udp.c 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491
  1. /*
  2. * UDP over IPv6
  3. * Linux INET6 implementation
  4. *
  5. * Authors:
  6. * Pedro Roque <roque@di.fc.ul.pt>
  7. *
  8. * Based on linux/ipv4/udp.c
  9. *
  10. * Fixes:
  11. * Hideaki YOSHIFUJI : sin6_scope_id support
  12. * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
  13. * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
  14. * a single port at the same time.
  15. * Kazunori MIYAZAWA @USAGI: change process style to use ip6_append_data
  16. * YOSHIFUJI Hideaki @USAGI: convert /proc/net/udp6 to seq_file.
  17. *
  18. * This program is free software; you can redistribute it and/or
  19. * modify it under the terms of the GNU General Public License
  20. * as published by the Free Software Foundation; either version
  21. * 2 of the License, or (at your option) any later version.
  22. */
  23. #include <linux/errno.h>
  24. #include <linux/types.h>
  25. #include <linux/socket.h>
  26. #include <linux/sockios.h>
  27. #include <linux/net.h>
  28. #include <linux/in6.h>
  29. #include <linux/netdevice.h>
  30. #include <linux/if_arp.h>
  31. #include <linux/ipv6.h>
  32. #include <linux/icmpv6.h>
  33. #include <linux/init.h>
  34. #include <linux/module.h>
  35. #include <linux/skbuff.h>
  36. #include <linux/slab.h>
  37. #include <asm/uaccess.h>
  38. #include <net/ndisc.h>
  39. #include <net/protocol.h>
  40. #include <net/transp_v6.h>
  41. #include <net/ip6_route.h>
  42. #include <net/raw.h>
  43. #include <net/tcp_states.h>
  44. #include <net/ip6_checksum.h>
  45. #include <net/xfrm.h>
  46. #include <net/inet6_hashtables.h>
  47. #include <net/busy_poll.h>
  48. #include <linux/proc_fs.h>
  49. #include <linux/seq_file.h>
  50. #include <trace/events/skb.h>
  51. #include "udp_impl.h"
  52. int ipv6_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2)
  53. {
  54. const struct in6_addr *sk_rcv_saddr6 = &inet6_sk(sk)->rcv_saddr;
  55. const struct in6_addr *sk2_rcv_saddr6 = inet6_rcv_saddr(sk2);
  56. __be32 sk1_rcv_saddr = sk_rcv_saddr(sk);
  57. __be32 sk2_rcv_saddr = sk_rcv_saddr(sk2);
  58. int sk_ipv6only = ipv6_only_sock(sk);
  59. int sk2_ipv6only = inet_v6_ipv6only(sk2);
  60. int addr_type = ipv6_addr_type(sk_rcv_saddr6);
  61. int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
  62. /* if both are mapped, treat as IPv4 */
  63. if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED)
  64. return (!sk2_ipv6only &&
  65. (!sk1_rcv_saddr || !sk2_rcv_saddr ||
  66. sk1_rcv_saddr == sk2_rcv_saddr));
  67. if (addr_type2 == IPV6_ADDR_ANY &&
  68. !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
  69. return 1;
  70. if (addr_type == IPV6_ADDR_ANY &&
  71. !(sk_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
  72. return 1;
  73. if (sk2_rcv_saddr6 &&
  74. ipv6_addr_equal(sk_rcv_saddr6, sk2_rcv_saddr6))
  75. return 1;
  76. return 0;
  77. }
  78. static unsigned int udp6_portaddr_hash(struct net *net,
  79. const struct in6_addr *addr6,
  80. unsigned int port)
  81. {
  82. unsigned int hash, mix = net_hash_mix(net);
  83. if (ipv6_addr_any(addr6))
  84. hash = jhash_1word(0, mix);
  85. else if (ipv6_addr_v4mapped(addr6))
  86. hash = jhash_1word((__force u32)addr6->s6_addr32[3], mix);
  87. else
  88. hash = jhash2((__force u32 *)addr6->s6_addr32, 4, mix);
  89. return hash ^ port;
  90. }
  91. int udp_v6_get_port(struct sock *sk, unsigned short snum)
  92. {
  93. unsigned int hash2_nulladdr =
  94. udp6_portaddr_hash(sock_net(sk), &in6addr_any, snum);
  95. unsigned int hash2_partial =
  96. udp6_portaddr_hash(sock_net(sk), &inet6_sk(sk)->rcv_saddr, 0);
  97. /* precompute partial secondary hash */
  98. udp_sk(sk)->udp_portaddr_hash = hash2_partial;
  99. return udp_lib_get_port(sk, snum, ipv6_rcv_saddr_equal, hash2_nulladdr);
  100. }
  101. static void udp_v6_rehash(struct sock *sk)
  102. {
  103. u16 new_hash = udp6_portaddr_hash(sock_net(sk),
  104. &inet6_sk(sk)->rcv_saddr,
  105. inet_sk(sk)->inet_num);
  106. udp_lib_rehash(sk, new_hash);
  107. }
  108. static inline int compute_score(struct sock *sk, struct net *net,
  109. unsigned short hnum,
  110. const struct in6_addr *saddr, __be16 sport,
  111. const struct in6_addr *daddr, __be16 dport,
  112. int dif)
  113. {
  114. int score = -1;
  115. if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum &&
  116. sk->sk_family == PF_INET6) {
  117. struct ipv6_pinfo *np = inet6_sk(sk);
  118. struct inet_sock *inet = inet_sk(sk);
  119. score = 0;
  120. if (inet->inet_dport) {
  121. if (inet->inet_dport != sport)
  122. return -1;
  123. score++;
  124. }
  125. if (!ipv6_addr_any(&np->rcv_saddr)) {
  126. if (!ipv6_addr_equal(&np->rcv_saddr, daddr))
  127. return -1;
  128. score++;
  129. }
  130. if (!ipv6_addr_any(&np->daddr)) {
  131. if (!ipv6_addr_equal(&np->daddr, saddr))
  132. return -1;
  133. score++;
  134. }
  135. if (sk->sk_bound_dev_if) {
  136. if (sk->sk_bound_dev_if != dif)
  137. return -1;
  138. score++;
  139. }
  140. }
  141. return score;
  142. }
  143. #define SCORE2_MAX (1 + 1 + 1)
  144. static inline int compute_score2(struct sock *sk, struct net *net,
  145. const struct in6_addr *saddr, __be16 sport,
  146. const struct in6_addr *daddr, unsigned short hnum,
  147. int dif)
  148. {
  149. int score = -1;
  150. if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum &&
  151. sk->sk_family == PF_INET6) {
  152. struct ipv6_pinfo *np = inet6_sk(sk);
  153. struct inet_sock *inet = inet_sk(sk);
  154. if (!ipv6_addr_equal(&np->rcv_saddr, daddr))
  155. return -1;
  156. score = 0;
  157. if (inet->inet_dport) {
  158. if (inet->inet_dport != sport)
  159. return -1;
  160. score++;
  161. }
  162. if (!ipv6_addr_any(&np->daddr)) {
  163. if (!ipv6_addr_equal(&np->daddr, saddr))
  164. return -1;
  165. score++;
  166. }
  167. if (sk->sk_bound_dev_if) {
  168. if (sk->sk_bound_dev_if != dif)
  169. return -1;
  170. score++;
  171. }
  172. }
  173. return score;
  174. }
  175. /* called with read_rcu_lock() */
  176. static struct sock *udp6_lib_lookup2(struct net *net,
  177. const struct in6_addr *saddr, __be16 sport,
  178. const struct in6_addr *daddr, unsigned int hnum, int dif,
  179. struct udp_hslot *hslot2, unsigned int slot2)
  180. {
  181. struct sock *sk, *result;
  182. struct hlist_nulls_node *node;
  183. int score, badness, matches = 0, reuseport = 0;
  184. u32 hash = 0;
  185. begin:
  186. result = NULL;
  187. badness = -1;
  188. udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
  189. score = compute_score2(sk, net, saddr, sport,
  190. daddr, hnum, dif);
  191. if (score > badness) {
  192. result = sk;
  193. badness = score;
  194. reuseport = sk->sk_reuseport;
  195. if (reuseport) {
  196. hash = inet6_ehashfn(net, daddr, hnum,
  197. saddr, sport);
  198. matches = 1;
  199. } else if (score == SCORE2_MAX)
  200. goto exact_match;
  201. } else if (score == badness && reuseport) {
  202. matches++;
  203. if (((u64)hash * matches) >> 32 == 0)
  204. result = sk;
  205. hash = next_pseudo_random32(hash);
  206. }
  207. }
  208. /*
  209. * if the nulls value we got at the end of this lookup is
  210. * not the expected one, we must restart lookup.
