ntp.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935
  1. /*
  2. * NTP state machine interfaces and logic.
  3. *
  4. * This code was mainly moved from kernel/timer.c and kernel/time.c
  5. * Please see those files for relevant copyright info and historical
  6. * changelogs.
  7. */
  8. #include <linux/capability.h>
  9. #include <linux/clocksource.h>
  10. #include <linux/workqueue.h>
  11. #include <linux/hrtimer.h>
  12. #include <linux/jiffies.h>
  13. #include <linux/math64.h>
  14. #include <linux/timex.h>
  15. #include <linux/time.h>
  16. #include <linux/mm.h>
  17. #include <linux/module.h>
  18. #include <linux/rtc.h>
  19. #include "tick-internal.h"
  20. #include "ntp_internal.h"
  21. /*
  22. * NTP timekeeping variables:
  23. *
  24. * Note: All of the NTP state is protected by the timekeeping locks.
  25. */
  26. /* USER_HZ period (usecs): */
  27. unsigned long tick_usec = TICK_USEC;
  28. /* SHIFTED_HZ period (nsecs): */
  29. unsigned long tick_nsec;
  30. static u64 tick_length;
  31. static u64 tick_length_base;
  32. #define MAX_TICKADJ 500LL /* usecs */
  33. #define MAX_TICKADJ_SCALED \
  34. (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
  35. /*
  36. * phase-lock loop variables
  37. */
  38. /*
  39. * clock synchronization status
  40. *
  41. * (TIME_ERROR prevents overwriting the CMOS clock)
  42. */
  43. static int time_state = TIME_OK;
  44. /* clock status bits: */
  45. static int time_status = STA_UNSYNC;
  46. /* time adjustment (nsecs): */
  47. static s64 time_offset;
  48. /* pll time constant: */
  49. static long time_constant = 2;
  50. /* maximum error (usecs): */
  51. static long time_maxerror = NTP_PHASE_LIMIT;
  52. /* estimated error (usecs): */
  53. static long time_esterror = NTP_PHASE_LIMIT;
  54. /* frequency offset (scaled nsecs/secs): */
  55. static s64 time_freq;
  56. /* time at last adjustment (secs): */
  57. static long time_reftime;
  58. static long time_adjust;
  59. /* constant (boot-param configurable) NTP tick adjustment (upscaled) */
  60. static s64 ntp_tick_adj;
  61. #ifdef CONFIG_NTP_PPS
  62. /*
  63. * The following variables are used when a pulse-per-second (PPS) signal
  64. * is available. They establish the engineering parameters of the clock
  65. * discipline loop when controlled by the PPS signal.
  66. */
  67. #define PPS_VALID 10 /* PPS signal watchdog max (s) */
  68. #define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
  69. #define PPS_INTMIN 2 /* min freq interval (s) (shift) */
  70. #define PPS_INTMAX 8 /* max freq interval (s) (shift) */
  71. #define PPS_INTCOUNT 4 /* number of consecutive good intervals to
  72. increase pps_shift or consecutive bad
  73. intervals to decrease it */
  74. #define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
  75. static int pps_valid; /* signal watchdog counter */
  76. static long pps_tf[3]; /* phase median filter */
  77. static long pps_jitter; /* current jitter (ns) */
  78. static struct timespec pps_fbase; /* beginning of the last freq interval */
  79. static int pps_shift; /* current interval duration (s) (shift) */
  80. static int pps_intcnt; /* interval counter */
  81. static s64 pps_freq; /* frequency offset (scaled ns/s) */
  82. static long pps_stabil; /* current stability (scaled ns/s) */
  83. /*
  84. * PPS signal quality monitors
  85. */
  86. static long pps_calcnt; /* calibration intervals */
  87. static long pps_jitcnt; /* jitter limit exceeded */
  88. static long pps_stbcnt; /* stability limit exceeded */
  89. static long pps_errcnt; /* calibration errors */
  90. /* PPS kernel consumer compensates the whole phase error immediately.
  91. * Otherwise, reduce the offset by a fixed factor times the time constant.
