rt.c 45 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012
  1. /*
  2. * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
  3. * policies)
  4. */
  5. #include "sched.h"
  6. #include <linux/slab.h>
  7. int sched_rr_timeslice = RR_TIMESLICE;
  8. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  9. struct rt_bandwidth def_rt_bandwidth;
  10. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  11. {
  12. struct rt_bandwidth *rt_b =
  13. container_of(timer, struct rt_bandwidth, rt_period_timer);
  14. ktime_t now;
  15. int overrun;
  16. int idle = 0;
  17. for (;;) {
  18. now = hrtimer_cb_get_time(timer);
  19. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  20. if (!overrun)
  21. break;
  22. idle = do_sched_rt_period_timer(rt_b, overrun);
  23. }
  24. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  25. }
  26. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  27. {
  28. rt_b->rt_period = ns_to_ktime(period);
  29. rt_b->rt_runtime = runtime;
  30. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  31. hrtimer_init(&rt_b->rt_period_timer,
  32. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  33. rt_b->rt_period_timer.function = sched_rt_period_timer;
  34. }
  35. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  36. {
  37. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  38. return;
  39. if (hrtimer_active(&rt_b->rt_period_timer))
  40. return;
  41. raw_spin_lock(&rt_b->rt_runtime_lock);
  42. start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
  43. raw_spin_unlock(&rt_b->rt_runtime_lock);
  44. }
  45. void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  46. {
  47. struct rt_prio_array *array;
  48. int i;
  49. array = &rt_rq->active;
  50. for (i = 0; i < MAX_RT_PRIO; i++) {
  51. INIT_LIST_HEAD(array->queue + i);
  52. __clear_bit(i, array->bitmap);
  53. }
  54. /* delimiter for bitsearch: */
  55. __set_bit(MAX_RT_PRIO, array->bitmap);
  56. #if defined CONFIG_SMP
  57. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  58. rt_rq->highest_prio.next = MAX_RT_PRIO;
  59. rt_rq->rt_nr_migratory = 0;
  60. rt_rq->overloaded = 0;
  61. plist_head_init(&rt_rq->pushable_tasks);
  62. #endif
  63. rt_rq->rt_time = 0;
  64. rt_rq->rt_throttled = 0;
  65. rt_rq->rt_runtime = 0;
  66. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  67. }
  68. #ifdef CONFIG_RT_GROUP_SCHED
  69. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  70. {
  71. hrtimer_cancel(&rt_b->rt_period_timer);
  72. }
  73. #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
  74. static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
  75. {
  76. #ifdef CONFIG_SCHED_DEBUG
  77. WARN_ON_ONCE(!rt_entity_is_task(rt_se));
  78. #endif
  79. return container_of(rt_se, struct task_struct, rt);
  80. }
  81. static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
  82. {
  83. return rt_rq->rq;
  84. }
  85. static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
  86. {
  87. return rt_se->rt_rq;
  88. }
  89. void free_rt_sched_group(struct task_group *tg)
  90. {
  91. int i;
  92. if (tg->rt_se)
  93. destroy_rt_bandwidth(&tg->rt_bandwidth);
  94. for_each_possible_cpu(i) {
  95. if (tg->rt_rq)
  96. kfree(tg->rt_rq[i]);
  97. if (tg->rt_se)
  98. kfree(tg->rt_se[i]);
  99. }
  100. kfree(tg->rt_rq);
  101. kfree(tg->rt_se);
  102. }
  103. void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  104. struct sched_rt_entity *rt_se, int cpu,
  105. struct sched_rt_entity *parent)
  106. {
  107. struct rq *rq = cpu_rq(cpu);
  108. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  109. rt_rq->rt_nr_boosted = 0;
  110. rt_rq->rq = rq;
  111. rt_rq->tg = tg;
  112. tg->rt_rq[cpu] = rt_rq;
  113. tg->rt_se[cpu] = rt_se;
  114. if (!rt_se)
  115. return;
  116. if (!parent)
  117. rt_se->rt_rq = &rq->rt;
  118. else
  119. rt_se->rt_rq = parent->my_q;
  120. rt_se->my_q = rt_rq;
  121. rt_se->parent = parent;
  122. INIT_LIST_HEAD(&rt_se->run_list);
  123. }
  124. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  125. {
  126. struct rt_rq *rt_rq;
  127. struct sched_rt_entity *rt_se;
  128. int i;
  129. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  130. if (!tg->rt_rq)
  131. goto err;
  132. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  133. if (!tg->rt_se)
  134. goto err;
  135. init_rt_bandwidth(&tg->rt_bandwidth,
  136. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  137. for_each_possible_cpu(i) {
  138. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  139. GFP_KERNEL, cpu_to_node(i));
  140. if (!rt_rq)
  141. goto err;
  142. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  143. GFP_KERNEL, cpu_to_node(i));
  144. if (!rt_se)
  145. goto err_free_rq;
  146. init_rt_rq(rt_rq, cpu_rq(i));
  147. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  148. init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
  149. }
  150. return 1;
  151. err_free_rq:
  152. kfree(rt_rq);
  153. err:
  154. return 0;
  155. }
  156. #else /* CONFIG_RT_GROUP_SCHED */
  157. #define rt_entity_is_task(rt_se) (1)
  158. static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
  159. {
  160. return container_of(rt_se, struct task_struct, rt);
  161. }
  162. static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
  163. {
  164. return container_of(rt_rq, struct rq, rt);
  165. }
  166. static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
  167. {
  168. struct task_struct *p = rt_task_of(rt_se);
  169. struct rq *rq = task_rq(p);
  170. return &rq->rt;
  171. }
  172. void free_rt_sched_group(struct task_group *tg) { }
  173. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  174. {
  175. return 1;
  176. }
  177. #endif /* CONFIG_RT_GROUP_SCHED */
  178. #ifdef CONFIG_SMP
  179. static inline int rt_overloaded(struct rq *rq)
  180. {
  181. return atomic_read(&rq->rd->rto_count);
  182. }
  183. static inline void rt_set_overload(struct rq *rq)
  184. {
  185. if (!rq->online)
  186. return;
  187. cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
  188. /*
  189. * Make sure the mask is visible before we set
  190. * the overload count. That is checked to determine
  191. * if we should look at the mask. It would be a shame
  192. * if we looked at the mask, but the mask was not
  193. * updated yet.
