posix-cpu-timers.c 40 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547
  1. /*
  2. * Implement CPU time clocks for the POSIX clock interface.
  3. */
  4. #include <linux/sched.h>
  5. #include <linux/posix-timers.h>
  6. #include <linux/errno.h>
  7. #include <linux/math64.h>
  8. #include <asm/uaccess.h>
  9. #include <linux/kernel_stat.h>
  10. #include <trace/events/timer.h>
  11. #include <linux/random.h>
  12. #include <linux/tick.h>
  13. #include <linux/workqueue.h>
  14. /*
  15. * Called after updating RLIMIT_CPU to run cpu timer and update
  16. * tsk->signal->cputime_expires expiration cache if necessary. Needs
  17. * siglock protection since other code may update expiration cache as
  18. * well.
  19. */
  20. void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
  21. {
  22. cputime_t cputime = secs_to_cputime(rlim_new);
  23. spin_lock_irq(&task->sighand->siglock);
  24. set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
  25. spin_unlock_irq(&task->sighand->siglock);
  26. }
  27. static int check_clock(const clockid_t which_clock)
  28. {
  29. int error = 0;
  30. struct task_struct *p;
  31. const pid_t pid = CPUCLOCK_PID(which_clock);
  32. if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
  33. return -EINVAL;
  34. if (pid == 0)
  35. return 0;
  36. rcu_read_lock();
  37. p = find_task_by_vpid(pid);
  38. if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
  39. same_thread_group(p, current) : has_group_leader_pid(p))) {
  40. error = -EINVAL;
  41. }
  42. rcu_read_unlock();
  43. return error;
  44. }
  45. static inline unsigned long long
  46. timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
  47. {
  48. unsigned long long ret;
  49. ret = 0; /* high half always zero when .cpu used */
  50. if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
  51. ret = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
  52. } else {
  53. ret = cputime_to_expires(timespec_to_cputime(tp));
  54. }
  55. return ret;
  56. }
  57. static void sample_to_timespec(const clockid_t which_clock,
  58. unsigned long long expires,
  59. struct timespec *tp)
  60. {
  61. if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
  62. *tp = ns_to_timespec(expires);
  63. else
  64. cputime_to_timespec((__force cputime_t)expires, tp);
  65. }
  66. /*
  67. * Update expiry time from increment, and increase overrun count,
  68. * given the current clock sample.
  69. */
  70. static void bump_cpu_timer(struct k_itimer *timer,
  71. unsigned long long now)
  72. {
  73. int i;
  74. unsigned long long delta, incr;
  75. if (timer->it.cpu.incr == 0)
  76. return;
  77. if (now < timer->it.cpu.expires)
  78. return;
  79. incr = timer->it.cpu.incr;
  80. delta = now + incr - timer->it.cpu.expires;
  81. /* Don't use (incr*2 < delta), incr*2 might overflow. */
  82. for (i = 0; incr < delta - incr; i++)
  83. incr = incr << 1;
  84. for (; i >= 0; incr >>= 1, i--) {
  85. if (delta < incr)
  86. continue;
  87. timer->it.cpu.expires += incr;
  88. timer->it_overrun += 1 << i;
  89. delta -= incr;
  90. }
  91. }
  92. /**
  93. * task_cputime_zero - Check a task_cputime struct for all zero fields.
  94. *
  95. * @cputime: The struct to compare.
  96. *
  97. * Checks @cputime to see if all fields are zero. Returns true if all fields
  98. * are zero, false if any field is nonzero.
  99. */
  100. static inline int task_cputime_zero(const struct task_cputime *cputime)
  101. {
  102. if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
  103. return 1;
  104. return 0;
  105. }
  106. static inline unsigned long long prof_ticks(struct task_struct *p)
  107. {
  108. cputime_t utime, stime;
  109. task_cputime(p, &utime, &stime);
  110. return cputime_to_expires(utime + stime);
  111. }
  112. static inline unsigned long long virt_ticks(struct task_struct *p)
  113. {
  114. cputime_t utime;
  115. task_cputime(p, &utime, NULL);
  116. return cputime_to_expires(utime);
  117. }
  118. static int
  119. posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
  120. {
  121. int error = check_clock(which_clock);
  122. if (!error) {
  123. tp->tv_sec = 0;
  124. tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
  125. if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
  126. /*
  127. * If sched_clock is using a cycle counter, we
  128. * don't have any idea of its true resolution
  129. * exported, but it is much more than 1s/HZ.
  130. */
  131. tp->tv_nsec = 1;
  132. }
  133. }
  134. return error;
  135. }
  136. static int
  137. posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
  138. {
  139. /*
  140. * You can never reset a CPU clock, but we check for other errors
  141. * in the call before failing with EPERM.
  142. */
  143. int error = check_clock(which_clock);
  144. if (error == 0) {
  145. error = -EPERM;
  146. }
  147. return error;
  148. }
  149. /*
  150. * Sample a per-thread clock for the given task.
  151. */
  152. static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
  153. unsigned long long *sample)
  154. {
  155. switch (CPUCLOCK_WHICH(which_clock)) {
  156. default:
  157. return -EINVAL;
  158. case CPUCLOCK_PROF:
  159. *sample = prof_ticks(p);
  160. break;
  161. case CPUCLOCK_VIRT:
  162. *sample = virt_ticks(p);
  163. break;
  164. case CPUCLOCK_SCHED:
  165. *sample = task_sched_runtime(p);
  166. break;
  167. }
  168. return 0;
  169. }
  170. static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
  171. {
  172. if (b->utime > a->utime)
  173. a->utime = b->utime;
  174. if (b->stime > a->stime)
  175. a->stime = b->stime;
  176. if (b->sum_exec_runtime > a->sum_exec_runtime)
  177. a->sum_exec_runtime = b->sum_exec_runtime;
  178. }
  179. void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
  180. {
  181. struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
  182. struct task_cputime sum;
  183. unsigned long flags;
  184. if (!cputimer->running) {
  185. /*
  186. * The POSIX timer interface allows for absolute time expiry
  187. * values through the TIMER_ABSTIME flag, therefore we have
  188. * to synchronize the timer to the clock every time we start
  189. * it.