  92. */
  93. static inline s64 ntp_offset_chunk(s64 offset)
  94. {
  95. if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
  96. return offset;
  97. else
  98. return shift_right(offset, SHIFT_PLL + time_constant);
  99. }
  100. static inline void pps_reset_freq_interval(void)
  101. {
  102. /* the PPS calibration interval may end
  103. surprisingly early */
  104. pps_shift = PPS_INTMIN;
  105. pps_intcnt = 0;
  106. }
  107. /**
  108. * pps_clear - Clears the PPS state variables
  109. */
  110. static inline void pps_clear(void)
  111. {
  112. pps_reset_freq_interval();
  113. pps_tf[0] = 0;
  114. pps_tf[1] = 0;
  115. pps_tf[2] = 0;
  116. pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
  117. pps_freq = 0;
  118. }
  119. /* Decrease pps_valid to indicate that another second has passed since
  120. * the last PPS signal. When it reaches 0, indicate that PPS signal is
  121. * missing.
  122. */
  123. static inline void pps_dec_valid(void)
  124. {
  125. if (pps_valid > 0)
  126. pps_valid--;
  127. else {
  128. time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
  129. STA_PPSWANDER | STA_PPSERROR);
  130. pps_clear();
  131. }
  132. }
  133. static inline void pps_set_freq(s64 freq)
  134. {
  135. pps_freq = freq;
  136. }
  137. static inline int is_error_status(int status)
  138. {
  139. return (time_status & (STA_UNSYNC|STA_CLOCKERR))
  140. /* PPS signal lost when either PPS time or
  141. * PPS frequency synchronization requested
  142. */
  143. || ((time_status & (STA_PPSFREQ|STA_PPSTIME))
  144. && !(time_status & STA_PPSSIGNAL))
  145. /* PPS jitter exceeded when
  146. * PPS time synchronization requested */
  147. || ((time_status & (STA_PPSTIME|STA_PPSJITTER))
  148. == (STA_PPSTIME|STA_PPSJITTER))
  149. /* PPS wander exceeded or calibration error when
  150. * PPS frequency synchronization requested
  151. */
  152. || ((time_status & STA_PPSFREQ)
  153. && (time_status & (STA_PPSWANDER|STA_PPSERROR)));
  154. }
  155. static inline void pps_fill_timex(struct timex *txc)
  156. {
  157. txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
  158. PPM_SCALE_INV, NTP_SCALE_SHIFT);
  159. txc->jitter = pps_jitter;
  160. if (!(time_status & STA_NANO))
  161. txc->jitter /= NSEC_PER_USEC;
  162. txc->shift = pps_shift;
  163. txc->stabil = pps_stabil;
  164. txc->jitcnt = pps_jitcnt;
  165. txc->calcnt = pps_calcnt;
  166. txc->errcnt = pps_errcnt;
  167. txc->stbcnt = pps_stbcnt;
  168. }
  169. #else /* !CONFIG_NTP_PPS */
  170. static inline s64 ntp_offset_chunk(s64 offset)
  171. {
  172. return shift_right(offset, SHIFT_PLL + time_constant);
  173. }
  174. static inline void pps_reset_freq_interval(void) {}
  175. static inline void pps_clear(void) {}
  176. static inline void pps_dec_valid(void) {}
  177. static inline void pps_set_freq(s64 freq) {}
  178. static inline int is_error_status(int status)
  179. {
  180. return status & (STA_UNSYNC|STA_CLOCKERR);
  181. }
  182. static inline void pps_fill_timex(struct timex *txc)
  183. {
  184. /* PPS is not implemented, so these are zero */
  185. txc->ppsfreq = 0;
  186. txc->jitter = 0;
  187. txc->shift = 0;
  188. txc->stabil = 0;
  189. txc->jitcnt = 0;
  190. txc->calcnt = 0;
  191. txc->errcnt = 0;
  192. txc->stbcnt = 0;
  193. }
  194. #endif /* CONFIG_NTP_PPS */
  195. /**
  196. * ntp_synced - Returns 1 if the NTP status is not UNSYNC
  197. *
  198. */
  199. static inline int ntp_synced(void)
  200. {
  201. return !(time_status & STA_UNSYNC);
  202. }
  203. /*
  204. * NTP methods:
  205. */
  206. /*
  207. * Update (tick_length, tick_length_base, tick_nsec), based
  208. * on (tick_usec, ntp_tick_adj, time_freq):
  209. */
  210. static void ntp_update_frequency(void)
  211. {
  212. u64 second_length;
  213. u64 new_base;
  214. second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
  215. << NTP_SCALE_SHIFT;
  216. second_length += ntp_tick_adj;
  217. second_length += time_freq;
  218. tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
  219. new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
  220. /*
  221. * Don't wait for the next second_overflow, apply
  222. * the change to the tick length immediately:
  223. */
  224. tick_length += new_base - tick_length_base;
  225. tick_length_base = new_base;
  226. }
  227. static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
  228. {
  229. time_status &= ~STA_MODE;
  230. if (secs < MINSEC)
  231. return 0;
  232. if (!(time_status & STA_FLL) && (secs <= MAXSEC))
  233. return 0;
  234. time_status |= STA_MODE;
  235. return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
  236. }
  237. static void ntp_update_offset(long offset)
  238. {
  239. s64 freq_adj;
  240. s64 offset64;
  241. long secs;
  242. if (!(time_status & STA_PLL))
  243. return;
  244. if (!(time_status & STA_NANO))
  245. offset *= NSEC_PER_USEC;
  246. /*
  247. * Scale the phase adjustment and
  248. * clamp to the operating range.
