  53. * Array of node states.
  54. */
  55. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  56. [N_POSSIBLE] = NODE_MASK_ALL,
  57. [N_ONLINE] = { { [0] = 1UL } },
  58. #ifndef CONFIG_NUMA
  59. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  60. #ifdef CONFIG_HIGHMEM
  61. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  62. #endif
  63. [N_CPU] = { { [0] = 1UL } },
  64. #endif /* NUMA */
  65. };
  66. EXPORT_SYMBOL(node_states);
  67. unsigned long totalram_pages __read_mostly;
  68. unsigned long totalreserve_pages __read_mostly;
  69. unsigned long highest_memmap_pfn __read_mostly;
  70. int percpu_pagelist_fraction;
  71. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  72. int pageblock_order __read_mostly;
  73. #endif
  74. static void __free_pages_ok(struct page *page, unsigned int order);
  75. /*
  76. * results with 256, 32 in the lowmem_reserve sysctl:
  77. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  78. * 1G machine -> (16M dma, 784M normal, 224M high)
  79. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  80. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  81. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  82. *
  83. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  84. * don't need any ZONE_NORMAL reservation
  85. */
  86. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  87. #ifdef CONFIG_ZONE_DMA
  88. 256,
  89. #endif
  90. #ifdef CONFIG_ZONE_DMA32
  91. 256,
  92. #endif
  93. #ifdef CONFIG_HIGHMEM
  94. 32,
  95. #endif
  96. 32,
  97. };
  98. EXPORT_SYMBOL(totalram_pages);
  99. static char * const zone_names[MAX_NR_ZONES] = {
  100. #ifdef CONFIG_ZONE_DMA
  101. "DMA",
  102. #endif
  103. #ifdef CONFIG_ZONE_DMA32
  104. "DMA32",
  105. #endif
  106. "Normal",
  107. #ifdef CONFIG_HIGHMEM
  108. "HighMem",
  109. #endif
  110. "Movable",
  111. };
  112. int min_free_kbytes = 1024;
  113. unsigned long __meminitdata nr_kernel_pages;
  114. unsigned long __meminitdata nr_all_pages;
  115. static unsigned long __meminitdata dma_reserve;
  116. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  117. /*
  118. * MAX_ACTIVE_REGIONS determines the maximum number of distinct
  119. * ranges of memory (RAM) that may be registered with add_active_range().
  120. * Ranges passed to add_active_range() will be merged if possible
  121. * so the number of times add_active_range() can be called is
  122. * related to the number of nodes and the number of holes
  123. */
  124. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  125. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  126. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  127. #else
  128. #if MAX_NUMNODES >= 32
  129. /* If there can be many nodes, allow up to 50 holes per node */
  130. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  131. #else
  132. /* By default, allow up to 256 distinct regions */
  133. #define MAX_ACTIVE_REGIONS 256
  134. #endif
  135. #endif
  136. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  137. static int __meminitdata nr_nodemap_entries;
  138. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  139. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  140. static unsigned long __initdata required_kernelcore;
  141. static unsigned long __initdata required_movablecore;
  142. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  143. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  144. int movable_zone;
  145. EXPORT_SYMBOL(movable_zone);
  146. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  147. #if MAX_NUMNODES > 1
  148. int nr_node_ids __read_mostly = MAX_NUMNODES;
  149. int nr_online_nodes __read_mostly = 1;
  150. EXPORT_SYMBOL(nr_node_ids);
  151. EXPORT_SYMBOL(nr_online_nodes);
  152. #endif
  153. int page_group_by_mobility_disabled __read_mostly;
  154. static void set_pageblock_migratetype(struct page *page, int migratetype)
  155. {
  156. if (unlikely(page_group_by_mobility_disabled))
  157. migratetype = MIGRATE_UNMOVABLE;
  158. set_pageblock_flags_group(page, (unsigned long)migratetype,
  159. PB_migrate, PB_migrate_end);
  160. }
  161. #ifdef CONFIG_DEBUG_VM
  162. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  163. {
  164. int ret = 0;
  165. unsigned seq;
  166. unsigned long pfn = page_to_pfn(page);
  167. do {
  168. seq = zone_span_seqbegin(zone);
  169. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  170. ret = 1;
  171. else if (pfn < zone->zone_start_pfn)
  172. ret = 1;
  173. } while (zone_span_seqretry(zone, seq));
  174. return ret;
  175. }
  176. static int page_is_consistent(struct zone *zone, struct page *page)
  177. {
  178. if (!pfn_valid_within(page_to_pfn(page)))
  179. return 0;
  180. if (zone != page_zone(page))
  181. return 0;
  182. return 1;
  183. }
  184. /*
  185. * Temporary debugging check for pages not lying within a given zone.
  186. */
  187. static int bad_range(struct zone *zone, struct page *page)
  188. {
  189. if (page_outside_zone_boundaries(zone, page))
  190. return 1;
  191. if (!page_is_consistent(zone, page))
  192. return 1;
  193. return 0;
  194. }
  195. #else
  196. static inline int bad_range(struct zone *zone, struct page *page)
  197. {
  198. return 0;
  199. }
  200. #endif
  201. static void bad_page(struct page *page)
  202. {
  203. static unsigned long resume;
  204. static unsigned long nr_shown;
  205. static unsigned long nr_unshown;
  206. /*
  207. * Allow a burst of 60 reports, then keep quiet for that minute;
  208. * or allow a steady drip of one report per second.
  209. */
  210. if (nr_shown == 60) {
  211. if (time_before(jiffies, resume)) {
  212. nr_unshown++;
  213. goto out;
  214. }
  215. if (nr_unshown) {
  216. printk(KERN_ALERT
  217. "BUG: Bad page state: %lu messages suppressed\n",
  218. nr_unshown);
  219. nr_unshown = 0;
  220. }
  221. nr_shown = 0;
  222. }
  223. if (nr_shown++ == 0)
  224. resume = jiffies + 60 * HZ;
  225. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  226. current->comm, page_to_pfn(page));
  227. printk(KERN_ALERT
  228. "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
  229. page, (void *)page->flags, page_count(page),
  230. page_mapcount(page), page->mapping, page->index);
  231. dump_stack();
  232. out:
  233. /* Leave bad fields for debug, except PageBuddy could make trouble */
  234. __ClearPageBuddy(page);
  235. add_taint(TAINT_BAD_PAGE);
  236. }
  237. /*
  238. * Higher-order pages are called "compound pages". They are structured thusly:
  239. *
  240. * The first PAGE_SIZE page is called the "head page".
  241. *
  242. * The remaining PAGE_SIZE pages are called "tail pages".
  243. *
  244. * All pages have PG_compound set. All pages have their ->private pointing at
  245. * the head page (even the head page has this).
  246. *
  247. * The first tail page's ->lru.next holds the address of the compound page's
  248. * put_page() function. Its ->lru.prev holds the order of allocation.
  249. * This usage means that zero-order pages may not be compound.
  250. */
  251. static void free_compound_page(struct page *page)
  252. {
  253. __free_pages_ok(page, compound_order(page));
  254. }
  255. void prep_compound_page(struct page *page, unsigned long order)
  256. {
  257. int i;
  258. int nr_pages = 1 << order;
  259. set_compound_page_dtor(page, free_compound_page);
  260. set_compound_order(page, order);
  261. __SetPageHead(page);
  262. for (i = 1; i < nr_pages; i++) {
  263. struct page *p = page + i;
  264. __SetPageTail(p);
  265. p->first_page = page;
  266. }
  267. }
  268. static int destroy_compound_page(struct page *page, unsigned long order)
  269. {
  270. int i;
  271. int nr_pages = 1 << order;
  272. int bad = 0;
  273. if (unlikely(compound_order(page) != order) ||
  274. unlikely(!PageHead(page))) {
  275. bad_page(page);
  276. bad++;
  277. }
  278. __ClearPageHead(page);
  279. for (i = 1; i < nr_pages; i++) {
  280. struct page *p = page + i;
  281. if (unlikely(!PageTail(p) || (p->first_page != page))) {
  282. bad_page(page);
  283. bad++;
  284. }
  285. __ClearPageTail(p);
  286. }
  287. return bad;
  288. }
  289. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  290. {
  291. int i;
  292. /*
  293. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  294. * and __GFP_HIGHMEM from hard or soft interrupt context.
  295. */
  296. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  297. for (i = 0; i < (1 << order); i++)
  298. clear_highpage(page + i);
  299. }
  300. static inline void set_page_order(struct page *page, int order)
  301. {
  302. set_page_private(page, order);
  303. __SetPageBuddy(page);
  304. }
  305. static inline void rmv_page_order(struct page *page)
  306. {
  307. __ClearPageBuddy(page);
  308. set_page_private(page, 0);
  309. }
  310. /*
  311. * Locate the struct page for both the matching buddy in our
  312. * pair (buddy1) and the combined O(n+1) page they form (page).
  313. *
  314. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  315. * the following equation:
  316. * B2 = B1 ^ (1 << O)
  317. * For example, if the starting buddy (buddy2) is #8 its order
  318. * 1 buddy is #10:
  319. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  320. *
  321. * 2) Any buddy B will have an order O+1 parent P which
  322. * satisfies the following equation:
  323. * P = B & ~(1 << O)
  324. *
  325. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  326. */
  327. static inline struct page *
  328. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  329. {
  330. unsigned long buddy_idx = page_idx ^ (1 << order);
  331. return page + (buddy_idx - page_idx);
  332. }
  333. static inline unsigned long
  334. __find_combined_index(unsigned long page_idx, unsigned int order)
  335. {
  336. return (page_idx & ~(1 << order));
  337. }
  338. /*
  339. * This function checks whether a page is free && is the buddy
  340. * we can do coalesce a page and its buddy if
  341. * (a) the buddy is not in a hole &&
  342. * (b) the buddy is in the buddy system &&
  343. * (c) a page and its buddy have the same order &&
  344. * (d) a page and its buddy are in the same zone.
  345. *
  346. * For recording whether a page is in the buddy system, we use PG_buddy.
  347. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  348. *
  349. * For recording page's order, we use page_private(page).
  350. */
  351. static inline int page_is_buddy(struct page *page, struct page *buddy,
  352. int order)
  353. {
  354. if (!pfn_valid_within(page_to_pfn(buddy)))
  355. return 0;
  356. if (page_zone_id(page) != page_zone_id(buddy))
  357. return 0;
  358. if (PageBuddy(buddy) && page_order(buddy) == order) {
  359. VM_BUG_ON(page_count(buddy) != 0);
  360. return 1;
  361. }
  362. return 0;
  363. }
  364. /*
  365. * Freeing function for a buddy system allocator.
  366. *
  367. * The concept of a buddy system is to maintain direct-mapped table
  368. * (containing bit values) for memory blocks of various "orders".
  369. * The bottom level table contains the map for the smallest allocatable
  370. * units of memory (here, pages), and each level above it describes
  371. * pairs of units from the levels below, hence, "buddies".
  372. * At a high level, all that happens here is marking the table entry
  373. * at the bottom level available, and propagating the changes upward
  374. * as necessary, plus some accounting needed to play nicely with other
  375. * parts of the VM system.
  376. * At each level, we keep a list of pages, which are heads of continuous
  377. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  378. * order is recorded in page_private(page) field.
  379. * So when we are allocating or freeing one, we can derive the state of the
  380. * other. That is, if we allocate a small block, and both were
  381. * free, the remainder of the region must be split into blocks.
  382. * If a block is freed, and its buddy is also free, then this
  383. * triggers coalescing into a block of larger size.
  384. *
  385. * -- wli
  386. */
  387. static inline void __free_one_page(struct page *page,
  388. struct zone *zone, unsigned int order,
  389. int migratetype)
  390. {
  391. unsigned long page_idx;
  392. if (unlikely(PageCompound(page)))
  393. if (unlikely(destroy_compound_page(page, order)))
  394. return;
  395. VM_BUG_ON(migratetype == -1);
  396. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  397. VM_BUG_ON(page_idx & ((1 << order) - 1));
  398. VM_BUG_ON(bad_range(zone, page));
  399. while (order < MAX_ORDER-1) {
  400. unsigned long combined_idx;
  401. struct page *buddy;
  402. buddy = __page_find_buddy(page, page_idx, order);
  403. if (!page_is_buddy(page, buddy, order))
  404. break;
  405. /* Our buddy is free, merge with it and move up one order. */
  406. list_del(&buddy->lru);
  407. zone->free_area[order].nr_free--;
  408. rmv_page_order(buddy);
  409. combined_idx = __find_combined_index(page_idx, order);
  410. page = page + (combined_idx - page_idx);
  411. page_idx = combined_idx;
  412. order++;
  413. }
  414. set_page_order(page, order);
  415. list_add(&page->lru,
  416. &zone->free_area[order].free_list[migratetype]);
  417. zone->free_area[order].nr_free++;
  418. }
  419. #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
  420. /*
  421. * free_page_mlock() -- clean up attempts to free and mlocked() page.
  422. * Page should not be on lru, so no need to fix that up.
  423. * free_pages_check() will verify...
  424. */
  425. static inline void free_page_mlock(struct page *page)
  426. {
  427. __ClearPageMlocked(page);
  428. __dec_zone_page_state(page, NR_MLOCK);
  429. __count_vm_event(UNEVICTABLE_MLOCKFREED);
  430. }
  431. #else
  432. static void free_page_mlock(struct page *page) { }
  433. #endif
  434. static inline int free_pages_check(struct page *page)
  435. {
  436. if (unlikely(page_mapcount(page) |
  437. (page->mapping != NULL) |
  438. (atomic_read(&page->_count) != 0) |
  439. (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
  440. bad_page(page);
  441. return 1;
  442. }
  443. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  444. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  445. return 0;
  446. }
  447. /*
  448. * Frees a list of pages.
  449. * Assumes all pages on list are in same zone, and of same order.
  450. * count is the number of pages to free.
  451. *
  452. * If the zone was previously in an "all pages pinned" state then look to
  453. * see if this freeing clears that state.
  454. *
  455. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  456. * pinned" detection logic.
  457. */
  458. static void free_pages_bulk(struct zone *zone, int count,
  459. struct list_head *list, int order)
  460. {
  461. spin_lock(&zone->lock);
  462. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  463. zone->pages_scanned = 0;
  464. __mod_zone_page_state(zone, NR_FREE_PAGES, count << order);
  465. while (count--) {
  466. struct page *page;
  467. VM_BUG_ON(list_empty(list));
  468. page = list_entry(list->prev, struct page, lru);
  469. /* have to delete it as __free_one_page list manipulates */
  470. list_del(&page->lru);
  471. __free_one_page(page, zone, order, page_private(page));
  472. }
  473. spin_unlock(&zone->lock);
  474. }
  475. static void free_one_page(struct zone *zone, struct page *page, int order,
  476. int migratetype)
  477. {
  478. spin_lock(&zone->lock);
  479. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  480. zone->pages_scanned = 0;
  481. __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
  482. __free_one_page(page, zone, order, migratetype);
  483. spin_unlock(&zone->lock);
  484. }
  485. static void __free_pages_ok(struct page *page, unsigned int order)
  486. {
  487. unsigned long flags;
  488. int i;
  489. int bad = 0;
  490. int clearMlocked = PageMlocked(page);
  491. for (i = 0 ; i < (1 << order) ; ++i)
  492. bad += free_pages_check(page + i);
  493. if (bad)
  494. return;
  495. if (!PageHighMem(page)) {
  496. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  497. debug_check_no_obj_freed(page_address(page),
  498. PAGE_SIZE << order);
  499. }
  500. arch_free_page(page, order);
  501. kernel_map_pages(page, 1 << order, 0);
  502. local_irq_save(flags);
  503. if (unlikely(clearMlocked))
  504. free_page_mlock(page);
  505. __count_vm_events(PGFREE, 1 << order);
  506. free_one_page(page_zone(page), page, order,
  507. get_pageblock_migratetype(page));
  508. local_irq_restore(flags);
  509. }
  510. /*
  511. * permit the bootmem allocator to evade page validation on high-order frees
  512. */
  513. void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
  514. {
  515. if (order == 0) {
  516. __ClearPageReserved(page);
  517. set_page_count(page, 0);
  518. set_page_refcounted(page);
  519. __free_page(page);
  520. } else {
  521. int loop;
  522. prefetchw(page);
  523. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  524. struct page *p = &page[loop];
  525. if (loop + 1 < BITS_PER_LONG)
  526. prefetchw(p + 1);
  527. __ClearPageReserved(p);
  528. set_page_count(p, 0);
  529. }
  530. set_page_refcounted(page);
  531. __free_pages(page, order);
  532. }
  533. }
  534. /*
  535. * The order of subdivision here is critical for the IO subsystem.
  536. * Please do not alter this order without good reasons and regression
  537. * testing. Specifically, as large blocks of memory are subdivided,
  538. * the order in which smaller blocks are delivered depends on the order
  539. * they're subdivided in this function. This is the primary factor
  540. * influencing the order in which pages are delivered to the IO
  541. * subsystem according to empirical testing, and this is also justified
  542. * by considering the behavior of a buddy system containing a single
  543. * large block of memory acted on by a series of small allocations.
  544. * This behavior is a critical factor in sglist merging's success.
  545. *
  546. * -- wli
  547. */
  548. static inline void expand(struct zone *zone, struct page *page,
  549. int low, int high, struct free_area *area,
  550. int migratetype)
  551. {
  552. unsigned long size = 1 << high;
  553. while (high > low) {
  554. area--;
  555. high--;
  556. size >>= 1;
  557. VM_BUG_ON(bad_range(zone, &page[size]));
  558. list_add(&page[size].lru, &area->free_list[migratetype]);
  559. area->nr_free++;
  560. set_page_order(&page[size], high);
  561. }
  562. }
  563. /*
  564. * This page is about to be returned from the page allocator
  565. */
  566. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  567. {
  568. if (unlikely(page_mapcount(page) |
  569. (page->mapping != NULL) |
  570. (atomic_read(&page->_count) != 0) |
  571. (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
  572. bad_page(page);
  573. return 1;
  574. }
  575. set_page_private(page, 0);
  576. set_page_refcounted(page);
  577. arch_alloc_page(page, order);
  578. kernel_map_pages(page, 1 << order, 1);
  579. if (gfp_flags & __GFP_ZERO)
  580. prep_zero_page(page, order, gfp_flags);
  581. if (order && (gfp_flags & __GFP_COMP))
  582. prep_compound_page(page, order);
  583. return 0;
  584. }
  585. /*
  586. * Go through the free lists for the given migratetype and remove
  587. * the smallest available page from the freelists
  588. */
  589. static inline
  590. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  591. int migratetype)
  592. {
  593. unsigned int current_order;
  594. struct free_area * area;
  595. struct page *page;
  596. /* Find a page of the appropriate size in the preferred list */
  597. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  598. area = &(zone->free_area[current_order]);
  599. if (list_empty(&area->free_list[migratetype]))
  600. continue;
  601. page = list_entry(area->free_list[migratetype].next,
  602. struct page, lru);
  603. list_del(&page->lru);
  604. rmv_page_order(page);
  605. area->nr_free--;
  606. expand(zone, page, order, current_order, area, migratetype);
  607. return page;
  608. }
  609. return NULL;
  610. }
  611. /*
  612. * This array describes the order lists are fallen back to when
  613. * the free lists for the desirable migrate type are depleted
  614. */
  615. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  616. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  617. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  618. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  619. [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
  620. };
  621. /*
  622. * Move the free pages in a range to the free lists of the requested type.