  194. */
  195. wmb();
  196. atomic_inc(&rq->rd->rto_count);
  197. }
  198. static inline void rt_clear_overload(struct rq *rq)
  199. {
  200. if (!rq->online)
  201. return;
  202. /* the order here really doesn't matter */
  203. atomic_dec(&rq->rd->rto_count);
  204. cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
  205. }
  206. static void update_rt_migration(struct rt_rq *rt_rq)
  207. {
  208. if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
  209. if (!rt_rq->overloaded) {
  210. rt_set_overload(rq_of_rt_rq(rt_rq));
  211. rt_rq->overloaded = 1;
  212. }
  213. } else if (rt_rq->overloaded) {
  214. rt_clear_overload(rq_of_rt_rq(rt_rq));
  215. rt_rq->overloaded = 0;
  216. }
  217. }
  218. static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  219. {
  220. struct task_struct *p;
  221. if (!rt_entity_is_task(rt_se))
  222. return;
  223. p = rt_task_of(rt_se);
  224. rt_rq = &rq_of_rt_rq(rt_rq)->rt;
  225. rt_rq->rt_nr_total++;
  226. if (p->nr_cpus_allowed > 1)
  227. rt_rq->rt_nr_migratory++;
  228. update_rt_migration(rt_rq);
  229. }
  230. static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  231. {
  232. struct task_struct *p;
  233. if (!rt_entity_is_task(rt_se))
  234. return;
  235. p = rt_task_of(rt_se);
  236. rt_rq = &rq_of_rt_rq(rt_rq)->rt;
  237. rt_rq->rt_nr_total--;
  238. if (p->nr_cpus_allowed > 1)
  239. rt_rq->rt_nr_migratory--;
  240. update_rt_migration(rt_rq);
  241. }
  242. static inline int has_pushable_tasks(struct rq *rq)
  243. {
  244. return !plist_head_empty(&rq->rt.pushable_tasks);
  245. }
  246. static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
  247. {
  248. plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
  249. plist_node_init(&p->pushable_tasks, p->prio);
  250. plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
  251. /* Update the highest prio pushable task */
  252. if (p->prio < rq->rt.highest_prio.next)
  253. rq->rt.highest_prio.next = p->prio;
  254. }
  255. static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
  256. {
  257. plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
  258. /* Update the new highest prio pushable task */
  259. if (has_pushable_tasks(rq)) {
  260. p = plist_first_entry(&rq->rt.pushable_tasks,
  261. struct task_struct, pushable_tasks);
  262. rq->rt.highest_prio.next = p->prio;
  263. } else
  264. rq->rt.highest_prio.next = MAX_RT_PRIO;
  265. }
  266. #else
  267. static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
  268. {
  269. }
  270. static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
  271. {
  272. }
  273. static inline
  274. void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  275. {
  276. }
  277. static inline
  278. void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  279. {
  280. }
  281. #endif /* CONFIG_SMP */
  282. static inline int on_rt_rq(struct sched_rt_entity *rt_se)
  283. {
  284. return !list_empty(&rt_se->run_list);
  285. }
  286. #ifdef CONFIG_RT_GROUP_SCHED
  287. static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
  288. {
  289. if (!rt_rq->tg)
  290. return RUNTIME_INF;
  291. return rt_rq->rt_runtime;
  292. }
  293. static inline u64 sched_rt_period(struct rt_rq *rt_rq)
  294. {
  295. return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
  296. }
  297. typedef struct task_group *rt_rq_iter_t;
  298. static inline struct task_group *next_task_group(struct task_group *tg)
  299. {
  300. do {
  301. tg = list_entry_rcu(tg->list.next,
  302. typeof(struct task_group), list);
  303. } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
  304. if (&tg->list == &task_groups)
  305. tg = NULL;
  306. return tg;
  307. }
  308. #define for_each_rt_rq(rt_rq, iter, rq) \
  309. for (iter = container_of(&task_groups, typeof(*iter), list); \
  310. (iter = next_task_group(iter)) && \
  311. (rt_rq = iter->rt_rq[cpu_of(rq)]);)
  312. #define for_each_sched_rt_entity(rt_se) \
  313. for (; rt_se; rt_se = rt_se->parent)
  314. static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
  315. {
  316. return rt_se->my_q;
  317. }
  318. static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
  319. static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
  320. static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
  321. {
  322. struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
  323. struct sched_rt_entity *rt_se;
  324. int cpu = cpu_of(rq_of_rt_rq(rt_rq));
  325. rt_se = rt_rq->tg->rt_se[cpu];
  326. if (rt_rq->rt_nr_running) {
  327. if (rt_se && !on_rt_rq(rt_se))
  328. enqueue_rt_entity(rt_se, false);
  329. if (rt_rq->highest_prio.curr < curr->prio)
  330. resched_task(curr);
  331. }
  332. }
  333. static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
  334. {
  335. struct sched_rt_entity *rt_se;
  336. int cpu = cpu_of(rq_of_rt_rq(rt_rq));
  337. rt_se = rt_rq->tg->rt_se[cpu];
  338. if (rt_se && on_rt_rq(rt_se))
  339. dequeue_rt_entity(rt_se);
  340. }
  341. static inline int rt_rq_throttled(struct rt_rq *rt_rq)
  342. {
  343. return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
  344. }
  345. static int rt_se_boosted(struct sched_rt_entity *rt_se)
  346. {
  347. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  348. struct task_struct *p;
  349. if (rt_rq)
  350. return !!rt_rq->rt_nr_boosted;
  351. p = rt_task_of(rt_se);
  352. return p->prio != p->normal_prio;
  353. }
  354. #ifdef CONFIG_SMP
  355. static inline const struct cpumask *sched_rt_period_mask(void)
  356. {
  357. return this_rq()->rd->span;
  358. }
  359. #else
  360. static inline const struct cpumask *sched_rt_period_mask(void)
  361. {
  362. return cpu_online_mask;
  363. }
  364. #endif
  365. static inline
  366. struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
  367. {
  368. return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
  369. }
  370. static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
  371. {
  372. return &rt_rq->tg->rt_bandwidth;
  373. }
  374. #else /* !CONFIG_RT_GROUP_SCHED */
  375. static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
  376. {
  377. return rt_rq->rt_runtime;
  378. }
  379. static inline u64 sched_rt_period(struct rt_rq *rt_rq)
  380. {
  381. return ktime_to_ns(def_rt_bandwidth.rt_period);
  382. }
  383. typedef struct rt_rq *rt_rq_iter_t;
  384. #define for_each_rt_rq(rt_rq, iter, rq) \
  385. for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
  386. #define for_each_sched_rt_entity(rt_se) \
  387. for (; rt_se; rt_se = NULL)
  388. static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
  389. {
  390. return NULL;
  391. }
  392. static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
  393. {
  394. if (rt_rq->rt_nr_running)
  395. resched_task(rq_of_rt_rq(rt_rq)->curr);
  396. }
  397. static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
  398. {
  399. }
  400. static inline int rt_rq_throttled(struct rt_rq *rt_rq)
  401. {
  402. return rt_rq->rt_throttled;
  403. }
  404. static inline const struct cpumask *sched_rt_period_mask(void)
  405. {
  406. return cpu_online_mask;
  407. }
  408. static inline
  409. struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
  410. {
  411. return &cpu_rq(cpu)->rt;
  412. }
  413. static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
  414. {
  415. return &def_rt_bandwidth;
  416. }
  417. #endif /* CONFIG_RT_GROUP_SCHED */
  418. #ifdef CONFIG_SMP
  419. /*
  420. * We ran out of runtime, see if we can borrow some from our neighbours.
  421. */
  422. static int do_balance_runtime(struct rt_rq *rt_rq)
  423. {
  424. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  425. struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
  426. int i, weight, more = 0;
  427. u64 rt_period;
  428. weight = cpumask_weight(rd->span);
  429. raw_spin_lock(&rt_b->rt_runtime_lock);
  430. rt_period = ktime_to_ns(rt_b->rt_period);
  431. for_each_cpu(i, rd->span) {
  432. struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
  433. s64 diff;
  434. if (iter == rt_rq)
  435. continue;
  436. raw_spin_lock(&iter->rt_runtime_lock);
  437. /*
  438. * Either all rqs have inf runtime and there's nothing to steal
  439. * or __disable_runtime() below sets a specific rq to inf to
  440. * indicate its been disabled and disalow stealing.