  211. * We probably met an item that was moved to another chain.
  212. */
  213. if (get_nulls_value(node) != slot2)
  214. goto begin;
  215. if (result) {
  216. exact_match:
  217. if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
  218. result = NULL;
  219. else if (unlikely(compute_score2(result, net, saddr, sport,
  220. daddr, hnum, dif) < badness)) {
  221. sock_put(result);
  222. goto begin;
  223. }
  224. }
  225. return result;
  226. }
  227. struct sock *__udp6_lib_lookup(struct net *net,
  228. const struct in6_addr *saddr, __be16 sport,
  229. const struct in6_addr *daddr, __be16 dport,
  230. int dif, struct udp_table *udptable)
  231. {
  232. struct sock *sk, *result;
  233. struct hlist_nulls_node *node;
  234. unsigned short hnum = ntohs(dport);
  235. unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
  236. struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
  237. int score, badness, matches = 0, reuseport = 0;
  238. u32 hash = 0;
  239. rcu_read_lock();
  240. if (hslot->count > 10) {
  241. hash2 = udp6_portaddr_hash(net, daddr, hnum);
  242. slot2 = hash2 & udptable->mask;
  243. hslot2 = &udptable->hash2[slot2];
  244. if (hslot->count < hslot2->count)
  245. goto begin;
  246. result = udp6_lib_lookup2(net, saddr, sport,
  247. daddr, hnum, dif,
  248. hslot2, slot2);
  249. if (!result) {
  250. hash2 = udp6_portaddr_hash(net, &in6addr_any, hnum);
  251. slot2 = hash2 & udptable->mask;
  252. hslot2 = &udptable->hash2[slot2];
  253. if (hslot->count < hslot2->count)
  254. goto begin;
  255. result = udp6_lib_lookup2(net, saddr, sport,
  256. &in6addr_any, hnum, dif,
  257. hslot2, slot2);
  258. }
  259. rcu_read_unlock();
  260. return result;
  261. }
  262. begin:
  263. result = NULL;
  264. badness = -1;
  265. sk_nulls_for_each_rcu(sk, node, &hslot->head) {
  266. score = compute_score(sk, net, hnum, saddr, sport, daddr, dport, dif);
  267. if (score > badness) {
  268. result = sk;
  269. badness = score;
  270. reuseport = sk->sk_reuseport;
  271. if (reuseport) {
  272. hash = inet6_ehashfn(net, daddr, hnum,
  273. saddr, sport);
  274. matches = 1;
  275. }
  276. } else if (score == badness && reuseport) {
  277. matches++;
  278. if (((u64)hash * matches) >> 32 == 0)
  279. result = sk;
  280. hash = next_pseudo_random32(hash);
  281. }
  282. }
  283. /*
  284. * if the nulls value we got at the end of this lookup is
  285. * not the expected one, we must restart lookup.
  286. * We probably met an item that was moved to another chain.
  287. */
  288. if (get_nulls_value(node) != slot)
  289. goto begin;
  290. if (result) {
  291. if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
  292. result = NULL;
  293. else if (unlikely(compute_score(result, net, hnum, saddr, sport,
  294. daddr, dport, dif) < badness)) {
  295. sock_put(result);
  296. goto begin;
  297. }
  298. }
  299. rcu_read_unlock();
  300. return result;
  301. }
  302. EXPORT_SYMBOL_GPL(__udp6_lib_lookup);
  303. static struct sock *__udp6_lib_lookup_skb(struct sk_buff *skb,
  304. __be16 sport, __be16 dport,
  305. struct udp_table *udptable)
  306. {
  307. struct sock *sk;
  308. const struct ipv6hdr *iph = ipv6_hdr(skb);
  309. if (unlikely(sk = skb_steal_sock(skb)))
  310. return sk;
  311. return __udp6_lib_lookup(dev_net(skb_dst(skb)->dev), &iph->saddr, sport,
  312. &iph->daddr, dport, inet6_iif(skb),
  313. udptable);
  314. }
  315. struct sock *udp6_lib_lookup(struct net *net, const struct in6_addr *saddr, __be16 sport,
  316. const struct in6_addr *daddr, __be16 dport, int dif)
  317. {
  318. return __udp6_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
  319. }
  320. EXPORT_SYMBOL_GPL(udp6_lib_lookup);
  321. /*
  322. * This should be easy, if there is something there we
  323. * return it, otherwise we block.