  623. * Note that start_page and end_pages are not aligned on a pageblock
  624. * boundary. If alignment is required, use move_freepages_block()
  625. */
  626. static int move_freepages(struct zone *zone,
  627. struct page *start_page, struct page *end_page,
  628. int migratetype)
  629. {
  630. struct page *page;
  631. unsigned long order;
  632. int pages_moved = 0;
  633. #ifndef CONFIG_HOLES_IN_ZONE
  634. /*
  635. * page_zone is not safe to call in this context when
  636. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  637. * anyway as we check zone boundaries in move_freepages_block().
  638. * Remove at a later date when no bug reports exist related to
  639. * grouping pages by mobility
  640. */
  641. BUG_ON(page_zone(start_page) != page_zone(end_page));
  642. #endif
  643. for (page = start_page; page <= end_page;) {
  644. /* Make sure we are not inadvertently changing nodes */
  645. VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
  646. if (!pfn_valid_within(page_to_pfn(page))) {
  647. page++;
  648. continue;
  649. }
  650. if (!PageBuddy(page)) {
  651. page++;
  652. continue;
  653. }
  654. order = page_order(page);
  655. list_del(&page->lru);
  656. list_add(&page->lru,
  657. &zone->free_area[order].free_list[migratetype]);
  658. page += 1 << order;
  659. pages_moved += 1 << order;
  660. }
  661. return pages_moved;
  662. }
  663. static int move_freepages_block(struct zone *zone, struct page *page,
  664. int migratetype)
  665. {
  666. unsigned long start_pfn, end_pfn;
  667. struct page *start_page, *end_page;
  668. start_pfn = page_to_pfn(page);
  669. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  670. start_page = pfn_to_page(start_pfn);
  671. end_page = start_page + pageblock_nr_pages - 1;
  672. end_pfn = start_pfn + pageblock_nr_pages - 1;
  673. /* Do not cross zone boundaries */
  674. if (start_pfn < zone->zone_start_pfn)
  675. start_page = page;
  676. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  677. return 0;
  678. return move_freepages(zone, start_page, end_page, migratetype);
  679. }
  680. /* Remove an element from the buddy allocator from the fallback list */
  681. static inline struct page *
  682. __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
  683. {
  684. struct free_area * area;
  685. int current_order;
  686. struct page *page;
  687. int migratetype, i;
  688. /* Find the largest possible block of pages in the other list */
  689. for (current_order = MAX_ORDER-1; current_order >= order;
  690. --current_order) {
  691. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  692. migratetype = fallbacks[start_migratetype][i];
  693. /* MIGRATE_RESERVE handled later if necessary */
  694. if (migratetype == MIGRATE_RESERVE)
  695. continue;
  696. area = &(zone->free_area[current_order]);
  697. if (list_empty(&area->free_list[migratetype]))
  698. continue;
  699. page = list_entry(area->free_list[migratetype].next,
  700. struct page, lru);
  701. area->nr_free--;
  702. /*
  703. * If breaking a large block of pages, move all free
  704. * pages to the preferred allocation list. If falling
  705. * back for a reclaimable kernel allocation, be more
  706. * agressive about taking ownership of free pages
  707. */
  708. if (unlikely(current_order >= (pageblock_order >> 1)) ||
  709. start_migratetype == MIGRATE_RECLAIMABLE) {
  710. unsigned long pages;
  711. pages = move_freepages_block(zone, page,
  712. start_migratetype);
  713. /* Claim the whole block if over half of it is free */
  714. if (pages >= (1 << (pageblock_order-1)))
  715. set_pageblock_migratetype(page,
  716. start_migratetype);
  717. migratetype = start_migratetype;
  718. }
  719. /* Remove the page from the freelists */
  720. list_del(&page->lru);
  721. rmv_page_order(page);
  722. if (current_order == pageblock_order)
  723. set_pageblock_migratetype(page,
  724. start_migratetype);
  725. expand(zone, page, order, current_order, area, migratetype);
  726. return page;
  727. }
  728. }
  729. return NULL;
  730. }
  731. /*
  732. * Do the hard work of removing an element from the buddy allocator.
  733. * Call me with the zone->lock already held.
  734. */
  735. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  736. int migratetype)
  737. {
  738. struct page *page;
  739. retry_reserve:
  740. page = __rmqueue_smallest(zone, order, migratetype);
  741. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  742. page = __rmqueue_fallback(zone, order, migratetype);
  743. /*
  744. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  745. * is used because __rmqueue_smallest is an inline function
  746. * and we want just one call site
  747. */
  748. if (!page) {
  749. migratetype = MIGRATE_RESERVE;
  750. goto retry_reserve;
  751. }
  752. }
  753. return page;
  754. }
  755. /*
  756. * Obtain a specified number of elements from the buddy allocator, all under
  757. * a single hold of the lock, for efficiency. Add them to the supplied list.
  758. * Returns the number of new pages which were placed at *list.
  759. */
  760. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  761. unsigned long count, struct list_head *list,
  762. int migratetype)
  763. {
  764. int i;
  765. spin_lock(&zone->lock);
  766. for (i = 0; i < count; ++i) {
  767. struct page *page = __rmqueue(zone, order, migratetype);
  768. if (unlikely(page == NULL))
  769. break;
  770. /*
  771. * Split buddy pages returned by expand() are received here
  772. * in physical page order. The page is added to the callers and
  773. * list and the list head then moves forward. From the callers
  774. * perspective, the linked list is ordered by page number in
  775. * some conditions. This is useful for IO devices that can
  776. * merge IO requests if the physical pages are ordered
  777. * properly.
  778. */
  779. list_add(&page->lru, list);
  780. set_page_private(page, migratetype);
  781. list = &page->lru;
  782. }
  783. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  784. spin_unlock(&zone->lock);
  785. return i;
  786. }
  787. #ifdef CONFIG_NUMA
  788. /*
  789. * Called from the vmstat counter updater to drain pagesets of this
  790. * currently executing processor on remote nodes after they have
  791. * expired.
  792. *
  793. * Note that this function must be called with the thread pinned to
  794. * a single processor.
  795. */
  796. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  797. {
  798. unsigned long flags;
  799. int to_drain;
  800. local_irq_save(flags);
  801. if (pcp->count >= pcp->batch)
  802. to_drain = pcp->batch;
  803. else
  804. to_drain = pcp->count;
  805. free_pages_bulk(zone, to_drain, &pcp->list, 0);
  806. pcp->count -= to_drain;
  807. local_irq_restore(flags);
  808. }
  809. #endif
  810. /*
  811. * Drain pages of the indicated processor.
  812. *
  813. * The processor must either be the current processor and the
  814. * thread pinned to the current processor or a processor that
  815. * is not online.
  816. */
  817. static void drain_pages(unsigned int cpu)
  818. {
  819. unsigned long flags;
  820. struct zone *zone;
  821. for_each_populated_zone(zone) {
  822. struct per_cpu_pageset *pset;
  823. struct per_cpu_pages *pcp;
  824. pset = zone_pcp(zone, cpu);
  825. pcp = &pset->pcp;
  826. local_irq_save(flags);
  827. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  828. pcp->count = 0;
  829. local_irq_restore(flags);
  830. }
  831. }
  832. /*
  833. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  834. */
  835. void drain_local_pages(void *arg)
  836. {
  837. drain_pages(smp_processor_id());
  838. }
  839. /*
  840. * Spill all the per-cpu pages from all CPUs back into the buddy allocator
  841. */
  842. void drain_all_pages(void)
  843. {
  844. on_each_cpu(drain_local_pages, NULL, 1);
  845. }
  846. #ifdef CONFIG_HIBERNATION
  847. void mark_free_pages(struct zone *zone)
  848. {
  849. unsigned long pfn, max_zone_pfn;
  850. unsigned long flags;
  851. int order, t;
  852. struct list_head *curr;
  853. if (!zone->spanned_pages)
  854. return;
  855. spin_lock_irqsave(&zone->lock, flags);
  856. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  857. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  858. if (pfn_valid(pfn)) {
  859. struct page *page = pfn_to_page(pfn);
  860. if (!swsusp_page_is_forbidden(page))
  861. swsusp_unset_page_free(page);
  862. }
  863. for_each_migratetype_order(order, t) {
  864. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  865. unsigned long i;
  866. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  867. for (i = 0; i < (1UL << order); i++)
  868. swsusp_set_page_free(pfn_to_page(pfn + i));
  869. }
  870. }
  871. spin_unlock_irqrestore(&zone->lock, flags);
  872. }
  873. #endif /* CONFIG_PM */
  874. /*
  875. * Free a 0-order page
  876. */
  877. static void free_hot_cold_page(struct page *page, int cold)
  878. {
  879. struct zone *zone = page_zone(page);
  880. struct per_cpu_pages *pcp;
  881. unsigned long flags;
  882. int clearMlocked = PageMlocked(page);
  883. if (PageAnon(page))
  884. page->mapping = NULL;
  885. if (free_pages_check(page))
  886. return;
  887. if (!PageHighMem(page)) {
  888. debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
  889. debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
  890. }
  891. arch_free_page(page, 0);
  892. kernel_map_pages(page, 1, 0);
  893. pcp = &zone_pcp(zone, get_cpu())->pcp;
  894. set_page_private(page, get_pageblock_migratetype(page));
  895. local_irq_save(flags);
  896. if (unlikely(clearMlocked))
  897. free_page_mlock(page);
  898. __count_vm_event(PGFREE);
  899. if (cold)
  900. list_add_tail(&page->lru, &pcp->list);
  901. else
  902. list_add(&page->lru, &pcp->list);
  903. pcp->count++;
  904. if (pcp->count >= pcp->high) {
  905. free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  906. pcp->count -= pcp->batch;
  907. }
  908. local_irq_restore(flags);
  909. put_cpu();
  910. }
  911. void free_hot_page(struct page *page)
  912. {
  913. free_hot_cold_page(page, 0);
  914. }
  915. void free_cold_page(struct page *page)
  916. {
  917. free_hot_cold_page(page, 1);
  918. }
  919. /*
  920. * split_page takes a non-compound higher-order page, and splits it into
  921. * n (1<<order) sub-pages: page[0..n]
  922. * Each sub-page must be freed individually.
  923. *
  924. * Note: this is probably too low level an operation for use in drivers.
  925. * Please consult with lkml before using this in your driver.
  926. */
  927. void split_page(struct page *page, unsigned int order)
  928. {
  929. int i;
  930. VM_BUG_ON(PageCompound(page));
  931. VM_BUG_ON(!page_count(page));
  932. for (i = 1; i < (1 << order); i++)
  933. set_page_refcounted(page + i);
  934. }
  935. /*
  936. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  937. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  938. * or two.
  939. */
  940. static inline
  941. struct page *buffered_rmqueue(struct zone *preferred_zone,
  942. struct zone *zone, int order, gfp_t gfp_flags,
  943. int migratetype)
  944. {
  945. unsigned long flags;
  946. struct page *page;
  947. int cold = !!(gfp_flags & __GFP_COLD);
  948. int cpu;
  949. again:
  950. cpu = get_cpu();
  951. if (likely(order == 0)) {
  952. struct per_cpu_pages *pcp;
  953. pcp = &zone_pcp(zone, cpu)->pcp;
  954. local_irq_save(flags);
  955. if (!pcp->count) {
  956. pcp->count = rmqueue_bulk(zone, 0,
  957. pcp->batch, &pcp->list, migratetype);
  958. if (unlikely(!pcp->count))
  959. goto failed;
  960. }
  961. /* Find a page of the appropriate migrate type */
  962. if (cold) {
  963. list_for_each_entry_reverse(page, &pcp->list, lru)
  964. if (page_private(page) == migratetype)
  965. break;
  966. } else {
  967. list_for_each_entry(page, &pcp->list, lru)
  968. if (page_private(page) == migratetype)
  969. break;
  970. }
  971. /* Allocate more to the pcp list if necessary */
  972. if (unlikely(&page->lru == &pcp->list)) {
  973. pcp->count += rmqueue_bulk(zone, 0,
  974. pcp->batch, &pcp->list, migratetype);
  975. page = list_entry(pcp->list.next, struct page, lru);
  976. }
  977. list_del(&page->lru);
  978. pcp->count--;
  979. } else {
  980. spin_lock_irqsave(&zone->lock, flags);
  981. page = __rmqueue(zone, order, migratetype);
  982. __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
  983. spin_unlock(&zone->lock);
  984. if (!page)
  985. goto failed;
  986. }
  987. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  988. zone_statistics(preferred_zone, zone);
  989. local_irq_restore(flags);
  990. put_cpu();
  991. VM_BUG_ON(bad_range(zone, page));
  992. if (prep_new_page(page, order, gfp_flags))
  993. goto again;
  994. return page;
  995. failed:
  996. local_irq_restore(flags);
  997. put_cpu();
  998. return NULL;
  999. }
  1000. /* The ALLOC_WMARK bits are used as an index to zone->watermark */
  1001. #define ALLOC_WMARK_MIN WMARK_MIN
  1002. #define ALLOC_WMARK_LOW WMARK_LOW
  1003. #define ALLOC_WMARK_HIGH WMARK_HIGH
  1004. #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
  1005. /* Mask to get the watermark bits */
  1006. #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
  1007. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  1008. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  1009. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  1010. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1011. static struct fail_page_alloc_attr {
  1012. struct fault_attr attr;
  1013. u32 ignore_gfp_highmem;
  1014. u32 ignore_gfp_wait;
  1015. u32 min_order;
  1016. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1017. struct dentry *ignore_gfp_highmem_file;
  1018. struct dentry *ignore_gfp_wait_file;
  1019. struct dentry *min_order_file;
  1020. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1021. } fail_page_alloc = {
  1022. .attr = FAULT_ATTR_INITIALIZER,
  1023. .ignore_gfp_wait = 1,
  1024. .ignore_gfp_highmem = 1,
  1025. .min_order = 1,
  1026. };
  1027. static int __init setup_fail_page_alloc(char *str)
  1028. {
  1029. return setup_fault_attr(&fail_page_alloc.attr, str);
  1030. }
  1031. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1032. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1033. {
  1034. if (order < fail_page_alloc.min_order)
  1035. return 0;
  1036. if (gfp_mask & __GFP_NOFAIL)
  1037. return 0;
  1038. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1039. return 0;
  1040. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1041. return 0;
  1042. return should_fail(&fail_page_alloc.attr, 1 << order);
  1043. }
  1044. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1045. static int __init fail_page_alloc_debugfs(void)
  1046. {
  1047. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1048. struct dentry *dir;
  1049. int err;
  1050. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  1051. "fail_page_alloc");
  1052. if (err)
  1053. return err;
  1054. dir = fail_page_alloc.attr.dentries.dir;
  1055. fail_page_alloc.ignore_gfp_wait_file =
  1056. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1057. &fail_page_alloc.ignore_gfp_wait);
  1058. fail_page_alloc.ignore_gfp_highmem_file =
  1059. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1060. &fail_page_alloc.ignore_gfp_highmem);
  1061. fail_page_alloc.min_order_file =
  1062. debugfs_create_u32("min-order", mode, dir,
  1063. &fail_page_alloc.min_order);
  1064. if (!fail_page_alloc.ignore_gfp_wait_file ||
  1065. !fail_page_alloc.ignore_gfp_highmem_file ||
  1066. !fail_page_alloc.min_order_file) {
  1067. err = -ENOMEM;
  1068. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  1069. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  1070. debugfs_remove(fail_page_alloc.min_order_file);
  1071. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  1072. }
  1073. return err;
  1074. }
  1075. late_initcall(fail_page_alloc_debugfs);
  1076. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1077. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1078. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1079. {
  1080. return 0;
  1081. }
  1082. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1083. /*
  1084. * Return 1 if free pages are above 'mark'. This takes into account the order
  1085. * of the allocation.
  1086. */
  1087. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1088. int classzone_idx, int alloc_flags)
  1089. {
  1090. /* free_pages my go negative - that's OK */
  1091. long min = mark;
  1092. long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
  1093. int o;
  1094. if (alloc_flags & ALLOC_HIGH)
  1095. min -= min / 2;
  1096. if (alloc_flags & ALLOC_HARDER)
  1097. min -= min / 4;
  1098. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  1099. return 0;
  1100. for (o = 0; o < order; o++) {
  1101. /* At the next order, this order's pages become unavailable */
  1102. free_pages -= z->free_area[o].nr_free << o;
  1103. /* Require fewer higher order pages to be free */
  1104. min >>= 1;
  1105. if (free_pages <= min)
  1106. return 0;
  1107. }
  1108. return 1;
  1109. }
  1110. #ifdef CONFIG_NUMA
  1111. /*
  1112. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1113. * skip over zones that are not allowed by the cpuset, or that have
  1114. * been recently (in last second) found to be nearly full. See further
  1115. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1116. * that have to skip over a lot of full or unallowed zones.
  1117. *
  1118. * If the zonelist cache is present in the passed in zonelist, then
  1119. * returns a pointer to the allowed node mask (either the current
  1120. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1121. *
  1122. * If the zonelist cache is not available for this zonelist, does
  1123. * nothing and returns NULL.
  1124. *
  1125. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1126. * a second since last zap'd) then we zap it out (clear its bits.)
  1127. *
  1128. * We hold off even calling zlc_setup, until after we've checked the
  1129. * first zone in the zonelist, on the theory that most allocations will
  1130. * be satisfied from that first zone, so best to examine that zone as
  1131. * quickly as we can.
  1132. */
  1133. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1134. {
  1135. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1136. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1137. zlc = zonelist->zlcache_ptr;
  1138. if (!zlc)
  1139. return NULL;
  1140. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1141. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1142. zlc->last_full_zap = jiffies;
  1143. }
  1144. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1145. &cpuset_current_mems_allowed :
  1146. &node_states[N_HIGH_MEMORY];
  1147. return allowednodes;
  1148. }
  1149. /*
  1150. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1151. * if it is worth looking at further for free memory:
  1152. * 1) Check that the zone isn't thought to be full (doesn't have its
  1153. * bit set in the zonelist_cache fullzones BITMAP).
  1154. * 2) Check that the zones node (obtained from the zonelist_cache
  1155. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1156. * Return true (non-zero) if zone is worth looking at further, or
  1157. * else return false (zero) if it is not.
  1158. *
  1159. * This check -ignores- the distinction between various watermarks,
  1160. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1161. * found to be full for any variation of these watermarks, it will
  1162. * be considered full for up to one second by all requests, unless
  1163. * we are so low on memory on all allowed nodes that we are forced
  1164. * into the second scan of the zonelist.