  190. */
  191. thread_group_cputime(tsk, &sum);
  192. raw_spin_lock_irqsave(&cputimer->lock, flags);
  193. cputimer->running = 1;
  194. update_gt_cputime(&cputimer->cputime, &sum);
  195. } else
  196. raw_spin_lock_irqsave(&cputimer->lock, flags);
  197. *times = cputimer->cputime;
  198. raw_spin_unlock_irqrestore(&cputimer->lock, flags);
  199. }
  200. /*
  201. * Sample a process (thread group) clock for the given group_leader task.
  202. * Must be called with tasklist_lock held for reading.
  203. */
  204. static int cpu_clock_sample_group(const clockid_t which_clock,
  205. struct task_struct *p,
  206. unsigned long long *sample)
  207. {
  208. struct task_cputime cputime;
  209. switch (CPUCLOCK_WHICH(which_clock)) {
  210. default:
  211. return -EINVAL;
  212. case CPUCLOCK_PROF:
  213. thread_group_cputime(p, &cputime);
  214. *sample = cputime_to_expires(cputime.utime + cputime.stime);
  215. break;
  216. case CPUCLOCK_VIRT:
  217. thread_group_cputime(p, &cputime);
  218. *sample = cputime_to_expires(cputime.utime);
  219. break;
  220. case CPUCLOCK_SCHED:
  221. thread_group_cputime(p, &cputime);
  222. *sample = cputime.sum_exec_runtime;
  223. break;
  224. }
  225. return 0;
  226. }
  227. static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
  228. {
  229. const pid_t pid = CPUCLOCK_PID(which_clock);
  230. int error = -EINVAL;
  231. unsigned long long rtn;
  232. if (pid == 0) {
  233. /*
  234. * Special case constant value for our own clocks.
  235. * We don't have to do any lookup to find ourselves.
  236. */
  237. if (CPUCLOCK_PERTHREAD(which_clock)) {
  238. /*
  239. * Sampling just ourselves we can do with no locking.
  240. */
  241. error = cpu_clock_sample(which_clock,
  242. current, &rtn);
  243. } else {
  244. read_lock(&tasklist_lock);
  245. error = cpu_clock_sample_group(which_clock,
  246. current, &rtn);
  247. read_unlock(&tasklist_lock);
  248. }
  249. } else {
  250. /*
  251. * Find the given PID, and validate that the caller
  252. * should be able to see it.
  253. */
  254. struct task_struct *p;
  255. rcu_read_lock();
  256. p = find_task_by_vpid(pid);
  257. if (p) {
  258. if (CPUCLOCK_PERTHREAD(which_clock)) {
  259. if (same_thread_group(p, current)) {
  260. error = cpu_clock_sample(which_clock,
  261. p, &rtn);
  262. }
  263. } else {
  264. read_lock(&tasklist_lock);
  265. if (thread_group_leader(p) && p->sighand) {
  266. error =
  267. cpu_clock_sample_group(which_clock,
  268. p, &rtn);
  269. }
  270. read_unlock(&tasklist_lock);
  271. }
  272. }
  273. rcu_read_unlock();
  274. }
  275. if (error)
  276. return error;
  277. sample_to_timespec(which_clock, rtn, tp);
  278. return 0;
  279. }
  280. /*
  281. * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
  282. * This is called from sys_timer_create() and do_cpu_nanosleep() with the
  283. * new timer already all-zeros initialized.
  284. */
  285. static int posix_cpu_timer_create(struct k_itimer *new_timer)
  286. {
  287. int ret = 0;
  288. const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
  289. struct task_struct *p;
  290. if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
  291. return -EINVAL;
  292. INIT_LIST_HEAD(&new_timer->it.cpu.entry);
  293. rcu_read_lock();
  294. if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
  295. if (pid == 0) {
  296. p = current;
  297. } else {
  298. p = find_task_by_vpid(pid);
  299. if (p && !same_thread_group(p, current))
  300. p = NULL;
  301. }
  302. } else {
  303. if (pid == 0) {
  304. p = current->group_leader;
  305. } else {
  306. p = find_task_by_vpid(pid);
  307. if (p && !has_group_leader_pid(p))
  308. p = NULL;
  309. }
  310. }
  311. new_timer->it.cpu.task = p;
  312. if (p) {
  313. get_task_struct(p);
  314. } else {
  315. ret = -EINVAL;
  316. }
  317. rcu_read_unlock();
  318. return ret;
  319. }
  320. /*
  321. * Clean up a CPU-clock timer that is about to be destroyed.
  322. * This is called from timer deletion with the timer already locked.
  323. * If we return TIMER_RETRY, it's necessary to release the timer's lock
  324. * and try again. (This happens when the timer is in the middle of firing.)
  325. */
  326. static int posix_cpu_timer_del(struct k_itimer *timer)
  327. {
  328. struct task_struct *p = timer->it.cpu.task;
  329. int ret = 0;
  330. if (likely(p != NULL)) {
  331. read_lock(&tasklist_lock);
  332. if (unlikely(p->sighand == NULL)) {
  333. /*
  334. * We raced with the reaping of the task.
  335. * The deletion should have cleared us off the list.
  336. */
  337. BUG_ON(!list_empty(&timer->it.cpu.entry));
  338. } else {
  339. spin_lock(&p->sighand->siglock);
  340. if (timer->it.cpu.firing)
  341. ret = TIMER_RETRY;
  342. else
  343. list_del(&timer->it.cpu.entry);
  344. spin_unlock(&p->sighand->siglock);
  345. }
  346. read_unlock(&tasklist_lock);
  347. if (!ret)
  348. put_task_struct(p);
  349. }
  350. return ret;
  351. }
  352. static void cleanup_timers_list(struct list_head *head,
  353. unsigned long long curr)
  354. {
  355. struct cpu_timer_list *timer, *next;
  356. list_for_each_entry_safe(timer, next, head, entry)
  357. list_del_init(&timer->entry);
  358. }
  359. /*
  360. * Clean out CPU timers still ticking when a thread exited. The task
  361. * pointer is cleared, and the expiry time is replaced with the residual
  362. * time for later timer_gettime calls to return.
  363. * This must be called with the siglock held.