  249. */
  250. offset = min(offset, MAXPHASE);
  251. offset = max(offset, -MAXPHASE);
  252. /*
  253. * Select how the frequency is to be controlled
  254. * and in which mode (PLL or FLL).
  255. */
  256. secs = get_seconds() - time_reftime;
  257. if (unlikely(time_status & STA_FREQHOLD))
  258. secs = 0;
  259. time_reftime = get_seconds();
  260. offset64 = offset;
  261. freq_adj = ntp_update_offset_fll(offset64, secs);
  262. /*
  263. * Clamp update interval to reduce PLL gain with low
  264. * sampling rate (e.g. intermittent network connection)
  265. * to avoid instability.
  266. */
  267. if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
  268. secs = 1 << (SHIFT_PLL + 1 + time_constant);
  269. freq_adj += (offset64 * secs) <<
  270. (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
  271. freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
  272. time_freq = max(freq_adj, -MAXFREQ_SCALED);
  273. time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
  274. }
  275. /**
  276. * ntp_clear - Clears the NTP state variables
  277. */
  278. void ntp_clear(void)
  279. {
  280. time_adjust = 0; /* stop active adjtime() */
  281. time_status |= STA_UNSYNC;
  282. time_maxerror = NTP_PHASE_LIMIT;
  283. time_esterror = NTP_PHASE_LIMIT;
  284. ntp_update_frequency();
  285. tick_length = tick_length_base;
  286. time_offset = 0;
  287. /* Clear PPS state variables */
  288. pps_clear();
  289. }
  290. u64 ntp_tick_length(void)
  291. {
  292. return tick_length;
  293. }
  294. /*
  295. * this routine handles the overflow of the microsecond field
  296. *
  297. * The tricky bits of code to handle the accurate clock support
  298. * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
  299. * They were originally developed for SUN and DEC kernels.
  300. * All the kudos should go to Dave for this stuff.
  301. *
  302. * Also handles leap second processing, and returns leap offset
  303. */
  304. int second_overflow(unsigned long secs)
  305. {
  306. s64 delta;
  307. int leap = 0;
  308. /*
  309. * Leap second processing. If in leap-insert state at the end of the
  310. * day, the system clock is set back one second; if in leap-delete
  311. * state, the system clock is set ahead one second.