  441. */
  442. if (iter->rt_runtime == RUNTIME_INF)
  443. goto next;
  444. /*
  445. * From runqueues with spare time, take 1/n part of their
  446. * spare time, but no more than our period.
  447. */
  448. diff = iter->rt_runtime - iter->rt_time;
  449. if (diff > 0) {
  450. diff = div_u64((u64)diff, weight);
  451. if (rt_rq->rt_runtime + diff > rt_period)
  452. diff = rt_period - rt_rq->rt_runtime;
  453. iter->rt_runtime -= diff;
  454. rt_rq->rt_runtime += diff;
  455. more = 1;
  456. if (rt_rq->rt_runtime == rt_period) {
  457. raw_spin_unlock(&iter->rt_runtime_lock);
  458. break;
  459. }
  460. }
  461. next:
  462. raw_spin_unlock(&iter->rt_runtime_lock);
  463. }
  464. raw_spin_unlock(&rt_b->rt_runtime_lock);
  465. return more;
  466. }
  467. /*
  468. * Ensure this RQ takes back all the runtime it lend to its neighbours.
  469. */
  470. static void __disable_runtime(struct rq *rq)
  471. {
  472. struct root_domain *rd = rq->rd;
  473. rt_rq_iter_t iter;
  474. struct rt_rq *rt_rq;
  475. if (unlikely(!scheduler_running))
  476. return;
  477. for_each_rt_rq(rt_rq, iter, rq) {
  478. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  479. s64 want;
  480. int i;
  481. raw_spin_lock(&rt_b->rt_runtime_lock);
  482. raw_spin_lock(&rt_rq->rt_runtime_lock);
  483. /*
  484. * Either we're all inf and nobody needs to borrow, or we're
  485. * already disabled and thus have nothing to do, or we have
  486. * exactly the right amount of runtime to take out.
  487. */
  488. if (rt_rq->rt_runtime == RUNTIME_INF ||
  489. rt_rq->rt_runtime == rt_b->rt_runtime)
  490. goto balanced;
  491. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  492. /*
  493. * Calculate the difference between what we started out with
  494. * and what we current have, that's the amount of runtime
  495. * we lend and now have to reclaim.
  496. */
  497. want = rt_b->rt_runtime - rt_rq->rt_runtime;
  498. /*
  499. * Greedy reclaim, take back as much as we can.
  500. */
  501. for_each_cpu(i, rd->span) {
  502. struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
  503. s64 diff;
  504. /*
  505. * Can't reclaim from ourselves or disabled runqueues.
  506. */
  507. if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
  508. continue;
  509. raw_spin_lock(&iter->rt_runtime_lock);
  510. if (want > 0) {
  511. diff = min_t(s64, iter->rt_runtime, want);
  512. iter->rt_runtime -= diff;
  513. want -= diff;
  514. } else {
  515. iter->rt_runtime -= want;
  516. want -= want;
  517. }
  518. raw_spin_unlock(&iter->rt_runtime_lock);
  519. if (!want)
  520. break;
  521. }
  522. raw_spin_lock(&rt_rq->rt_runtime_lock);
  523. /*
  524. * We cannot be left wanting - that would mean some runtime
  525. * leaked out of the system.
  526. */
  527. BUG_ON(want);
  528. balanced:
  529. /*
  530. * Disable all the borrow logic by pretending we have inf
  531. * runtime - in which case borrowing doesn't make sense.
  532. */
  533. rt_rq->rt_runtime = RUNTIME_INF;
  534. rt_rq->rt_throttled = 0;
  535. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  536. raw_spin_unlock(&rt_b->rt_runtime_lock);
  537. }
  538. }
  539. static void __enable_runtime(struct rq *rq)
  540. {
  541. rt_rq_iter_t iter;
  542. struct rt_rq *rt_rq;
  543. if (unlikely(!scheduler_running))
  544. return;
  545. /*
  546. * Reset each runqueue's bandwidth settings
  547. */
  548. for_each_rt_rq(rt_rq, iter, rq) {
  549. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  550. raw_spin_lock(&rt_b->rt_runtime_lock);
  551. raw_spin_lock(&rt_rq->rt_runtime_lock);
  552. rt_rq->rt_runtime = rt_b->rt_runtime;
  553. rt_rq->rt_time = 0;
  554. rt_rq->rt_throttled = 0;
  555. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  556. raw_spin_unlock(&rt_b->rt_runtime_lock);
  557. }
  558. }
  559. static int balance_runtime(struct rt_rq *rt_rq)
  560. {
  561. int more = 0;
  562. if (!sched_feat(RT_RUNTIME_SHARE))
  563. return more;
  564. if (rt_rq->rt_time > rt_rq->rt_runtime) {
  565. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  566. more = do_balance_runtime(rt_rq);
  567. raw_spin_lock(&rt_rq->rt_runtime_lock);
  568. }
  569. return more;
  570. }
  571. #else /* !CONFIG_SMP */
  572. static inline int balance_runtime(struct rt_rq *rt_rq)
  573. {
  574. return 0;
  575. }
  576. #endif /* CONFIG_SMP */
  577. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
  578. {
  579. int i, idle = 1, throttled = 0;
  580. const struct cpumask *span;
  581. span = sched_rt_period_mask();
  582. #ifdef CONFIG_RT_GROUP_SCHED
  583. /*
  584. * FIXME: isolated CPUs should really leave the root task group,
  585. * whether they are isolcpus or were isolated via cpusets, lest
  586. * the timer run on a CPU which does not service all runqueues,
  587. * potentially leaving other CPUs indefinitely throttled. If
  588. * isolation is really required, the user will turn the throttle
  589. * off to kill the perturbations it causes anyway. Meanwhile,
  590. * this maintains functionality for boot and/or troubleshooting.
  591. */
  592. if (rt_b == &root_task_group.rt_bandwidth)
  593. span = cpu_online_mask;
  594. #endif
  595. for_each_cpu(i, span) {
  596. int enqueue = 0;
  597. struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
  598. struct rq *rq = rq_of_rt_rq(rt_rq);
  599. raw_spin_lock(&rq->lock);
  600. if (rt_rq->rt_time) {
  601. u64 runtime;
  602. raw_spin_lock(&rt_rq->rt_runtime_lock);
  603. if (rt_rq->rt_throttled)
  604. balance_runtime(rt_rq);
  605. runtime = rt_rq->rt_runtime;
  606. rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
  607. if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
  608. rt_rq->rt_throttled = 0;
  609. enqueue = 1;
  610. /*
  611. * Force a clock update if the CPU was idle,
  612. * lest wakeup -> unthrottle time accumulate.