  364. */
  365. static void cleanup_timers(struct list_head *head,
  366. cputime_t utime, cputime_t stime,
  367. unsigned long long sum_exec_runtime)
  368. {
  369. cputime_t ptime = utime + stime;
  370. cleanup_timers_list(head, cputime_to_expires(ptime));
  371. cleanup_timers_list(++head, cputime_to_expires(utime));
  372. cleanup_timers_list(++head, sum_exec_runtime);
  373. }
  374. /*
  375. * These are both called with the siglock held, when the current thread
  376. * is being reaped. When the final (leader) thread in the group is reaped,
  377. * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
  378. */
  379. void posix_cpu_timers_exit(struct task_struct *tsk)
  380. {
  381. cputime_t utime, stime;
  382. add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
  383. sizeof(unsigned long long));
  384. task_cputime(tsk, &utime, &stime);
  385. cleanup_timers(tsk->cpu_timers,
  386. utime, stime, tsk->se.sum_exec_runtime);
  387. }
  388. void posix_cpu_timers_exit_group(struct task_struct *tsk)
  389. {
  390. struct signal_struct *const sig = tsk->signal;
  391. cputime_t utime, stime;
  392. task_cputime(tsk, &utime, &stime);
  393. cleanup_timers(tsk->signal->cpu_timers,
  394. utime + sig->utime, stime + sig->stime,
  395. tsk->se.sum_exec_runtime + sig->sum_sched_runtime);
  396. }
  397. static void clear_dead_task(struct k_itimer *itimer, unsigned long long now)
  398. {
  399. struct cpu_timer_list *timer = &itimer->it.cpu;
  400. /*
  401. * That's all for this thread or process.
  402. * We leave our residual in expires to be reported.
  403. */
  404. put_task_struct(timer->task);
  405. timer->task = NULL;
  406. if (timer->expires < now) {
  407. timer->expires = 0;
  408. } else {
  409. timer->expires -= now;
  410. }
  411. }
  412. static inline int expires_gt(cputime_t expires, cputime_t new_exp)
  413. {
  414. return expires == 0 || expires > new_exp;
  415. }
  416. /*
  417. * Insert the timer on the appropriate list before any timers that
  418. * expire later. This must be called with the tasklist_lock held
  419. * for reading, interrupts disabled and p->sighand->siglock taken.
  420. */
  421. static void arm_timer(struct k_itimer *timer)
  422. {
  423. struct task_struct *p = timer->it.cpu.task;
  424. struct list_head *head, *listpos;
  425. struct task_cputime *cputime_expires;
  426. struct cpu_timer_list *const nt = &timer->it.cpu;
  427. struct cpu_timer_list *next;
  428. if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
  429. head = p->cpu_timers;
  430. cputime_expires = &p->cputime_expires;
  431. } else {
  432. head = p->signal->cpu_timers;
  433. cputime_expires = &p->signal->cputime_expires;
  434. }
  435. head += CPUCLOCK_WHICH(timer->it_clock);
  436. listpos = head;
  437. list_for_each_entry(next, head, entry) {
  438. if (nt->expires < next->expires)
  439. break;
  440. listpos = &next->entry;
  441. }
  442. list_add(&nt->entry, listpos);
  443. if (listpos == head) {
  444. unsigned long long exp = nt->expires;
  445. /*
  446. * We are the new earliest-expiring POSIX 1.b timer, hence
  447. * need to update expiration cache. Take into account that
  448. * for process timers we share expiration cache with itimers
  449. * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
  450. */
  451. switch (CPUCLOCK_WHICH(timer->it_clock)) {
  452. case CPUCLOCK_PROF:
  453. if (expires_gt(cputime_expires->prof_exp, expires_to_cputime(exp)))
  454. cputime_expires->prof_exp = expires_to_cputime(exp);
  455. break;
  456. case CPUCLOCK_VIRT:
  457. if (expires_gt(cputime_expires->virt_exp, expires_to_cputime(exp)))
  458. cputime_expires->virt_exp = expires_to_cputime(exp);
  459. break;
  460. case CPUCLOCK_SCHED:
  461. if (cputime_expires->sched_exp == 0 ||
  462. cputime_expires->sched_exp > exp)
  463. cputime_expires->sched_exp = exp;
  464. break;
  465. }
  466. }
  467. }
  468. /*
  469. * The timer is locked, fire it and arrange for its reload.
  470. */
  471. static void cpu_timer_fire(struct k_itimer *timer)
  472. {
  473. if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
  474. /*
  475. * User don't want any signal.
  476. */
  477. timer->it.cpu.expires = 0;
  478. } else if (unlikely(timer->sigq == NULL)) {
  479. /*
  480. * This a special case for clock_nanosleep,
  481. * not a normal timer from sys_timer_create.
  482. */
  483. wake_up_process(timer->it_process);
  484. timer->it.cpu.expires = 0;
  485. } else if (timer->it.cpu.incr == 0) {
  486. /*
  487. * One-shot timer. Clear it as soon as it's fired.
  488. */
  489. posix_timer_event(timer, 0);
  490. timer->it.cpu.expires = 0;
  491. } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
  492. /*
  493. * The signal did not get queued because the signal
  494. * was ignored, so we won't get any callback to
  495. * reload the timer. But we need to keep it
  496. * ticking in case the signal is deliverable next time.
  497. */
  498. posix_cpu_timer_schedule(timer);
  499. }
  500. }
  501. /*
  502. * Sample a process (thread group) timer for the given group_leader task.
  503. * Must be called with tasklist_lock held for reading.
  504. */
  505. static int cpu_timer_sample_group(const clockid_t which_clock,
  506. struct task_struct *p,
  507. unsigned long long *sample)
  508. {
  509. struct task_cputime cputime;
  510. thread_group_cputimer(p, &cputime);
  511. switch (CPUCLOCK_WHICH(which_clock)) {
  512. default:
  513. return -EINVAL;
  514. case CPUCLOCK_PROF:
  515. *sample = cputime_to_expires(cputime.utime + cputime.stime);
  516. break;
  517. case CPUCLOCK_VIRT:
  518. *sample = cputime_to_expires(cputime.utime);
  519. break;
  520. case CPUCLOCK_SCHED:
  521. *sample = cputime.sum_exec_runtime + task_delta_exec(p);
  522. break;
  523. }
  524. return 0;
  525. }
  526. #ifdef CONFIG_NO_HZ_FULL
  527. static void nohz_kick_work_fn(struct work_struct *work)
  528. {
  529. tick_nohz_full_kick_all();
  530. }
  531. static DECLARE_WORK(nohz_kick_work, nohz_kick_work_fn);
  532. /*
  533. * We need the IPIs to be sent from sane process context.