  324. */
  325. int udpv6_recvmsg(struct kiocb *iocb, struct sock *sk,
  326. struct msghdr *msg, size_t len,
  327. int noblock, int flags, int *addr_len)
  328. {
  329. struct ipv6_pinfo *np = inet6_sk(sk);
  330. struct inet_sock *inet = inet_sk(sk);
  331. struct sk_buff *skb;
  332. unsigned int ulen, copied;
  333. int peeked, off = 0;
  334. int err;
  335. int is_udplite = IS_UDPLITE(sk);
  336. int is_udp4;
  337. bool slow;
  338. if (addr_len)
  339. *addr_len = sizeof(struct sockaddr_in6);
  340. if (flags & MSG_ERRQUEUE)
  341. return ipv6_recv_error(sk, msg, len);
  342. if (np->rxpmtu && np->rxopt.bits.rxpmtu)
  343. return ipv6_recv_rxpmtu(sk, msg, len);
  344. try_again:
  345. skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
  346. &peeked, &off, &err);
  347. if (!skb)
  348. goto out;
  349. ulen = skb->len - sizeof(struct udphdr);
  350. copied = len;
  351. if (copied > ulen)
  352. copied = ulen;
  353. else if (copied < ulen)
  354. msg->msg_flags |= MSG_TRUNC;
  355. is_udp4 = (skb->protocol == htons(ETH_P_IP));
  356. /*
  357. * If checksum is needed at all, try to do it while copying the
  358. * data. If the data is truncated, or if we only want a partial
  359. * coverage checksum (UDP-Lite), do it before the copy.
  360. */
  361. if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
  362. if (udp_lib_checksum_complete(skb))
  363. goto csum_copy_err;
  364. }
  365. if (skb_csum_unnecessary(skb))
  366. err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
  367. msg->msg_iov, copied);
  368. else {
  369. err = skb_copy_and_csum_datagram_iovec(skb, sizeof(struct udphdr), msg->msg_iov);
  370. if (err == -EINVAL)
  371. goto csum_copy_err;
  372. }
  373. if (unlikely(err)) {
  374. trace_kfree_skb(skb, udpv6_recvmsg);
  375. if (!peeked) {
  376. atomic_inc(&sk->sk_drops);
  377. if (is_udp4)
  378. UDP_INC_STATS_USER(sock_net(sk),
  379. UDP_MIB_INERRORS,
  380. is_udplite);
  381. else
  382. UDP6_INC_STATS_USER(sock_net(sk),
  383. UDP_MIB_INERRORS,
  384. is_udplite);
  385. }
  386. goto out_free;
  387. }
  388. if (!peeked) {
  389. if (is_udp4)
  390. UDP_INC_STATS_USER(sock_net(sk),
  391. UDP_MIB_INDATAGRAMS, is_udplite);
  392. else
  393. UDP6_INC_STATS_USER(sock_net(sk),
  394. UDP_MIB_INDATAGRAMS, is_udplite);
  395. }
  396. sock_recv_ts_and_drops(msg, sk, skb);
  397. /* Copy the address. */
  398. if (msg->msg_name) {
  399. struct sockaddr_in6 *sin6;
  400. sin6 = (struct sockaddr_in6 *) msg->msg_name;
  401. sin6->sin6_family = AF_INET6;
  402. sin6->sin6_port = udp_hdr(skb)->source;
  403. sin6->sin6_flowinfo = 0;
  404. if (is_udp4) {
  405. ipv6_addr_set_v4mapped(ip_hdr(skb)->saddr,
  406. &sin6->sin6_addr);
  407. sin6->sin6_scope_id = 0;
  408. } else {
  409. sin6->sin6_addr = ipv6_hdr(skb)->saddr;
  410. sin6->sin6_scope_id =
  411. ipv6_iface_scope_id(&sin6->sin6_addr,
  412. IP6CB(skb)->iif);
  413. }
  414. }
  415. if (is_udp4) {
  416. if (inet->cmsg_flags)
  417. ip_cmsg_recv(msg, skb);
  418. } else {
  419. if (np->rxopt.all)
  420. ip6_datagram_recv_ctl(sk, msg, skb);
  421. }
  422. err = copied;
  423. if (flags & MSG_TRUNC)
  424. err = ulen;
  425. out_free:
  426. skb_free_datagram_locked(sk, skb);
  427. out:
  428. return err;
  429. csum_copy_err:
  430. slow = lock_sock_fast(sk);
  431. if (!skb_kill_datagram(sk, skb, flags)) {
  432. if (is_udp4) {
  433. UDP_INC_STATS_USER(sock_net(sk),
  434. UDP_MIB_CSUMERRORS, is_udplite);
  435. UDP_INC_STATS_USER(sock_net(sk),
  436. UDP_MIB_INERRORS, is_udplite);
  437. } else {
  438. UDP6_INC_STATS_USER(sock_net(sk),
  439. UDP_MIB_CSUMERRORS, is_udplite);
  440. UDP6_INC_STATS_USER(sock_net(sk),
  441. UDP_MIB_INERRORS, is_udplite);
  442. }
  443. }
  444. unlock_sock_fast(sk, slow);
  445. if (noblock)
  446. return -EAGAIN;
  447. /* starting over for a new packet */
  448. msg->msg_flags &= ~MSG_TRUNC;
  449. goto try_again;
  450. }
  451. void __udp6_lib_err(struct sk_buff *skb, struct inet6_skb_parm *opt,
  452. u8 type, u8 code, int offset, __be32 info,
  453. struct udp_table *udptable)
  454. {
  455. struct ipv6_pinfo *np;
  456. const struct ipv6hdr *hdr = (const struct ipv6hdr *)skb->data;
  457. const struct in6_addr *saddr = &hdr->saddr;
  458. const struct in6_addr *daddr = &hdr->daddr;
  459. struct udphdr *uh = (struct udphdr*)(skb->data+offset);
  460. struct sock *sk;
  461. int err;
  462. sk = __udp6_lib_lookup(dev_net(skb->dev), daddr, uh->dest,
  463. saddr, uh->source, inet6_iif(skb), udptable);
  464. if (sk == NULL)
  465. return;
  466. if (type == ICMPV6_PKT_TOOBIG)
  467. ip6_sk_update_pmtu(skb, sk, info);
  468. if (type == NDISC_REDIRECT) {
  469. ip6_sk_redirect(skb, sk);
  470. goto out;
  471. }
  472. np = inet6_sk(sk);
  473. if (!icmpv6_err_convert(type, code, &err) && !np->recverr)
  474. goto out;
  475. if (sk->sk_state != TCP_ESTABLISHED && !np->recverr)
  476. goto out;
  477. if (np->recverr)
  478. ipv6_icmp_error(sk, skb, err, uh->dest, ntohl(info), (u8 *)(uh+1));
  479. sk->sk_err = err;
  480. sk->sk_error_report(sk);
  481. out:
  482. sock_put(sk);
  483. }
  484. static int __udpv6_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
  485. {
  486. int rc;
  487. if (!ipv6_addr_any(&inet6_sk(sk)->daddr))
  488. sock_rps_save_rxhash(sk, skb);
  489. rc = sock_queue_rcv_skb(sk, skb);
  490. if (rc < 0) {
  491. int is_udplite = IS_UDPLITE(sk);
  492. /* Note that an ENOMEM error is charged twice */
  493. if (rc == -ENOMEM)
  494. UDP6_INC_STATS_BH(sock_net(sk),
  495. UDP_MIB_RCVBUFERRORS, is_udplite);
  496. UDP6_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
  497. kfree_skb(skb);
  498. return -1;
  499. }
  500. return 0;
  501. }
  502. static __inline__ void udpv6_err(struct sk_buff *skb,
  503. struct inet6_skb_parm *opt, u8 type,
  504. u8 code, int offset, __be32 info )
  505. {
  506. __udp6_lib_err(skb, opt, type, code, offset, info, &udp_table);
  507. }
  508. static struct static_key udpv6_encap_needed __read_mostly;
  509. void udpv6_encap_enable(void)
  510. {
  511. if (!static_key_enabled(&udpv6_encap_needed))
  512. static_key_slow_inc(&udpv6_encap_needed);
  513. }
  514. EXPORT_SYMBOL(udpv6_encap_enable);
  515. int udpv6_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
  516. {
  517. struct udp_sock *up = udp_sk(sk);
  518. int rc;
  519. int is_udplite = IS_UDPLITE(sk);
  520. if (!xfrm6_policy_check(sk, XFRM_POLICY_IN, skb))
  521. goto drop;
  522. if (static_key_false(&udpv6_encap_needed) && up->encap_type) {
  523. int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
  524. /*
  525. * This is an encapsulation socket so pass the skb to
  526. * the socket's udp_encap_rcv() hook. Otherwise, just
  527. * fall through and pass this up the UDP socket.