  613. */
  614. if (rt_rq->rt_nr_running && rq->curr == rq->idle)
  615. rq->skip_clock_update = -1;
  616. }
  617. if (rt_rq->rt_time || rt_rq->rt_nr_running)
  618. idle = 0;
  619. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  620. } else if (rt_rq->rt_nr_running) {
  621. idle = 0;
  622. if (!rt_rq_throttled(rt_rq))
  623. enqueue = 1;
  624. }
  625. if (rt_rq->rt_throttled)
  626. throttled = 1;
  627. if (enqueue)
  628. sched_rt_rq_enqueue(rt_rq);
  629. raw_spin_unlock(&rq->lock);
  630. }
  631. if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
  632. return 1;
  633. return idle;
  634. }
  635. static inline int rt_se_prio(struct sched_rt_entity *rt_se)
  636. {
  637. #ifdef CONFIG_RT_GROUP_SCHED
  638. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  639. if (rt_rq)
  640. return rt_rq->highest_prio.curr;
  641. #endif
  642. return rt_task_of(rt_se)->prio;
  643. }
  644. static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
  645. {
  646. u64 runtime = sched_rt_runtime(rt_rq);
  647. if (rt_rq->rt_throttled)
  648. return rt_rq_throttled(rt_rq);
  649. if (runtime >= sched_rt_period(rt_rq))
  650. return 0;
  651. balance_runtime(rt_rq);
  652. runtime = sched_rt_runtime(rt_rq);
  653. if (runtime == RUNTIME_INF)
  654. return 0;
  655. if (rt_rq->rt_time > runtime) {
  656. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  657. /*
  658. * Don't actually throttle groups that have no runtime assigned
  659. * but accrue some time due to boosting.
  660. */
  661. if (likely(rt_b->rt_runtime)) {
  662. static bool once = false;
  663. rt_rq->rt_throttled = 1;
  664. if (!once) {
  665. once = true;
  666. printk_sched("sched: RT throttling activated\n");
  667. }
  668. } else {
  669. /*
  670. * In case we did anyway, make it go away,
  671. * replenishment is a joke, since it will replenish us
  672. * with exactly 0 ns.
  673. */
  674. rt_rq->rt_time = 0;
  675. }
  676. if (rt_rq_throttled(rt_rq)) {
  677. sched_rt_rq_dequeue(rt_rq);
  678. return 1;
  679. }
  680. }
  681. return 0;
  682. }
  683. /*
  684. * Update the current task's runtime statistics. Skip current tasks that
  685. * are not in our scheduling class.
  686. */
  687. static void update_curr_rt(struct rq *rq)
  688. {
  689. struct task_struct *curr = rq->curr;
  690. struct sched_rt_entity *rt_se = &curr->rt;
  691. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  692. u64 delta_exec;
  693. if (curr->sched_class != &rt_sched_class)
  694. return;
  695. delta_exec = rq_clock_task(rq) - curr->se.exec_start;
  696. if (unlikely((s64)delta_exec <= 0))
  697. return;
  698. schedstat_set(curr->se.statistics.exec_max,
  699. max(curr->se.statistics.exec_max, delta_exec));
  700. curr->se.sum_exec_runtime += delta_exec;
  701. account_group_exec_runtime(curr, delta_exec);
  702. curr->se.exec_start = rq_clock_task(rq);
  703. cpuacct_charge(curr, delta_exec);
  704. sched_rt_avg_update(rq, delta_exec);
  705. if (!rt_bandwidth_enabled())
  706. return;
  707. for_each_sched_rt_entity(rt_se) {
  708. rt_rq = rt_rq_of_se(rt_se);
  709. if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
  710. raw_spin_lock(&rt_rq->rt_runtime_lock);
  711. rt_rq->rt_time += delta_exec;
  712. if (sched_rt_runtime_exceeded(rt_rq))
  713. resched_task(curr);
  714. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  715. }
  716. }
  717. }
  718. #if defined CONFIG_SMP
  719. static void
  720. inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
  721. {
  722. struct rq *rq = rq_of_rt_rq(rt_rq);
  723. if (rq->online && prio < prev_prio)
  724. cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
  725. }
  726. static void
  727. dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
  728. {
  729. struct rq *rq = rq_of_rt_rq(rt_rq);
  730. if (rq->online && rt_rq->highest_prio.curr != prev_prio)
  731. cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
  732. }
  733. #else /* CONFIG_SMP */
  734. static inline
  735. void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
  736. static inline
  737. void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
  738. #endif /* CONFIG_SMP */
  739. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  740. static void
  741. inc_rt_prio(struct rt_rq *rt_rq, int prio)
  742. {
  743. int prev_prio = rt_rq->highest_prio.curr;
  744. if (prio < prev_prio)
  745. rt_rq->highest_prio.curr = prio;
  746. inc_rt_prio_smp(rt_rq, prio, prev_prio);
  747. }
  748. static void
  749. dec_rt_prio(struct rt_rq *rt_rq, int prio)
  750. {
  751. int prev_prio = rt_rq->highest_prio.curr;
  752. if (rt_rq->rt_nr_running) {
  753. WARN_ON(prio < prev_prio);
  754. /*
  755. * This may have been our highest task, and therefore
  756. * we may have some recomputation to do
  757. */
  758. if (prio == prev_prio) {
  759. struct rt_prio_array *array = &rt_rq->active;
  760. rt_rq->highest_prio.curr =
  761. sched_find_first_bit(array->bitmap);
  762. }
  763. } else
  764. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  765. dec_rt_prio_smp(rt_rq, prio, prev_prio);
  766. }
  767. #else
  768. static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
  769. static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
  770. #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
  771. #ifdef CONFIG_RT_GROUP_SCHED
  772. static void
  773. inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  774. {
  775. if (rt_se_boosted(rt_se))
  776. rt_rq->rt_nr_boosted++;
  777. if (rt_rq->tg)
  778. start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
  779. }
  780. static void
  781. dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  782. {
  783. if (rt_se_boosted(rt_se))
  784. rt_rq->rt_nr_boosted--;
  785. WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
  786. }
  787. #else /* CONFIG_RT_GROUP_SCHED */
  788. static void
  789. inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  790. {
  791. start_rt_bandwidth(&def_rt_bandwidth);
  792. }
  793. static inline
  794. void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
  795. #endif /* CONFIG_RT_GROUP_SCHED */
  796. static inline
  797. void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  798. {
  799. int prio = rt_se_prio(rt_se);
  800. WARN_ON(!rt_prio(prio));
  801. rt_rq->rt_nr_running++;
  802. inc_rt_prio(rt_rq, prio);
  803. inc_rt_migration(rt_se, rt_rq);
  804. inc_rt_group(rt_se, rt_rq);
  805. }
  806. static inline
  807. void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  808. {
  809. WARN_ON(!rt_prio(rt_se_prio(rt_se)));
  810. WARN_ON(!rt_rq->rt_nr_running);
  811. rt_rq->rt_nr_running--;
  812. dec_rt_prio(rt_rq, rt_se_prio(rt_se));
  813. dec_rt_migration(rt_se, rt_rq);
  814. dec_rt_group(rt_se, rt_rq);
  815. }
  816. static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
  817. {
  818. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  819. struct rt_prio_array *array = &rt_rq->active;
  820. struct rt_rq *group_rq = group_rt_rq(rt_se);
  821. struct list_head *queue = array->queue + rt_se_prio(rt_se);
  822. /*
  823. * Don't enqueue the group if its throttled, or when empty.
  824. * The latter is a consequence of the former when a child group
  825. * get throttled and the current group doesn't have any other
  826. * active members.
  827. */
  828. if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
  829. return;
  830. if (head)
  831. list_add(&rt_se->run_list, queue);
  832. else
  833. list_add_tail(&rt_se->run_list, queue);
  834. __set_bit(rt_se_prio(rt_se), array->bitmap);
  835. inc_rt_tasks(rt_se, rt_rq);
  836. }
  837. static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
  838. {
  839. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  840. struct rt_prio_array *array = &rt_rq->active;
  841. list_del_init(&rt_se->run_list);
  842. if (list_empty(array->queue + rt_se_prio(rt_se)))
  843. __clear_bit(rt_se_prio(rt_se), array->bitmap);
  844. dec_rt_tasks(rt_se, rt_rq);
  845. }
  846. /*
  847. * Because the prio of an upper entry depends on the lower
  848. * entries, we must remove entries top - down.