  1165. *
  1166. * In the second scan we ignore this zonelist cache and exactly
  1167. * apply the watermarks to all zones, even it is slower to do so.
  1168. * We are low on memory in the second scan, and should leave no stone
  1169. * unturned looking for a free page.
  1170. */
  1171. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1172. nodemask_t *allowednodes)
  1173. {
  1174. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1175. int i; /* index of *z in zonelist zones */
  1176. int n; /* node that zone *z is on */
  1177. zlc = zonelist->zlcache_ptr;
  1178. if (!zlc)
  1179. return 1;
  1180. i = z - zonelist->_zonerefs;
  1181. n = zlc->z_to_n[i];
  1182. /* This zone is worth trying if it is allowed but not full */
  1183. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1184. }
  1185. /*
  1186. * Given 'z' scanning a zonelist, set the corresponding bit in
  1187. * zlc->fullzones, so that subsequent attempts to allocate a page
  1188. * from that zone don't waste time re-examining it.
  1189. */
  1190. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1191. {
  1192. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1193. int i; /* index of *z in zonelist zones */
  1194. zlc = zonelist->zlcache_ptr;
  1195. if (!zlc)
  1196. return;
  1197. i = z - zonelist->_zonerefs;
  1198. set_bit(i, zlc->fullzones);
  1199. }
  1200. #else /* CONFIG_NUMA */
  1201. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1202. {
  1203. return NULL;
  1204. }
  1205. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1206. nodemask_t *allowednodes)
  1207. {
  1208. return 1;
  1209. }
  1210. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1211. {
  1212. }
  1213. #endif /* CONFIG_NUMA */
  1214. /*
  1215. * get_page_from_freelist goes through the zonelist trying to allocate
  1216. * a page.
  1217. */
  1218. static struct page *
  1219. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1220. struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
  1221. struct zone *preferred_zone, int migratetype)
  1222. {
  1223. struct zoneref *z;
  1224. struct page *page = NULL;
  1225. int classzone_idx;
  1226. struct zone *zone;
  1227. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1228. int zlc_active = 0; /* set if using zonelist_cache */
  1229. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1230. classzone_idx = zone_idx(preferred_zone);
  1231. zonelist_scan:
  1232. /*
  1233. * Scan zonelist, looking for a zone with enough free.
  1234. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1235. */
  1236. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1237. high_zoneidx, nodemask) {
  1238. if (NUMA_BUILD && zlc_active &&
  1239. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1240. continue;
  1241. if ((alloc_flags & ALLOC_CPUSET) &&
  1242. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1243. goto try_next_zone;
  1244. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  1245. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1246. unsigned long mark;
  1247. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  1248. if (!zone_watermark_ok(zone, order, mark,
  1249. classzone_idx, alloc_flags)) {
  1250. if (!zone_reclaim_mode ||
  1251. !zone_reclaim(zone, gfp_mask, order))
  1252. goto this_zone_full;
  1253. }
  1254. }
  1255. page = buffered_rmqueue(preferred_zone, zone, order,
  1256. gfp_mask, migratetype);
  1257. if (page)
  1258. break;
  1259. this_zone_full:
  1260. if (NUMA_BUILD)
  1261. zlc_mark_zone_full(zonelist, z);
  1262. try_next_zone:
  1263. if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
  1264. /*
  1265. * we do zlc_setup after the first zone is tried but only
  1266. * if there are multiple nodes make it worthwhile
  1267. */
  1268. allowednodes = zlc_setup(zonelist, alloc_flags);
  1269. zlc_active = 1;
  1270. did_zlc_setup = 1;
  1271. }
  1272. }
  1273. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1274. /* Disable zlc cache for second zonelist scan */
  1275. zlc_active = 0;
  1276. goto zonelist_scan;
  1277. }
  1278. return page;
  1279. }
  1280. static inline int
  1281. should_alloc_retry(gfp_t gfp_mask, unsigned int order,
  1282. unsigned long pages_reclaimed)
  1283. {
  1284. /* Do not loop if specifically requested */
  1285. if (gfp_mask & __GFP_NORETRY)
  1286. return 0;
  1287. /*
  1288. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1289. * means __GFP_NOFAIL, but that may not be true in other
  1290. * implementations.
  1291. */
  1292. if (order <= PAGE_ALLOC_COSTLY_ORDER)
  1293. return 1;
  1294. /*
  1295. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1296. * specified, then we retry until we no longer reclaim any pages
  1297. * (above), or we've reclaimed an order of pages at least as
  1298. * large as the allocation's order. In both cases, if the
  1299. * allocation still fails, we stop retrying.
  1300. */
  1301. if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
  1302. return 1;
  1303. /*
  1304. * Don't let big-order allocations loop unless the caller
  1305. * explicitly requests that.
  1306. */
  1307. if (gfp_mask & __GFP_NOFAIL)
  1308. return 1;
  1309. return 0;
  1310. }
  1311. static inline struct page *
  1312. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  1313. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1314. nodemask_t *nodemask, struct zone *preferred_zone,
  1315. int migratetype)
  1316. {
  1317. struct page *page;
  1318. /* Acquire the OOM killer lock for the zones in zonelist */
  1319. if (!try_set_zone_oom(zonelist, gfp_mask)) {
  1320. schedule_timeout_uninterruptible(1);
  1321. return NULL;
  1322. }
  1323. /*
  1324. * Go through the zonelist yet one more time, keep very high watermark
  1325. * here, this is only to catch a parallel oom killing, we must fail if
  1326. * we're still under heavy pressure.
  1327. */
  1328. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1329. order, zonelist, high_zoneidx,
  1330. ALLOC_WMARK_HIGH|ALLOC_CPUSET,
  1331. preferred_zone, migratetype);
  1332. if (page)
  1333. goto out;
  1334. /* The OOM killer will not help higher order allocs */
  1335. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1336. goto out;
  1337. /* Exhausted what can be done so it's blamo time */
  1338. out_of_memory(zonelist, gfp_mask, order);
  1339. out:
  1340. clear_zonelist_oom(zonelist, gfp_mask);
  1341. return page;
  1342. }
  1343. /* The really slow allocator path where we enter direct reclaim */
  1344. static inline struct page *
  1345. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  1346. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1347. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1348. int migratetype, unsigned long *did_some_progress)
  1349. {
  1350. struct page *page = NULL;
  1351. struct reclaim_state reclaim_state;
  1352. struct task_struct *p = current;
  1353. cond_resched();
  1354. /* We now go into synchronous reclaim */
  1355. cpuset_memory_pressure_bump();
  1356. /*
  1357. * The task's cpuset might have expanded its set of allowable nodes
  1358. */
  1359. p->flags |= PF_MEMALLOC;
  1360. lockdep_set_current_reclaim_state(gfp_mask);
  1361. reclaim_state.reclaimed_slab = 0;
  1362. p->reclaim_state = &reclaim_state;
  1363. *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
  1364. p->reclaim_state = NULL;
  1365. lockdep_clear_current_reclaim_state();
  1366. p->flags &= ~PF_MEMALLOC;
  1367. cond_resched();
  1368. if (order != 0)
  1369. drain_all_pages();
  1370. if (likely(*did_some_progress))
  1371. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1372. zonelist, high_zoneidx,
  1373. alloc_flags, preferred_zone,
  1374. migratetype);
  1375. return page;
  1376. }
  1377. /*
  1378. * This is called in the allocator slow-path if the allocation request is of
  1379. * sufficient urgency to ignore watermarks and take other desperate measures
  1380. */
  1381. static inline struct page *
  1382. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  1383. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1384. nodemask_t *nodemask, struct zone *preferred_zone,
  1385. int migratetype)
  1386. {
  1387. struct page *page;
  1388. do {
  1389. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1390. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
  1391. preferred_zone, migratetype);
  1392. if (!page && gfp_mask & __GFP_NOFAIL)
  1393. congestion_wait(WRITE, HZ/50);
  1394. } while (!page && (gfp_mask & __GFP_NOFAIL));
  1395. return page;
  1396. }
  1397. static inline
  1398. void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
  1399. enum zone_type high_zoneidx)
  1400. {
  1401. struct zoneref *z;
  1402. struct zone *zone;
  1403. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  1404. wakeup_kswapd(zone, order);
  1405. }
  1406. static inline int
  1407. gfp_to_alloc_flags(gfp_t gfp_mask)
  1408. {
  1409. struct task_struct *p = current;
  1410. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  1411. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1412. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  1413. BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
  1414. /*
  1415. * The caller may dip into page reserves a bit more if the caller
  1416. * cannot run direct reclaim, or if the caller has realtime scheduling
  1417. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1418. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1419. */
  1420. alloc_flags |= (gfp_mask & __GFP_HIGH);
  1421. if (!wait) {
  1422. alloc_flags |= ALLOC_HARDER;
  1423. /*
  1424. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1425. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1426. */
  1427. alloc_flags &= ~ALLOC_CPUSET;
  1428. } else if (unlikely(rt_task(p)))
  1429. alloc_flags |= ALLOC_HARDER;
  1430. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  1431. if (!in_interrupt() &&
  1432. ((p->flags & PF_MEMALLOC) ||
  1433. unlikely(test_thread_flag(TIF_MEMDIE))))
  1434. alloc_flags |= ALLOC_NO_WATERMARKS;
  1435. }
  1436. return alloc_flags;
  1437. }
  1438. static inline struct page *
  1439. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  1440. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1441. nodemask_t *nodemask, struct zone *preferred_zone,
  1442. int migratetype)
  1443. {
  1444. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1445. struct page *page = NULL;
  1446. int alloc_flags;
  1447. unsigned long pages_reclaimed = 0;
  1448. unsigned long did_some_progress;
  1449. struct task_struct *p = current;
  1450. /*
  1451. * In the slowpath, we sanity check order to avoid ever trying to
  1452. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  1453. * be using allocators in order of preference for an area that is
  1454. * too large.
  1455. */
  1456. if (WARN_ON_ONCE(order >= MAX_ORDER))
  1457. return NULL;
  1458. /*
  1459. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1460. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1461. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1462. * using a larger set of nodes after it has established that the
  1463. * allowed per node queues are empty and that nodes are
  1464. * over allocated.
  1465. */
  1466. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1467. goto nopage;
  1468. wake_all_kswapd(order, zonelist, high_zoneidx);
  1469. /*
  1470. * OK, we're below the kswapd watermark and have kicked background
  1471. * reclaim. Now things get more complex, so set up alloc_flags according
  1472. * to how we want to proceed.
  1473. */
  1474. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  1475. restart:
  1476. /* This is the last chance, in general, before the goto nopage. */
  1477. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  1478. high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
  1479. preferred_zone, migratetype);
  1480. if (page)
  1481. goto got_pg;
  1482. rebalance:
  1483. /* Allocate without watermarks if the context allows */
  1484. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  1485. page = __alloc_pages_high_priority(gfp_mask, order,
  1486. zonelist, high_zoneidx, nodemask,
  1487. preferred_zone, migratetype);
  1488. if (page)
  1489. goto got_pg;
  1490. }
  1491. /* Atomic allocations - we can't balance anything */
  1492. if (!wait)
  1493. goto nopage;
  1494. /* Avoid recursion of direct reclaim */
  1495. if (p->flags & PF_MEMALLOC)
  1496. goto nopage;
  1497. /* Try direct reclaim and then allocating */
  1498. page = __alloc_pages_direct_reclaim(gfp_mask, order,
  1499. zonelist, high_zoneidx,
  1500. nodemask,
  1501. alloc_flags, preferred_zone,
  1502. migratetype, &did_some_progress);
  1503. if (page)
  1504. goto got_pg;
  1505. /*
  1506. * If we failed to make any progress reclaiming, then we are
  1507. * running out of options and have to consider going OOM
  1508. */
  1509. if (!did_some_progress) {
  1510. if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1511. page = __alloc_pages_may_oom(gfp_mask, order,
  1512. zonelist, high_zoneidx,
  1513. nodemask, preferred_zone,
  1514. migratetype);
  1515. if (page)
  1516. goto got_pg;
  1517. /*
  1518. * The OOM killer does not trigger for high-order allocations
  1519. * but if no progress is being made, there are no other
  1520. * options and retrying is unlikely to help
  1521. */
  1522. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1523. goto nopage;
  1524. goto restart;
  1525. }
  1526. }
  1527. /* Check if we should retry the allocation */
  1528. pages_reclaimed += did_some_progress;
  1529. if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
  1530. /* Wait for some write requests to complete then retry */
  1531. congestion_wait(WRITE, HZ/50);
  1532. goto rebalance;
  1533. }
  1534. nopage:
  1535. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1536. printk(KERN_WARNING "%s: page allocation failure."
  1537. " order:%d, mode:0x%x\n",
  1538. p->comm, order, gfp_mask);
  1539. dump_stack();
  1540. show_mem();
  1541. }
  1542. got_pg:
  1543. return page;
  1544. }
  1545. /*
  1546. * This is the 'heart' of the zoned buddy allocator.
  1547. */
  1548. struct page *
  1549. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  1550. struct zonelist *zonelist, nodemask_t *nodemask)
  1551. {
  1552. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  1553. struct zone *preferred_zone;
  1554. struct page *page;
  1555. int migratetype = allocflags_to_migratetype(gfp_mask);
  1556. lockdep_trace_alloc(gfp_mask);
  1557. might_sleep_if(gfp_mask & __GFP_WAIT);
  1558. if (should_fail_alloc_page(gfp_mask, order))
  1559. return NULL;
  1560. /*
  1561. * Check the zones suitable for the gfp_mask contain at least one
  1562. * valid zone. It's possible to have an empty zonelist as a result
  1563. * of GFP_THISNODE and a memoryless node
  1564. */
  1565. if (unlikely(!zonelist->_zonerefs->zone))
  1566. return NULL;
  1567. /* The preferred zone is used for statistics later */
  1568. first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
  1569. if (!preferred_zone)
  1570. return NULL;
  1571. /* First allocation attempt */
  1572. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  1573. zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
  1574. preferred_zone, migratetype);
  1575. if (unlikely(!page))
  1576. page = __alloc_pages_slowpath(gfp_mask, order,
  1577. zonelist, high_zoneidx, nodemask,
  1578. preferred_zone, migratetype);
  1579. return page;
  1580. }
  1581. EXPORT_SYMBOL(__alloc_pages_nodemask);
  1582. /*
  1583. * Common helper functions.
  1584. */
  1585. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1586. {
  1587. struct page * page;
  1588. page = alloc_pages(gfp_mask, order);
  1589. if (!page)
  1590. return 0;
  1591. return (unsigned long) page_address(page);
  1592. }
  1593. EXPORT_SYMBOL(__get_free_pages);
  1594. unsigned long get_zeroed_page(gfp_t gfp_mask)
  1595. {
  1596. struct page * page;
  1597. /*
  1598. * get_zeroed_page() returns a 32-bit address, which cannot represent
  1599. * a highmem page
  1600. */
  1601. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1602. page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
  1603. if (page)
  1604. return (unsigned long) page_address(page);
  1605. return 0;
  1606. }
  1607. EXPORT_SYMBOL(get_zeroed_page);
  1608. void __pagevec_free(struct pagevec *pvec)
  1609. {
  1610. int i = pagevec_count(pvec);
  1611. while (--i >= 0)
  1612. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1613. }
  1614. void __free_pages(struct page *page, unsigned int order)
  1615. {
  1616. if (put_page_testzero(page)) {
  1617. if (order == 0)
  1618. free_hot_page(page);
  1619. else
  1620. __free_pages_ok(page, order);
  1621. }
  1622. }
  1623. EXPORT_SYMBOL(__free_pages);
  1624. void free_pages(unsigned long addr, unsigned int order)
  1625. {
  1626. if (addr != 0) {
  1627. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1628. __free_pages(virt_to_page((void *)addr), order);
  1629. }
  1630. }
  1631. EXPORT_SYMBOL(free_pages);
  1632. /**
  1633. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  1634. * @size: the number of bytes to allocate
  1635. * @gfp_mask: GFP flags for the allocation
  1636. *
  1637. * This function is similar to alloc_pages(), except that it allocates the
  1638. * minimum number of pages to satisfy the request. alloc_pages() can only
  1639. * allocate memory in power-of-two pages.
  1640. *
  1641. * This function is also limited by MAX_ORDER.
  1642. *
  1643. * Memory allocated by this function must be released by free_pages_exact().
  1644. */
  1645. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  1646. {
  1647. unsigned int order = get_order(size);
  1648. unsigned long addr;
  1649. addr = __get_free_pages(gfp_mask, order);
  1650. if (addr) {
  1651. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  1652. unsigned long used = addr + PAGE_ALIGN(size);
  1653. split_page(virt_to_page(addr), order);
  1654. while (used < alloc_end) {
  1655. free_page(used);
  1656. used += PAGE_SIZE;
  1657. }
  1658. }
  1659. return (void *)addr;
  1660. }
  1661. EXPORT_SYMBOL(alloc_pages_exact);
  1662. /**
  1663. * free_pages_exact - release memory allocated via alloc_pages_exact()
  1664. * @virt: the value returned by alloc_pages_exact.
  1665. * @size: size of allocation, same value as passed to alloc_pages_exact().
  1666. *
  1667. * Release the memory allocated by a previous call to alloc_pages_exact.
  1668. */
  1669. void free_pages_exact(void *virt, size_t size)
  1670. {
  1671. unsigned long addr = (unsigned long)virt;
  1672. unsigned long end = addr + PAGE_ALIGN(size);
  1673. while (addr < end) {
  1674. free_page(addr);
  1675. addr += PAGE_SIZE;
  1676. }
  1677. }
  1678. EXPORT_SYMBOL(free_pages_exact);
  1679. static unsigned int nr_free_zone_pages(int offset)
  1680. {
  1681. struct zoneref *z;
  1682. struct zone *zone;
  1683. /* Just pick one node, since fallback list is circular */
  1684. unsigned int sum = 0;
  1685. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  1686. for_each_zone_zonelist(zone, z, zonelist, offset) {
  1687. unsigned long size = zone->present_pages;
  1688. unsigned long high = high_wmark_pages(zone);
  1689. if (size > high)
  1690. sum += size - high;
  1691. }
  1692. return sum;
  1693. }
  1694. /*
  1695. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1696. */
  1697. unsigned int nr_free_buffer_pages(void)
  1698. {
  1699. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1700. }
  1701. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  1702. /*
  1703. * Amount of free RAM allocatable within all zones
  1704. */
  1705. unsigned int nr_free_pagecache_pages(void)
  1706. {
  1707. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  1708. }
  1709. static inline void show_node(struct zone *zone)
  1710. {
  1711. if (NUMA_BUILD)
  1712. printk("Node %d ", zone_to_nid(zone));
  1713. }
  1714. void si_meminfo(struct sysinfo *val)
  1715. {
  1716. val->totalram = totalram_pages;
  1717. val->sharedram = 0;
  1718. val->freeram = global_page_state(NR_FREE_PAGES);
  1719. val->bufferram = nr_blockdev_pages();
  1720. val->totalhigh = totalhigh_pages;
  1721. val->freehigh = nr_free_highpages();
  1722. val->mem_unit = PAGE_SIZE;
  1723. }
  1724. EXPORT_SYMBOL(si_meminfo);
  1725. #ifdef CONFIG_NUMA
  1726. void si_meminfo_node(struct sysinfo *val, int nid)
  1727. {
  1728. pg_data_t *pgdat = NODE_DATA(nid);
  1729. val->totalram = pgdat->node_present_pages;
  1730. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  1731. #ifdef CONFIG_HIGHMEM
  1732. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1733. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  1734. NR_FREE_PAGES);
  1735. #else
  1736. val->totalhigh = 0;
  1737. val->freehigh = 0;
  1738. #endif
  1739. val->mem_unit = PAGE_SIZE;
  1740. }
  1741. #endif
  1742. #define K(x) ((x) << (PAGE_SHIFT-10))
  1743. /*
  1744. * Show free area list (used inside shift_scroll-lock stuff)
  1745. * We also calculate the percentage fragmentation. We do this by counting the
  1746. * memory on each free list with the exception of the first item on the list.