  312. */
  313. switch (time_state) {
  314. case TIME_OK:
  315. if (time_status & STA_INS)
  316. time_state = TIME_INS;
  317. else if (time_status & STA_DEL)
  318. time_state = TIME_DEL;
  319. break;
  320. case TIME_INS:
  321. if (!(time_status & STA_INS))
  322. time_state = TIME_OK;
  323. else if (secs % 86400 == 0) {
  324. leap = -1;
  325. time_state = TIME_OOP;
  326. printk(KERN_NOTICE
  327. "Clock: inserting leap second 23:59:60 UTC\n");
  328. }
  329. break;
  330. case TIME_DEL:
  331. if (!(time_status & STA_DEL))
  332. time_state = TIME_OK;
  333. else if ((secs + 1) % 86400 == 0) {
  334. leap = 1;
  335. time_state = TIME_WAIT;
  336. printk(KERN_NOTICE
  337. "Clock: deleting leap second 23:59:59 UTC\n");
  338. }
  339. break;
  340. case TIME_OOP:
  341. time_state = TIME_WAIT;
  342. break;
  343. case TIME_WAIT:
  344. if (!(time_status & (STA_INS | STA_DEL)))
  345. time_state = TIME_OK;
  346. break;
  347. }
  348. /* Bump the maxerror field */
  349. time_maxerror += MAXFREQ / NSEC_PER_USEC;
  350. if (time_maxerror > NTP_PHASE_LIMIT) {
  351. time_maxerror = NTP_PHASE_LIMIT;
  352. time_status |= STA_UNSYNC;
  353. }
  354. /* Compute the phase adjustment for the next second */
  355. tick_length = tick_length_base;
  356. delta = ntp_offset_chunk(time_offset);
  357. time_offset -= delta;
  358. tick_length += delta;
  359. /* Check PPS signal */
  360. pps_dec_valid();
  361. if (!time_adjust)
  362. goto out;
  363. if (time_adjust > MAX_TICKADJ) {
  364. time_adjust -= MAX_TICKADJ;
  365. tick_length += MAX_TICKADJ_SCALED;
  366. goto out;
  367. }
  368. if (time_adjust < -MAX_TICKADJ) {
  369. time_adjust += MAX_TICKADJ;
  370. tick_length -= MAX_TICKADJ_SCALED;
  371. goto out;
  372. }
  373. tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
  374. << NTP_SCALE_SHIFT;
  375. time_adjust = 0;
  376. out:
  377. return leap;
  378. }
  379. #if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
  380. static void sync_cmos_clock(struct work_struct *work);
  381. static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
  382. static void sync_cmos_clock(struct work_struct *work)
  383. {
  384. struct timespec now, next;
  385. int fail = 1;
  386. /*
  387. * If we have an externally synchronized Linux clock, then update
  388. * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
  389. * called as close as possible to 500 ms before the new second starts.
  390. * This code is run on a timer. If the clock is set, that timer
  391. * may not expire at the correct time. Thus, we adjust...
  392. */
  393. if (!ntp_synced()) {
  394. /*
  395. * Not synced, exit, do not restart a timer (if one is
  396. * running, let it run out).
  397. */
  398. return;
  399. }
  400. getnstimeofday(&now);
  401. if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2) {
  402. struct timespec adjust = now;
  403. fail = -ENODEV;
  404. if (persistent_clock_is_local)
  405. adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
  406. #ifdef CONFIG_GENERIC_CMOS_UPDATE
  407. fail = update_persistent_clock(adjust);
  408. #endif
  409. #ifdef CONFIG_RTC_SYSTOHC
  410. if (fail == -ENODEV)
  411. fail = rtc_set_ntp_time(adjust);
  412. #endif
  413. }
  414. next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
  415. if (next.tv_nsec <= 0)
  416. next.tv_nsec += NSEC_PER_SEC;
  417. if (!fail || fail == -ENODEV)
  418. next.tv_sec = 659;
  419. else
  420. next.tv_sec = 0;
  421. if (next.tv_nsec >= NSEC_PER_SEC) {
  422. next.tv_sec++;
  423. next.tv_nsec -= NSEC_PER_SEC;
  424. }
  425. schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next));
  426. }
  427. void ntp_notify_cmos_timer(void)
  428. {
  429. schedule_delayed_work(&sync_cmos_work, 0);
  430. }
  431. #else
  432. void ntp_notify_cmos_timer(void) { }
  433. #endif
  434. /*
  435. * Propagate a new txc->status value into the NTP state:
  436. */
  437. static inline void process_adj_status(struct timex *txc, struct timespec *ts)
  438. {
  439. if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
  440. time_state = TIME_OK;
  441. time_status = STA_UNSYNC;
  442. /* restart PPS frequency calibration */
  443. pps_reset_freq_interval();
  444. }
  445. /*
  446. * If we turn on PLL adjustments then reset the
  447. * reference time to current time.