  528. * up->encap_rcv() returns the following value:
  529. * =0 if skb was successfully passed to the encap
  530. * handler or was discarded by it.
  531. * >0 if skb should be passed on to UDP.
  532. * <0 if skb should be resubmitted as proto -N
  533. */
  534. /* if we're overly short, let UDP handle it */
  535. encap_rcv = ACCESS_ONCE(up->encap_rcv);
  536. if (skb->len > sizeof(struct udphdr) && encap_rcv != NULL) {
  537. int ret;
  538. ret = encap_rcv(sk, skb);
  539. if (ret <= 0) {
  540. UDP_INC_STATS_BH(sock_net(sk),
  541. UDP_MIB_INDATAGRAMS,
  542. is_udplite);
  543. return -ret;
  544. }
  545. }
  546. /* FALLTHROUGH -- it's a UDP Packet */
  547. }
  548. /*
  549. * UDP-Lite specific tests, ignored on UDP sockets (see net/ipv4/udp.c).
  550. */
  551. if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
  552. if (up->pcrlen == 0) { /* full coverage was set */
  553. LIMIT_NETDEBUG(KERN_WARNING "UDPLITE6: partial coverage"
  554. " %d while full coverage %d requested\n",
  555. UDP_SKB_CB(skb)->cscov, skb->len);
  556. goto drop;
  557. }
  558. if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
  559. LIMIT_NETDEBUG(KERN_WARNING "UDPLITE6: coverage %d "
  560. "too small, need min %d\n",
  561. UDP_SKB_CB(skb)->cscov, up->pcrlen);
  562. goto drop;
  563. }
  564. }
  565. if (rcu_access_pointer(sk->sk_filter)) {
  566. if (udp_lib_checksum_complete(skb))
  567. goto csum_error;
  568. }
  569. if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf))
  570. goto drop;
  571. skb_dst_drop(skb);
  572. bh_lock_sock(sk);
  573. rc = 0;
  574. if (!sock_owned_by_user(sk))
  575. rc = __udpv6_queue_rcv_skb(sk, skb);
  576. else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
  577. bh_unlock_sock(sk);
  578. goto drop;
  579. }
  580. bh_unlock_sock(sk);
  581. return rc;
  582. csum_error:
  583. UDP6_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
  584. drop:
  585. UDP6_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
  586. atomic_inc(&sk->sk_drops);
  587. kfree_skb(skb);
  588. return -1;
  589. }
  590. static struct sock *udp_v6_mcast_next(struct net *net, struct sock *sk,
  591. __be16 loc_port, const struct in6_addr *loc_addr,
  592. __be16 rmt_port, const struct in6_addr *rmt_addr,
  593. int dif)
  594. {
  595. struct hlist_nulls_node *node;
  596. struct sock *s = sk;
  597. unsigned short num = ntohs(loc_port);
  598. sk_nulls_for_each_from(s, node) {
  599. struct inet_sock *inet = inet_sk(s);
  600. if (!net_eq(sock_net(s), net))
  601. continue;
  602. if (udp_sk(s)->udp_port_hash == num &&
  603. s->sk_family == PF_INET6) {
  604. struct ipv6_pinfo *np = inet6_sk(s);
  605. if (inet->inet_dport) {
  606. if (inet->inet_dport != rmt_port)
  607. continue;
  608. }
  609. if (!ipv6_addr_any(&np->daddr) &&
  610. !ipv6_addr_equal(&np->daddr, rmt_addr))
  611. continue;
  612. if (s->sk_bound_dev_if && s->sk_bound_dev_if != dif)
  613. continue;
  614. if (!ipv6_addr_any(&np->rcv_saddr)) {
  615. if (!ipv6_addr_equal(&np->rcv_saddr, loc_addr))
  616. continue;
  617. }
  618. if (!inet6_mc_check(s, loc_addr, rmt_addr))
  619. continue;
  620. return s;
  621. }
  622. }
  623. return NULL;
  624. }
  625. static void flush_stack(struct sock **stack, unsigned int count,
  626. struct sk_buff *skb, unsigned int final)
  627. {
  628. struct sk_buff *skb1 = NULL;
  629. struct sock *sk;
  630. unsigned int i;
  631. for (i = 0; i < count; i++) {
  632. sk = stack[i];
  633. if (likely(skb1 == NULL))
  634. skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
  635. if (!skb1) {
  636. atomic_inc(&sk->sk_drops);
  637. UDP6_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
  638. IS_UDPLITE(sk));
  639. UDP6_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
  640. IS_UDPLITE(sk));
  641. }
  642. if (skb1 && udpv6_queue_rcv_skb(sk, skb1) <= 0)
  643. skb1 = NULL;
  644. }
  645. if (unlikely(skb1))
  646. kfree_skb(skb1);
  647. }
  648. /*
  649. * Note: called only from the BH handler context,
  650. * so we don't need to lock the hashes.