  534. * The posix cpu timers are always set with irqs disabled.
  535. */
  536. static void posix_cpu_timer_kick_nohz(void)
  537. {
  538. schedule_work(&nohz_kick_work);
  539. }
  540. bool posix_cpu_timers_can_stop_tick(struct task_struct *tsk)
  541. {
  542. if (!task_cputime_zero(&tsk->cputime_expires))
  543. return false;
  544. if (tsk->signal->cputimer.running)
  545. return false;
  546. return true;
  547. }
  548. #else
  549. static inline void posix_cpu_timer_kick_nohz(void) { }
  550. #endif
  551. /*
  552. * Guts of sys_timer_settime for CPU timers.
  553. * This is called with the timer locked and interrupts disabled.
  554. * If we return TIMER_RETRY, it's necessary to release the timer's lock
  555. * and try again. (This happens when the timer is in the middle of firing.)
  556. */
  557. static int posix_cpu_timer_set(struct k_itimer *timer, int flags,
  558. struct itimerspec *new, struct itimerspec *old)
  559. {
  560. struct task_struct *p = timer->it.cpu.task;
  561. unsigned long long old_expires, new_expires, old_incr, val;
  562. int ret;
  563. if (unlikely(p == NULL)) {
  564. /*
  565. * Timer refers to a dead task's clock.
  566. */
  567. return -ESRCH;
  568. }
  569. new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
  570. read_lock(&tasklist_lock);
  571. /*
  572. * We need the tasklist_lock to protect against reaping that
  573. * clears p->sighand. If p has just been reaped, we can no
  574. * longer get any information about it at all.
  575. */
  576. if (unlikely(p->sighand == NULL)) {
  577. read_unlock(&tasklist_lock);
  578. put_task_struct(p);
  579. timer->it.cpu.task = NULL;
  580. return -ESRCH;
  581. }
  582. /*
  583. * Disarm any old timer after extracting its expiry time.
  584. */
  585. BUG_ON(!irqs_disabled());
  586. ret = 0;
  587. old_incr = timer->it.cpu.incr;
  588. spin_lock(&p->sighand->siglock);
  589. old_expires = timer->it.cpu.expires;
  590. if (unlikely(timer->it.cpu.firing)) {
  591. timer->it.cpu.firing = -1;
  592. ret = TIMER_RETRY;
  593. } else
  594. list_del_init(&timer->it.cpu.entry);
  595. /*
  596. * We need to sample the current value to convert the new
  597. * value from to relative and absolute, and to convert the
  598. * old value from absolute to relative. To set a process
  599. * timer, we need a sample to balance the thread expiry
  600. * times (in arm_timer). With an absolute time, we must
  601. * check if it's already passed. In short, we need a sample.
  602. */
  603. if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
  604. cpu_clock_sample(timer->it_clock, p, &val);
  605. } else {
  606. cpu_timer_sample_group(timer->it_clock, p, &val);
  607. }
  608. if (old) {
  609. if (old_expires == 0) {
  610. old->it_value.tv_sec = 0;
  611. old->it_value.tv_nsec = 0;
  612. } else {
  613. /*
  614. * Update the timer in case it has
  615. * overrun already. If it has,
  616. * we'll report it as having overrun
  617. * and with the next reloaded timer
  618. * already ticking, though we are
  619. * swallowing that pending
  620. * notification here to install the
  621. * new setting.
  622. */
  623. bump_cpu_timer(timer, val);
  624. if (val < timer->it.cpu.expires) {
  625. old_expires = timer->it.cpu.expires - val;
  626. sample_to_timespec(timer->it_clock,
  627. old_expires,
  628. &old->it_value);
  629. } else {
  630. old->it_value.tv_nsec = 1;
  631. old->it_value.tv_sec = 0;
  632. }
  633. }
  634. }
  635. if (unlikely(ret)) {
  636. /*
  637. * We are colliding with the timer actually firing.
  638. * Punt after filling in the timer's old value, and
  639. * disable this firing since we are already reporting
  640. * it as an overrun (thanks to bump_cpu_timer above).
  641. */
  642. spin_unlock(&p->sighand->siglock);
  643. read_unlock(&tasklist_lock);
  644. goto out;
  645. }
  646. if (new_expires != 0 && !(flags & TIMER_ABSTIME)) {
  647. new_expires += val;
  648. }
  649. /*
  650. * Install the new expiry time (or zero).
  651. * For a timer with no notification action, we don't actually
  652. * arm the timer (we'll just fake it for timer_gettime).
  653. */
  654. timer->it.cpu.expires = new_expires;
  655. if (new_expires != 0 && val < new_expires) {
  656. arm_timer(timer);
  657. }
  658. spin_unlock(&p->sighand->siglock);
  659. read_unlock(&tasklist_lock);
  660. /*
  661. * Install the new reload setting, and
  662. * set up the signal and overrun bookkeeping.
  663. */
  664. timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
  665. &new->it_interval);
  666. /*
  667. * This acts as a modification timestamp for the timer,
  668. * so any automatic reload attempt will punt on seeing
  669. * that we have reset the timer manually.
  670. */
  671. timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
  672. ~REQUEUE_PENDING;
  673. timer->it_overrun_last = 0;
  674. timer->it_overrun = -1;
  675. if (new_expires != 0 && !(val < new_expires)) {
  676. /*
  677. * The designated time already passed, so we notify
  678. * immediately, even if the thread never runs to
  679. * accumulate more time on this clock.
  680. */
  681. cpu_timer_fire(timer);
  682. }
  683. ret = 0;
  684. out:
  685. if (old) {
  686. sample_to_timespec(timer->it_clock,
  687. old_incr, &old->it_interval);
  688. }
  689. if (!ret)
  690. posix_cpu_timer_kick_nohz();
  691. return ret;
  692. }
  693. static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
  694. {
  695. unsigned long long now;
  696. struct task_struct *p = timer->it.cpu.task;
  697. int clear_dead;
  698. /*
  699. * Easy part: convert the reload time.