  448. */
  449. if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
  450. time_reftime = get_seconds();
  451. /* only set allowed bits */
  452. time_status &= STA_RONLY;
  453. time_status |= txc->status & ~STA_RONLY;
  454. }
  455. static inline void process_adjtimex_modes(struct timex *txc,
  456. struct timespec *ts,
  457. s32 *time_tai)
  458. {
  459. if (txc->modes & ADJ_STATUS)
  460. process_adj_status(txc, ts);
  461. if (txc->modes & ADJ_NANO)
  462. time_status |= STA_NANO;
  463. if (txc->modes & ADJ_MICRO)
  464. time_status &= ~STA_NANO;
  465. if (txc->modes & ADJ_FREQUENCY) {
  466. time_freq = txc->freq * PPM_SCALE;
  467. time_freq = min(time_freq, MAXFREQ_SCALED);
  468. time_freq = max(time_freq, -MAXFREQ_SCALED);
  469. /* update pps_freq */
  470. pps_set_freq(time_freq);
  471. }
  472. if (txc->modes & ADJ_MAXERROR)
  473. time_maxerror = txc->maxerror;
  474. if (txc->modes & ADJ_ESTERROR)
  475. time_esterror = txc->esterror;
  476. if (txc->modes & ADJ_TIMECONST) {
  477. time_constant = txc->constant;
  478. if (!(time_status & STA_NANO))
  479. time_constant += 4;
  480. time_constant = min(time_constant, (long)MAXTC);
  481. time_constant = max(time_constant, 0l);
  482. }
  483. if (txc->modes & ADJ_TAI && txc->constant > 0)
  484. *time_tai = txc->constant;
  485. if (txc->modes & ADJ_OFFSET)
  486. ntp_update_offset(txc->offset);
  487. if (txc->modes & ADJ_TICK)
  488. tick_usec = txc->tick;
  489. if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
  490. ntp_update_frequency();
  491. }
  492. /**
  493. * ntp_validate_timex - Ensures the timex is ok for use in do_adjtimex
  494. */
  495. int ntp_validate_timex(struct timex *txc)
  496. {
  497. if (txc->modes & ADJ_ADJTIME) {
  498. /* singleshot must not be used with any other mode bits */
  499. if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
  500. return -EINVAL;
  501. if (!(txc->modes & ADJ_OFFSET_READONLY) &&
  502. !capable(CAP_SYS_TIME))
  503. return -EPERM;
  504. } else {
  505. /* In order to modify anything, you gotta be super-user! */
  506. if (txc->modes && !capable(CAP_SYS_TIME))
  507. return -EPERM;
  508. /*
  509. * if the quartz is off by more than 10% then
  510. * something is VERY wrong!
  511. */
  512. if (txc->modes & ADJ_TICK &&
  513. (txc->tick < 900000/USER_HZ ||
  514. txc->tick > 1100000/USER_HZ))
  515. return -EINVAL;
  516. }
  517. if ((txc->modes & ADJ_SETOFFSET) && (!capable(CAP_SYS_TIME)))
  518. return -EPERM;
  519. return 0;
  520. }
  521. /*
  522. * adjtimex mainly allows reading (and writing, if superuser) of
  523. * kernel time-keeping variables. used by xntpd.
  524. */
  525. int __do_adjtimex(struct timex *txc, struct timespec *ts, s32 *time_tai)
  526. {
  527. int result;
  528. if (txc->modes & ADJ_ADJTIME) {
  529. long save_adjust = time_adjust;
  530. if (!(txc->modes & ADJ_OFFSET_READONLY)) {
  531. /* adjtime() is independent from ntp_adjtime() */
  532. time_adjust = txc->offset;
  533. ntp_update_frequency();
  534. }
  535. txc->offset = save_adjust;
  536. } else {
  537. /* If there are input parameters, then process them: */
  538. if (txc->modes)
  539. process_adjtimex_modes(txc, ts, time_tai);
  540. txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
  541. NTP_SCALE_SHIFT);
  542. if (!(time_status & STA_NANO))
  543. txc->offset /= NSEC_PER_USEC;
  544. }
  545. result = time_state; /* mostly `TIME_OK' */
  546. /* check for errors */
  547. if (is_error_status(time_status))
  548. result = TIME_ERROR;
  549. txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
  550. PPM_SCALE_INV, NTP_SCALE_SHIFT);
  551. txc->maxerror = time_maxerror;
