rtmutex-tester.c 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420
  1. /*
  2. * RT-Mutex-tester: scriptable tester for rt mutexes
  3. *
  4. * started by Thomas Gleixner:
  5. *
  6. * Copyright (C) 2006, Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  7. *
  8. */
  9. #include <linux/device.h>
  10. #include <linux/kthread.h>
  11. #include <linux/export.h>
  12. #include <linux/sched.h>
  13. #include <linux/sched/rt.h>
  14. #include <linux/spinlock.h>
  15. #include <linux/timer.h>
  16. #include <linux/freezer.h>
  17. #include <linux/stat.h>
  18. #include "rtmutex.h"
  19. #define MAX_RT_TEST_THREADS 8
  20. #define MAX_RT_TEST_MUTEXES 8
  21. static spinlock_t rttest_lock;
  22. static atomic_t rttest_event;
  23. struct test_thread_data {
  24. int opcode;
  25. int opdata;
  26. int mutexes[MAX_RT_TEST_MUTEXES];
  27. int event;
  28. struct device dev;
  29. };
  30. static struct test_thread_data thread_data[MAX_RT_TEST_THREADS];
  31. static struct task_struct *threads[MAX_RT_TEST_THREADS];
  32. static struct rt_mutex mutexes[MAX_RT_TEST_MUTEXES];
  33. enum test_opcodes {
  34. RTTEST_NOP = 0,
  35. RTTEST_SCHEDOT, /* 1 Sched other, data = nice */
  36. RTTEST_SCHEDRT, /* 2 Sched fifo, data = prio */
  37. RTTEST_LOCK, /* 3 Lock uninterruptible, data = lockindex */
  38. RTTEST_LOCKNOWAIT, /* 4 Lock uninterruptible no wait in wakeup, data = lockindex */
  39. RTTEST_LOCKINT, /* 5 Lock interruptible, data = lockindex */
  40. RTTEST_LOCKINTNOWAIT, /* 6 Lock interruptible no wait in wakeup, data = lockindex */
  41. RTTEST_LOCKCONT, /* 7 Continue locking after the wakeup delay */
  42. RTTEST_UNLOCK, /* 8 Unlock, data = lockindex */
  43. /* 9, 10 - reserved for BKL commemoration */
  44. RTTEST_SIGNAL = 11, /* 11 Signal other test thread, data = thread id */
  45. RTTEST_RESETEVENT = 98, /* 98 Reset event counter */
  46. RTTEST_RESET = 99, /* 99 Reset all pending operations */
  47. };
  48. static int handle_op(struct test_thread_data *td, int lockwakeup)
  49. {
  50. int i, id, ret = -EINVAL;
  51. switch(td->opcode) {
  52. case RTTEST_NOP:
  53. return 0;
  54. case RTTEST_LOCKCONT:
  55. td->mutexes[td->opdata] = 1;
  56. td->event = atomic_add_return(1, &rttest_event);
  57. return 0;
  58. case RTTEST_RESET:
  59. for (i = 0; i < MAX_RT_TEST_MUTEXES; i++) {
  60. if (td->mutexes[i] == 4) {
  61. rt_mutex_unlock(&mutexes[i]);
  62. td->mutexes[i] = 0;
  63. }
  64. }
  65. return 0;
  66. case RTTEST_RESETEVENT:
  67. atomic_set(&rttest_event, 0);
  68. return 0;
  69. default:
  70. if (lockwakeup)
  71. return ret;
  72. }
  73. switch(td->opcode) {
  74. case RTTEST_LOCK:
  75. case RTTEST_LOCKNOWAIT:
  76. id = td->opdata;
  77. if (id < 0 || id >= MAX_RT_TEST_MUTEXES)
  78. return ret;
  79. td->mutexes[id] = 1;
  80. td->event = atomic_add_return(1, &rttest_event);
  81. rt_mutex_lock(&mutexes[id]);
  82. td->event = atomic_add_return(1, &rttest_event);
  83. td->mutexes[id] = 4;
  84. return 0;
  85. case RTTEST_LOCKINT:
  86. case RTTEST_LOCKINTNOWAIT:
  87. id = td->opdata;
  88. if (id < 0 || id >= MAX_RT_TEST_MUTEXES)
  89. return ret;
  90. td->mutexes[id] = 1;
  91. td->event = atomic_add_return(1, &rttest_event);
  92. ret = rt_mutex_lock_interruptible(&mutexes[id], 0);
  93. td->event = atomic_add_return(1, &rttest_event);
  94. td->mutexes[id] = ret ? 0 : 4;
  95. return ret ? -EINTR : 0;
  96. case RTTEST_UNLOCK:
  97. id = td->opdata;
  98. if (id < 0 || id >= MAX_RT_TEST_MUTEXES || td->mutexes[id] != 4)
  99. return ret;
  100. td->event = atomic_add_return(1, &rttest_event);
  101. rt_mutex_unlock(&mutexes[id]);
  102. td->event = atomic_add_return(1, &rttest_event);
  103. td->mutexes[id] = 0;
  104. return 0;
  105. default:
  106. break;
  107. }
  108. return ret;
  109. }
  110. /*
  111. * Schedule replacement for rtsem_down(). Only called for threads with
  112. * PF_MUTEX_TESTER set.