  700. */
  701. sample_to_timespec(timer->it_clock,
  702. timer->it.cpu.incr, &itp->it_interval);
  703. if (timer->it.cpu.expires == 0) { /* Timer not armed at all. */
  704. itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
  705. return;
  706. }
  707. if (unlikely(p == NULL)) {
  708. /*
  709. * This task already died and the timer will never fire.
  710. * In this case, expires is actually the dead value.
  711. */
  712. dead:
  713. sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
  714. &itp->it_value);
  715. return;
  716. }
  717. /*
  718. * Sample the clock to take the difference with the expiry time.
  719. */
  720. if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
  721. cpu_clock_sample(timer->it_clock, p, &now);
  722. clear_dead = p->exit_state;
  723. } else {
  724. read_lock(&tasklist_lock);
  725. if (unlikely(p->sighand == NULL)) {
  726. /*
  727. * The process has been reaped.
  728. * We can't even collect a sample any more.
  729. * Call the timer disarmed, nothing else to do.
  730. */
  731. put_task_struct(p);
  732. timer->it.cpu.task = NULL;
  733. timer->it.cpu.expires = 0;
  734. read_unlock(&tasklist_lock);
  735. goto dead;
  736. } else {
  737. cpu_timer_sample_group(timer->it_clock, p, &now);
  738. clear_dead = (unlikely(p->exit_state) &&
  739. thread_group_empty(p));
  740. }
  741. read_unlock(&tasklist_lock);
  742. }
  743. if (unlikely(clear_dead)) {
  744. /*
  745. * We've noticed that the thread is dead, but
  746. * not yet reaped. Take this opportunity to
  747. * drop our task ref.
  748. */
  749. clear_dead_task(timer, now);
  750. goto dead;
  751. }
  752. if (now < timer->it.cpu.expires) {
  753. sample_to_timespec(timer->it_clock,
  754. timer->it.cpu.expires - now,
  755. &itp->it_value);
  756. } else {
  757. /*
  758. * The timer should have expired already, but the firing
  759. * hasn't taken place yet. Say it's just about to expire.
  760. */
  761. itp->it_value.tv_nsec = 1;
  762. itp->it_value.tv_sec = 0;
  763. }
  764. }
  765. static unsigned long long
  766. check_timers_list(struct list_head *timers,
  767. struct list_head *firing,
  768. unsigned long long curr)
  769. {
  770. int maxfire = 20;
  771. while (!list_empty(timers)) {
  772. struct cpu_timer_list *t;
  773. t = list_first_entry(timers, struct cpu_timer_list, entry);
  774. if (!--maxfire || curr < t->expires)
  775. return t->expires;
  776. t->firing = 1;
  777. list_move_tail(&t->entry, firing);
  778. }
  779. return 0;
  780. }
  781. /*
  782. * Check for any per-thread CPU timers that have fired and move them off
  783. * the tsk->cpu_timers[N] list onto the firing list. Here we update the
  784. * tsk->it_*_expires values to reflect the remaining thread CPU timers.
  785. */
  786. static void check_thread_timers(struct task_struct *tsk,
  787. struct list_head *firing)
  788. {
  789. struct list_head *timers = tsk->cpu_timers;
  790. struct signal_struct *const sig = tsk->signal;
  791. struct task_cputime *tsk_expires = &tsk->cputime_expires;
  792. unsigned long long expires;
  793. unsigned long soft;
  794. expires = check_timers_list(timers, firing, prof_ticks(tsk));
  795. tsk_expires->prof_exp = expires_to_cputime(expires);
  796. expires = check_timers_list(++timers, firing, virt_ticks(tsk));
  797. tsk_expires->virt_exp = expires_to_cputime(expires);
  798. tsk_expires->sched_exp = check_timers_list(++timers, firing,
  799. tsk->se.sum_exec_runtime);
  800. /*
  801. * Check for the special case thread timers.
  802. */
  803. soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
  804. if (soft != RLIM_INFINITY) {
  805. unsigned long hard =
  806. ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
  807. if (hard != RLIM_INFINITY &&
  808. tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
  809. /*
  810. * At the hard limit, we just die.
  811. * No need to calculate anything else now.
  812. */
  813. __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
  814. return;
  815. }
  816. if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
  817. /*
  818. * At the soft limit, send a SIGXCPU every second.
  819. */
  820. if (soft < hard) {
  821. soft += USEC_PER_SEC;
  822. sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
  823. }
  824. printk(KERN_INFO
  825. "RT Watchdog Timeout: %s[%d]\n",
  826. tsk->comm, task_pid_nr(tsk));
  827. __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
  828. }
  829. }
  830. }
  831. static void stop_process_timers(struct signal_struct *sig)
  832. {
  833. struct thread_group_cputimer *cputimer = &sig->cputimer;
  834. unsigned long flags;
  835. raw_spin_lock_irqsave(&cputimer->lock, flags);
  836. cputimer->running = 0;
  837. raw_spin_unlock_irqrestore(&cputimer->lock, flags);
  838. }
  839. static u32 onecputick;
  840. static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
  841. unsigned long long *expires,
  842. unsigned long long cur_time, int signo)
  843. {
  844. if (!it->expires)
  845. return;
  846. if (cur_time >= it->expires) {
  847. if (it->incr) {
  848. it->expires += it->incr;
  849. it->error += it->incr_error;
  850. if (it->error >= onecputick) {
  851. it->expires -= cputime_one_jiffy;
  852. it->error -= onecputick;
  853. }
  854. } else {
  855. it->expires = 0;
  856. }
  857. trace_itimer_expire(signo == SIGPROF ?
  858. ITIMER_PROF : ITIMER_VIRTUAL,
  859. tsk->signal->leader_pid, cur_time);
  860. __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
  861. }
  862. if (it->expires && (!*expires || it->expires < *expires)) {
  863. *expires = it->expires;
  864. }
  865. }
  866. /*
  867. * Check for any per-thread CPU timers that have fired and move them
  868. * off the tsk->*_timers list onto the firing list. Per-thread timers
  869. * have already been taken off.
  870. */
  871. static void check_process_timers(struct task_struct *tsk,
  872. struct list_head *firing)
  873. {
  874. struct signal_struct *const sig = tsk->signal;
  875. unsigned long long utime, ptime, virt_expires, prof_expires;
  876. unsigned long long sum_sched_runtime, sched_expires;
  877. struct list_head *timers = sig->cpu_timers;
  878. struct task_cputime cputime;
  879. unsigned long soft;
  880. /*
  881. * Collect the current process totals.