  651. */
  652. static int __udp6_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
  653. const struct in6_addr *saddr, const struct in6_addr *daddr,
  654. struct udp_table *udptable)
  655. {
  656. struct sock *sk, *stack[256 / sizeof(struct sock *)];
  657. const struct udphdr *uh = udp_hdr(skb);
  658. struct udp_hslot *hslot = udp_hashslot(udptable, net, ntohs(uh->dest));
  659. int dif;
  660. unsigned int i, count = 0;
  661. spin_lock(&hslot->lock);
  662. sk = sk_nulls_head(&hslot->head);
  663. dif = inet6_iif(skb);
  664. sk = udp_v6_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif);
  665. while (sk) {
  666. stack[count++] = sk;
  667. sk = udp_v6_mcast_next(net, sk_nulls_next(sk), uh->dest, daddr,
  668. uh->source, saddr, dif);
  669. if (unlikely(count == ARRAY_SIZE(stack))) {
  670. if (!sk)
  671. break;
  672. flush_stack(stack, count, skb, ~0);
  673. count = 0;
  674. }
  675. }
  676. /*
  677. * before releasing the lock, we must take reference on sockets
  678. */
  679. for (i = 0; i < count; i++)
  680. sock_hold(stack[i]);
  681. spin_unlock(&hslot->lock);
  682. if (count) {
  683. flush_stack(stack, count, skb, count - 1);
  684. for (i = 0; i < count; i++)
  685. sock_put(stack[i]);
  686. } else {
  687. kfree_skb(skb);
  688. }
  689. return 0;
  690. }
  691. int __udp6_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
  692. int proto)
  693. {
  694. struct net *net = dev_net(skb->dev);
  695. struct sock *sk;
  696. struct udphdr *uh;
  697. const struct in6_addr *saddr, *daddr;
  698. u32 ulen = 0;
  699. if (!pskb_may_pull(skb, sizeof(struct udphdr)))
  700. goto discard;
  701. saddr = &ipv6_hdr(skb)->saddr;
  702. daddr = &ipv6_hdr(skb)->daddr;
  703. uh = udp_hdr(skb);
  704. ulen = ntohs(uh->len);
  705. if (ulen > skb->len)
  706. goto short_packet;
  707. if (proto == IPPROTO_UDP) {
  708. /* UDP validates ulen. */
  709. /* Check for jumbo payload */
  710. if (ulen == 0)
  711. ulen = skb->len;
  712. if (ulen < sizeof(*uh))
  713. goto short_packet;
  714. if (ulen < skb->len) {
  715. if (pskb_trim_rcsum(skb, ulen))
  716. goto short_packet;
  717. saddr = &ipv6_hdr(skb)->saddr;
  718. daddr = &ipv6_hdr(skb)->daddr;
  719. uh = udp_hdr(skb);
  720. }
  721. }
  722. if (udp6_csum_init(skb, uh, proto))
  723. goto csum_error;
  724. /*
  725. * Multicast receive code
  726. */
  727. if (ipv6_addr_is_multicast(daddr))
  728. return __udp6_lib_mcast_deliver(net, skb,
  729. saddr, daddr, udptable);
  730. /* Unicast */
  731. /*
  732. * check socket cache ... must talk to Alan about his plans
  733. * for sock caches... i'll skip this for now.
  734. */
  735. sk = __udp6_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
  736. if (sk != NULL) {
  737. int ret;
  738. sk_mark_napi_id(sk, skb);
  739. ret = udpv6_queue_rcv_skb(sk, skb);
  740. sock_put(sk);
  741. /* a return value > 0 means to resubmit the input, but
  742. * it wants the return to be -protocol, or 0
  743. */
  744. if (ret > 0)
  745. return -ret;
  746. return 0;
  747. }
  748. if (!xfrm6_policy_check(NULL, XFRM_POLICY_IN, skb))
  749. goto discard;
  750. if (udp_lib_checksum_complete(skb))
  751. goto csum_error;
  752. UDP6_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
  753. icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_PORT_UNREACH, 0);
  754. kfree_skb(skb);
  755. return 0;
  756. short_packet:
  757. LIMIT_NETDEBUG(KERN_DEBUG "UDP%sv6: short packet: From [%pI6c]:%u %d/%d to [%pI6c]:%u\n",
  758. proto == IPPROTO_UDPLITE ? "-Lite" : "",
  759. saddr,
  760. ntohs(uh->source),
  761. ulen,
  762. skb->len,
  763. daddr,
  764. ntohs(uh->dest));
  765. goto discard;
  766. csum_error:
  767. UDP6_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
  768. discard:
  769. UDP6_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
  770. kfree_skb(skb);
  771. return 0;
  772. }
  773. static __inline__ int udpv6_rcv(struct sk_buff *skb)
  774. {
  775. return __udp6_lib_rcv(skb, &udp_table, IPPROTO_UDP);
  776. }
  777. /*
  778. * Throw away all pending data and cancel the corking. Socket is locked.
  779. */
  780. static void udp_v6_flush_pending_frames(struct sock *sk)
  781. {
  782. struct udp_sock *up = udp_sk(sk);
  783. if (up->pending == AF_INET)
  784. udp_flush_pending_frames(sk);
  785. else if (up->pending) {
  786. up->len = 0;
  787. up->pending = 0;
  788. ip6_flush_pending_frames(sk);
  789. }
  790. }
  791. /**
  792. * udp6_hwcsum_outgoing - handle outgoing HW checksumming
  793. * @sk: socket we are sending on
  794. * @skb: sk_buff containing the filled-in UDP header
  795. * (checksum field must be zeroed out)
  796. */
  797. static void udp6_hwcsum_outgoing(struct sock *sk, struct sk_buff *skb,
  798. const struct in6_addr *saddr,
  799. const struct in6_addr *daddr, int len)
  800. {
  801. unsigned int offset;
  802. struct udphdr *uh = udp_hdr(skb);
  803. __wsum csum = 0;
  804. if (skb_queue_len(&sk->sk_write_queue) == 1) {
  805. /* Only one fragment on the socket. */
  806. skb->csum_start = skb_transport_header(skb) - skb->head;
  807. skb->csum_offset = offsetof(struct udphdr, check);
  808. uh->check = ~csum_ipv6_magic(saddr, daddr, len, IPPROTO_UDP, 0);
  809. } else {
  810. /*
  811. * HW-checksum won't work as there are two or more
  812. * fragments on the socket so that all csums of sk_buffs
  813. * should be together
  814. */
