hw.c 71 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552
  1. /******************************************************************************
  2. *
  3. * Copyright(c) 2009-2012 Realtek Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of version 2 of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
  17. *
  18. * The full GNU General Public License is included in this distribution in the
  19. * file called LICENSE.
  20. *
  21. * Contact Information:
  22. * wlanfae <wlanfae@realtek.com>
  23. * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
  24. * Hsinchu 300, Taiwan.
  25. *
  26. * Larry Finger <Larry.Finger@lwfinger.net>
  27. *
  28. *****************************************************************************/
  29. #include "../wifi.h"
  30. #include "../efuse.h"
  31. #include "../base.h"
  32. #include "../regd.h"
  33. #include "../cam.h"
  34. #include "../ps.h"
  35. #include "../pci.h"
  36. #include "reg.h"
  37. #include "def.h"
  38. #include "phy.h"
  39. #include "dm.h"
  40. #include "fw.h"
  41. #include "led.h"
  42. #include "hw.h"
  43. void rtl92se_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
  44. {
  45. struct rtl_priv *rtlpriv = rtl_priv(hw);
  46. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  47. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  48. switch (variable) {
  49. case HW_VAR_RCR: {
  50. *((u32 *) (val)) = rtlpci->receive_config;
  51. break;
  52. }
  53. case HW_VAR_RF_STATE: {
  54. *((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
  55. break;
  56. }
  57. case HW_VAR_FW_PSMODE_STATUS: {
  58. *((bool *) (val)) = ppsc->fw_current_inpsmode;
  59. break;
  60. }
  61. case HW_VAR_CORRECT_TSF: {
  62. u64 tsf;
  63. u32 *ptsf_low = (u32 *)&tsf;
  64. u32 *ptsf_high = ((u32 *)&tsf) + 1;
  65. *ptsf_high = rtl_read_dword(rtlpriv, (TSFR + 4));
  66. *ptsf_low = rtl_read_dword(rtlpriv, TSFR);
  67. *((u64 *) (val)) = tsf;
  68. break;
  69. }
  70. case HW_VAR_MRC: {
  71. *((bool *)(val)) = rtlpriv->dm.current_mrc_switch;
  72. break;
  73. }
  74. default: {
  75. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  76. "switch case not processed\n");
  77. break;
  78. }
  79. }
  80. }
  81. void rtl92se_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
  82. {
  83. struct rtl_priv *rtlpriv = rtl_priv(hw);
  84. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  85. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  86. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  87. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  88. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  89. switch (variable) {
  90. case HW_VAR_ETHER_ADDR:{
  91. rtl_write_dword(rtlpriv, IDR0, ((u32 *)(val))[0]);
  92. rtl_write_word(rtlpriv, IDR4, ((u16 *)(val + 4))[0]);
  93. break;
  94. }
  95. case HW_VAR_BASIC_RATE:{
  96. u16 rate_cfg = ((u16 *) val)[0];
  97. u8 rate_index = 0;
  98. if (rtlhal->version == VERSION_8192S_ACUT)
  99. rate_cfg = rate_cfg & 0x150;
  100. else
  101. rate_cfg = rate_cfg & 0x15f;
  102. rate_cfg |= 0x01;
  103. rtl_write_byte(rtlpriv, RRSR, rate_cfg & 0xff);
  104. rtl_write_byte(rtlpriv, RRSR + 1,
  105. (rate_cfg >> 8) & 0xff);
  106. while (rate_cfg > 0x1) {
  107. rate_cfg = (rate_cfg >> 1);
  108. rate_index++;
  109. }
  110. rtl_write_byte(rtlpriv, INIRTSMCS_SEL, rate_index);
  111. break;
  112. }
  113. case HW_VAR_BSSID:{
  114. rtl_write_dword(rtlpriv, BSSIDR, ((u32 *)(val))[0]);
  115. rtl_write_word(rtlpriv, BSSIDR + 4,
  116. ((u16 *)(val + 4))[0]);
  117. break;
  118. }
  119. case HW_VAR_SIFS:{
  120. rtl_write_byte(rtlpriv, SIFS_OFDM, val[0]);
  121. rtl_write_byte(rtlpriv, SIFS_OFDM + 1, val[1]);
  122. break;
  123. }
  124. case HW_VAR_SLOT_TIME:{
  125. u8 e_aci;
  126. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  127. "HW_VAR_SLOT_TIME %x\n", val[0]);
  128. rtl_write_byte(rtlpriv, SLOT_TIME, val[0]);
  129. for (e_aci = 0; e_aci < AC_MAX; e_aci++) {
  130. rtlpriv->cfg->ops->set_hw_reg(hw,
  131. HW_VAR_AC_PARAM,
  132. (&e_aci));
  133. }
  134. break;
  135. }
  136. case HW_VAR_ACK_PREAMBLE:{
  137. u8 reg_tmp;
  138. u8 short_preamble = (bool) (*val);
  139. reg_tmp = (mac->cur_40_prime_sc) << 5;
  140. if (short_preamble)
  141. reg_tmp |= 0x80;
  142. rtl_write_byte(rtlpriv, RRSR + 2, reg_tmp);
  143. break;
  144. }
  145. case HW_VAR_AMPDU_MIN_SPACE:{
  146. u8 min_spacing_to_set;