  882. */
  883. thread_group_cputimer(tsk, &cputime);
  884. utime = cputime_to_expires(cputime.utime);
  885. ptime = utime + cputime_to_expires(cputime.stime);
  886. sum_sched_runtime = cputime.sum_exec_runtime;
  887. prof_expires = check_timers_list(timers, firing, ptime);
  888. virt_expires = check_timers_list(++timers, firing, utime);
  889. sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
  890. /*
  891. * Check for the special case process timers.
  892. */
  893. check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
  894. SIGPROF);
  895. check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
  896. SIGVTALRM);
  897. soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
  898. if (soft != RLIM_INFINITY) {
  899. unsigned long psecs = cputime_to_secs(ptime);
  900. unsigned long hard =
  901. ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
  902. cputime_t x;
  903. if (psecs >= hard) {
  904. /*
  905. * At the hard limit, we just die.
  906. * No need to calculate anything else now.
  907. */
  908. __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
  909. return;
  910. }
  911. if (psecs >= soft) {
  912. /*
  913. * At the soft limit, send a SIGXCPU every second.
  914. */
  915. __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
  916. if (soft < hard) {
  917. soft++;
  918. sig->rlim[RLIMIT_CPU].rlim_cur = soft;
  919. }
  920. }
  921. x = secs_to_cputime(soft);
  922. if (!prof_expires || x < prof_expires) {
  923. prof_expires = x;
  924. }
  925. }
  926. sig->cputime_expires.prof_exp = expires_to_cputime(prof_expires);
  927. sig->cputime_expires.virt_exp = expires_to_cputime(virt_expires);
  928. sig->cputime_expires.sched_exp = sched_expires;
  929. if (task_cputime_zero(&sig->cputime_expires))
  930. stop_process_timers(sig);
  931. }
  932. /*
  933. * This is called from the signal code (via do_schedule_next_timer)
  934. * when the last timer signal was delivered and we have to reload the timer.
  935. */
  936. void posix_cpu_timer_schedule(struct k_itimer *timer)
  937. {
  938. struct task_struct *p = timer->it.cpu.task;
  939. unsigned long long now;
  940. if (unlikely(p == NULL))
  941. /*
  942. * The task was cleaned up already, no future firings.
  943. */
  944. goto out;
  945. /*
  946. * Fetch the current sample and update the timer's expiry time.
  947. */
  948. if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
  949. cpu_clock_sample(timer->it_clock, p, &now);
  950. bump_cpu_timer(timer, now);
  951. if (unlikely(p->exit_state)) {
  952. clear_dead_task(timer, now);
  953. goto out;
  954. }
  955. read_lock(&tasklist_lock); /* arm_timer needs it. */
  956. spin_lock(&p->sighand->siglock);
  957. } else {
  958. read_lock(&tasklist_lock);
  959. if (unlikely(p->sighand == NULL)) {
  960. /*
  961. * The process has been reaped.
  962. * We can't even collect a sample any more.
  963. */
  964. put_task_struct(p);
  965. timer->it.cpu.task = p = NULL;
  966. timer->it.cpu.expires = 0;
  967. goto out_unlock;
  968. } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
  969. /*
  970. * We've noticed that the thread is dead, but
  971. * not yet reaped. Take this opportunity to
  972. * drop our task ref.
  973. */
  974. cpu_timer_sample_group(timer->it_clock, p, &now);
  975. clear_dead_task(timer, now);
  976. goto out_unlock;
  977. }
  978. spin_lock(&p->sighand->siglock);
  979. cpu_timer_sample_group(timer->it_clock, p, &now);
  980. bump_cpu_timer(timer, now);
  981. /* Leave the tasklist_lock locked for the call below. */
  982. }
  983. /*
  984. * Now re-arm for the new expiry time.
  985. */
  986. BUG_ON(!irqs_disabled());
  987. arm_timer(timer);
  988. spin_unlock(&p->sighand->siglock);
  989. out_unlock:
  990. read_unlock(&tasklist_lock);
  991. out:
  992. timer->it_overrun_last = timer->it_overrun;
  993. timer->it_overrun = -1;
  994. ++timer->it_requeue_pending;
  995. }
  996. /**
  997. * task_cputime_expired - Compare two task_cputime entities.
  998. *
  999. * @sample: The task_cputime structure to be checked for expiration.
  1000. * @expires: Expiration times, against which @sample will be checked.
  1001. *
  1002. * Checks @sample against @expires to see if any field of @sample has expired.
  1003. * Returns true if any field of the former is greater than the corresponding
  1004. * field of the latter if the latter field is set. Otherwise returns false.
  1005. */
  1006. static inline int task_cputime_expired(const struct task_cputime *sample,
  1007. const struct task_cputime *expires)
  1008. {
  1009. if (expires->utime && sample->utime >= expires->utime)
  1010. return 1;
  1011. if (expires->stime && sample->utime + sample->stime >= expires->stime)
  1012. return 1;
  1013. if (expires->sum_exec_runtime != 0 &&
  1014. sample->sum_exec_runtime >= expires->sum_exec_runtime)
  1015. return 1;
  1016. return 0;
  1017. }
  1018. /**
  1019. * fastpath_timer_check - POSIX CPU timers fast path.
  1020. *
  1021. * @tsk: The task (thread) being checked.
  1022. *
  1023. * Check the task and thread group timers. If both are zero (there are no
  1024. * timers set) return false. Otherwise snapshot the task and thread group
  1025. * timers and compare them with the corresponding expiration times. Return
  1026. * true if a timer has expired, else return false.
  1027. */
  1028. static inline int fastpath_timer_check(struct task_struct *tsk)
  1029. {
  1030. struct signal_struct *sig;
  1031. cputime_t utime, stime;
  1032. task_cputime(tsk, &utime, &stime);
  1033. if (!task_cputime_zero(&tsk->cputime_expires)) {
  1034. struct task_cputime task_sample = {
  1035. .utime = utime,
  1036. .stime = stime,
  1037. .sum_exec_runtime = tsk->se.sum_exec_runtime
  1038. };
  1039. if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
  1040. return 1;
  1041. }
  1042. sig = tsk->signal;
  1043. if (sig->cputimer.running) {
  1044. struct task_cputime group_sample;
  1045. raw_spin_lock(&sig->cputimer.lock);
  1046. group_sample = sig->cputimer.cputime;
  1047. raw_spin_unlock(&sig->cputimer.lock);
  1048. if (task_cputime_expired(&group_sample, &sig->cputime_expires))
  1049. return 1;
  1050. }
  1051. return 0;
  1052. }
  1053. /*
  1054. * This is called from the timer interrupt handler. The irq handler has
  1055. * already updated our counts. We need to check if any timers fire now.