  815. offset = skb_transport_offset(skb);
  816. skb->csum = skb_checksum(skb, offset, skb->len - offset, 0);
  817. skb->ip_summed = CHECKSUM_NONE;
  818. skb_queue_walk(&sk->sk_write_queue, skb) {
  819. csum = csum_add(csum, skb->csum);
  820. }
  821. uh->check = csum_ipv6_magic(saddr, daddr, len, IPPROTO_UDP,
  822. csum);
  823. if (uh->check == 0)
  824. uh->check = CSUM_MANGLED_0;
  825. }
  826. }
  827. /*
  828. * Sending
  829. */
  830. static int udp_v6_push_pending_frames(struct sock *sk)
  831. {
  832. struct sk_buff *skb;
  833. struct udphdr *uh;
  834. struct udp_sock *up = udp_sk(sk);
  835. struct inet_sock *inet = inet_sk(sk);
  836. struct flowi6 *fl6;
  837. int err = 0;
  838. int is_udplite = IS_UDPLITE(sk);
  839. __wsum csum = 0;
  840. if (up->pending == AF_INET)
  841. return udp_push_pending_frames(sk);
  842. fl6 = &inet->cork.fl.u.ip6;
  843. /* Grab the skbuff where UDP header space exists. */
  844. if ((skb = skb_peek(&sk->sk_write_queue)) == NULL)
  845. goto out;
  846. /*
  847. * Create a UDP header
  848. */
  849. uh = udp_hdr(skb);
  850. uh->source = fl6->fl6_sport;
  851. uh->dest = fl6->fl6_dport;
  852. uh->len = htons(up->len);
  853. uh->check = 0;
  854. if (is_udplite)
  855. csum = udplite_csum_outgoing(sk, skb);
  856. else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
  857. udp6_hwcsum_outgoing(sk, skb, &fl6->saddr, &fl6->daddr,
  858. up->len);
  859. goto send;
  860. } else
  861. csum = udp_csum_outgoing(sk, skb);
  862. /* add protocol-dependent pseudo-header */
  863. uh->check = csum_ipv6_magic(&fl6->saddr, &fl6->daddr,
  864. up->len, fl6->flowi6_proto, csum);
  865. if (uh->check == 0)
  866. uh->check = CSUM_MANGLED_0;
  867. send:
  868. err = ip6_push_pending_frames(sk);
  869. if (err) {
  870. if (err == -ENOBUFS && !inet6_sk(sk)->recverr) {
  871. UDP6_INC_STATS_USER(sock_net(sk),
  872. UDP_MIB_SNDBUFERRORS, is_udplite);
  873. err = 0;
  874. }
  875. } else
  876. UDP6_INC_STATS_USER(sock_net(sk),
  877. UDP_MIB_OUTDATAGRAMS, is_udplite);
  878. out:
  879. up->len = 0;
  880. up->pending = 0;
  881. return err;
  882. }
  883. int udpv6_sendmsg(struct kiocb *iocb, struct sock *sk,
  884. struct msghdr *msg, size_t len)
  885. {
  886. struct ipv6_txoptions opt_space;
  887. struct udp_sock *up = udp_sk(sk);
  888. struct inet_sock *inet = inet_sk(sk);
  889. struct ipv6_pinfo *np = inet6_sk(sk);
  890. struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) msg->msg_name;
  891. struct in6_addr *daddr, *final_p, final;
  892. struct ipv6_txoptions *opt = NULL;
  893. struct ip6_flowlabel *flowlabel = NULL;
  894. struct flowi6 fl6;
  895. struct dst_entry *dst;
  896. int addr_len = msg->msg_namelen;
  897. int ulen = len;
  898. int hlimit = -1;
  899. int tclass = -1;
  900. int dontfrag = -1;
  901. int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
  902. int err;
  903. int connected = 0;
  904. int is_udplite = IS_UDPLITE(sk);
  905. int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
  906. /* destination address check */
  907. if (sin6) {
  908. if (addr_len < offsetof(struct sockaddr, sa_data))
  909. return -EINVAL;
  910. switch (sin6->sin6_family) {
  911. case AF_INET6:
  912. if (addr_len < SIN6_LEN_RFC2133)
  913. return -EINVAL;
  914. daddr = &sin6->sin6_addr;
  915. break;
  916. case AF_INET:
  917. goto do_udp_sendmsg;
  918. case AF_UNSPEC:
  919. msg->msg_name = sin6 = NULL;
  920. msg->msg_namelen = addr_len = 0;
  921. daddr = NULL;
  922. break;
  923. default:
  924. return -EINVAL;
  925. }
  926. } else if (!up->pending) {
  927. if (sk->sk_state != TCP_ESTABLISHED)
  928. return -EDESTADDRREQ;
  929. daddr = &np->daddr;
  930. } else
  931. daddr = NULL;
  932. if (daddr) {
  933. if (ipv6_addr_v4mapped(daddr)) {
  934. struct sockaddr_in sin;
  935. sin.sin_family = AF_INET;
  936. sin.sin_port = sin6 ? sin6->sin6_port : inet->inet_dport;
  937. sin.sin_addr.s_addr = daddr->s6_addr32[3];
  938. msg->msg_name = &sin;
  939. msg->msg_namelen = sizeof(sin);
  940. do_udp_sendmsg:
  941. if (__ipv6_only_sock(sk))
  942. return -ENETUNREACH;
  943. return udp_sendmsg(iocb, sk, msg, len);
  944. }
  945. }
  946. if (up->pending == AF_INET)
  947. return udp_sendmsg(iocb, sk, msg, len);
  948. /* Rough check on arithmetic overflow,
  949. better check is made in ip6_append_data().
  950. */
  951. if (len > INT_MAX - sizeof(struct udphdr))
  952. return -EMSGSIZE;
  953. if (up->pending) {
  954. /*
  955. * There are pending frames.
  956. * The socket lock must be held while it's corked.
  957. */
  958. lock_sock(sk);
  959. if (likely(up->pending)) {
  960. if (unlikely(up->pending != AF_INET6)) {
  961. release_sock(sk);
  962. return -EAFNOSUPPORT;
  963. }
  964. dst = NULL;
  965. goto do_append_data;
  966. }
  967. release_sock(sk);
  968. }
  969. ulen += sizeof(struct udphdr);
  970. memset(&fl6, 0, sizeof(fl6));
  971. if (sin6) {
  972. if (sin6->sin6_port == 0)
  973. return -EINVAL;
  974. fl6.fl6_dport = sin6->sin6_port;
  975. daddr = &sin6->sin6_addr;
  976. if (np->sndflow) {
  977. fl6.flowlabel = sin6->sin6_flowinfo&IPV6_FLOWINFO_MASK;
  978. if (fl6.flowlabel&IPV6_FLOWLABEL_MASK) {
  979. flowlabel = fl6_sock_lookup(sk, fl6.flowlabel);
  980. if (flowlabel == NULL)
  981. return -EINVAL;
  982. daddr = &flowlabel->dst;
  983. }
  984. }
  985. /*
  986. * Otherwise it will be difficult to maintain
  987. * sk->sk_dst_cache.