  1747. */
  1748. void show_free_areas(void)
  1749. {
  1750. int cpu;
  1751. struct zone *zone;
  1752. for_each_populated_zone(zone) {
  1753. show_node(zone);
  1754. printk("%s per-cpu:\n", zone->name);
  1755. for_each_online_cpu(cpu) {
  1756. struct per_cpu_pageset *pageset;
  1757. pageset = zone_pcp(zone, cpu);
  1758. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  1759. cpu, pageset->pcp.high,
  1760. pageset->pcp.batch, pageset->pcp.count);
  1761. }
  1762. }
  1763. printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
  1764. " inactive_file:%lu"
  1765. //TODO: check/adjust line lengths
  1766. #ifdef CONFIG_UNEVICTABLE_LRU
  1767. " unevictable:%lu"
  1768. #endif
  1769. " dirty:%lu writeback:%lu unstable:%lu\n"
  1770. " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
  1771. global_page_state(NR_ACTIVE_ANON),
  1772. global_page_state(NR_ACTIVE_FILE),
  1773. global_page_state(NR_INACTIVE_ANON),
  1774. global_page_state(NR_INACTIVE_FILE),
  1775. #ifdef CONFIG_UNEVICTABLE_LRU
  1776. global_page_state(NR_UNEVICTABLE),
  1777. #endif
  1778. global_page_state(NR_FILE_DIRTY),
  1779. global_page_state(NR_WRITEBACK),
  1780. global_page_state(NR_UNSTABLE_NFS),
  1781. global_page_state(NR_FREE_PAGES),
  1782. global_page_state(NR_SLAB_RECLAIMABLE) +
  1783. global_page_state(NR_SLAB_UNRECLAIMABLE),
  1784. global_page_state(NR_FILE_MAPPED),
  1785. global_page_state(NR_PAGETABLE),
  1786. global_page_state(NR_BOUNCE));
  1787. for_each_populated_zone(zone) {
  1788. int i;
  1789. show_node(zone);
  1790. printk("%s"
  1791. " free:%lukB"
  1792. " min:%lukB"
  1793. " low:%lukB"
  1794. " high:%lukB"
  1795. " active_anon:%lukB"
  1796. " inactive_anon:%lukB"
  1797. " active_file:%lukB"
  1798. " inactive_file:%lukB"
  1799. #ifdef CONFIG_UNEVICTABLE_LRU
  1800. " unevictable:%lukB"
  1801. #endif
  1802. " present:%lukB"
  1803. " pages_scanned:%lu"
  1804. " all_unreclaimable? %s"
  1805. "\n",
  1806. zone->name,
  1807. K(zone_page_state(zone, NR_FREE_PAGES)),
  1808. K(min_wmark_pages(zone)),
  1809. K(low_wmark_pages(zone)),
  1810. K(high_wmark_pages(zone)),
  1811. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  1812. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  1813. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  1814. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  1815. #ifdef CONFIG_UNEVICTABLE_LRU
  1816. K(zone_page_state(zone, NR_UNEVICTABLE)),
  1817. #endif
  1818. K(zone->present_pages),
  1819. zone->pages_scanned,
  1820. (zone_is_all_unreclaimable(zone) ? "yes" : "no")
  1821. );
  1822. printk("lowmem_reserve[]:");
  1823. for (i = 0; i < MAX_NR_ZONES; i++)
  1824. printk(" %lu", zone->lowmem_reserve[i]);
  1825. printk("\n");
  1826. }
  1827. for_each_populated_zone(zone) {
  1828. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  1829. show_node(zone);
  1830. printk("%s: ", zone->name);
  1831. spin_lock_irqsave(&zone->lock, flags);
  1832. for (order = 0; order < MAX_ORDER; order++) {
  1833. nr[order] = zone->free_area[order].nr_free;
  1834. total += nr[order] << order;
  1835. }
  1836. spin_unlock_irqrestore(&zone->lock, flags);
  1837. for (order = 0; order < MAX_ORDER; order++)
  1838. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  1839. printk("= %lukB\n", K(total));
  1840. }
  1841. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  1842. show_swap_cache_info();
  1843. }
  1844. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  1845. {
  1846. zoneref->zone = zone;
  1847. zoneref->zone_idx = zone_idx(zone);
  1848. }
  1849. /*
  1850. * Builds allocation fallback zone lists.
  1851. *
  1852. * Add all populated zones of a node to the zonelist.
  1853. */
  1854. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  1855. int nr_zones, enum zone_type zone_type)
  1856. {
  1857. struct zone *zone;
  1858. BUG_ON(zone_type >= MAX_NR_ZONES);
  1859. zone_type++;
  1860. do {
  1861. zone_type--;
  1862. zone = pgdat->node_zones + zone_type;
  1863. if (populated_zone(zone)) {
  1864. zoneref_set_zone(zone,
  1865. &zonelist->_zonerefs[nr_zones++]);
  1866. check_highest_zone(zone_type);
  1867. }
  1868. } while (zone_type);
  1869. return nr_zones;
  1870. }
  1871. /*
  1872. * zonelist_order:
  1873. * 0 = automatic detection of better ordering.
  1874. * 1 = order by ([node] distance, -zonetype)
  1875. * 2 = order by (-zonetype, [node] distance)
  1876. *
  1877. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  1878. * the same zonelist. So only NUMA can configure this param.
  1879. */
  1880. #define ZONELIST_ORDER_DEFAULT 0
  1881. #define ZONELIST_ORDER_NODE 1
  1882. #define ZONELIST_ORDER_ZONE 2
  1883. /* zonelist order in the kernel.
  1884. * set_zonelist_order() will set this to NODE or ZONE.
  1885. */
  1886. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1887. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  1888. #ifdef CONFIG_NUMA
  1889. /* The value user specified ....changed by config */
  1890. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1891. /* string for sysctl */
  1892. #define NUMA_ZONELIST_ORDER_LEN 16
  1893. char numa_zonelist_order[16] = "default";
  1894. /*
  1895. * interface for configure zonelist ordering.
  1896. * command line option "numa_zonelist_order"
  1897. * = "[dD]efault - default, automatic configuration.
  1898. * = "[nN]ode - order by node locality, then by zone within node
  1899. * = "[zZ]one - order by zone, then by locality within zone
  1900. */
  1901. static int __parse_numa_zonelist_order(char *s)
  1902. {
  1903. if (*s == 'd' || *s == 'D') {
  1904. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1905. } else if (*s == 'n' || *s == 'N') {
  1906. user_zonelist_order = ZONELIST_ORDER_NODE;
  1907. } else if (*s == 'z' || *s == 'Z') {
  1908. user_zonelist_order = ZONELIST_ORDER_ZONE;
  1909. } else {
  1910. printk(KERN_WARNING
  1911. "Ignoring invalid numa_zonelist_order value: "
  1912. "%s\n", s);
  1913. return -EINVAL;
  1914. }
  1915. return 0;
  1916. }
  1917. static __init int setup_numa_zonelist_order(char *s)
  1918. {
  1919. if (s)
  1920. return __parse_numa_zonelist_order(s);
  1921. return 0;
  1922. }
  1923. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  1924. /*
  1925. * sysctl handler for numa_zonelist_order
  1926. */
  1927. int numa_zonelist_order_handler(ctl_table *table, int write,
  1928. struct file *file, void __user *buffer, size_t *length,
  1929. loff_t *ppos)
  1930. {
  1931. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  1932. int ret;
  1933. if (write)
  1934. strncpy(saved_string, (char*)table->data,
  1935. NUMA_ZONELIST_ORDER_LEN);
  1936. ret = proc_dostring(table, write, file, buffer, length, ppos);
  1937. if (ret)
  1938. return ret;
  1939. if (write) {
  1940. int oldval = user_zonelist_order;
  1941. if (__parse_numa_zonelist_order((char*)table->data)) {
  1942. /*
  1943. * bogus value. restore saved string
  1944. */
  1945. strncpy((char*)table->data, saved_string,
  1946. NUMA_ZONELIST_ORDER_LEN);
  1947. user_zonelist_order = oldval;
  1948. } else if (oldval != user_zonelist_order)
  1949. build_all_zonelists();
  1950. }
  1951. return 0;
  1952. }
  1953. #define MAX_NODE_LOAD (nr_online_nodes)
  1954. static int node_load[MAX_NUMNODES];
  1955. /**
  1956. * find_next_best_node - find the next node that should appear in a given node's fallback list
  1957. * @node: node whose fallback list we're appending
  1958. * @used_node_mask: nodemask_t of already used nodes
  1959. *
  1960. * We use a number of factors to determine which is the next node that should
  1961. * appear on a given node's fallback list. The node should not have appeared
  1962. * already in @node's fallback list, and it should be the next closest node
  1963. * according to the distance array (which contains arbitrary distance values
  1964. * from each node to each node in the system), and should also prefer nodes
  1965. * with no CPUs, since presumably they'll have very little allocation pressure
  1966. * on them otherwise.
  1967. * It returns -1 if no node is found.
  1968. */
  1969. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  1970. {
  1971. int n, val;
  1972. int min_val = INT_MAX;
  1973. int best_node = -1;
  1974. const struct cpumask *tmp = cpumask_of_node(0);
  1975. /* Use the local node if we haven't already */
  1976. if (!node_isset(node, *used_node_mask)) {
  1977. node_set(node, *used_node_mask);
  1978. return node;
  1979. }
  1980. for_each_node_state(n, N_HIGH_MEMORY) {
  1981. /* Don't want a node to appear more than once */
  1982. if (node_isset(n, *used_node_mask))
  1983. continue;
  1984. /* Use the distance array to find the distance */
  1985. val = node_distance(node, n);
  1986. /* Penalize nodes under us ("prefer the next node") */
  1987. val += (n < node);
  1988. /* Give preference to headless and unused nodes */
  1989. tmp = cpumask_of_node(n);
  1990. if (!cpumask_empty(tmp))
  1991. val += PENALTY_FOR_NODE_WITH_CPUS;
  1992. /* Slight preference for less loaded node */
  1993. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  1994. val += node_load[n];
  1995. if (val < min_val) {
  1996. min_val = val;
  1997. best_node = n;
  1998. }
  1999. }
  2000. if (best_node >= 0)
  2001. node_set(best_node, *used_node_mask);
  2002. return best_node;
  2003. }
  2004. /*
  2005. * Build zonelists ordered by node and zones within node.
  2006. * This results in maximum locality--normal zone overflows into local
  2007. * DMA zone, if any--but risks exhausting DMA zone.
  2008. */
  2009. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  2010. {
  2011. int j;
  2012. struct zonelist *zonelist;
  2013. zonelist = &pgdat->node_zonelists[0];
  2014. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  2015. ;
  2016. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2017. MAX_NR_ZONES - 1);
  2018. zonelist->_zonerefs[j].zone = NULL;
  2019. zonelist->_zonerefs[j].zone_idx = 0;
  2020. }
  2021. /*
  2022. * Build gfp_thisnode zonelists
  2023. */
  2024. static void build_thisnode_zonelists(pg_data_t *pgdat)
  2025. {
  2026. int j;
  2027. struct zonelist *zonelist;
  2028. zonelist = &pgdat->node_zonelists[1];
  2029. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2030. zonelist->_zonerefs[j].zone = NULL;
  2031. zonelist->_zonerefs[j].zone_idx = 0;
  2032. }
  2033. /*
  2034. * Build zonelists ordered by zone and nodes within zones.
  2035. * This results in conserving DMA zone[s] until all Normal memory is
  2036. * exhausted, but results in overflowing to remote node while memory
  2037. * may still exist in local DMA zone.
  2038. */
  2039. static int node_order[MAX_NUMNODES];
  2040. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  2041. {
  2042. int pos, j, node;
  2043. int zone_type; /* needs to be signed */
  2044. struct zone *z;
  2045. struct zonelist *zonelist;
  2046. zonelist = &pgdat->node_zonelists[0];
  2047. pos = 0;
  2048. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  2049. for (j = 0; j < nr_nodes; j++) {
  2050. node = node_order[j];
  2051. z = &NODE_DATA(node)->node_zones[zone_type];
  2052. if (populated_zone(z)) {
  2053. zoneref_set_zone(z,
  2054. &zonelist->_zonerefs[pos++]);
  2055. check_highest_zone(zone_type);
  2056. }
  2057. }
  2058. }
  2059. zonelist->_zonerefs[pos].zone = NULL;
  2060. zonelist->_zonerefs[pos].zone_idx = 0;
  2061. }
  2062. static int default_zonelist_order(void)
  2063. {
  2064. int nid, zone_type;
  2065. unsigned long low_kmem_size,total_size;
  2066. struct zone *z;
  2067. int average_size;
  2068. /*
  2069. * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
  2070. * If they are really small and used heavily, the system can fall
  2071. * into OOM very easily.
  2072. * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
  2073. */
  2074. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  2075. low_kmem_size = 0;
  2076. total_size = 0;
  2077. for_each_online_node(nid) {
  2078. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2079. z = &NODE_DATA(nid)->node_zones[zone_type];
  2080. if (populated_zone(z)) {
  2081. if (zone_type < ZONE_NORMAL)
  2082. low_kmem_size += z->present_pages;
  2083. total_size += z->present_pages;
  2084. }
  2085. }
  2086. }
  2087. if (!low_kmem_size || /* there are no DMA area. */
  2088. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  2089. return ZONELIST_ORDER_NODE;
  2090. /*
  2091. * look into each node's config.
  2092. * If there is a node whose DMA/DMA32 memory is very big area on
  2093. * local memory, NODE_ORDER may be suitable.
  2094. */
  2095. average_size = total_size /
  2096. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  2097. for_each_online_node(nid) {
  2098. low_kmem_size = 0;
  2099. total_size = 0;
  2100. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2101. z = &NODE_DATA(nid)->node_zones[zone_type];
  2102. if (populated_zone(z)) {
  2103. if (zone_type < ZONE_NORMAL)
  2104. low_kmem_size += z->present_pages;
  2105. total_size += z->present_pages;
  2106. }
  2107. }
  2108. if (low_kmem_size &&
  2109. total_size > average_size && /* ignore small node */
  2110. low_kmem_size > total_size * 70/100)
  2111. return ZONELIST_ORDER_NODE;
  2112. }
  2113. return ZONELIST_ORDER_ZONE;
  2114. }
  2115. static void set_zonelist_order(void)
  2116. {
  2117. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  2118. current_zonelist_order = default_zonelist_order();
  2119. else
  2120. current_zonelist_order = user_zonelist_order;
  2121. }
  2122. static void build_zonelists(pg_data_t *pgdat)
  2123. {
  2124. int j, node, load;
  2125. enum zone_type i;
  2126. nodemask_t used_mask;
  2127. int local_node, prev_node;
  2128. struct zonelist *zonelist;
  2129. int order = current_zonelist_order;
  2130. /* initialize zonelists */
  2131. for (i = 0; i < MAX_ZONELISTS; i++) {
  2132. zonelist = pgdat->node_zonelists + i;
  2133. zonelist->_zonerefs[0].zone = NULL;
  2134. zonelist->_zonerefs[0].zone_idx = 0;
  2135. }
  2136. /* NUMA-aware ordering of nodes */
  2137. local_node = pgdat->node_id;
  2138. load = nr_online_nodes;
  2139. prev_node = local_node;
  2140. nodes_clear(used_mask);
  2141. memset(node_load, 0, sizeof(node_load));
  2142. memset(node_order, 0, sizeof(node_order));
  2143. j = 0;
  2144. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  2145. int distance = node_distance(local_node, node);
  2146. /*
  2147. * If another node is sufficiently far away then it is better
  2148. * to reclaim pages in a zone before going off node.
  2149. */
  2150. if (distance > RECLAIM_DISTANCE)
  2151. zone_reclaim_mode = 1;
  2152. /*
  2153. * We don't want to pressure a particular node.
  2154. * So adding penalty to the first node in same
  2155. * distance group to make it round-robin.
  2156. */
  2157. if (distance != node_distance(local_node, prev_node))
  2158. node_load[node] = load;
  2159. prev_node = node;
  2160. load--;
  2161. if (order == ZONELIST_ORDER_NODE)
  2162. build_zonelists_in_node_order(pgdat, node);
  2163. else
  2164. node_order[j++] = node; /* remember order */
  2165. }
  2166. if (order == ZONELIST_ORDER_ZONE) {
  2167. /* calculate node order -- i.e., DMA last! */
  2168. build_zonelists_in_zone_order(pgdat, j);
  2169. }
  2170. build_thisnode_zonelists(pgdat);
  2171. }
  2172. /* Construct the zonelist performance cache - see further mmzone.h */
  2173. static void build_zonelist_cache(pg_data_t *pgdat)
  2174. {
  2175. struct zonelist *zonelist;
  2176. struct zonelist_cache *zlc;
  2177. struct zoneref *z;
  2178. zonelist = &pgdat->node_zonelists[0];
  2179. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  2180. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  2181. for (z = zonelist->_zonerefs; z->zone; z++)
  2182. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  2183. }
  2184. #else /* CONFIG_NUMA */
  2185. static void set_zonelist_order(void)
  2186. {
  2187. current_zonelist_order = ZONELIST_ORDER_ZONE;
  2188. }
  2189. static void build_zonelists(pg_data_t *pgdat)
  2190. {
  2191. int node, local_node;
  2192. enum zone_type j;
  2193. struct zonelist *zonelist;
  2194. local_node = pgdat->node_id;
  2195. zonelist = &pgdat->node_zonelists[0];
  2196. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2197. /*
  2198. * Now we build the zonelist so that it contains the zones
  2199. * of all the other nodes.