  1056. * Interrupts are disabled.
  1057. */
  1058. void run_posix_cpu_timers(struct task_struct *tsk)
  1059. {
  1060. LIST_HEAD(firing);
  1061. struct k_itimer *timer, *next;
  1062. unsigned long flags;
  1063. BUG_ON(!irqs_disabled());
  1064. /*
  1065. * The fast path checks that there are no expired thread or thread
  1066. * group timers. If that's so, just return.
  1067. */
  1068. if (!fastpath_timer_check(tsk))
  1069. return;
  1070. if (!lock_task_sighand(tsk, &flags))
  1071. return;
  1072. /*
  1073. * Here we take off tsk->signal->cpu_timers[N] and
  1074. * tsk->cpu_timers[N] all the timers that are firing, and
  1075. * put them on the firing list.
  1076. */
  1077. check_thread_timers(tsk, &firing);
  1078. /*
  1079. * If there are any active process wide timers (POSIX 1.b, itimers,
  1080. * RLIMIT_CPU) cputimer must be running.
  1081. */
  1082. if (tsk->signal->cputimer.running)
  1083. check_process_timers(tsk, &firing);
  1084. /*
  1085. * We must release these locks before taking any timer's lock.
  1086. * There is a potential race with timer deletion here, as the
  1087. * siglock now protects our private firing list. We have set
  1088. * the firing flag in each timer, so that a deletion attempt
  1089. * that gets the timer lock before we do will give it up and
  1090. * spin until we've taken care of that timer below.
  1091. */
  1092. unlock_task_sighand(tsk, &flags);
  1093. /*
  1094. * Now that all the timers on our list have the firing flag,
  1095. * no one will touch their list entries but us. We'll take
  1096. * each timer's lock before clearing its firing flag, so no
  1097. * timer call will interfere.
  1098. */
  1099. list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
  1100. int cpu_firing;
  1101. spin_lock(&timer->it_lock);
  1102. list_del_init(&timer->it.cpu.entry);
  1103. cpu_firing = timer->it.cpu.firing;
  1104. timer->it.cpu.firing = 0;
  1105. /*
  1106. * The firing flag is -1 if we collided with a reset
  1107. * of the timer, which already reported this
  1108. * almost-firing as an overrun. So don't generate an event.
  1109. */
  1110. if (likely(cpu_firing >= 0))
  1111. cpu_timer_fire(timer);
  1112. spin_unlock(&timer->it_lock);
  1113. }
  1114. /*
  1115. * In case some timers were rescheduled after the queue got emptied,
  1116. * wake up full dynticks CPUs.
  1117. */
  1118. if (tsk->signal->cputimer.running)
  1119. posix_cpu_timer_kick_nohz();
  1120. }
  1121. /*
  1122. * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
  1123. * The tsk->sighand->siglock must be held by the caller.
  1124. */
  1125. void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
  1126. cputime_t *newval, cputime_t *oldval)
  1127. {
  1128. unsigned long long now;
  1129. BUG_ON(clock_idx == CPUCLOCK_SCHED);
  1130. cpu_timer_sample_group(clock_idx, tsk, &now);
  1131. if (oldval) {
  1132. /*
  1133. * We are setting itimer. The *oldval is absolute and we update
  1134. * it to be relative, *newval argument is relative and we update
  1135. * it to be absolute.
  1136. */
  1137. if (*oldval) {
  1138. if (*oldval <= now) {
  1139. /* Just about to fire. */
  1140. *oldval = cputime_one_jiffy;
  1141. } else {
  1142. *oldval -= now;
  1143. }
  1144. }
  1145. if (!*newval)
  1146. goto out;
  1147. *newval += now;
  1148. }
  1149. /*
  1150. * Update expiration cache if we are the earliest timer, or eventually
  1151. * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
  1152. */
  1153. switch (clock_idx) {
  1154. case CPUCLOCK_PROF:
  1155. if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
  1156. tsk->signal->cputime_expires.prof_exp = *newval;
  1157. break;
  1158. case CPUCLOCK_VIRT:
  1159. if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
  1160. tsk->signal->cputime_expires.virt_exp = *newval;
  1161. break;
  1162. }
  1163. out:
  1164. posix_cpu_timer_kick_nohz();
  1165. }
  1166. static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
  1167. struct timespec *rqtp, struct itimerspec *it)
  1168. {
  1169. struct k_itimer timer;
  1170. int error;
  1171. /*
  1172. * Set up a temporary timer and then wait for it to go off.
  1173. */
  1174. memset(&timer, 0, sizeof timer);
  1175. spin_lock_init(&timer.it_lock);
  1176. timer.it_clock = which_clock;
  1177. timer.it_overrun = -1;
  1178. error = posix_cpu_timer_create(&timer);
  1179. timer.it_process = current;
  1180. if (!error) {
  1181. static struct itimerspec zero_it;
  1182. memset(it, 0, sizeof *it);
  1183. it->it_value = *rqtp;
  1184. spin_lock_irq(&timer.it_lock);
  1185. error = posix_cpu_timer_set(&timer, flags, it, NULL);
  1186. if (error) {
  1187. spin_unlock_irq(&timer.it_lock);
  1188. return error;
  1189. }
  1190. while (!signal_pending(current)) {
  1191. if (timer.it.cpu.expires == 0) {
  1192. /*
  1193. * Our timer fired and was reset, below
  1194. * deletion can not fail.
  1195. */
  1196. posix_cpu_timer_del(&timer);
  1197. spin_unlock_irq(&timer.it_lock);
  1198. return 0;
  1199. }
  1200. /*
  1201. * Block until cpu_timer_fire (or a signal) wakes us.