  988. */
  989. if (sk->sk_state == TCP_ESTABLISHED &&
  990. ipv6_addr_equal(daddr, &np->daddr))
  991. daddr = &np->daddr;
  992. if (addr_len >= sizeof(struct sockaddr_in6) &&
  993. sin6->sin6_scope_id &&
  994. __ipv6_addr_needs_scope_id(__ipv6_addr_type(daddr)))
  995. fl6.flowi6_oif = sin6->sin6_scope_id;
  996. } else {
  997. if (sk->sk_state != TCP_ESTABLISHED)
  998. return -EDESTADDRREQ;
  999. fl6.fl6_dport = inet->inet_dport;
  1000. daddr = &np->daddr;
  1001. fl6.flowlabel = np->flow_label;
  1002. connected = 1;
  1003. }
  1004. if (!fl6.flowi6_oif)
  1005. fl6.flowi6_oif = sk->sk_bound_dev_if;
  1006. if (!fl6.flowi6_oif)
  1007. fl6.flowi6_oif = np->sticky_pktinfo.ipi6_ifindex;
  1008. fl6.flowi6_mark = sk->sk_mark;
  1009. if (msg->msg_controllen) {
  1010. opt = &opt_space;
  1011. memset(opt, 0, sizeof(struct ipv6_txoptions));
  1012. opt->tot_len = sizeof(*opt);
  1013. err = ip6_datagram_send_ctl(sock_net(sk), sk, msg, &fl6, opt,
  1014. &hlimit, &tclass, &dontfrag);
  1015. if (err < 0) {
  1016. fl6_sock_release(flowlabel);
  1017. return err;
  1018. }
  1019. if ((fl6.flowlabel&IPV6_FLOWLABEL_MASK) && !flowlabel) {
  1020. flowlabel = fl6_sock_lookup(sk, fl6.flowlabel);
  1021. if (flowlabel == NULL)
  1022. return -EINVAL;
  1023. }
  1024. if (!(opt->opt_nflen|opt->opt_flen))
  1025. opt = NULL;
  1026. connected = 0;
  1027. }
  1028. if (opt == NULL)
  1029. opt = np->opt;
  1030. if (flowlabel)
  1031. opt = fl6_merge_options(&opt_space, flowlabel, opt);
  1032. opt = ipv6_fixup_options(&opt_space, opt);
  1033. fl6.flowi6_proto = sk->sk_protocol;
  1034. if (!ipv6_addr_any(daddr))
  1035. fl6.daddr = *daddr;
  1036. else
  1037. fl6.daddr.s6_addr[15] = 0x1; /* :: means loopback (BSD'ism) */
  1038. if (ipv6_addr_any(&fl6.saddr) && !ipv6_addr_any(&np->saddr))
  1039. fl6.saddr = np->saddr;
  1040. fl6.fl6_sport = inet->inet_sport;
  1041. final_p = fl6_update_dst(&fl6, opt, &final);
  1042. if (final_p)
  1043. connected = 0;
  1044. if (!fl6.flowi6_oif && ipv6_addr_is_multicast(&fl6.daddr)) {
  1045. fl6.flowi6_oif = np->mcast_oif;
  1046. connected = 0;
  1047. } else if (!fl6.flowi6_oif)
  1048. fl6.flowi6_oif = np->ucast_oif;
  1049. security_sk_classify_flow(sk, flowi6_to_flowi(&fl6));
  1050. dst = ip6_sk_dst_lookup_flow(sk, &fl6, final_p, true);
  1051. if (IS_ERR(dst)) {
  1052. err = PTR_ERR(dst);
  1053. dst = NULL;
  1054. goto out;
  1055. }
  1056. if (hlimit < 0) {
  1057. if (ipv6_addr_is_multicast(&fl6.daddr))
  1058. hlimit = np->mcast_hops;
  1059. else
  1060. hlimit = np->hop_limit;
  1061. if (hlimit < 0)
  1062. hlimit = ip6_dst_hoplimit(dst);
  1063. }
  1064. if (tclass < 0)
  1065. tclass = np->tclass;
  1066. if (msg->msg_flags&MSG_CONFIRM)
  1067. goto do_confirm;
  1068. back_from_confirm:
  1069. lock_sock(sk);
  1070. if (unlikely(up->pending)) {
  1071. /* The socket is already corked while preparing it. */
  1072. /* ... which is an evident application bug. --ANK */
  1073. release_sock(sk);
  1074. LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 2\n");
  1075. err = -EINVAL;
  1076. goto out;
  1077. }
  1078. up->pending = AF_INET6;
  1079. do_append_data:
  1080. if (dontfrag < 0)
  1081. dontfrag = np->dontfrag;
  1082. up->len += ulen;
  1083. getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
  1084. err = ip6_append_data(sk, getfrag, msg->msg_iov, ulen,
  1085. sizeof(struct udphdr), hlimit, tclass, opt, &fl6,
  1086. (struct rt6_info*)dst,
  1087. corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags, dontfrag);
  1088. if (err)
  1089. udp_v6_flush_pending_frames(sk);
  1090. else if (!corkreq)
  1091. err = udp_v6_push_pending_frames(sk);
  1092. else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
  1093. up->pending = 0;
  1094. if (dst) {
  1095. if (connected) {
  1096. ip6_dst_store(sk, dst,
  1097. ipv6_addr_equal(&fl6.daddr, &np->daddr) ?
  1098. &np->daddr : NULL,
  1099. #ifdef CONFIG_IPV6_SUBTREES
  1100. ipv6_addr_equal(&fl6.saddr, &np->saddr) ?
  1101. &np->saddr :
  1102. #endif
  1103. NULL);
  1104. } else {
  1105. dst_release(dst);
  1106. }
  1107. dst = NULL;
  1108. }
  1109. if (err > 0)
  1110. err = np->recverr ? net_xmit_errno(err) : 0;
  1111. release_sock(sk);
  1112. out:
  1113. dst_release(dst);
  1114. fl6_sock_release(flowlabel);
  1115. if (!err)
  1116. return len;
  1117. /*
  1118. * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
  1119. * ENOBUFS might not be good (it's not tunable per se), but otherwise
  1120. * we don't have a good statistic (IpOutDiscards but it can be too many
  1121. * things). We could add another new stat but at least for now that
  1122. * seems like overkill.