  552. txc->esterror = time_esterror;
  553. txc->status = time_status;
  554. txc->constant = time_constant;
  555. txc->precision = 1;
  556. txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
  557. txc->tick = tick_usec;
  558. txc->tai = *time_tai;
  559. /* fill PPS status fields */
  560. pps_fill_timex(txc);
  561. txc->time.tv_sec = ts->tv_sec;
  562. txc->time.tv_usec = ts->tv_nsec;
  563. if (!(time_status & STA_NANO))
  564. txc->time.tv_usec /= NSEC_PER_USEC;
  565. return result;
  566. }
  567. #ifdef CONFIG_NTP_PPS
  568. /* actually struct pps_normtime is good old struct timespec, but it is
  569. * semantically different (and it is the reason why it was invented):
  570. * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
  571. * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
  572. struct pps_normtime {
  573. __kernel_time_t sec; /* seconds */
  574. long nsec; /* nanoseconds */
  575. };
  576. /* normalize the timestamp so that nsec is in the
  577. ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
  578. static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
  579. {
  580. struct pps_normtime norm = {
  581. .sec = ts.tv_sec,
  582. .nsec = ts.tv_nsec
  583. };
  584. if (norm.nsec > (NSEC_PER_SEC >> 1)) {
  585. norm.nsec -= NSEC_PER_SEC;
  586. norm.sec++;
  587. }
  588. return norm;
  589. }
  590. /* get current phase correction and jitter */
  591. static inline long pps_phase_filter_get(long *jitter)
  592. {
  593. *jitter = pps_tf[0] - pps_tf[1];
  594. if (*jitter < 0)
  595. *jitter = -*jitter;
  596. /* TODO: test various filters */
  597. return pps_tf[0];
  598. }
  599. /* add the sample to the phase filter */
  600. static inline void pps_phase_filter_add(long err)
  601. {
  602. pps_tf[2] = pps_tf[1];
  603. pps_tf[1] = pps_tf[0];
  604. pps_tf[0] = err;
  605. }
  606. /* decrease frequency calibration interval length.
  607. * It is halved after four consecutive unstable intervals.
  608. */
  609. static inline void pps_dec_freq_interval(void)
  610. {
  611. if (--pps_intcnt <= -PPS_INTCOUNT) {
  612. pps_intcnt = -PPS_INTCOUNT;
  613. if (pps_shift > PPS_INTMIN) {
  614. pps_shift--;
  615. pps_intcnt = 0;
  616. }
  617. }
  618. }
  619. /* increase frequency calibration interval length.
  620. * It is doubled after four consecutive stable intervals.
  621. */
  622. static inline void pps_inc_freq_interval(void)
  623. {
  624. if (++pps_intcnt >= PPS_INTCOUNT) {
  625. pps_intcnt = PPS_INTCOUNT;
  626. if (pps_shift < PPS_INTMAX) {
  627. pps_shift++;
  628. pps_intcnt = 0;
  629. }
  630. }
  631. }
  632. /* update clock frequency based on MONOTONIC_RAW clock PPS signal
  633. * timestamps
  634. *
  635. * At the end of the calibration interval the difference between the
  636. * first and last MONOTONIC_RAW clock timestamps divided by the length
  637. * of the interval becomes the frequency update. If the interval was
  638. * too long, the data are discarded.
  639. * Returns the difference between old and new frequency values.
  640. */
  641. static long hardpps_update_freq(struct pps_normtime freq_norm)
  642. {
  643. long delta, delta_mod;
  644. s64 ftemp;
  645. /* check if the frequency interval was too long */
  646. if (freq_norm.sec > (2 << pps_shift)) {
  647. time_status |= STA_PPSERROR;
  648. pps_errcnt++;
  649. pps_dec_freq_interval();
  650. pr_err("hardpps: PPSERROR: interval too long - %ld s\n",
  651. freq_norm.sec);
  652. return 0;
  653. }
  654. /* here the raw frequency offset and wander (stability) is
  655. * calculated. If the wander is less than the wander threshold
  656. * the interval is increased; otherwise it is decreased.