  849. */
  850. static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
  851. {
  852. struct sched_rt_entity *back = NULL;
  853. for_each_sched_rt_entity(rt_se) {
  854. rt_se->back = back;
  855. back = rt_se;
  856. }
  857. for (rt_se = back; rt_se; rt_se = rt_se->back) {
  858. if (on_rt_rq(rt_se))
  859. __dequeue_rt_entity(rt_se);
  860. }
  861. }
  862. static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
  863. {
  864. dequeue_rt_stack(rt_se);
  865. for_each_sched_rt_entity(rt_se)
  866. __enqueue_rt_entity(rt_se, head);
  867. }
  868. static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
  869. {
  870. dequeue_rt_stack(rt_se);
  871. for_each_sched_rt_entity(rt_se) {
  872. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  873. if (rt_rq && rt_rq->rt_nr_running)
  874. __enqueue_rt_entity(rt_se, false);
  875. }
  876. }
  877. /*
  878. * Adding/removing a task to/from a priority array:
  879. */
  880. static void
  881. enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
  882. {
  883. struct sched_rt_entity *rt_se = &p->rt;
  884. if (flags & ENQUEUE_WAKEUP)
  885. rt_se->timeout = 0;
  886. enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
  887. if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
  888. enqueue_pushable_task(rq, p);
  889. inc_nr_running(rq);
  890. }
  891. static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
  892. {
  893. struct sched_rt_entity *rt_se = &p->rt;
  894. update_curr_rt(rq);
  895. dequeue_rt_entity(rt_se);
  896. dequeue_pushable_task(rq, p);
  897. dec_nr_running(rq);
  898. }
  899. /*
  900. * Put task to the head or the end of the run list without the overhead of
  901. * dequeue followed by enqueue.
  902. */
  903. static void
  904. requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
  905. {
  906. if (on_rt_rq(rt_se)) {
  907. struct rt_prio_array *array = &rt_rq->active;
  908. struct list_head *queue = array->queue + rt_se_prio(rt_se);
  909. if (head)
  910. list_move(&rt_se->run_list, queue);
  911. else
  912. list_move_tail(&rt_se->run_list, queue);
  913. }
  914. }
  915. static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
  916. {
  917. struct sched_rt_entity *rt_se = &p->rt;
  918. struct rt_rq *rt_rq;
  919. for_each_sched_rt_entity(rt_se) {
  920. rt_rq = rt_rq_of_se(rt_se);
  921. requeue_rt_entity(rt_rq, rt_se, head);
  922. }
  923. }
  924. static void yield_task_rt(struct rq *rq)
  925. {
  926. requeue_task_rt(rq, rq->curr, 0);
  927. }
  928. #ifdef CONFIG_SMP
  929. static int find_lowest_rq(struct task_struct *task);
  930. static int
  931. select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
  932. {
  933. struct task_struct *curr;
  934. struct rq *rq;
  935. int cpu;
  936. cpu = task_cpu(p);
  937. if (p->nr_cpus_allowed == 1)
  938. goto out;
  939. /* For anything but wake ups, just return the task_cpu */
  940. if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
  941. goto out;
  942. rq = cpu_rq(cpu);
  943. rcu_read_lock();
  944. curr = ACCESS_ONCE(rq->curr); /* unlocked access */
  945. /*
  946. * If the current task on @p's runqueue is an RT task, then
  947. * try to see if we can wake this RT task up on another
  948. * runqueue. Otherwise simply start this RT task
  949. * on its current runqueue.
  950. *
  951. * We want to avoid overloading runqueues. If the woken
  952. * task is a higher priority, then it will stay on this CPU
  953. * and the lower prio task should be moved to another CPU.
  954. * Even though this will probably make the lower prio task
  955. * lose its cache, we do not want to bounce a higher task
  956. * around just because it gave up its CPU, perhaps for a
  957. * lock?
  958. *
  959. * For equal prio tasks, we just let the scheduler sort it out.
  960. *
  961. * Otherwise, just let it ride on the affined RQ and the
  962. * post-schedule router will push the preempted task away
  963. *
  964. * This test is optimistic, if we get it wrong the load-balancer
  965. * will have to sort it out.
  966. */
  967. if (curr && unlikely(rt_task(curr)) &&
  968. (curr->nr_cpus_allowed < 2 ||
  969. curr->prio <= p->prio) &&
  970. (p->nr_cpus_allowed > 1)) {
  971. int target = find_lowest_rq(p);
  972. if (target != -1)
  973. cpu = target;
  974. }
  975. rcu_read_unlock();
  976. out:
  977. return cpu;
  978. }
  979. static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
  980. {
  981. if (rq->curr->nr_cpus_allowed == 1)
  982. return;
  983. if (p->nr_cpus_allowed != 1
  984. && cpupri_find(&rq->rd->cpupri, p, NULL))
  985. return;
  986. if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
  987. return;
  988. /*
  989. * There appears to be other cpus that can accept
  990. * current and none to run 'p', so lets reschedule
  991. * to try and push current away:
  992. */
  993. requeue_task_rt(rq, p, 1);
  994. resched_task(rq->curr);
  995. }
  996. #endif /* CONFIG_SMP */
  997. /*
  998. * Preempt the current task with a newly woken task if needed:
  999. */
  1000. static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
  1001. {
  1002. if (p->prio < rq->curr->prio) {
  1003. resched_task(rq->curr);
  1004. return;
  1005. }
  1006. #ifdef CONFIG_SMP
  1007. /*
  1008. * If:
  1009. *
  1010. * - the newly woken task is of equal priority to the current task
  1011. * - the newly woken task is non-migratable while current is migratable
  1012. * - current will be preempted on the next reschedule
  1013. *
  1014. * we should check to see if current can readily move to a different
  1015. * cpu. If so, we will reschedule to allow the push logic to try
  1016. * to move current somewhere else, making room for our non-migratable
  1017. * task.