  2200. * We don't want to pressure a particular node, so when
  2201. * building the zones for node N, we make sure that the
  2202. * zones coming right after the local ones are those from
  2203. * node N+1 (modulo N)
  2204. */
  2205. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  2206. if (!node_online(node))
  2207. continue;
  2208. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2209. MAX_NR_ZONES - 1);
  2210. }
  2211. for (node = 0; node < local_node; node++) {
  2212. if (!node_online(node))
  2213. continue;
  2214. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2215. MAX_NR_ZONES - 1);
  2216. }
  2217. zonelist->_zonerefs[j].zone = NULL;
  2218. zonelist->_zonerefs[j].zone_idx = 0;
  2219. }
  2220. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  2221. static void build_zonelist_cache(pg_data_t *pgdat)
  2222. {
  2223. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  2224. }
  2225. #endif /* CONFIG_NUMA */
  2226. /* return values int ....just for stop_machine() */
  2227. static int __build_all_zonelists(void *dummy)
  2228. {
  2229. int nid;
  2230. for_each_online_node(nid) {
  2231. pg_data_t *pgdat = NODE_DATA(nid);
  2232. build_zonelists(pgdat);
  2233. build_zonelist_cache(pgdat);
  2234. }
  2235. return 0;
  2236. }
  2237. void build_all_zonelists(void)
  2238. {
  2239. set_zonelist_order();
  2240. if (system_state == SYSTEM_BOOTING) {
  2241. __build_all_zonelists(NULL);
  2242. mminit_verify_zonelist();
  2243. cpuset_init_current_mems_allowed();
  2244. } else {
  2245. /* we have to stop all cpus to guarantee there is no user
  2246. of zonelist */
  2247. stop_machine(__build_all_zonelists, NULL, NULL);
  2248. /* cpuset refresh routine should be here */
  2249. }
  2250. vm_total_pages = nr_free_pagecache_pages();
  2251. /*
  2252. * Disable grouping by mobility if the number of pages in the
  2253. * system is too low to allow the mechanism to work. It would be
  2254. * more accurate, but expensive to check per-zone. This check is
  2255. * made on memory-hotadd so a system can start with mobility
  2256. * disabled and enable it later
  2257. */
  2258. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  2259. page_group_by_mobility_disabled = 1;
  2260. else
  2261. page_group_by_mobility_disabled = 0;
  2262. printk("Built %i zonelists in %s order, mobility grouping %s. "
  2263. "Total pages: %ld\n",
  2264. nr_online_nodes,
  2265. zonelist_order_name[current_zonelist_order],
  2266. page_group_by_mobility_disabled ? "off" : "on",
  2267. vm_total_pages);
  2268. #ifdef CONFIG_NUMA
  2269. printk("Policy zone: %s\n", zone_names[policy_zone]);
  2270. #endif
  2271. }
  2272. /*
  2273. * Helper functions to size the waitqueue hash table.
  2274. * Essentially these want to choose hash table sizes sufficiently
  2275. * large so that collisions trying to wait on pages are rare.
  2276. * But in fact, the number of active page waitqueues on typical
  2277. * systems is ridiculously low, less than 200. So this is even
  2278. * conservative, even though it seems large.
  2279. *
  2280. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  2281. * waitqueues, i.e. the size of the waitq table given the number of pages.
  2282. */
  2283. #define PAGES_PER_WAITQUEUE 256
  2284. #ifndef CONFIG_MEMORY_HOTPLUG
  2285. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2286. {
  2287. unsigned long size = 1;
  2288. pages /= PAGES_PER_WAITQUEUE;
  2289. while (size < pages)
  2290. size <<= 1;
  2291. /*
  2292. * Once we have dozens or even hundreds of threads sleeping
  2293. * on IO we've got bigger problems than wait queue collision.
  2294. * Limit the size of the wait table to a reasonable size.
  2295. */
  2296. size = min(size, 4096UL);
  2297. return max(size, 4UL);
  2298. }
  2299. #else
  2300. /*
  2301. * A zone's size might be changed by hot-add, so it is not possible to determine
  2302. * a suitable size for its wait_table. So we use the maximum size now.
  2303. *
  2304. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  2305. *
  2306. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  2307. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  2308. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  2309. *
  2310. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  2311. * or more by the traditional way. (See above). It equals:
  2312. *
  2313. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  2314. * ia64(16K page size) : = ( 8G + 4M)byte.
  2315. * powerpc (64K page size) : = (32G +16M)byte.
  2316. */
  2317. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2318. {
  2319. return 4096UL;
  2320. }
  2321. #endif
  2322. /*
  2323. * This is an integer logarithm so that shifts can be used later
  2324. * to extract the more random high bits from the multiplicative
  2325. * hash function before the remainder is taken.
  2326. */
  2327. static inline unsigned long wait_table_bits(unsigned long size)
  2328. {
  2329. return ffz(~size);
  2330. }
  2331. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  2332. /*
  2333. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  2334. * of blocks reserved is based on min_wmark_pages(zone). The memory within
  2335. * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
  2336. * higher will lead to a bigger reserve which will get freed as contiguous
  2337. * blocks as reclaim kicks in
  2338. */
  2339. static void setup_zone_migrate_reserve(struct zone *zone)
  2340. {
  2341. unsigned long start_pfn, pfn, end_pfn;
  2342. struct page *page;
  2343. unsigned long reserve, block_migratetype;
  2344. /* Get the start pfn, end pfn and the number of blocks to reserve */
  2345. start_pfn = zone->zone_start_pfn;
  2346. end_pfn = start_pfn + zone->spanned_pages;
  2347. reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
  2348. pageblock_order;
  2349. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  2350. if (!pfn_valid(pfn))
  2351. continue;
  2352. page = pfn_to_page(pfn);
  2353. /* Watch out for overlapping nodes */
  2354. if (page_to_nid(page) != zone_to_nid(zone))
  2355. continue;
  2356. /* Blocks with reserved pages will never free, skip them. */
  2357. if (PageReserved(page))
  2358. continue;
  2359. block_migratetype = get_pageblock_migratetype(page);
  2360. /* If this block is reserved, account for it */
  2361. if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
  2362. reserve--;
  2363. continue;
  2364. }
  2365. /* Suitable for reserving if this block is movable */
  2366. if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
  2367. set_pageblock_migratetype(page, MIGRATE_RESERVE);
  2368. move_freepages_block(zone, page, MIGRATE_RESERVE);
  2369. reserve--;
  2370. continue;
  2371. }
  2372. /*
  2373. * If the reserve is met and this is a previous reserved block,
  2374. * take it back
  2375. */
  2376. if (block_migratetype == MIGRATE_RESERVE) {
  2377. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2378. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  2379. }
  2380. }
  2381. }
  2382. /*
  2383. * Initially all pages are reserved - free ones are freed
  2384. * up by free_all_bootmem() once the early boot process is
  2385. * done. Non-atomic initialization, single-pass.
  2386. */
  2387. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  2388. unsigned long start_pfn, enum memmap_context context)
  2389. {
  2390. struct page *page;
  2391. unsigned long end_pfn = start_pfn + size;
  2392. unsigned long pfn;
  2393. struct zone *z;
  2394. if (highest_memmap_pfn < end_pfn - 1)
  2395. highest_memmap_pfn = end_pfn - 1;
  2396. z = &NODE_DATA(nid)->node_zones[zone];
  2397. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2398. /*
  2399. * There can be holes in boot-time mem_map[]s
  2400. * handed to this function. They do not
  2401. * exist on hotplugged memory.
  2402. */
  2403. if (context == MEMMAP_EARLY) {
  2404. if (!early_pfn_valid(pfn))
  2405. continue;
  2406. if (!early_pfn_in_nid(pfn, nid))
  2407. continue;
  2408. }
  2409. page = pfn_to_page(pfn);
  2410. set_page_links(page, zone, nid, pfn);
  2411. mminit_verify_page_links(page, zone, nid, pfn);
  2412. init_page_count(page);
  2413. reset_page_mapcount(page);
  2414. SetPageReserved(page);
  2415. /*
  2416. * Mark the block movable so that blocks are reserved for
  2417. * movable at startup. This will force kernel allocations
  2418. * to reserve their blocks rather than leaking throughout
  2419. * the address space during boot when many long-lived
  2420. * kernel allocations are made. Later some blocks near
  2421. * the start are marked MIGRATE_RESERVE by
  2422. * setup_zone_migrate_reserve()
  2423. *
  2424. * bitmap is created for zone's valid pfn range. but memmap
  2425. * can be created for invalid pages (for alignment)
  2426. * check here not to call set_pageblock_migratetype() against
  2427. * pfn out of zone.
  2428. */
  2429. if ((z->zone_start_pfn <= pfn)
  2430. && (pfn < z->zone_start_pfn + z->spanned_pages)
  2431. && !(pfn & (pageblock_nr_pages - 1)))
  2432. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2433. INIT_LIST_HEAD(&page->lru);
  2434. #ifdef WANT_PAGE_VIRTUAL
  2435. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  2436. if (!is_highmem_idx(zone))
  2437. set_page_address(page, __va(pfn << PAGE_SHIFT));
  2438. #endif
  2439. }
  2440. }
  2441. static void __meminit zone_init_free_lists(struct zone *zone)
  2442. {
  2443. int order, t;
  2444. for_each_migratetype_order(order, t) {
  2445. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  2446. zone->free_area[order].nr_free = 0;
  2447. }
  2448. }
  2449. #ifndef __HAVE_ARCH_MEMMAP_INIT
  2450. #define memmap_init(size, nid, zone, start_pfn) \
  2451. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  2452. #endif
  2453. static int zone_batchsize(struct zone *zone)
  2454. {
  2455. #ifdef CONFIG_MMU
  2456. int batch;
  2457. /*
  2458. * The per-cpu-pages pools are set to around 1000th of the
  2459. * size of the zone. But no more than 1/2 of a meg.
  2460. *
  2461. * OK, so we don't know how big the cache is. So guess.
  2462. */
  2463. batch = zone->present_pages / 1024;
  2464. if (batch * PAGE_SIZE > 512 * 1024)
  2465. batch = (512 * 1024) / PAGE_SIZE;
  2466. batch /= 4; /* We effectively *= 4 below */
  2467. if (batch < 1)
  2468. batch = 1;
  2469. /*
  2470. * Clamp the batch to a 2^n - 1 value. Having a power
  2471. * of 2 value was found to be more likely to have
  2472. * suboptimal cache aliasing properties in some cases.
  2473. *
  2474. * For example if 2 tasks are alternately allocating
  2475. * batches of pages, one task can end up with a lot
  2476. * of pages of one half of the possible page colors
  2477. * and the other with pages of the other colors.
  2478. */
  2479. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  2480. return batch;
  2481. #else
  2482. /* The deferral and batching of frees should be suppressed under NOMMU
  2483. * conditions.
  2484. *
  2485. * The problem is that NOMMU needs to be able to allocate large chunks
  2486. * of contiguous memory as there's no hardware page translation to
  2487. * assemble apparent contiguous memory from discontiguous pages.
  2488. *
  2489. * Queueing large contiguous runs of pages for batching, however,
  2490. * causes the pages to actually be freed in smaller chunks. As there
  2491. * can be a significant delay between the individual batches being
  2492. * recycled, this leads to the once large chunks of space being
  2493. * fragmented and becoming unavailable for high-order allocations.
  2494. */
  2495. return 0;
  2496. #endif
  2497. }
  2498. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  2499. {
  2500. struct per_cpu_pages *pcp;
  2501. memset(p, 0, sizeof(*p));
  2502. pcp = &p->pcp;
  2503. pcp->count = 0;
  2504. pcp->high = 6 * batch;
  2505. pcp->batch = max(1UL, 1 * batch);
  2506. INIT_LIST_HEAD(&pcp->list);
  2507. }
  2508. /*
  2509. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  2510. * to the value high for the pageset p.
  2511. */
  2512. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  2513. unsigned long high)
  2514. {
  2515. struct per_cpu_pages *pcp;
  2516. pcp = &p->pcp;
  2517. pcp->high = high;
  2518. pcp->batch = max(1UL, high/4);
  2519. if ((high/4) > (PAGE_SHIFT * 8))
  2520. pcp->batch = PAGE_SHIFT * 8;
  2521. }
  2522. #ifdef CONFIG_NUMA
  2523. /*
  2524. * Boot pageset table. One per cpu which is going to be used for all
  2525. * zones and all nodes. The parameters will be set in such a way
  2526. * that an item put on a list will immediately be handed over to
  2527. * the buddy list. This is safe since pageset manipulation is done
  2528. * with interrupts disabled.
  2529. *
  2530. * Some NUMA counter updates may also be caught by the boot pagesets.
  2531. *
  2532. * The boot_pagesets must be kept even after bootup is complete for
  2533. * unused processors and/or zones. They do play a role for bootstrapping
  2534. * hotplugged processors.
  2535. *
  2536. * zoneinfo_show() and maybe other functions do
  2537. * not check if the processor is online before following the pageset pointer.
  2538. * Other parts of the kernel may not check if the zone is available.
  2539. */
  2540. static struct per_cpu_pageset boot_pageset[NR_CPUS];
  2541. /*
  2542. * Dynamically allocate memory for the
  2543. * per cpu pageset array in struct zone.
  2544. */
  2545. static int __cpuinit process_zones(int cpu)
  2546. {
  2547. struct zone *zone, *dzone;
  2548. int node = cpu_to_node(cpu);
  2549. node_set_state(node, N_CPU); /* this node has a cpu */
  2550. for_each_populated_zone(zone) {
  2551. zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
  2552. GFP_KERNEL, node);
  2553. if (!zone_pcp(zone, cpu))
  2554. goto bad;
  2555. setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
  2556. if (percpu_pagelist_fraction)
  2557. setup_pagelist_highmark(zone_pcp(zone, cpu),
  2558. (zone->present_pages / percpu_pagelist_fraction));
  2559. }
  2560. return 0;
  2561. bad:
  2562. for_each_zone(dzone) {
  2563. if (!populated_zone(dzone))
  2564. continue;
  2565. if (dzone == zone)
  2566. break;
  2567. kfree(zone_pcp(dzone, cpu));
  2568. zone_pcp(dzone, cpu) = NULL;
  2569. }
  2570. return -ENOMEM;
  2571. }
  2572. static inline void free_zone_pagesets(int cpu)
  2573. {
  2574. struct zone *zone;
  2575. for_each_zone(zone) {
  2576. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  2577. /* Free per_cpu_pageset if it is slab allocated */
  2578. if (pset != &boot_pageset[cpu])
  2579. kfree(pset);
  2580. zone_pcp(zone, cpu) = NULL;
  2581. }
  2582. }
  2583. static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
  2584. unsigned long action,
  2585. void *hcpu)
  2586. {
  2587. int cpu = (long)hcpu;
  2588. int ret = NOTIFY_OK;
  2589. switch (action) {
  2590. case CPU_UP_PREPARE:
  2591. case CPU_UP_PREPARE_FROZEN:
  2592. if (process_zones(cpu))
  2593. ret = NOTIFY_BAD;
  2594. break;
  2595. case CPU_UP_CANCELED:
  2596. case CPU_UP_CANCELED_FROZEN:
  2597. case CPU_DEAD:
  2598. case CPU_DEAD_FROZEN:
  2599. free_zone_pagesets(cpu);
  2600. break;
  2601. default:
  2602. break;
  2603. }
  2604. return ret;
  2605. }
  2606. static struct notifier_block __cpuinitdata pageset_notifier =
  2607. { &pageset_cpuup_callback, NULL, 0 };
  2608. void __init setup_per_cpu_pageset(void)
  2609. {
  2610. int err;
  2611. /* Initialize per_cpu_pageset for cpu 0.
  2612. * A cpuup callback will do this for every cpu
  2613. * as it comes online
  2614. */
  2615. err = process_zones(smp_processor_id());
  2616. BUG_ON(err);
  2617. register_cpu_notifier(&pageset_notifier);
  2618. }
  2619. #endif
  2620. static noinline __init_refok
  2621. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  2622. {
  2623. int i;
  2624. struct pglist_data *pgdat = zone->zone_pgdat;
  2625. size_t alloc_size;
  2626. /*
  2627. * The per-page waitqueue mechanism uses hashed waitqueues
  2628. * per zone.
  2629. */
  2630. zone->wait_table_hash_nr_entries =
  2631. wait_table_hash_nr_entries(zone_size_pages);
  2632. zone->wait_table_bits =
  2633. wait_table_bits(zone->wait_table_hash_nr_entries);
  2634. alloc_size = zone->wait_table_hash_nr_entries
  2635. * sizeof(wait_queue_head_t);
  2636. if (!slab_is_available()) {
  2637. zone->wait_table = (wait_queue_head_t *)
  2638. alloc_bootmem_node(pgdat, alloc_size);
  2639. } else {
  2640. /*
  2641. * This case means that a zone whose size was 0 gets new memory
  2642. * via memory hot-add.
  2643. * But it may be the case that a new node was hot-added. In
  2644. * this case vmalloc() will not be able to use this new node's
  2645. * memory - this wait_table must be initialized to use this new
  2646. * node itself as well.
  2647. * To use this new node's memory, further consideration will be
  2648. * necessary.