  113. *
  114. * This allows us to have finegrained control over the event flow.
  115. *
  116. */
  117. void schedule_rt_mutex_test(struct rt_mutex *mutex)
  118. {
  119. int tid, op, dat;
  120. struct test_thread_data *td;
  121. /* We have to lookup the task */
  122. for (tid = 0; tid < MAX_RT_TEST_THREADS; tid++) {
  123. if (threads[tid] == current)
  124. break;
  125. }
  126. BUG_ON(tid == MAX_RT_TEST_THREADS);
  127. td = &thread_data[tid];
  128. op = td->opcode;
  129. dat = td->opdata;
  130. switch (op) {
  131. case RTTEST_LOCK:
  132. case RTTEST_LOCKINT:
  133. case RTTEST_LOCKNOWAIT:
  134. case RTTEST_LOCKINTNOWAIT:
  135. if (mutex != &mutexes[dat])
  136. break;
  137. if (td->mutexes[dat] != 1)
  138. break;
  139. td->mutexes[dat] = 2;
  140. td->event = atomic_add_return(1, &rttest_event);
  141. break;
  142. default:
  143. break;
  144. }
  145. schedule();
  146. switch (op) {
  147. case RTTEST_LOCK:
  148. case RTTEST_LOCKINT:
  149. if (mutex != &mutexes[dat])
  150. return;
  151. if (td->mutexes[dat] != 2)
  152. return;
  153. td->mutexes[dat] = 3;
  154. td->event = atomic_add_return(1, &rttest_event);
  155. break;
  156. case RTTEST_LOCKNOWAIT:
  157. case RTTEST_LOCKINTNOWAIT:
  158. if (mutex != &mutexes[dat])
  159. return;
  160. if (td->mutexes[dat] != 2)
  161. return;
  162. td->mutexes[dat] = 1;
  163. td->event = atomic_add_return(1, &rttest_event);
  164. return;
  165. default:
  166. return;
  167. }
  168. td->opcode = 0;
  169. for (;;) {
  170. set_current_state(TASK_INTERRUPTIBLE);
  171. if (td->opcode > 0) {
  172. int ret;
  173. set_current_state(TASK_RUNNING);
  174. ret = handle_op(td, 1);
  175. set_current_state(TASK_INTERRUPTIBLE);
  176. if (td->opcode == RTTEST_LOCKCONT)
  177. break;
  178. td->opcode = ret;
  179. }
  180. /* Wait for the next command to be executed */
  181. schedule();
  182. }
  183. /* Restore previous command and data */
  184. td->opcode = op;
  185. td->opdata = dat;
  186. }
  187. static int test_func(void *data)
  188. {
  189. struct test_thread_data *td = data;
  190. int ret;
  191. current->flags |= PF_MUTEX_TESTER;
  192. set_freezable();
  193. allow_signal(SIGHUP);
  194. for(;;) {
  195. set_current_state(TASK_INTERRUPTIBLE);
  196. if (td->opcode > 0) {
  197. set_current_state(TASK_RUNNING);
  198. ret = handle_op(td, 0);
  199. set_current_state(TASK_INTERRUPTIBLE);
  200. td->opcode = ret;
  201. }
  202. /* Wait for the next command to be executed */
  203. schedule();
  204. try_to_freeze();
  205. if (signal_pending(current))
  206. flush_signals(current);
  207. if(kthread_should_stop())
  208. break;
  209. }
  210. return 0;
  211. }
  212. /**
  213. * sysfs_test_command - interface for test commands
  214. * @dev: thread reference
  215. * @buf: command for actual step
  216. * @count: length of buffer
  217. *
  218. * command syntax:
  219. *
  220. * opcode:data
  221. */
  222. static ssize_t sysfs_test_command(struct device *dev, struct device_attribute *attr,
  223. const char *buf, size_t count)
  224. {
  225. struct sched_param schedpar;
  226. struct test_thread_data *td;
  227. char cmdbuf[32];
  228. int op, dat, tid, ret;
  229. td = container_of(dev, struct test_thread_data, dev);
  230. tid = td->dev.id;
  231. /* strings from sysfs write are not 0 terminated! */
  232. if (count >= sizeof(cmdbuf))