  1018. */
  1019. if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
  1020. check_preempt_equal_prio(rq, p);
  1021. #endif
  1022. }
  1023. static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
  1024. struct rt_rq *rt_rq)
  1025. {
  1026. struct rt_prio_array *array = &rt_rq->active;
  1027. struct sched_rt_entity *next = NULL;
  1028. struct list_head *queue;
  1029. int idx;
  1030. idx = sched_find_first_bit(array->bitmap);
  1031. BUG_ON(idx >= MAX_RT_PRIO);
  1032. queue = array->queue + idx;
  1033. next = list_entry(queue->next, struct sched_rt_entity, run_list);
  1034. return next;
  1035. }
  1036. static struct task_struct *_pick_next_task_rt(struct rq *rq)
  1037. {
  1038. struct sched_rt_entity *rt_se;
  1039. struct task_struct *p;
  1040. struct rt_rq *rt_rq;
  1041. rt_rq = &rq->rt;
  1042. if (!rt_rq->rt_nr_running)
  1043. return NULL;
  1044. if (rt_rq_throttled(rt_rq))
  1045. return NULL;
  1046. do {
  1047. rt_se = pick_next_rt_entity(rq, rt_rq);
  1048. BUG_ON(!rt_se);
  1049. rt_rq = group_rt_rq(rt_se);
  1050. } while (rt_rq);
  1051. p = rt_task_of(rt_se);
  1052. p->se.exec_start = rq_clock_task(rq);
  1053. return p;
  1054. }
  1055. static struct task_struct *pick_next_task_rt(struct rq *rq)
  1056. {
  1057. struct task_struct *p = _pick_next_task_rt(rq);
  1058. /* The running task is never eligible for pushing */
  1059. if (p)
  1060. dequeue_pushable_task(rq, p);
  1061. #ifdef CONFIG_SMP
  1062. /*
  1063. * We detect this state here so that we can avoid taking the RQ
  1064. * lock again later if there is no need to push
  1065. */
  1066. rq->post_schedule = has_pushable_tasks(rq);
  1067. #endif
  1068. return p;
  1069. }
  1070. static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
  1071. {
  1072. update_curr_rt(rq);
  1073. /*
  1074. * The previous task needs to be made eligible for pushing
  1075. * if it is still active
  1076. */
  1077. if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
  1078. enqueue_pushable_task(rq, p);
  1079. }
  1080. #ifdef CONFIG_SMP
  1081. /* Only try algorithms three times */
  1082. #define RT_MAX_TRIES 3
  1083. static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
  1084. {
  1085. if (!task_running(rq, p) &&
  1086. cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
  1087. return 1;
  1088. return 0;
  1089. }
  1090. /*
  1091. * Return the highest pushable rq's task, which is suitable to be executed
  1092. * on the cpu, NULL otherwise
  1093. */
  1094. static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
  1095. {
  1096. struct plist_head *head = &rq->rt.pushable_tasks;
  1097. struct task_struct *p;
  1098. if (!has_pushable_tasks(rq))
  1099. return NULL;
  1100. plist_for_each_entry(p, head, pushable_tasks) {
  1101. if (pick_rt_task(rq, p, cpu))
  1102. return p;
  1103. }
  1104. return NULL;
  1105. }
  1106. static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
  1107. static int find_lowest_rq(struct task_struct *task)
  1108. {
  1109. struct sched_domain *sd;
  1110. struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
  1111. int this_cpu = smp_processor_id();
  1112. int cpu = task_cpu(task);
  1113. /* Make sure the mask is initialized first */
  1114. if (unlikely(!lowest_mask))
  1115. return -1;
  1116. if (task->nr_cpus_allowed == 1)
  1117. return -1; /* No other targets possible */
  1118. if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
  1119. return -1; /* No targets found */
  1120. /*
  1121. * At this point we have built a mask of cpus representing the
  1122. * lowest priority tasks in the system. Now we want to elect
  1123. * the best one based on our affinity and topology.
  1124. *
  1125. * We prioritize the last cpu that the task executed on since
  1126. * it is most likely cache-hot in that location.
  1127. */
  1128. if (cpumask_test_cpu(cpu, lowest_mask))
  1129. return cpu;
  1130. /*
  1131. * Otherwise, we consult the sched_domains span maps to figure
  1132. * out which cpu is logically closest to our hot cache data.
  1133. */
  1134. if (!cpumask_test_cpu(this_cpu, lowest_mask))
  1135. this_cpu = -1; /* Skip this_cpu opt if not among lowest */
  1136. rcu_read_lock();
  1137. for_each_domain(cpu, sd) {
  1138. if (sd->flags & SD_WAKE_AFFINE) {
  1139. int best_cpu;
  1140. /*
  1141. * "this_cpu" is cheaper to preempt than a
  1142. * remote processor.
  1143. */
  1144. if (this_cpu != -1 &&
  1145. cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
  1146. rcu_read_unlock();
  1147. return this_cpu;
  1148. }
  1149. best_cpu = cpumask_first_and(lowest_mask,
  1150. sched_domain_span(sd));
  1151. if (best_cpu < nr_cpu_ids) {
  1152. rcu_read_unlock();
  1153. return best_cpu;
  1154. }
  1155. }
  1156. }
  1157. rcu_read_unlock();
  1158. /*
  1159. * And finally, if there were no matches within the domains
  1160. * just give the caller *something* to work with from the compatible
  1161. * locations.
  1162. */
  1163. if (this_cpu != -1)
  1164. return this_cpu;
  1165. cpu = cpumask_any(lowest_mask);
  1166. if (cpu < nr_cpu_ids)
  1167. return cpu;
  1168. return -1;
  1169. }
  1170. /* Will lock the rq it finds */
  1171. static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
  1172. {
  1173. struct rq *lowest_rq = NULL;
  1174. int tries;
  1175. int cpu;
  1176. for (tries = 0; tries < RT_MAX_TRIES; tries++) {
  1177. cpu = find_lowest_rq(task);
  1178. if ((cpu == -1) || (cpu == rq->cpu))
  1179. break;
  1180. lowest_rq = cpu_rq(cpu);
  1181. /* if the prio of this runqueue changed, try again */
  1182. if (double_lock_balance(rq, lowest_rq)) {
  1183. /*
  1184. * We had to unlock the run queue. In
  1185. * the mean time, task could have
  1186. * migrated already or had its affinity changed.
  1187. * Also make sure that it wasn't scheduled on its rq.
  1188. */
  1189. if (unlikely(task_rq(task) != rq ||
  1190. !cpumask_test_cpu(lowest_rq->cpu,
  1191. tsk_cpus_allowed(task)) ||
  1192. task_running(rq, task) ||
  1193. !task->on_rq)) {
  1194. double_unlock_balance(rq, lowest_rq);
  1195. lowest_rq = NULL;
  1196. break;
  1197. }
  1198. }
  1199. /* If this rq is still suitable use it. */
  1200. if (lowest_rq->rt.highest_prio.curr > task->prio)
  1201. break;
  1202. /* try again */
  1203. double_unlock_balance(rq, lowest_rq);
  1204. lowest_rq = NULL;
  1205. }
  1206. return lowest_rq;
  1207. }
  1208. static struct task_struct *pick_next_pushable_task(struct rq *rq)
  1209. {
  1210. struct task_struct *p;
  1211. if (!has_pushable_tasks(rq))
  1212. return NULL;
  1213. p = plist_first_entry(&rq->rt.pushable_tasks,
  1214. struct task_struct, pushable_tasks);
  1215. BUG_ON(rq->cpu != task_cpu(p));
  1216. BUG_ON(task_current(rq, p));
  1217. BUG_ON(p->nr_cpus_allowed <= 1);
  1218. BUG_ON(!p->on_rq);
  1219. BUG_ON(!rt_task(p));
  1220. return p;
  1221. }
  1222. /*
  1223. * If the current CPU has more than one RT task, see if the non
  1224. * running task can migrate over to a CPU that is running a task
  1225. * of lesser priority.
  1226. */
  1227. static int push_rt_task(struct rq *rq)
  1228. {
  1229. struct task_struct *next_task;
  1230. struct rq *lowest_rq;
  1231. int ret = 0;
  1232. if (!rq->rt.overloaded)
  1233. return 0;
  1234. next_task = pick_next_pushable_task(rq);
  1235. if (!next_task)
  1236. return 0;
  1237. retry:
  1238. if (unlikely(next_task == rq->curr)) {
  1239. WARN_ON(1);
  1240. return 0;
  1241. }
  1242. /*
  1243. * It's possible that the next_task slipped in of
  1244. * higher priority than current. If that's the case
  1245. * just reschedule current.