  1202. */
  1203. __set_current_state(TASK_INTERRUPTIBLE);
  1204. spin_unlock_irq(&timer.it_lock);
  1205. schedule();
  1206. spin_lock_irq(&timer.it_lock);
  1207. }
  1208. /*
  1209. * We were interrupted by a signal.
  1210. */
  1211. sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
  1212. error = posix_cpu_timer_set(&timer, 0, &zero_it, it);
  1213. if (!error) {
  1214. /*
  1215. * Timer is now unarmed, deletion can not fail.
  1216. */
  1217. posix_cpu_timer_del(&timer);
  1218. }
  1219. spin_unlock_irq(&timer.it_lock);
  1220. while (error == TIMER_RETRY) {
  1221. /*
  1222. * We need to handle case when timer was or is in the
  1223. * middle of firing. In other cases we already freed
  1224. * resources.
  1225. */
  1226. spin_lock_irq(&timer.it_lock);
  1227. error = posix_cpu_timer_del(&timer);
  1228. spin_unlock_irq(&timer.it_lock);
  1229. }
  1230. if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
  1231. /*
  1232. * It actually did fire already.
  1233. */
  1234. return 0;
  1235. }
  1236. error = -ERESTART_RESTARTBLOCK;
  1237. }
  1238. return error;
  1239. }
  1240. static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
  1241. static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
  1242. struct timespec *rqtp, struct timespec __user *rmtp)
  1243. {
  1244. struct restart_block *restart_block =
  1245. &current_thread_info()->restart_block;
  1246. struct itimerspec it;
  1247. int error;
  1248. /*
  1249. * Diagnose required errors first.
  1250. */
  1251. if (CPUCLOCK_PERTHREAD(which_clock) &&
  1252. (CPUCLOCK_PID(which_clock) == 0 ||
  1253. CPUCLOCK_PID(which_clock) == current->pid))
  1254. return -EINVAL;
  1255. error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
  1256. if (error == -ERESTART_RESTARTBLOCK) {
  1257. if (flags & TIMER_ABSTIME)
  1258. return -ERESTARTNOHAND;
  1259. /*
  1260. * Report back to the user the time still remaining.
  1261. */
  1262. if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
  1263. return -EFAULT;
  1264. restart_block->fn = posix_cpu_nsleep_restart;
  1265. restart_block->nanosleep.clockid = which_clock;
  1266. restart_block->nanosleep.rmtp = rmtp;
  1267. restart_block->nanosleep.expires = timespec_to_ns(rqtp);
  1268. }
  1269. return error;
  1270. }
  1271. static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
  1272. {
  1273. clockid_t which_clock = restart_block->nanosleep.clockid;
  1274. struct timespec t;
  1275. struct itimerspec it;
  1276. int error;
  1277. t = ns_to_timespec(restart_block->nanosleep.expires);
  1278. error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
  1279. if (error == -ERESTART_RESTARTBLOCK) {
  1280. struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
  1281. /*
  1282. * Report back to the user the time still remaining.
  1283. */
  1284. if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
  1285. return -EFAULT;
  1286. restart_block->nanosleep.expires = timespec_to_ns(&t);
  1287. }
  1288. return error;
  1289. }
  1290. #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
  1291. #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
  1292. static int process_cpu_clock_getres(const clockid_t which_clock,
  1293. struct timespec *tp)
  1294. {
  1295. return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
  1296. }
  1297. static int process_cpu_clock_get(const clockid_t which_clock,
  1298. struct timespec *tp)
  1299. {
  1300. return posix_cpu_clock_get(PROCESS_CLOCK, tp);
  1301. }
  1302. static int process_cpu_timer_create(struct k_itimer *timer)
  1303. {
  1304. timer->it_clock = PROCESS_CLOCK;
  1305. return posix_cpu_timer_create(timer);
  1306. }
  1307. static int process_cpu_nsleep(const clockid_t which_clock, int flags,
  1308. struct timespec *rqtp,
  1309. struct timespec __user *rmtp)
  1310. {
  1311. return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
  1312. }
  1313. static long process_cpu_nsleep_restart(struct restart_block *restart_block)
  1314. {
  1315. return -EINVAL;
  1316. }
  1317. static int thread_cpu_clock_getres(const clockid_t which_clock,
  1318. struct timespec *tp)
  1319. {
  1320. return posix_cpu_clock_getres(THREAD_CLOCK, tp);
  1321. }
  1322. static int thread_cpu_clock_get(const clockid_t which_clock,
  1323. struct timespec *tp)
  1324. {
  1325. return posix_cpu_clock_get(THREAD_CLOCK, tp);
  1326. }
  1327. static int thread_cpu_timer_create(struct k_itimer *timer)
  1328. {
  1329. timer->it_clock = THREAD_CLOCK;
  1330. return posix_cpu_timer_create(timer);
  1331. }
  1332. struct k_clock clock_posix_cpu = {
  1333. .clock_getres = posix_cpu_clock_getres,
  1334. .clock_set = posix_cpu_clock_set,
  1335. .clock_get = posix_cpu_clock_get,
  1336. .timer_create = posix_cpu_timer_create,
  1337. .nsleep = posix_cpu_nsleep,
  1338. .nsleep_restart = posix_cpu_nsleep_restart,
  1339. .timer_set = posix_cpu_timer_set,
  1340. .timer_del = posix_cpu_timer_del,
  1341. .timer_get = posix_cpu_timer_get,
  1342. };
  1343. static __init int init_posix_cpu_timers(void)
  1344. {
  1345. struct k_clock process = {
  1346. .clock_getres = process_cpu_clock_getres,
  1347. .clock_get = process_cpu_clock_get,
  1348. .timer_create = process_cpu_timer_create,
  1349. .nsleep = process_cpu_nsleep,
  1350. .nsleep_restart = process_cpu_nsleep_restart,
  1351. };
  1352. struct k_clock thread = {
  1353. .clock_getres = thread_cpu_clock_getres,
  1354. .clock_get = thread_cpu_clock_get,
  1355. .timer_create = thread_cpu_timer_create,
  1356. };
  1357. struct timespec ts;
  1358. posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
  1359. posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
  1360. cputime_to_timespec(cputime_one_jiffy, &ts);
  1361. onecputick = ts.tv_nsec;
  1362. WARN_ON(ts.tv_sec != 0);
  1363. return 0;
  1364. }
  1365. __initcall(init_posix_cpu_timers);