  657. */
  658. ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
  659. freq_norm.sec);
  660. delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
  661. pps_freq = ftemp;
  662. if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
  663. pr_warning("hardpps: PPSWANDER: change=%ld\n", delta);
  664. time_status |= STA_PPSWANDER;
  665. pps_stbcnt++;
  666. pps_dec_freq_interval();
  667. } else { /* good sample */
  668. pps_inc_freq_interval();
  669. }
  670. /* the stability metric is calculated as the average of recent
  671. * frequency changes, but is used only for performance
  672. * monitoring
  673. */
  674. delta_mod = delta;
  675. if (delta_mod < 0)
  676. delta_mod = -delta_mod;
  677. pps_stabil += (div_s64(((s64)delta_mod) <<
  678. (NTP_SCALE_SHIFT - SHIFT_USEC),
  679. NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
  680. /* if enabled, the system clock frequency is updated */
  681. if ((time_status & STA_PPSFREQ) != 0 &&
  682. (time_status & STA_FREQHOLD) == 0) {
  683. time_freq = pps_freq;
  684. ntp_update_frequency();
  685. }
  686. return delta;
  687. }
  688. /* correct REALTIME clock phase error against PPS signal */
  689. static void hardpps_update_phase(long error)
  690. {
  691. long correction = -error;
  692. long jitter;
  693. /* add the sample to the median filter */
  694. pps_phase_filter_add(correction);
  695. correction = pps_phase_filter_get(&jitter);
  696. /* Nominal jitter is due to PPS signal noise. If it exceeds the
  697. * threshold, the sample is discarded; otherwise, if so enabled,
  698. * the time offset is updated.
  699. */
  700. if (jitter > (pps_jitter << PPS_POPCORN)) {
  701. pr_warning("hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
  702. jitter, (pps_jitter << PPS_POPCORN));
  703. time_status |= STA_PPSJITTER;
  704. pps_jitcnt++;
  705. } else if (time_status & STA_PPSTIME) {
  706. /* correct the time using the phase offset */
  707. time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
  708. NTP_INTERVAL_FREQ);
  709. /* cancel running adjtime() */
  710. time_adjust = 0;
  711. }
  712. /* update jitter */
  713. pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
  714. }
  715. /*
  716. * __hardpps() - discipline CPU clock oscillator to external PPS signal
  717. *
  718. * This routine is called at each PPS signal arrival in order to
  719. * discipline the CPU clock oscillator to the PPS signal. It takes two
  720. * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
  721. * is used to correct clock phase error and the latter is used to
  722. * correct the frequency.
  723. *
  724. * This code is based on David Mills's reference nanokernel
  725. * implementation. It was mostly rewritten but keeps the same idea.
  726. */
  727. void __hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
  728. {
  729. struct pps_normtime pts_norm, freq_norm;
  730. pts_norm = pps_normalize_ts(*phase_ts);
  731. /* clear the error bits, they will be set again if needed */
  732. time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
  733. /* indicate signal presence */
  734. time_status |= STA_PPSSIGNAL;
  735. pps_valid = PPS_VALID;
  736. /* when called for the first time,
  737. * just start the frequency interval */
  738. if (unlikely(pps_fbase.tv_sec == 0)) {
  739. pps_fbase = *raw_ts;
  740. return;
  741. }
  742. /* ok, now we have a base for frequency calculation */
  743. freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));
  744. /* check that the signal is in the range
  745. * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
  746. if ((freq_norm.sec == 0) ||
  747. (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
  748. (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
  749. time_status |= STA_PPSJITTER;
  750. /* restart the frequency calibration interval */
  751. pps_fbase = *raw_ts;
  752. pr_err("hardpps: PPSJITTER: bad pulse\n");
  753. return;
  754. }
  755. /* signal is ok */
  756. /* check if the current frequency interval is finished */
  757. if (freq_norm.sec >= (1 << pps_shift)) {
  758. pps_calcnt++;
  759. /* restart the frequency calibration interval */
  760. pps_fbase = *raw_ts;
  761. hardpps_update_freq(freq_norm);
  762. }
  763. hardpps_update_phase(pts_norm.nsec);
  764. }
  765. #endif /* CONFIG_NTP_PPS */
  766. static int __init ntp_tick_adj_setup(char *str)
  767. {
  768. ntp_tick_adj = simple_strtol(str, NULL, 0);
  769. ntp_tick_adj <<= NTP_SCALE_SHIFT;
  770. return 1;
  771. }
  772. __setup("ntp_tick_adj=", ntp_tick_adj_setup);
  773. void __init ntp_init(void)
  774. {
  775. ntp_clear();
  776. }