  2649. */
  2650. zone->wait_table = vmalloc(alloc_size);
  2651. }
  2652. if (!zone->wait_table)
  2653. return -ENOMEM;
  2654. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  2655. init_waitqueue_head(zone->wait_table + i);
  2656. return 0;
  2657. }
  2658. static __meminit void zone_pcp_init(struct zone *zone)
  2659. {
  2660. int cpu;
  2661. unsigned long batch = zone_batchsize(zone);
  2662. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  2663. #ifdef CONFIG_NUMA
  2664. /* Early boot. Slab allocator not functional yet */
  2665. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  2666. setup_pageset(&boot_pageset[cpu],0);
  2667. #else
  2668. setup_pageset(zone_pcp(zone,cpu), batch);
  2669. #endif
  2670. }
  2671. if (zone->present_pages)
  2672. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  2673. zone->name, zone->present_pages, batch);
  2674. }
  2675. __meminit int init_currently_empty_zone(struct zone *zone,
  2676. unsigned long zone_start_pfn,
  2677. unsigned long size,
  2678. enum memmap_context context)
  2679. {
  2680. struct pglist_data *pgdat = zone->zone_pgdat;
  2681. int ret;
  2682. ret = zone_wait_table_init(zone, size);
  2683. if (ret)
  2684. return ret;
  2685. pgdat->nr_zones = zone_idx(zone) + 1;
  2686. zone->zone_start_pfn = zone_start_pfn;
  2687. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  2688. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  2689. pgdat->node_id,
  2690. (unsigned long)zone_idx(zone),
  2691. zone_start_pfn, (zone_start_pfn + size));
  2692. zone_init_free_lists(zone);
  2693. return 0;
  2694. }
  2695. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2696. /*
  2697. * Basic iterator support. Return the first range of PFNs for a node
  2698. * Note: nid == MAX_NUMNODES returns first region regardless of node
  2699. */
  2700. static int __meminit first_active_region_index_in_nid(int nid)
  2701. {
  2702. int i;
  2703. for (i = 0; i < nr_nodemap_entries; i++)
  2704. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  2705. return i;
  2706. return -1;
  2707. }
  2708. /*
  2709. * Basic iterator support. Return the next active range of PFNs for a node
  2710. * Note: nid == MAX_NUMNODES returns next region regardless of node
  2711. */
  2712. static int __meminit next_active_region_index_in_nid(int index, int nid)
  2713. {
  2714. for (index = index + 1; index < nr_nodemap_entries; index++)
  2715. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  2716. return index;
  2717. return -1;
  2718. }
  2719. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  2720. /*
  2721. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  2722. * Architectures may implement their own version but if add_active_range()
  2723. * was used and there are no special requirements, this is a convenient
  2724. * alternative
  2725. */
  2726. int __meminit __early_pfn_to_nid(unsigned long pfn)
  2727. {
  2728. int i;
  2729. for (i = 0; i < nr_nodemap_entries; i++) {
  2730. unsigned long start_pfn = early_node_map[i].start_pfn;
  2731. unsigned long end_pfn = early_node_map[i].end_pfn;
  2732. if (start_pfn <= pfn && pfn < end_pfn)
  2733. return early_node_map[i].nid;
  2734. }
  2735. /* This is a memory hole */
  2736. return -1;
  2737. }
  2738. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  2739. int __meminit early_pfn_to_nid(unsigned long pfn)
  2740. {
  2741. int nid;
  2742. nid = __early_pfn_to_nid(pfn);
  2743. if (nid >= 0)
  2744. return nid;
  2745. /* just returns 0 */
  2746. return 0;
  2747. }
  2748. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  2749. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  2750. {
  2751. int nid;
  2752. nid = __early_pfn_to_nid(pfn);
  2753. if (nid >= 0 && nid != node)
  2754. return false;
  2755. return true;
  2756. }
  2757. #endif
  2758. /* Basic iterator support to walk early_node_map[] */
  2759. #define for_each_active_range_index_in_nid(i, nid) \
  2760. for (i = first_active_region_index_in_nid(nid); i != -1; \
  2761. i = next_active_region_index_in_nid(i, nid))
  2762. /**
  2763. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  2764. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  2765. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  2766. *
  2767. * If an architecture guarantees that all ranges registered with
  2768. * add_active_ranges() contain no holes and may be freed, this
  2769. * this function may be used instead of calling free_bootmem() manually.
  2770. */
  2771. void __init free_bootmem_with_active_regions(int nid,
  2772. unsigned long max_low_pfn)
  2773. {
  2774. int i;
  2775. for_each_active_range_index_in_nid(i, nid) {
  2776. unsigned long size_pages = 0;
  2777. unsigned long end_pfn = early_node_map[i].end_pfn;
  2778. if (early_node_map[i].start_pfn >= max_low_pfn)
  2779. continue;
  2780. if (end_pfn > max_low_pfn)
  2781. end_pfn = max_low_pfn;
  2782. size_pages = end_pfn - early_node_map[i].start_pfn;
  2783. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  2784. PFN_PHYS(early_node_map[i].start_pfn),
  2785. size_pages << PAGE_SHIFT);
  2786. }
  2787. }
  2788. void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
  2789. {
  2790. int i;
  2791. int ret;
  2792. for_each_active_range_index_in_nid(i, nid) {
  2793. ret = work_fn(early_node_map[i].start_pfn,
  2794. early_node_map[i].end_pfn, data);
  2795. if (ret)
  2796. break;
  2797. }
  2798. }
  2799. /**
  2800. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  2801. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  2802. *
  2803. * If an architecture guarantees that all ranges registered with
  2804. * add_active_ranges() contain no holes and may be freed, this
  2805. * function may be used instead of calling memory_present() manually.
  2806. */
  2807. void __init sparse_memory_present_with_active_regions(int nid)
  2808. {
  2809. int i;
  2810. for_each_active_range_index_in_nid(i, nid)
  2811. memory_present(early_node_map[i].nid,
  2812. early_node_map[i].start_pfn,
  2813. early_node_map[i].end_pfn);
  2814. }
  2815. /**
  2816. * get_pfn_range_for_nid - Return the start and end page frames for a node
  2817. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  2818. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  2819. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  2820. *
  2821. * It returns the start and end page frame of a node based on information
  2822. * provided by an arch calling add_active_range(). If called for a node
  2823. * with no available memory, a warning is printed and the start and end
  2824. * PFNs will be 0.
  2825. */
  2826. void __meminit get_pfn_range_for_nid(unsigned int nid,
  2827. unsigned long *start_pfn, unsigned long *end_pfn)
  2828. {
  2829. int i;
  2830. *start_pfn = -1UL;
  2831. *end_pfn = 0;
  2832. for_each_active_range_index_in_nid(i, nid) {
  2833. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  2834. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  2835. }
  2836. if (*start_pfn == -1UL)
  2837. *start_pfn = 0;
  2838. }
  2839. /*
  2840. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  2841. * assumption is made that zones within a node are ordered in monotonic
  2842. * increasing memory addresses so that the "highest" populated zone is used
  2843. */
  2844. static void __init find_usable_zone_for_movable(void)
  2845. {
  2846. int zone_index;
  2847. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  2848. if (zone_index == ZONE_MOVABLE)
  2849. continue;
  2850. if (arch_zone_highest_possible_pfn[zone_index] >
  2851. arch_zone_lowest_possible_pfn[zone_index])
  2852. break;
  2853. }
  2854. VM_BUG_ON(zone_index == -1);
  2855. movable_zone = zone_index;
  2856. }
  2857. /*
  2858. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  2859. * because it is sized independant of architecture. Unlike the other zones,
  2860. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  2861. * in each node depending on the size of each node and how evenly kernelcore
  2862. * is distributed. This helper function adjusts the zone ranges
  2863. * provided by the architecture for a given node by using the end of the
  2864. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  2865. * zones within a node are in order of monotonic increases memory addresses
  2866. */
  2867. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  2868. unsigned long zone_type,
  2869. unsigned long node_start_pfn,
  2870. unsigned long node_end_pfn,
  2871. unsigned long *zone_start_pfn,
  2872. unsigned long *zone_end_pfn)
  2873. {
  2874. /* Only adjust if ZONE_MOVABLE is on this node */
  2875. if (zone_movable_pfn[nid]) {
  2876. /* Size ZONE_MOVABLE */
  2877. if (zone_type == ZONE_MOVABLE) {
  2878. *zone_start_pfn = zone_movable_pfn[nid];
  2879. *zone_end_pfn = min(node_end_pfn,
  2880. arch_zone_highest_possible_pfn[movable_zone]);
  2881. /* Adjust for ZONE_MOVABLE starting within this range */
  2882. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  2883. *zone_end_pfn > zone_movable_pfn[nid]) {
  2884. *zone_end_pfn = zone_movable_pfn[nid];
  2885. /* Check if this whole range is within ZONE_MOVABLE */
  2886. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  2887. *zone_start_pfn = *zone_end_pfn;
  2888. }
  2889. }
  2890. /*
  2891. * Return the number of pages a zone spans in a node, including holes
  2892. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  2893. */
  2894. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2895. unsigned long zone_type,
  2896. unsigned long *ignored)
  2897. {
  2898. unsigned long node_start_pfn, node_end_pfn;
  2899. unsigned long zone_start_pfn, zone_end_pfn;
  2900. /* Get the start and end of the node and zone */
  2901. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2902. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  2903. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  2904. adjust_zone_range_for_zone_movable(nid, zone_type,
  2905. node_start_pfn, node_end_pfn,
  2906. &zone_start_pfn, &zone_end_pfn);
  2907. /* Check that this node has pages within the zone's required range */
  2908. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  2909. return 0;
  2910. /* Move the zone boundaries inside the node if necessary */
  2911. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  2912. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  2913. /* Return the spanned pages */
  2914. return zone_end_pfn - zone_start_pfn;
  2915. }
  2916. /*
  2917. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  2918. * then all holes in the requested range will be accounted for.
  2919. */
  2920. static unsigned long __meminit __absent_pages_in_range(int nid,
  2921. unsigned long range_start_pfn,
  2922. unsigned long range_end_pfn)
  2923. {
  2924. int i = 0;
  2925. unsigned long prev_end_pfn = 0, hole_pages = 0;
  2926. unsigned long start_pfn;
  2927. /* Find the end_pfn of the first active range of pfns in the node */
  2928. i = first_active_region_index_in_nid(nid);
  2929. if (i == -1)
  2930. return 0;
  2931. prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2932. /* Account for ranges before physical memory on this node */
  2933. if (early_node_map[i].start_pfn > range_start_pfn)
  2934. hole_pages = prev_end_pfn - range_start_pfn;
  2935. /* Find all holes for the zone within the node */
  2936. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  2937. /* No need to continue if prev_end_pfn is outside the zone */
  2938. if (prev_end_pfn >= range_end_pfn)
  2939. break;
  2940. /* Make sure the end of the zone is not within the hole */
  2941. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2942. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  2943. /* Update the hole size cound and move on */
  2944. if (start_pfn > range_start_pfn) {
  2945. BUG_ON(prev_end_pfn > start_pfn);
  2946. hole_pages += start_pfn - prev_end_pfn;
  2947. }
  2948. prev_end_pfn = early_node_map[i].end_pfn;
  2949. }
  2950. /* Account for ranges past physical memory on this node */
  2951. if (range_end_pfn > prev_end_pfn)
  2952. hole_pages += range_end_pfn -
  2953. max(range_start_pfn, prev_end_pfn);
  2954. return hole_pages;
  2955. }
  2956. /**
  2957. * absent_pages_in_range - Return number of page frames in holes within a range
  2958. * @start_pfn: The start PFN to start searching for holes
  2959. * @end_pfn: The end PFN to stop searching for holes
  2960. *
  2961. * It returns the number of pages frames in memory holes within a range.
  2962. */
  2963. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  2964. unsigned long end_pfn)
  2965. {
  2966. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  2967. }
  2968. /* Return the number of page frames in holes in a zone on a node */
  2969. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  2970. unsigned long zone_type,
  2971. unsigned long *ignored)
  2972. {
  2973. unsigned long node_start_pfn, node_end_pfn;
  2974. unsigned long zone_start_pfn, zone_end_pfn;
  2975. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2976. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  2977. node_start_pfn);
  2978. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  2979. node_end_pfn);
  2980. adjust_zone_range_for_zone_movable(nid, zone_type,
  2981. node_start_pfn, node_end_pfn,
  2982. &zone_start_pfn, &zone_end_pfn);
  2983. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  2984. }
  2985. #else
  2986. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2987. unsigned long zone_type,
  2988. unsigned long *zones_size)
  2989. {
  2990. return zones_size[zone_type];
  2991. }
  2992. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  2993. unsigned long zone_type,
  2994. unsigned long *zholes_size)
  2995. {
  2996. if (!zholes_size)
  2997. return 0;
  2998. return zholes_size[zone_type];
  2999. }
  3000. #endif
  3001. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  3002. unsigned long *zones_size, unsigned long *zholes_size)
  3003. {
  3004. unsigned long realtotalpages, totalpages = 0;
  3005. enum zone_type i;
  3006. for (i = 0; i < MAX_NR_ZONES; i++)
  3007. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  3008. zones_size);
  3009. pgdat->node_spanned_pages = totalpages;
  3010. realtotalpages = totalpages;
  3011. for (i = 0; i < MAX_NR_ZONES; i++)
  3012. realtotalpages -=
  3013. zone_absent_pages_in_node(pgdat->node_id, i,
  3014. zholes_size);
  3015. pgdat->node_present_pages = realtotalpages;
  3016. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  3017. realtotalpages);
  3018. }
  3019. #ifndef CONFIG_SPARSEMEM
  3020. /*
  3021. * Calculate the size of the zone->blockflags rounded to an unsigned long
  3022. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  3023. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  3024. * round what is now in bits to nearest long in bits, then return it in
  3025. * bytes.
  3026. */
  3027. static unsigned long __init usemap_size(unsigned long zonesize)
  3028. {
  3029. unsigned long usemapsize;
  3030. usemapsize = roundup(zonesize, pageblock_nr_pages);
  3031. usemapsize = usemapsize >> pageblock_order;
  3032. usemapsize *= NR_PAGEBLOCK_BITS;
  3033. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  3034. return usemapsize / 8;
  3035. }
  3036. static void __init setup_usemap(struct pglist_data *pgdat,
  3037. struct zone *zone, unsigned long zonesize)
  3038. {
  3039. unsigned long usemapsize = usemap_size(zonesize);
  3040. zone->pageblock_flags = NULL;
  3041. if (usemapsize)
  3042. zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
  3043. }
  3044. #else
  3045. static void inline setup_usemap(struct pglist_data *pgdat,
  3046. struct zone *zone, unsigned long zonesize) {}
  3047. #endif /* CONFIG_SPARSEMEM */
  3048. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  3049. /* Return a sensible default order for the pageblock size. */
  3050. static inline int pageblock_default_order(void)
  3051. {
  3052. if (HPAGE_SHIFT > PAGE_SHIFT)
  3053. return HUGETLB_PAGE_ORDER;
  3054. return MAX_ORDER-1;
  3055. }
  3056. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  3057. static inline void __init set_pageblock_order(unsigned int order)
  3058. {
  3059. /* Check that pageblock_nr_pages has not already been setup */
  3060. if (pageblock_order)
  3061. return;
  3062. /*
  3063. * Assume the largest contiguous order of interest is a huge page.
  3064. * This value may be variable depending on boot parameters on IA64
  3065. */
  3066. pageblock_order = order;
  3067. }
  3068. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3069. /*
  3070. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  3071. * and pageblock_default_order() are unused as pageblock_order is set
  3072. * at compile-time. See include/linux/pageblock-flags.h for the values of
  3073. * pageblock_order based on the kernel config
  3074. */
  3075. static inline int pageblock_default_order(unsigned int order)
  3076. {
  3077. return MAX_ORDER-1;
  3078. }
  3079. #define set_pageblock_order(x) do {} while (0)
  3080. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3081. /*
  3082. * Set up the zone data structures:
  3083. * - mark all pages reserved
  3084. * - mark all memory queues empty
  3085. * - clear the memory bitmaps
  3086. */
  3087. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  3088. unsigned long *zones_size, unsigned long *zholes_size)
  3089. {
  3090. enum zone_type j;
  3091. int nid = pgdat->node_id;
  3092. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  3093. int ret;
  3094. pgdat_resize_init(pgdat);
  3095. pgdat->nr_zones = 0;
  3096. init_waitqueue_head(&pgdat->kswapd_wait);
  3097. pgdat->kswapd_max_order = 0;
  3098. pgdat_page_cgroup_init(pgdat);
  3099. for (j = 0; j < MAX_NR_ZONES; j++) {
  3100. struct zone *zone = pgdat->node_zones + j;
  3101. unsigned long size, realsize, memmap_pages;
  3102. enum lru_list l;
  3103. size = zone_spanned_pages_in_node(nid, j, zones_size);
  3104. realsize = size - zone_absent_pages_in_node(nid, j,
  3105. zholes_size);
  3106. /*
  3107. * Adjust realsize so that it accounts for how much memory
  3108. * is used by this zone for memmap. This affects the watermark
  3109. * and per-cpu initialisations
  3110. */
  3111. memmap_pages =
  3112. PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
  3113. if (realsize >= memmap_pages) {
  3114. realsize -= memmap_pages;
  3115. if (memmap_pages)
  3116. printk(KERN_DEBUG
  3117. " %s zone: %lu pages used for memmap\n",
  3118. zone_names[j], memmap_pages);
  3119. } else
  3120. printk(KERN_WARNING
  3121. " %s zone: %lu pages exceeds realsize %lu\n",
  3122. zone_names[j], memmap_pages, realsize);
  3123. /* Account for reserved pages */
  3124. if (j == 0 && realsize > dma_reserve) {
  3125. realsize -= dma_reserve;
  3126. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  3127. zone_names[0], dma_reserve);
  3128. }
  3129. if (!is_highmem_idx(j))
  3130. nr_kernel_pages += realsize;
  3131. nr_all_pages += realsize;
  3132. zone->spanned_pages = size;
  3133. zone->present_pages = realsize;
  3134. #ifdef CONFIG_NUMA
  3135. zone->node = nid;
  3136. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  3137. / 100;
  3138. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  3139. #endif
  3140. zone->name = zone_names[j];
  3141. spin_lock_init(&zone->lock);
  3142. spin_lock_init(&zone->lru_lock);
  3143. zone_seqlock_init(zone);
  3144. zone->zone_pgdat = pgdat;
  3145. zone->prev_priority = DEF_PRIORITY;
  3146. zone_pcp_init(zone);
  3147. for_each_lru(l) {
  3148. INIT_LIST_HEAD(&zone->lru[l].list);
  3149. zone->lru[l].nr_saved_scan = 0;
  3150. }
  3151. zone->reclaim_stat.recent_rotated[0] = 0;
  3152. zone->reclaim_stat.recent_rotated[1] = 0;
  3153. zone->reclaim_stat.recent_scanned[0] = 0;
  3154. zone->reclaim_stat.recent_scanned[1] = 0;
  3155. zap_zone_vm_stats(zone);
  3156. zone->flags = 0;
  3157. if (!size)
  3158. continue;
  3159. set_pageblock_order(pageblock_default_order());
  3160. setup_usemap(pgdat, zone, size);
  3161. ret = init_currently_empty_zone(zone, zone_start_pfn,
  3162. size, MEMMAP_EARLY);
  3163. BUG_ON(ret);
  3164. memmap_init(size, nid, j, zone_start_pfn);
  3165. zone_start_pfn += size;
  3166. }
  3167. }
  3168. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  3169. {
  3170. /* Skip empty nodes */
  3171. if (!pgdat->node_spanned_pages)
  3172. return;
  3173. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3174. /* ia64 gets its own node_mem_map, before this, without bootmem */
  3175. if (!pgdat->node_mem_map) {
  3176. unsigned long size, start, end;
  3177. struct page *map;
  3178. /*
  3179. * The zone's endpoints aren't required to be MAX_ORDER
  3180. * aligned but the node_mem_map endpoints must be in order
  3181. * for the buddy allocator to function correctly.
  3182. */
  3183. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  3184. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  3185. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  3186. size = (end - start) * sizeof(struct page);
  3187. map = alloc_remap(pgdat->node_id, size);
  3188. if (!map)
  3189. map = alloc_bootmem_node(pgdat, size);
  3190. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  3191. }
  3192. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3193. /*
  3194. * With no DISCONTIG, the global mem_map is just set as node 0's
  3195. */
  3196. if (pgdat == NODE_DATA(0)) {
  3197. mem_map = NODE_DATA(0)->node_mem_map;
  3198. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3199. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  3200. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  3201. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3202. }
  3203. #endif
  3204. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  3205. }
  3206. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  3207. unsigned long node_start_pfn, unsigned long *zholes_size)
  3208. {
  3209. pg_data_t *pgdat = NODE_DATA(nid);
  3210. pgdat->node_id = nid;
  3211. pgdat->node_start_pfn = node_start_pfn;
  3212. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  3213. alloc_node_mem_map(pgdat);
  3214. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3215. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  3216. nid, (unsigned long)pgdat,
  3217. (unsigned long)pgdat->node_mem_map);
  3218. #endif
  3219. free_area_init_core(pgdat, zones_size, zholes_size);
  3220. }
  3221. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3222. #if MAX_NUMNODES > 1
  3223. /*
  3224. * Figure out the number of possible node ids.