  1123. */
  1124. if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  1125. UDP6_INC_STATS_USER(sock_net(sk),
  1126. UDP_MIB_SNDBUFERRORS, is_udplite);
  1127. }
  1128. return err;
  1129. do_confirm:
  1130. dst_confirm(dst);
  1131. if (!(msg->msg_flags&MSG_PROBE) || len)
  1132. goto back_from_confirm;
  1133. err = 0;
  1134. goto out;
  1135. }
  1136. void udpv6_destroy_sock(struct sock *sk)
  1137. {
  1138. struct udp_sock *up = udp_sk(sk);
  1139. lock_sock(sk);
  1140. udp_v6_flush_pending_frames(sk);
  1141. release_sock(sk);
  1142. if (static_key_false(&udpv6_encap_needed) && up->encap_type) {
  1143. void (*encap_destroy)(struct sock *sk);
  1144. encap_destroy = ACCESS_ONCE(up->encap_destroy);
  1145. if (encap_destroy)
  1146. encap_destroy(sk);
  1147. }
  1148. inet6_destroy_sock(sk);
  1149. }
  1150. /*
  1151. * Socket option code for UDP
  1152. */
  1153. int udpv6_setsockopt(struct sock *sk, int level, int optname,
  1154. char __user *optval, unsigned int optlen)
  1155. {
  1156. if (level == SOL_UDP || level == SOL_UDPLITE)
  1157. return udp_lib_setsockopt(sk, level, optname, optval, optlen,
  1158. udp_v6_push_pending_frames);
  1159. return ipv6_setsockopt(sk, level, optname, optval, optlen);
  1160. }
  1161. #ifdef CONFIG_COMPAT
  1162. int compat_udpv6_setsockopt(struct sock *sk, int level, int optname,
  1163. char __user *optval, unsigned int optlen)
  1164. {
  1165. if (level == SOL_UDP || level == SOL_UDPLITE)
  1166. return udp_lib_setsockopt(sk, level, optname, optval, optlen,
  1167. udp_v6_push_pending_frames);
  1168. return compat_ipv6_setsockopt(sk, level, optname, optval, optlen);
  1169. }
  1170. #endif
  1171. int udpv6_getsockopt(struct sock *sk, int level, int optname,
  1172. char __user *optval, int __user *optlen)
  1173. {
  1174. if (level == SOL_UDP || level == SOL_UDPLITE)
  1175. return udp_lib_getsockopt(sk, level, optname, optval, optlen);
  1176. return ipv6_getsockopt(sk, level, optname, optval, optlen);
  1177. }
  1178. #ifdef CONFIG_COMPAT
  1179. int compat_udpv6_getsockopt(struct sock *sk, int level, int optname,
  1180. char __user *optval, int __user *optlen)
  1181. {
  1182. if (level == SOL_UDP || level == SOL_UDPLITE)
  1183. return udp_lib_getsockopt(sk, level, optname, optval, optlen);
  1184. return compat_ipv6_getsockopt(sk, level, optname, optval, optlen);
  1185. }
  1186. #endif
  1187. static const struct inet6_protocol udpv6_protocol = {
  1188. .handler = udpv6_rcv,
  1189. .err_handler = udpv6_err,
  1190. .flags = INET6_PROTO_NOPOLICY|INET6_PROTO_FINAL,
  1191. };
  1192. /* ------------------------------------------------------------------------ */
  1193. #ifdef CONFIG_PROC_FS
  1194. int udp6_seq_show(struct seq_file *seq, void *v)
  1195. {
  1196. if (v == SEQ_START_TOKEN) {
  1197. seq_puts(seq, IPV6_SEQ_DGRAM_HEADER);
  1198. } else {
  1199. int bucket = ((struct udp_iter_state *)seq->private)->bucket;
  1200. struct inet_sock *inet = inet_sk(v);
  1201. __u16 srcp = ntohs(inet->inet_sport);
  1202. __u16 destp = ntohs(inet->inet_dport);
  1203. ip6_dgram_sock_seq_show(seq, v, srcp, destp, bucket);
  1204. }
  1205. return 0;
  1206. }
  1207. static const struct file_operations udp6_afinfo_seq_fops = {
  1208. .owner = THIS_MODULE,
  1209. .open = udp_seq_open,
  1210. .read = seq_read,
  1211. .llseek = seq_lseek,
  1212. .release = seq_release_net
  1213. };
  1214. static struct udp_seq_afinfo udp6_seq_afinfo = {
  1215. .name = "udp6",
  1216. .family = AF_INET6,
  1217. .udp_table = &udp_table,
  1218. .seq_fops = &udp6_afinfo_seq_fops,
  1219. .seq_ops = {
  1220. .show = udp6_seq_show,
  1221. },
  1222. };
  1223. int __net_init udp6_proc_init(struct net *net)
  1224. {
  1225. return udp_proc_register(net, &udp6_seq_afinfo);
  1226. }
  1227. void udp6_proc_exit(struct net *net) {
  1228. udp_proc_unregister(net, &udp6_seq_afinfo);
  1229. }
  1230. #endif /* CONFIG_PROC_FS */
  1231. void udp_v6_clear_sk(struct sock *sk, int size)
  1232. {
  1233. struct inet_sock *inet = inet_sk(sk);
  1234. /* we do not want to clear pinet6 field, because of RCU lookups */
  1235. sk_prot_clear_portaddr_nulls(sk, offsetof(struct inet_sock, pinet6));
  1236. size -= offsetof(struct inet_sock, pinet6) + sizeof(inet->pinet6);
  1237. memset(&inet->pinet6 + 1, 0, size);
  1238. }
  1239. /* ------------------------------------------------------------------------ */
  1240. struct proto udpv6_prot = {
  1241. .name = "UDPv6",
  1242. .owner = THIS_MODULE,
  1243. .close = udp_lib_close,
  1244. .connect = ip6_datagram_connect,
  1245. .disconnect = udp_disconnect,
  1246. .ioctl = udp_ioctl,
  1247. .destroy = udpv6_destroy_sock,
  1248. .setsockopt = udpv6_setsockopt,
  1249. .getsockopt = udpv6_getsockopt,
  1250. .sendmsg = udpv6_sendmsg,
  1251. .recvmsg = udpv6_recvmsg,
  1252. .backlog_rcv = __udpv6_queue_rcv_skb,
  1253. .hash = udp_lib_hash,
  1254. .unhash = udp_lib_unhash,
  1255. .rehash = udp_v6_rehash,
  1256. .get_port = udp_v6_get_port,
  1257. .memory_allocated = &udp_memory_allocated,
  1258. .sysctl_mem = sysctl_udp_mem,
  1259. .sysctl_wmem = &sysctl_udp_wmem_min,
  1260. .sysctl_rmem = &sysctl_udp_rmem_min,
  1261. .obj_size = sizeof(struct udp6_sock),
  1262. .slab_flags = SLAB_DESTROY_BY_RCU,
  1263. .h.udp_table = &udp_table,
  1264. #ifdef CONFIG_COMPAT
  1265. .compat_setsockopt = compat_udpv6_setsockopt,
  1266. .compat_getsockopt = compat_udpv6_getsockopt,
  1267. #endif
  1268. .clear_sk = udp_v6_clear_sk,
  1269. };
  1270. static struct inet_protosw udpv6_protosw = {
  1271. .type = SOCK_DGRAM,
  1272. .protocol = IPPROTO_UDP,
  1273. .prot = &udpv6_prot,
  1274. .ops = &inet6_dgram_ops,
  1275. .no_check = UDP_CSUM_DEFAULT,
  1276. .flags = INET_PROTOSW_PERMANENT,
  1277. };
  1278. int __init udpv6_init(void)
  1279. {
  1280. int ret;
  1281. ret = inet6_add_protocol(&udpv6_protocol, IPPROTO_UDP);
  1282. if (ret)
  1283. goto out;
  1284. ret = inet6_register_protosw(&udpv6_protosw);
  1285. if (ret)
  1286. goto out_udpv6_protocol;
  1287. out:
  1288. return ret;
  1289. out_udpv6_protocol:
  1290. inet6_del_protocol(&udpv6_protocol, IPPROTO_UDP);
  1291. goto out;
  1292. }
  1293. void udpv6_exit(void)
  1294. {
  1295. inet6_unregister_protosw(&udpv6_protosw);
  1296. inet6_del_protocol(&udpv6_protocol, IPPROTO_UDP);
  1297. }