  233. return -EINVAL;
  234. /* strip of \n: */
  235. if (buf[count-1] == '\n')
  236. count--;
  237. if (count < 1)
  238. return -EINVAL;
  239. memcpy(cmdbuf, buf, count);
  240. cmdbuf[count] = 0;
  241. if (sscanf(cmdbuf, "%d:%d", &op, &dat) != 2)
  242. return -EINVAL;
  243. switch (op) {
  244. case RTTEST_SCHEDOT:
  245. schedpar.sched_priority = 0;
  246. ret = sched_setscheduler(threads[tid], SCHED_NORMAL, &schedpar);
  247. if (ret)
  248. return ret;
  249. set_user_nice(current, 0);
  250. break;
  251. case RTTEST_SCHEDRT:
  252. schedpar.sched_priority = dat;
  253. ret = sched_setscheduler(threads[tid], SCHED_FIFO, &schedpar);
  254. if (ret)
  255. return ret;
  256. break;
  257. case RTTEST_SIGNAL:
  258. send_sig(SIGHUP, threads[tid], 0);
  259. break;
  260. default:
  261. if (td->opcode > 0)
  262. return -EBUSY;
  263. td->opdata = dat;
  264. td->opcode = op;
  265. wake_up_process(threads[tid]);
  266. }
  267. return count;
  268. }
  269. /**
  270. * sysfs_test_status - sysfs interface for rt tester
  271. * @dev: thread to query
  272. * @buf: char buffer to be filled with thread status info
  273. */
  274. static ssize_t sysfs_test_status(struct device *dev, struct device_attribute *attr,
  275. char *buf)
  276. {
  277. struct test_thread_data *td;
  278. struct task_struct *tsk;
  279. char *curr = buf;
  280. int i;
  281. td = container_of(dev, struct test_thread_data, dev);
  282. tsk = threads[td->dev.id];
  283. spin_lock(&rttest_lock);
  284. curr += sprintf(curr,
  285. "O: %4d, E:%8d, S: 0x%08lx, P: %4d, N: %4d, B: %p, M:",
  286. td->opcode, td->event, tsk->state,
  287. (MAX_RT_PRIO - 1) - tsk->prio,
  288. (MAX_RT_PRIO - 1) - tsk->normal_prio,
  289. tsk->pi_blocked_on);
  290. for (i = MAX_RT_TEST_MUTEXES - 1; i >=0 ; i--)
  291. curr += sprintf(curr, "%d", td->mutexes[i]);
  292. spin_unlock(&rttest_lock);
  293. curr += sprintf(curr, ", T: %p, R: %p\n", tsk,
  294. mutexes[td->dev.id].owner);
  295. return curr - buf;
  296. }
  297. static DEVICE_ATTR(status, S_IRUSR, sysfs_test_status, NULL);
  298. static DEVICE_ATTR(command, S_IWUSR, NULL, sysfs_test_command);
  299. static struct bus_type rttest_subsys = {
  300. .name = "rttest",
  301. .dev_name = "rttest",
  302. };
  303. static int init_test_thread(int id)
  304. {
  305. thread_data[id].dev.bus = &rttest_subsys;
  306. thread_data[id].dev.id = id;
  307. threads[id] = kthread_run(test_func, &thread_data[id], "rt-test-%d", id);
  308. if (IS_ERR(threads[id]))
  309. return PTR_ERR(threads[id]);
  310. return device_register(&thread_data[id].dev);
  311. }
  312. static int init_rttest(void)
  313. {
  314. int ret, i;
  315. spin_lock_init(&rttest_lock);
  316. for (i = 0; i < MAX_RT_TEST_MUTEXES; i++)
  317. rt_mutex_init(&mutexes[i]);
  318. ret = subsys_system_register(&rttest_subsys, NULL);
  319. if (ret)
  320. return ret;
  321. for (i = 0; i < MAX_RT_TEST_THREADS; i++) {
  322. ret = init_test_thread(i);
  323. if (ret)
  324. break;
  325. ret = device_create_file(&thread_data[i].dev, &dev_attr_status);
  326. if (ret)
  327. break;
  328. ret = device_create_file(&thread_data[i].dev, &dev_attr_command);
  329. if (ret)
  330. break;
  331. }
  332. printk("Initializing RT-Tester: %s\n", ret ? "Failed" : "OK" );
  333. return ret;
  334. }
  335. device_initcall(init_rttest);