  3225. */
  3226. static void __init setup_nr_node_ids(void)
  3227. {
  3228. unsigned int node;
  3229. unsigned int highest = 0;
  3230. for_each_node_mask(node, node_possible_map)
  3231. highest = node;
  3232. nr_node_ids = highest + 1;
  3233. }
  3234. #else
  3235. static inline void setup_nr_node_ids(void)
  3236. {
  3237. }
  3238. #endif
  3239. /**
  3240. * add_active_range - Register a range of PFNs backed by physical memory
  3241. * @nid: The node ID the range resides on
  3242. * @start_pfn: The start PFN of the available physical memory
  3243. * @end_pfn: The end PFN of the available physical memory
  3244. *
  3245. * These ranges are stored in an early_node_map[] and later used by
  3246. * free_area_init_nodes() to calculate zone sizes and holes. If the
  3247. * range spans a memory hole, it is up to the architecture to ensure
  3248. * the memory is not freed by the bootmem allocator. If possible
  3249. * the range being registered will be merged with existing ranges.
  3250. */
  3251. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  3252. unsigned long end_pfn)
  3253. {
  3254. int i;
  3255. mminit_dprintk(MMINIT_TRACE, "memory_register",
  3256. "Entering add_active_range(%d, %#lx, %#lx) "
  3257. "%d entries of %d used\n",
  3258. nid, start_pfn, end_pfn,
  3259. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  3260. mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
  3261. /* Merge with existing active regions if possible */
  3262. for (i = 0; i < nr_nodemap_entries; i++) {
  3263. if (early_node_map[i].nid != nid)
  3264. continue;
  3265. /* Skip if an existing region covers this new one */
  3266. if (start_pfn >= early_node_map[i].start_pfn &&
  3267. end_pfn <= early_node_map[i].end_pfn)
  3268. return;
  3269. /* Merge forward if suitable */
  3270. if (start_pfn <= early_node_map[i].end_pfn &&
  3271. end_pfn > early_node_map[i].end_pfn) {
  3272. early_node_map[i].end_pfn = end_pfn;
  3273. return;
  3274. }
  3275. /* Merge backward if suitable */
  3276. if (start_pfn < early_node_map[i].end_pfn &&
  3277. end_pfn >= early_node_map[i].start_pfn) {
  3278. early_node_map[i].start_pfn = start_pfn;
  3279. return;
  3280. }
  3281. }
  3282. /* Check that early_node_map is large enough */
  3283. if (i >= MAX_ACTIVE_REGIONS) {
  3284. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  3285. MAX_ACTIVE_REGIONS);
  3286. return;
  3287. }
  3288. early_node_map[i].nid = nid;
  3289. early_node_map[i].start_pfn = start_pfn;
  3290. early_node_map[i].end_pfn = end_pfn;
  3291. nr_nodemap_entries = i + 1;
  3292. }
  3293. /**
  3294. * remove_active_range - Shrink an existing registered range of PFNs
  3295. * @nid: The node id the range is on that should be shrunk
  3296. * @start_pfn: The new PFN of the range
  3297. * @end_pfn: The new PFN of the range
  3298. *
  3299. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  3300. * The map is kept near the end physical page range that has already been
  3301. * registered. This function allows an arch to shrink an existing registered
  3302. * range.
  3303. */
  3304. void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
  3305. unsigned long end_pfn)
  3306. {
  3307. int i, j;
  3308. int removed = 0;
  3309. printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
  3310. nid, start_pfn, end_pfn);
  3311. /* Find the old active region end and shrink */
  3312. for_each_active_range_index_in_nid(i, nid) {
  3313. if (early_node_map[i].start_pfn >= start_pfn &&
  3314. early_node_map[i].end_pfn <= end_pfn) {
  3315. /* clear it */
  3316. early_node_map[i].start_pfn = 0;
  3317. early_node_map[i].end_pfn = 0;
  3318. removed = 1;
  3319. continue;
  3320. }
  3321. if (early_node_map[i].start_pfn < start_pfn &&
  3322. early_node_map[i].end_pfn > start_pfn) {
  3323. unsigned long temp_end_pfn = early_node_map[i].end_pfn;
  3324. early_node_map[i].end_pfn = start_pfn;
  3325. if (temp_end_pfn > end_pfn)
  3326. add_active_range(nid, end_pfn, temp_end_pfn);
  3327. continue;
  3328. }
  3329. if (early_node_map[i].start_pfn >= start_pfn &&
  3330. early_node_map[i].end_pfn > end_pfn &&
  3331. early_node_map[i].start_pfn < end_pfn) {
  3332. early_node_map[i].start_pfn = end_pfn;
  3333. continue;
  3334. }
  3335. }
  3336. if (!removed)
  3337. return;
  3338. /* remove the blank ones */
  3339. for (i = nr_nodemap_entries - 1; i > 0; i--) {
  3340. if (early_node_map[i].nid != nid)
  3341. continue;
  3342. if (early_node_map[i].end_pfn)
  3343. continue;
  3344. /* we found it, get rid of it */
  3345. for (j = i; j < nr_nodemap_entries - 1; j++)
  3346. memcpy(&early_node_map[j], &early_node_map[j+1],
  3347. sizeof(early_node_map[j]));
  3348. j = nr_nodemap_entries - 1;
  3349. memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
  3350. nr_nodemap_entries--;
  3351. }
  3352. }
  3353. /**
  3354. * remove_all_active_ranges - Remove all currently registered regions
  3355. *
  3356. * During discovery, it may be found that a table like SRAT is invalid
  3357. * and an alternative discovery method must be used. This function removes
  3358. * all currently registered regions.
  3359. */
  3360. void __init remove_all_active_ranges(void)
  3361. {
  3362. memset(early_node_map, 0, sizeof(early_node_map));
  3363. nr_nodemap_entries = 0;
  3364. }
  3365. /* Compare two active node_active_regions */
  3366. static int __init cmp_node_active_region(const void *a, const void *b)
  3367. {
  3368. struct node_active_region *arange = (struct node_active_region *)a;
  3369. struct node_active_region *brange = (struct node_active_region *)b;
  3370. /* Done this way to avoid overflows */
  3371. if (arange->start_pfn > brange->start_pfn)
  3372. return 1;
  3373. if (arange->start_pfn < brange->start_pfn)
  3374. return -1;
  3375. return 0;
  3376. }
  3377. /* sort the node_map by start_pfn */
  3378. static void __init sort_node_map(void)
  3379. {
  3380. sort(early_node_map, (size_t)nr_nodemap_entries,
  3381. sizeof(struct node_active_region),
  3382. cmp_node_active_region, NULL);
  3383. }
  3384. /* Find the lowest pfn for a node */
  3385. static unsigned long __init find_min_pfn_for_node(int nid)
  3386. {
  3387. int i;
  3388. unsigned long min_pfn = ULONG_MAX;
  3389. /* Assuming a sorted map, the first range found has the starting pfn */
  3390. for_each_active_range_index_in_nid(i, nid)
  3391. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  3392. if (min_pfn == ULONG_MAX) {
  3393. printk(KERN_WARNING
  3394. "Could not find start_pfn for node %d\n", nid);
  3395. return 0;
  3396. }
  3397. return min_pfn;
  3398. }
  3399. /**
  3400. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  3401. *
  3402. * It returns the minimum PFN based on information provided via
  3403. * add_active_range().
  3404. */
  3405. unsigned long __init find_min_pfn_with_active_regions(void)
  3406. {
  3407. return find_min_pfn_for_node(MAX_NUMNODES);
  3408. }
  3409. /*
  3410. * early_calculate_totalpages()
  3411. * Sum pages in active regions for movable zone.
  3412. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  3413. */
  3414. static unsigned long __init early_calculate_totalpages(void)
  3415. {
  3416. int i;
  3417. unsigned long totalpages = 0;
  3418. for (i = 0; i < nr_nodemap_entries; i++) {
  3419. unsigned long pages = early_node_map[i].end_pfn -
  3420. early_node_map[i].start_pfn;
  3421. totalpages += pages;
  3422. if (pages)
  3423. node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
  3424. }
  3425. return totalpages;
  3426. }
  3427. /*
  3428. * Find the PFN the Movable zone begins in each node. Kernel memory
  3429. * is spread evenly between nodes as long as the nodes have enough
  3430. * memory. When they don't, some nodes will have more kernelcore than
  3431. * others
  3432. */
  3433. static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  3434. {
  3435. int i, nid;
  3436. unsigned long usable_startpfn;
  3437. unsigned long kernelcore_node, kernelcore_remaining;
  3438. unsigned long totalpages = early_calculate_totalpages();
  3439. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  3440. /*
  3441. * If movablecore was specified, calculate what size of
  3442. * kernelcore that corresponds so that memory usable for
  3443. * any allocation type is evenly spread. If both kernelcore
  3444. * and movablecore are specified, then the value of kernelcore
  3445. * will be used for required_kernelcore if it's greater than
  3446. * what movablecore would have allowed.
  3447. */
  3448. if (required_movablecore) {
  3449. unsigned long corepages;
  3450. /*
  3451. * Round-up so that ZONE_MOVABLE is at least as large as what
  3452. * was requested by the user
  3453. */
  3454. required_movablecore =
  3455. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  3456. corepages = totalpages - required_movablecore;
  3457. required_kernelcore = max(required_kernelcore, corepages);
  3458. }
  3459. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  3460. if (!required_kernelcore)
  3461. return;
  3462. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  3463. find_usable_zone_for_movable();
  3464. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  3465. restart:
  3466. /* Spread kernelcore memory as evenly as possible throughout nodes */
  3467. kernelcore_node = required_kernelcore / usable_nodes;
  3468. for_each_node_state(nid, N_HIGH_MEMORY) {
  3469. /*
  3470. * Recalculate kernelcore_node if the division per node
  3471. * now exceeds what is necessary to satisfy the requested
  3472. * amount of memory for the kernel
  3473. */
  3474. if (required_kernelcore < kernelcore_node)
  3475. kernelcore_node = required_kernelcore / usable_nodes;
  3476. /*
  3477. * As the map is walked, we track how much memory is usable
  3478. * by the kernel using kernelcore_remaining. When it is
  3479. * 0, the rest of the node is usable by ZONE_MOVABLE
  3480. */
  3481. kernelcore_remaining = kernelcore_node;
  3482. /* Go through each range of PFNs within this node */
  3483. for_each_active_range_index_in_nid(i, nid) {
  3484. unsigned long start_pfn, end_pfn;
  3485. unsigned long size_pages;
  3486. start_pfn = max(early_node_map[i].start_pfn,
  3487. zone_movable_pfn[nid]);
  3488. end_pfn = early_node_map[i].end_pfn;
  3489. if (start_pfn >= end_pfn)
  3490. continue;
  3491. /* Account for what is only usable for kernelcore */
  3492. if (start_pfn < usable_startpfn) {
  3493. unsigned long kernel_pages;
  3494. kernel_pages = min(end_pfn, usable_startpfn)
  3495. - start_pfn;
  3496. kernelcore_remaining -= min(kernel_pages,
  3497. kernelcore_remaining);
  3498. required_kernelcore -= min(kernel_pages,
  3499. required_kernelcore);
  3500. /* Continue if range is now fully accounted */
  3501. if (end_pfn <= usable_startpfn) {
  3502. /*
  3503. * Push zone_movable_pfn to the end so
  3504. * that if we have to rebalance
  3505. * kernelcore across nodes, we will
  3506. * not double account here
  3507. */
  3508. zone_movable_pfn[nid] = end_pfn;
  3509. continue;
  3510. }
  3511. start_pfn = usable_startpfn;
  3512. }
  3513. /*
  3514. * The usable PFN range for ZONE_MOVABLE is from
  3515. * start_pfn->end_pfn. Calculate size_pages as the
  3516. * number of pages used as kernelcore
  3517. */
  3518. size_pages = end_pfn - start_pfn;
  3519. if (size_pages > kernelcore_remaining)
  3520. size_pages = kernelcore_remaining;
  3521. zone_movable_pfn[nid] = start_pfn + size_pages;
  3522. /*
  3523. * Some kernelcore has been met, update counts and
  3524. * break if the kernelcore for this node has been
  3525. * satisified
  3526. */
  3527. required_kernelcore -= min(required_kernelcore,
  3528. size_pages);
  3529. kernelcore_remaining -= size_pages;
  3530. if (!kernelcore_remaining)
  3531. break;
  3532. }
  3533. }
  3534. /*
  3535. * If there is still required_kernelcore, we do another pass with one
  3536. * less node in the count. This will push zone_movable_pfn[nid] further
  3537. * along on the nodes that still have memory until kernelcore is
  3538. * satisified
  3539. */
  3540. usable_nodes--;
  3541. if (usable_nodes && required_kernelcore > usable_nodes)
  3542. goto restart;
  3543. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  3544. for (nid = 0; nid < MAX_NUMNODES; nid++)
  3545. zone_movable_pfn[nid] =
  3546. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  3547. }
  3548. /* Any regular memory on that node ? */
  3549. static void check_for_regular_memory(pg_data_t *pgdat)
  3550. {
  3551. #ifdef CONFIG_HIGHMEM
  3552. enum zone_type zone_type;
  3553. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  3554. struct zone *zone = &pgdat->node_zones[zone_type];
  3555. if (zone->present_pages)
  3556. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  3557. }
  3558. #endif
  3559. }
  3560. /**
  3561. * free_area_init_nodes - Initialise all pg_data_t and zone data
  3562. * @max_zone_pfn: an array of max PFNs for each zone
  3563. *
  3564. * This will call free_area_init_node() for each active node in the system.
  3565. * Using the page ranges provided by add_active_range(), the size of each
  3566. * zone in each node and their holes is calculated. If the maximum PFN
  3567. * between two adjacent zones match, it is assumed that the zone is empty.
  3568. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  3569. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  3570. * starts where the previous one ended. For example, ZONE_DMA32 starts
  3571. * at arch_max_dma_pfn.
  3572. */
  3573. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  3574. {
  3575. unsigned long nid;
  3576. int i;
  3577. /* Sort early_node_map as initialisation assumes it is sorted */
  3578. sort_node_map();
  3579. /* Record where the zone boundaries are */
  3580. memset(arch_zone_lowest_possible_pfn, 0,
  3581. sizeof(arch_zone_lowest_possible_pfn));
  3582. memset(arch_zone_highest_possible_pfn, 0,
  3583. sizeof(arch_zone_highest_possible_pfn));
  3584. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  3585. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  3586. for (i = 1; i < MAX_NR_ZONES; i++) {
  3587. if (i == ZONE_MOVABLE)
  3588. continue;
  3589. arch_zone_lowest_possible_pfn[i] =
  3590. arch_zone_highest_possible_pfn[i-1];
  3591. arch_zone_highest_possible_pfn[i] =
  3592. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  3593. }
  3594. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  3595. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  3596. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  3597. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  3598. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  3599. /* Print out the zone ranges */
  3600. printk("Zone PFN ranges:\n");
  3601. for (i = 0; i < MAX_NR_ZONES; i++) {
  3602. if (i == ZONE_MOVABLE)
  3603. continue;
  3604. printk(" %-8s %0#10lx -> %0#10lx\n",
  3605. zone_names[i],
  3606. arch_zone_lowest_possible_pfn[i],
  3607. arch_zone_highest_possible_pfn[i]);
  3608. }
  3609. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  3610. printk("Movable zone start PFN for each node\n");
  3611. for (i = 0; i < MAX_NUMNODES; i++) {
  3612. if (zone_movable_pfn[i])
  3613. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  3614. }
  3615. /* Print out the early_node_map[] */
  3616. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  3617. for (i = 0; i < nr_nodemap_entries; i++)
  3618. printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
  3619. early_node_map[i].start_pfn,
  3620. early_node_map[i].end_pfn);
  3621. /* Initialise every node */
  3622. mminit_verify_pageflags_layout();
  3623. setup_nr_node_ids();
  3624. for_each_online_node(nid) {
  3625. pg_data_t *pgdat = NODE_DATA(nid);
  3626. free_area_init_node(nid, NULL,
  3627. find_min_pfn_for_node(nid), NULL);
  3628. /* Any memory on that node */
  3629. if (pgdat->node_present_pages)
  3630. node_set_state(nid, N_HIGH_MEMORY);
  3631. check_for_regular_memory(pgdat);
  3632. }
  3633. }
  3634. static int __init cmdline_parse_core(char *p, unsigned long *core)
  3635. {
  3636. unsigned long long coremem;
  3637. if (!p)
  3638. return -EINVAL;
  3639. coremem = memparse(p, &p);
  3640. *core = coremem >> PAGE_SHIFT;
  3641. /* Paranoid check that UL is enough for the coremem value */
  3642. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  3643. return 0;
  3644. }
  3645. /*
  3646. * kernelcore=size sets the amount of memory for use for allocations that
  3647. * cannot be reclaimed or migrated.
  3648. */
  3649. static int __init cmdline_parse_kernelcore(char *p)
  3650. {
  3651. return cmdline_parse_core(p, &required_kernelcore);
  3652. }
  3653. /*
  3654. * movablecore=size sets the amount of memory for use for allocations that
  3655. * can be reclaimed or migrated.
  3656. */
  3657. static int __init cmdline_parse_movablecore(char *p)
  3658. {
  3659. return cmdline_parse_core(p, &required_movablecore);
  3660. }
  3661. early_param("kernelcore", cmdline_parse_kernelcore);
  3662. early_param("movablecore", cmdline_parse_movablecore);
  3663. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3664. /**
  3665. * set_dma_reserve - set the specified number of pages reserved in the first zone
  3666. * @new_dma_reserve: The number of pages to mark reserved
  3667. *
  3668. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  3669. * In the DMA zone, a significant percentage may be consumed by kernel image
  3670. * and other unfreeable allocations which can skew the watermarks badly. This
  3671. * function may optionally be used to account for unfreeable pages in the
  3672. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  3673. * smaller per-cpu batchsize.
  3674. */
  3675. void __init set_dma_reserve(unsigned long new_dma_reserve)
  3676. {
  3677. dma_reserve = new_dma_reserve;
  3678. }
  3679. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3680. struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
  3681. EXPORT_SYMBOL(contig_page_data);
  3682. #endif
  3683. void __init free_area_init(unsigned long *zones_size)
  3684. {
  3685. free_area_init_node(0, zones_size,
  3686. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  3687. }
  3688. static int page_alloc_cpu_notify(struct notifier_block *self,
  3689. unsigned long action, void *hcpu)
  3690. {
  3691. int cpu = (unsigned long)hcpu;
  3692. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3693. drain_pages(cpu);
  3694. /*
  3695. * Spill the event counters of the dead processor
  3696. * into the current processors event counters.