  1246. */
  1247. if (unlikely(next_task->prio < rq->curr->prio)) {
  1248. resched_task(rq->curr);
  1249. return 0;
  1250. }
  1251. /* We might release rq lock */
  1252. get_task_struct(next_task);
  1253. /* find_lock_lowest_rq locks the rq if found */
  1254. lowest_rq = find_lock_lowest_rq(next_task, rq);
  1255. if (!lowest_rq) {
  1256. struct task_struct *task;
  1257. /*
  1258. * find_lock_lowest_rq releases rq->lock
  1259. * so it is possible that next_task has migrated.
  1260. *
  1261. * We need to make sure that the task is still on the same
  1262. * run-queue and is also still the next task eligible for
  1263. * pushing.
  1264. */
  1265. task = pick_next_pushable_task(rq);
  1266. if (task_cpu(next_task) == rq->cpu && task == next_task) {
  1267. /*
  1268. * The task hasn't migrated, and is still the next
  1269. * eligible task, but we failed to find a run-queue
  1270. * to push it to. Do not retry in this case, since
  1271. * other cpus will pull from us when ready.
  1272. */
  1273. goto out;
  1274. }
  1275. if (!task)
  1276. /* No more tasks, just exit */
  1277. goto out;
  1278. /*
  1279. * Something has shifted, try again.
  1280. */
  1281. put_task_struct(next_task);
  1282. next_task = task;
  1283. goto retry;
  1284. }
  1285. deactivate_task(rq, next_task, 0);
  1286. set_task_cpu(next_task, lowest_rq->cpu);
  1287. activate_task(lowest_rq, next_task, 0);
  1288. ret = 1;
  1289. resched_task(lowest_rq->curr);
  1290. double_unlock_balance(rq, lowest_rq);
  1291. out:
  1292. put_task_struct(next_task);
  1293. return ret;
  1294. }
  1295. static void push_rt_tasks(struct rq *rq)
  1296. {
  1297. /* push_rt_task will return true if it moved an RT */
  1298. while (push_rt_task(rq))
  1299. ;
  1300. }
  1301. static int pull_rt_task(struct rq *this_rq)
  1302. {
  1303. int this_cpu = this_rq->cpu, ret = 0, cpu;
  1304. struct task_struct *p;
  1305. struct rq *src_rq;
  1306. if (likely(!rt_overloaded(this_rq)))
  1307. return 0;
  1308. for_each_cpu(cpu, this_rq->rd->rto_mask) {
  1309. if (this_cpu == cpu)
  1310. continue;
  1311. src_rq = cpu_rq(cpu);
  1312. /*
  1313. * Don't bother taking the src_rq->lock if the next highest
  1314. * task is known to be lower-priority than our current task.
  1315. * This may look racy, but if this value is about to go
  1316. * logically higher, the src_rq will push this task away.
  1317. * And if its going logically lower, we do not care
  1318. */
  1319. if (src_rq->rt.highest_prio.next >=
  1320. this_rq->rt.highest_prio.curr)
  1321. continue;
  1322. /*
  1323. * We can potentially drop this_rq's lock in
  1324. * double_lock_balance, and another CPU could
  1325. * alter this_rq
  1326. */
  1327. double_lock_balance(this_rq, src_rq);
  1328. /*
  1329. * We can pull only a task, which is pushable
  1330. * on its rq, and no others.
  1331. */
  1332. p = pick_highest_pushable_task(src_rq, this_cpu);
  1333. /*
  1334. * Do we have an RT task that preempts
  1335. * the to-be-scheduled task?
  1336. */
  1337. if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
  1338. WARN_ON(p == src_rq->curr);
  1339. WARN_ON(!p->on_rq);
  1340. /*
  1341. * There's a chance that p is higher in priority
  1342. * than what's currently running on its cpu.
  1343. * This is just that p is wakeing up and hasn't
  1344. * had a chance to schedule. We only pull
  1345. * p if it is lower in priority than the
  1346. * current task on the run queue
  1347. */
  1348. if (p->prio < src_rq->curr->prio)
  1349. goto skip;
  1350. ret = 1;
  1351. deactivate_task(src_rq, p, 0);
  1352. set_task_cpu(p, this_cpu);
  1353. activate_task(this_rq, p, 0);
  1354. /*
  1355. * We continue with the search, just in
  1356. * case there's an even higher prio task
  1357. * in another runqueue. (low likelihood
  1358. * but possible)
  1359. */
  1360. }
  1361. skip:
  1362. double_unlock_balance(this_rq, src_rq);
  1363. }
  1364. return ret;
  1365. }
  1366. static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
  1367. {
  1368. /* Try to pull RT tasks here if we lower this rq's prio */
  1369. if (rq->rt.highest_prio.curr > prev->prio)
  1370. pull_rt_task(rq);
  1371. }
  1372. static void post_schedule_rt(struct rq *rq)
  1373. {
  1374. push_rt_tasks(rq);
  1375. }
  1376. /*
  1377. * If we are not running and we are not going to reschedule soon, we should
  1378. * try to push tasks away now
  1379. */
  1380. static void task_woken_rt(struct rq *rq, struct task_struct *p)
  1381. {
  1382. if (!task_running(rq, p) &&
  1383. !test_tsk_need_resched(rq->curr) &&
  1384. has_pushable_tasks(rq) &&
  1385. p->nr_cpus_allowed > 1 &&
  1386. rt_task(rq->curr) &&
  1387. (rq->curr->nr_cpus_allowed < 2 ||
  1388. rq->curr->prio <= p->prio))
  1389. push_rt_tasks(rq);
  1390. }
  1391. static void set_cpus_allowed_rt(struct task_struct *p,
  1392. const struct cpumask *new_mask)
  1393. {
  1394. struct rq *rq;
  1395. int weight;
  1396. BUG_ON(!rt_task(p));
  1397. if (!p->on_rq)
  1398. return;
  1399. weight = cpumask_weight(new_mask);
  1400. /*
  1401. * Only update if the process changes its state from whether it
  1402. * can migrate or not.
  1403. */
  1404. if ((p->nr_cpus_allowed > 1) == (weight > 1))
  1405. return;
  1406. rq = task_rq(p);
  1407. /*
  1408. * The process used to be able to migrate OR it can now migrate
  1409. */
  1410. if (weight <= 1) {
  1411. if (!task_current(rq, p))
  1412. dequeue_pushable_task(rq, p);
  1413. BUG_ON(!rq->rt.rt_nr_migratory);
  1414. rq->rt.rt_nr_migratory--;
  1415. } else {
  1416. if (!task_current(rq, p))
  1417. enqueue_pushable_task(rq, p);
  1418. rq->rt.rt_nr_migratory++;
  1419. }
  1420. update_rt_migration(&rq->rt);
  1421. }
  1422. /* Assumes rq->lock is held */
  1423. static void rq_online_rt(struct rq *rq)
  1424. {
  1425. if (rq->rt.overloaded)
  1426. rt_set_overload(rq);
  1427. __enable_runtime(rq);
  1428. cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
  1429. }
  1430. /* Assumes rq->lock is held */
  1431. static void rq_offline_rt(struct rq *rq)
  1432. {
  1433. if (rq->rt.overloaded)
  1434. rt_clear_overload(rq);
  1435. __disable_runtime(rq);
  1436. cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
  1437. }
  1438. /*
  1439. * When switch from the rt queue, we bring ourselves to a position
  1440. * that we might want to pull RT tasks from other runqueues.