  3697. * This artificially elevates the count of the current
  3698. * processor.
  3699. */
  3700. vm_events_fold_cpu(cpu);
  3701. /*
  3702. * Zero the differential counters of the dead processor
  3703. * so that the vm statistics are consistent.
  3704. *
  3705. * This is only okay since the processor is dead and cannot
  3706. * race with what we are doing.
  3707. */
  3708. refresh_cpu_vm_stats(cpu);
  3709. }
  3710. return NOTIFY_OK;
  3711. }
  3712. void __init page_alloc_init(void)
  3713. {
  3714. hotcpu_notifier(page_alloc_cpu_notify, 0);
  3715. }
  3716. /*
  3717. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  3718. * or min_free_kbytes changes.
  3719. */
  3720. static void calculate_totalreserve_pages(void)
  3721. {
  3722. struct pglist_data *pgdat;
  3723. unsigned long reserve_pages = 0;
  3724. enum zone_type i, j;
  3725. for_each_online_pgdat(pgdat) {
  3726. for (i = 0; i < MAX_NR_ZONES; i++) {
  3727. struct zone *zone = pgdat->node_zones + i;
  3728. unsigned long max = 0;
  3729. /* Find valid and maximum lowmem_reserve in the zone */
  3730. for (j = i; j < MAX_NR_ZONES; j++) {
  3731. if (zone->lowmem_reserve[j] > max)
  3732. max = zone->lowmem_reserve[j];
  3733. }
  3734. /* we treat the high watermark as reserved pages. */
  3735. max += high_wmark_pages(zone);
  3736. if (max > zone->present_pages)
  3737. max = zone->present_pages;
  3738. reserve_pages += max;
  3739. }
  3740. }
  3741. totalreserve_pages = reserve_pages;
  3742. }
  3743. /*
  3744. * setup_per_zone_lowmem_reserve - called whenever
  3745. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  3746. * has a correct pages reserved value, so an adequate number of
  3747. * pages are left in the zone after a successful __alloc_pages().
  3748. */
  3749. static void setup_per_zone_lowmem_reserve(void)
  3750. {
  3751. struct pglist_data *pgdat;
  3752. enum zone_type j, idx;
  3753. for_each_online_pgdat(pgdat) {
  3754. for (j = 0; j < MAX_NR_ZONES; j++) {
  3755. struct zone *zone = pgdat->node_zones + j;
  3756. unsigned long present_pages = zone->present_pages;
  3757. zone->lowmem_reserve[j] = 0;
  3758. idx = j;
  3759. while (idx) {
  3760. struct zone *lower_zone;
  3761. idx--;
  3762. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  3763. sysctl_lowmem_reserve_ratio[idx] = 1;
  3764. lower_zone = pgdat->node_zones + idx;
  3765. lower_zone->lowmem_reserve[j] = present_pages /
  3766. sysctl_lowmem_reserve_ratio[idx];
  3767. present_pages += lower_zone->present_pages;
  3768. }
  3769. }
  3770. }
  3771. /* update totalreserve_pages */
  3772. calculate_totalreserve_pages();
  3773. }
  3774. /**
  3775. * setup_per_zone_pages_min - called when min_free_kbytes changes.
  3776. *
  3777. * Ensures that the pages_{min,low,high} values for each zone are set correctly
  3778. * with respect to min_free_kbytes.
  3779. */
  3780. void setup_per_zone_pages_min(void)
  3781. {
  3782. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  3783. unsigned long lowmem_pages = 0;
  3784. struct zone *zone;
  3785. unsigned long flags;
  3786. /* Calculate total number of !ZONE_HIGHMEM pages */
  3787. for_each_zone(zone) {
  3788. if (!is_highmem(zone))
  3789. lowmem_pages += zone->present_pages;
  3790. }
  3791. for_each_zone(zone) {
  3792. u64 tmp;
  3793. spin_lock_irqsave(&zone->lock, flags);
  3794. tmp = (u64)pages_min * zone->present_pages;
  3795. do_div(tmp, lowmem_pages);
  3796. if (is_highmem(zone)) {
  3797. /*
  3798. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  3799. * need highmem pages, so cap pages_min to a small
  3800. * value here.
  3801. *
  3802. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  3803. * deltas controls asynch page reclaim, and so should
  3804. * not be capped for highmem.
  3805. */
  3806. int min_pages;
  3807. min_pages = zone->present_pages / 1024;
  3808. if (min_pages < SWAP_CLUSTER_MAX)
  3809. min_pages = SWAP_CLUSTER_MAX;
  3810. if (min_pages > 128)
  3811. min_pages = 128;
  3812. zone->watermark[WMARK_MIN] = min_pages;
  3813. } else {
  3814. /*
  3815. * If it's a lowmem zone, reserve a number of pages
  3816. * proportionate to the zone's size.
  3817. */
  3818. zone->watermark[WMARK_MIN] = tmp;
  3819. }
  3820. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  3821. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  3822. setup_zone_migrate_reserve(zone);
  3823. spin_unlock_irqrestore(&zone->lock, flags);
  3824. }
  3825. /* update totalreserve_pages */
  3826. calculate_totalreserve_pages();
  3827. }
  3828. /**
  3829. * The inactive anon list should be small enough that the VM never has to
  3830. * do too much work, but large enough that each inactive page has a chance
  3831. * to be referenced again before it is swapped out.
  3832. *
  3833. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  3834. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  3835. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  3836. * the anonymous pages are kept on the inactive list.
  3837. *
  3838. * total target max
  3839. * memory ratio inactive anon
  3840. * -------------------------------------
  3841. * 10MB 1 5MB
  3842. * 100MB 1 50MB
  3843. * 1GB 3 250MB
  3844. * 10GB 10 0.9GB
  3845. * 100GB 31 3GB
  3846. * 1TB 101 10GB
  3847. * 10TB 320 32GB
  3848. */
  3849. static void __init setup_per_zone_inactive_ratio(void)
  3850. {
  3851. struct zone *zone;
  3852. for_each_zone(zone) {
  3853. unsigned int gb, ratio;
  3854. /* Zone size in gigabytes */
  3855. gb = zone->present_pages >> (30 - PAGE_SHIFT);
  3856. if (gb)
  3857. ratio = int_sqrt(10 * gb);
  3858. else
  3859. ratio = 1;
  3860. zone->inactive_ratio = ratio;
  3861. }
  3862. }
  3863. /*
  3864. * Initialise min_free_kbytes.
  3865. *
  3866. * For small machines we want it small (128k min). For large machines
  3867. * we want it large (64MB max). But it is not linear, because network
  3868. * bandwidth does not increase linearly with machine size. We use
  3869. *
  3870. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  3871. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  3872. *
  3873. * which yields
  3874. *
  3875. * 16MB: 512k
  3876. * 32MB: 724k
  3877. * 64MB: 1024k
  3878. * 128MB: 1448k
  3879. * 256MB: 2048k
  3880. * 512MB: 2896k
  3881. * 1024MB: 4096k
  3882. * 2048MB: 5792k
  3883. * 4096MB: 8192k
  3884. * 8192MB: 11584k
  3885. * 16384MB: 16384k
  3886. */
  3887. static int __init init_per_zone_pages_min(void)
  3888. {
  3889. unsigned long lowmem_kbytes;
  3890. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  3891. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  3892. if (min_free_kbytes < 128)
  3893. min_free_kbytes = 128;
  3894. if (min_free_kbytes > 65536)
  3895. min_free_kbytes = 65536;
  3896. setup_per_zone_pages_min();
  3897. setup_per_zone_lowmem_reserve();
  3898. setup_per_zone_inactive_ratio();
  3899. return 0;
  3900. }
  3901. module_init(init_per_zone_pages_min)
  3902. /*
  3903. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  3904. * that we can call two helper functions whenever min_free_kbytes
  3905. * changes.
  3906. */
  3907. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  3908. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3909. {
  3910. proc_dointvec(table, write, file, buffer, length, ppos);
  3911. if (write)
  3912. setup_per_zone_pages_min();
  3913. return 0;
  3914. }
  3915. #ifdef CONFIG_NUMA
  3916. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  3917. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3918. {
  3919. struct zone *zone;
  3920. int rc;
  3921. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3922. if (rc)
  3923. return rc;
  3924. for_each_zone(zone)
  3925. zone->min_unmapped_pages = (zone->present_pages *
  3926. sysctl_min_unmapped_ratio) / 100;
  3927. return 0;
  3928. }
  3929. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  3930. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3931. {
  3932. struct zone *zone;
  3933. int rc;
  3934. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3935. if (rc)
  3936. return rc;
  3937. for_each_zone(zone)
  3938. zone->min_slab_pages = (zone->present_pages *
  3939. sysctl_min_slab_ratio) / 100;
  3940. return 0;
  3941. }
  3942. #endif
  3943. /*
  3944. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  3945. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  3946. * whenever sysctl_lowmem_reserve_ratio changes.
  3947. *
  3948. * The reserve ratio obviously has absolutely no relation with the
  3949. * minimum watermarks. The lowmem reserve ratio can only make sense
  3950. * if in function of the boot time zone sizes.
  3951. */
  3952. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  3953. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3954. {
  3955. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3956. setup_per_zone_lowmem_reserve();
  3957. return 0;
  3958. }
  3959. /*
  3960. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  3961. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  3962. * can have before it gets flushed back to buddy allocator.
  3963. */
  3964. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  3965. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3966. {
  3967. struct zone *zone;
  3968. unsigned int cpu;
  3969. int ret;
  3970. ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3971. if (!write || (ret == -EINVAL))
  3972. return ret;
  3973. for_each_zone(zone) {
  3974. for_each_online_cpu(cpu) {
  3975. unsigned long high;
  3976. high = zone->present_pages / percpu_pagelist_fraction;
  3977. setup_pagelist_highmark(zone_pcp(zone, cpu), high);
  3978. }
  3979. }
  3980. return 0;
  3981. }
  3982. int hashdist = HASHDIST_DEFAULT;
  3983. #ifdef CONFIG_NUMA
  3984. static int __init set_hashdist(char *str)
  3985. {
  3986. if (!str)
  3987. return 0;
  3988. hashdist = simple_strtoul(str, &str, 0);
  3989. return 1;
  3990. }
  3991. __setup("hashdist=", set_hashdist);
  3992. #endif
  3993. /*
  3994. * allocate a large system hash table from bootmem
  3995. * - it is assumed that the hash table must contain an exact power-of-2
  3996. * quantity of entries
  3997. * - limit is the number of hash buckets, not the total allocation size
  3998. */
  3999. void *__init alloc_large_system_hash(const char *tablename,
  4000. unsigned long bucketsize,
  4001. unsigned long numentries,
  4002. int scale,
  4003. int flags,
  4004. unsigned int *_hash_shift,
  4005. unsigned int *_hash_mask,
  4006. unsigned long limit)
  4007. {
  4008. unsigned long long max = limit;
  4009. unsigned long log2qty, size;
  4010. void *table = NULL;
  4011. /* allow the kernel cmdline to have a say */
  4012. if (!numentries) {
  4013. /* round applicable memory size up to nearest megabyte */
  4014. numentries = nr_kernel_pages;
  4015. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  4016. numentries >>= 20 - PAGE_SHIFT;
  4017. numentries <<= 20 - PAGE_SHIFT;
  4018. /* limit to 1 bucket per 2^scale bytes of low memory */
  4019. if (scale > PAGE_SHIFT)
  4020. numentries >>= (scale - PAGE_SHIFT);
  4021. else
  4022. numentries <<= (PAGE_SHIFT - scale);
  4023. /* Make sure we've got at least a 0-order allocation.. */
  4024. if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  4025. numentries = PAGE_SIZE / bucketsize;
  4026. }
  4027. numentries = roundup_pow_of_two(numentries);
  4028. /* limit allocation size to 1/16 total memory by default */
  4029. if (max == 0) {
  4030. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  4031. do_div(max, bucketsize);
  4032. }
  4033. if (numentries > max)
  4034. numentries = max;
  4035. log2qty = ilog2(numentries);
  4036. do {
  4037. size = bucketsize << log2qty;
  4038. if (flags & HASH_EARLY)
  4039. table = alloc_bootmem_nopanic(size);
  4040. else if (hashdist)
  4041. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  4042. else {
  4043. /*
  4044. * If bucketsize is not a power-of-two, we may free
  4045. * some pages at the end of hash table which
  4046. * alloc_pages_exact() automatically does
  4047. */
  4048. if (get_order(size) < MAX_ORDER)
  4049. table = alloc_pages_exact(size, GFP_ATOMIC);
  4050. }
  4051. } while (!table && size > PAGE_SIZE && --log2qty);
  4052. if (!table)
  4053. panic("Failed to allocate %s hash table\n", tablename);
  4054. printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
  4055. tablename,
  4056. (1U << log2qty),
  4057. ilog2(size) - PAGE_SHIFT,
  4058. size);
  4059. if (_hash_shift)
  4060. *_hash_shift = log2qty;
  4061. if (_hash_mask)
  4062. *_hash_mask = (1 << log2qty) - 1;
  4063. /*
  4064. * If hashdist is set, the table allocation is done with __vmalloc()
  4065. * which invokes the kmemleak_alloc() callback. This function may also
  4066. * be called before the slab and kmemleak are initialised when
  4067. * kmemleak simply buffers the request to be executed later
  4068. * (GFP_ATOMIC flag ignored in this case).
  4069. */
  4070. if (!hashdist)
  4071. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  4072. return table;
  4073. }
  4074. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  4075. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  4076. unsigned long pfn)
  4077. {
  4078. #ifdef CONFIG_SPARSEMEM
  4079. return __pfn_to_section(pfn)->pageblock_flags;
  4080. #else
  4081. return zone->pageblock_flags;
  4082. #endif /* CONFIG_SPARSEMEM */
  4083. }
  4084. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  4085. {
  4086. #ifdef CONFIG_SPARSEMEM
  4087. pfn &= (PAGES_PER_SECTION-1);
  4088. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4089. #else
  4090. pfn = pfn - zone->zone_start_pfn;
  4091. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4092. #endif /* CONFIG_SPARSEMEM */
  4093. }
  4094. /**
  4095. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  4096. * @page: The page within the block of interest
  4097. * @start_bitidx: The first bit of interest to retrieve
  4098. * @end_bitidx: The last bit of interest
  4099. * returns pageblock_bits flags
  4100. */
  4101. unsigned long get_pageblock_flags_group(struct page *page,
  4102. int start_bitidx, int end_bitidx)
  4103. {
  4104. struct zone *zone;
  4105. unsigned long *bitmap;
  4106. unsigned long pfn, bitidx;
  4107. unsigned long flags = 0;
  4108. unsigned long value = 1;
  4109. zone = page_zone(page);
  4110. pfn = page_to_pfn(page);
  4111. bitmap = get_pageblock_bitmap(zone, pfn);
  4112. bitidx = pfn_to_bitidx(zone, pfn);
  4113. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4114. if (test_bit(bitidx + start_bitidx, bitmap))
  4115. flags |= value;
  4116. return flags;
  4117. }
  4118. /**
  4119. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  4120. * @page: The page within the block of interest
  4121. * @start_bitidx: The first bit of interest
  4122. * @end_bitidx: The last bit of interest
  4123. * @flags: The flags to set
  4124. */
  4125. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  4126. int start_bitidx, int end_bitidx)
  4127. {
  4128. struct zone *zone;
  4129. unsigned long *bitmap;
  4130. unsigned long pfn, bitidx;
  4131. unsigned long value = 1;
  4132. zone = page_zone(page);
  4133. pfn = page_to_pfn(page);
  4134. bitmap = get_pageblock_bitmap(zone, pfn);
  4135. bitidx = pfn_to_bitidx(zone, pfn);
  4136. VM_BUG_ON(pfn < zone->zone_start_pfn);
  4137. VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
  4138. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4139. if (flags & value)
  4140. __set_bit(bitidx + start_bitidx, bitmap);
  4141. else
  4142. __clear_bit(bitidx + start_bitidx, bitmap);
  4143. }
  4144. /*
  4145. * This is designed as sub function...plz see page_isolation.c also.
  4146. * set/clear page block's type to be ISOLATE.
  4147. * page allocater never alloc memory from ISOLATE block.
  4148. */
  4149. int set_migratetype_isolate(struct page *page)
  4150. {
  4151. struct zone *zone;
  4152. unsigned long flags;
  4153. int ret = -EBUSY;
  4154. zone = page_zone(page);
  4155. spin_lock_irqsave(&zone->lock, flags);
  4156. /*
  4157. * In future, more migrate types will be able to be isolation target.
  4158. */
  4159. if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
  4160. goto out;
  4161. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  4162. move_freepages_block(zone, page, MIGRATE_ISOLATE);
  4163. ret = 0;
  4164. out:
  4165. spin_unlock_irqrestore(&zone->lock, flags);
  4166. if (!ret)
  4167. drain_all_pages();
  4168. return ret;
  4169. }
  4170. void unset_migratetype_isolate(struct page *page)
  4171. {
  4172. struct zone *zone;
  4173. unsigned long flags;
  4174. zone = page_zone(page);
  4175. spin_lock_irqsave(&zone->lock, flags);
  4176. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  4177. goto out;
  4178. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4179. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  4180. out:
  4181. spin_unlock_irqrestore(&zone->lock, flags);
  4182. }
  4183. #ifdef CONFIG_MEMORY_HOTREMOVE
  4184. /*
  4185. * All pages in the range must be isolated before calling this.
  4186. */
  4187. void
  4188. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  4189. {
  4190. struct page *page;
  4191. struct zone *zone;
  4192. int order, i;
  4193. unsigned long pfn;
  4194. unsigned long flags;
  4195. /* find the first valid pfn */
  4196. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  4197. if (pfn_valid(pfn))
  4198. break;
  4199. if (pfn == end_pfn)
  4200. return;
  4201. zone = page_zone(pfn_to_page(pfn));
  4202. spin_lock_irqsave(&zone->lock, flags);
  4203. pfn = start_pfn;
  4204. while (pfn < end_pfn) {
  4205. if (!pfn_valid(pfn)) {
  4206. pfn++;
  4207. continue;
  4208. }
  4209. page = pfn_to_page(pfn);
  4210. BUG_ON(page_count(page));
  4211. BUG_ON(!PageBuddy(page));
  4212. order = page_order(page);
  4213. #ifdef CONFIG_DEBUG_VM
  4214. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  4215. pfn, 1 << order, end_pfn);
  4216. #endif
  4217. list_del(&page->lru);
  4218. rmv_page_order(page);
  4219. zone->free_area[order].nr_free--;
  4220. __mod_zone_page_state(zone, NR_FREE_PAGES,
  4221. - (1UL << order));
  4222. for (i = 0; i < (1 << order); i++)
  4223. SetPageReserved((page+i));
  4224. pfn += (1 << order);
  4225. }
  4226. spin_unlock_irqrestore(&zone->lock, flags);
  4227. }
  4228. #endif