  1441. */
  1442. static void switched_from_rt(struct rq *rq, struct task_struct *p)
  1443. {
  1444. /*
  1445. * If there are other RT tasks then we will reschedule
  1446. * and the scheduling of the other RT tasks will handle
  1447. * the balancing. But if we are the last RT task
  1448. * we may need to handle the pulling of RT tasks
  1449. * now.
  1450. */
  1451. if (!p->on_rq || rq->rt.rt_nr_running)
  1452. return;
  1453. if (pull_rt_task(rq))
  1454. resched_task(rq->curr);
  1455. }
  1456. void init_sched_rt_class(void)
  1457. {
  1458. unsigned int i;
  1459. for_each_possible_cpu(i) {
  1460. zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
  1461. GFP_KERNEL, cpu_to_node(i));
  1462. }
  1463. }
  1464. #endif /* CONFIG_SMP */
  1465. /*
  1466. * When switching a task to RT, we may overload the runqueue
  1467. * with RT tasks. In this case we try to push them off to
  1468. * other runqueues.
  1469. */
  1470. static void switched_to_rt(struct rq *rq, struct task_struct *p)
  1471. {
  1472. int check_resched = 1;
  1473. /*
  1474. * If we are already running, then there's nothing
  1475. * that needs to be done. But if we are not running
  1476. * we may need to preempt the current running task.
  1477. * If that current running task is also an RT task
  1478. * then see if we can move to another run queue.
  1479. */
  1480. if (p->on_rq && rq->curr != p) {
  1481. #ifdef CONFIG_SMP
  1482. if (rq->rt.overloaded && push_rt_task(rq) &&
  1483. /* Don't resched if we changed runqueues */
  1484. rq != task_rq(p))
  1485. check_resched = 0;
  1486. #endif /* CONFIG_SMP */
  1487. if (check_resched && p->prio < rq->curr->prio)
  1488. resched_task(rq->curr);
  1489. }
  1490. }
  1491. /*
  1492. * Priority of the task has changed. This may cause
  1493. * us to initiate a push or pull.
  1494. */
  1495. static void
  1496. prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
  1497. {
  1498. if (!p->on_rq)
  1499. return;
  1500. if (rq->curr == p) {
  1501. #ifdef CONFIG_SMP
  1502. /*
  1503. * If our priority decreases while running, we
  1504. * may need to pull tasks to this runqueue.
  1505. */
  1506. if (oldprio < p->prio)
  1507. pull_rt_task(rq);
  1508. /*
  1509. * If there's a higher priority task waiting to run
  1510. * then reschedule. Note, the above pull_rt_task
  1511. * can release the rq lock and p could migrate.
  1512. * Only reschedule if p is still on the same runqueue.
  1513. */
  1514. if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
  1515. resched_task(p);
  1516. #else
  1517. /* For UP simply resched on drop of prio */
  1518. if (oldprio < p->prio)
  1519. resched_task(p);
  1520. #endif /* CONFIG_SMP */
  1521. } else {
  1522. /*
  1523. * This task is not running, but if it is
  1524. * greater than the current running task
  1525. * then reschedule.
  1526. */
  1527. if (p->prio < rq->curr->prio)
  1528. resched_task(rq->curr);
  1529. }
  1530. }
  1531. static void watchdog(struct rq *rq, struct task_struct *p)
  1532. {
  1533. unsigned long soft, hard;
  1534. /* max may change after cur was read, this will be fixed next tick */
  1535. soft = task_rlimit(p, RLIMIT_RTTIME);
  1536. hard = task_rlimit_max(p, RLIMIT_RTTIME);
  1537. if (soft != RLIM_INFINITY) {
  1538. unsigned long next;
  1539. if (p->rt.watchdog_stamp != jiffies) {
  1540. p->rt.timeout++;
  1541. p->rt.watchdog_stamp = jiffies;
  1542. }
  1543. next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
  1544. if (p->rt.timeout > next)
  1545. p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
  1546. }
  1547. }
  1548. static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
  1549. {
  1550. struct sched_rt_entity *rt_se = &p->rt;
  1551. update_curr_rt(rq);
  1552. watchdog(rq, p);
  1553. /*
  1554. * RR tasks need a special form of timeslice management.
  1555. * FIFO tasks have no timeslices.
  1556. */
  1557. if (p->policy != SCHED_RR)
  1558. return;
  1559. if (--p->rt.time_slice)
  1560. return;
  1561. p->rt.time_slice = sched_rr_timeslice;
  1562. /*
  1563. * Requeue to the end of queue if we (and all of our ancestors) are the
  1564. * only element on the queue
  1565. */
  1566. for_each_sched_rt_entity(rt_se) {
  1567. if (rt_se->run_list.prev != rt_se->run_list.next) {
  1568. requeue_task_rt(rq, p, 0);
  1569. set_tsk_need_resched(p);
  1570. return;
  1571. }
  1572. }
  1573. }
  1574. static void set_curr_task_rt(struct rq *rq)
  1575. {
  1576. struct task_struct *p = rq->curr;
  1577. p->se.exec_start = rq_clock_task(rq);
  1578. /* The running task is never eligible for pushing */
  1579. dequeue_pushable_task(rq, p);
  1580. }
  1581. static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
  1582. {
  1583. /*
  1584. * Time slice is 0 for SCHED_FIFO tasks
  1585. */
  1586. if (task->policy == SCHED_RR)
  1587. return sched_rr_timeslice;
  1588. else
  1589. return 0;
  1590. }
  1591. const struct sched_class rt_sched_class = {
  1592. .next = &fair_sched_class,
  1593. .enqueue_task = enqueue_task_rt,
  1594. .dequeue_task = dequeue_task_rt,
  1595. .yield_task = yield_task_rt,
  1596. .check_preempt_curr = check_preempt_curr_rt,
  1597. .pick_next_task = pick_next_task_rt,
  1598. .put_prev_task = put_prev_task_rt,
  1599. #ifdef CONFIG_SMP
  1600. .select_task_rq = select_task_rq_rt,
  1601. .set_cpus_allowed = set_cpus_allowed_rt,
  1602. .rq_online = rq_online_rt,
  1603. .rq_offline = rq_offline_rt,
  1604. .pre_schedule = pre_schedule_rt,
  1605. .post_schedule = post_schedule_rt,
  1606. .task_woken = task_woken_rt,
  1607. .switched_from = switched_from_rt,
  1608. #endif
  1609. .set_curr_task = set_curr_task_rt,
  1610. .task_tick = task_tick_rt,
  1611. .get_rr_interval = get_rr_interval_rt,
  1612. .prio_changed = prio_changed_rt,
  1613. .switched_to = switched_to_rt,
  1614. };
  1615. #ifdef CONFIG_SCHED_DEBUG
  1616. extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
  1617. void print_rt_stats(struct seq_file *m, int cpu)
  1618. {
  1619. rt_rq_iter_t iter;
  1620. struct rt_rq *rt_rq;
  1621. rcu_read_lock();
  1622. for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
  1623. print_rt_rq(m, cpu, rt_rq);
  1624. rcu_read_unlock();
  1625. }
  1626. #endif /* CONFIG_SCHED_DEBUG */