  147. u8 sec_min_space;
  148. min_spacing_to_set = *val;
  149. if (min_spacing_to_set <= 7) {
  150. if (rtlpriv->sec.pairwise_enc_algorithm ==
  151. NO_ENCRYPTION)
  152. sec_min_space = 0;
  153. else
  154. sec_min_space = 1;
  155. if (min_spacing_to_set < sec_min_space)
  156. min_spacing_to_set = sec_min_space;
  157. if (min_spacing_to_set > 5)
  158. min_spacing_to_set = 5;
  159. mac->min_space_cfg =
  160. ((mac->min_space_cfg & 0xf8) |
  161. min_spacing_to_set);
  162. *val = min_spacing_to_set;
  163. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  164. "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
  165. mac->min_space_cfg);
  166. rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE,
  167. mac->min_space_cfg);
  168. }
  169. break;
  170. }
  171. case HW_VAR_SHORTGI_DENSITY:{
  172. u8 density_to_set;
  173. density_to_set = *val;
  174. mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg;
  175. mac->min_space_cfg |= (density_to_set << 3);
  176. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  177. "Set HW_VAR_SHORTGI_DENSITY: %#x\n",
  178. mac->min_space_cfg);
  179. rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE,
  180. mac->min_space_cfg);
  181. break;
  182. }
  183. case HW_VAR_AMPDU_FACTOR:{
  184. u8 factor_toset;
  185. u8 regtoset;
  186. u8 factorlevel[18] = {
  187. 2, 4, 4, 7, 7, 13, 13,
  188. 13, 2, 7, 7, 13, 13,
  189. 15, 15, 15, 15, 0};
  190. u8 index = 0;
  191. factor_toset = *val;
  192. if (factor_toset <= 3) {
  193. factor_toset = (1 << (factor_toset + 2));
  194. if (factor_toset > 0xf)
  195. factor_toset = 0xf;
  196. for (index = 0; index < 17; index++) {
  197. if (factorlevel[index] > factor_toset)
  198. factorlevel[index] =
  199. factor_toset;
  200. }
  201. for (index = 0; index < 8; index++) {
  202. regtoset = ((factorlevel[index * 2]) |
  203. (factorlevel[index *
  204. 2 + 1] << 4));
  205. rtl_write_byte(rtlpriv,
  206. AGGLEN_LMT_L + index,
  207. regtoset);
  208. }
  209. regtoset = ((factorlevel[16]) |
  210. (factorlevel[17] << 4));
  211. rtl_write_byte(rtlpriv, AGGLEN_LMT_H, regtoset);
  212. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  213. "Set HW_VAR_AMPDU_FACTOR: %#x\n",
  214. factor_toset);
  215. }
  216. break;
  217. }
  218. case HW_VAR_AC_PARAM:{
  219. u8 e_aci = *val;
  220. rtl92s_dm_init_edca_turbo(hw);
  221. if (rtlpci->acm_method != eAcmWay2_SW)
  222. rtlpriv->cfg->ops->set_hw_reg(hw,
  223. HW_VAR_ACM_CTRL,
  224. &e_aci);
  225. break;
  226. }
  227. case HW_VAR_ACM_CTRL:{
  228. u8 e_aci = *val;
  229. union aci_aifsn *p_aci_aifsn = (union aci_aifsn *)(&(
  230. mac->ac[0].aifs));
  231. u8 acm = p_aci_aifsn->f.acm;
  232. u8 acm_ctrl = rtl_read_byte(rtlpriv, AcmHwCtrl);
  233. acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ?
  234. 0x0 : 0x1);
  235. if (acm) {
  236. switch (e_aci) {
  237. case AC0_BE:
  238. acm_ctrl |= AcmHw_BeqEn;
  239. break;
  240. case AC2_VI:
  241. acm_ctrl |= AcmHw_ViqEn;
  242. break;
  243. case AC3_VO:
  244. acm_ctrl |= AcmHw_VoqEn;
  245. break;
  246. default:
  247. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  248. "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
  249. acm);
  250. break;
  251. }
  252. } else {
  253. switch (e_aci) {
  254. case AC0_BE:
  255. acm_ctrl &= (~AcmHw_BeqEn);
  256. break;
  257. case AC2_VI:
  258. acm_ctrl &= (~AcmHw_ViqEn);
  259. break;
  260. case AC3_VO:
  261. acm_ctrl &= (~AcmHw_BeqEn);
  262. break;
  263. default:
  264. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  265. "switch case not processed\n");
  266. break;
  267. }
  268. }
  269. RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
  270. "HW_VAR_ACM_CTRL Write 0x%X\n", acm_ctrl);
  271. rtl_write_byte(rtlpriv, AcmHwCtrl, acm_ctrl);
  272. break;
  273. }
  274. case HW_VAR_RCR:{
  275. rtl_write_dword(rtlpriv, RCR, ((u32 *) (val))[0]);
  276. rtlpci->receive_config = ((u32 *) (val))[0];
  277. break;
  278. }
  279. case HW_VAR_RETRY_LIMIT:{
  280. u8 retry_limit = val[0];
  281. rtl_write_word(rtlpriv, RETRY_LIMIT,
  282. retry_limit << RETRY_LIMIT_SHORT_SHIFT |
  283. retry_limit << RETRY_LIMIT_LONG_SHIFT);
  284. break;
  285. }
  286. case HW_VAR_DUAL_TSF_RST: {
  287. break;
  288. }
  289. case HW_VAR_EFUSE_BYTES: {
  290. rtlefuse->efuse_usedbytes = *((u16 *) val);
  291. break;
  292. }
  293. case HW_VAR_EFUSE_USAGE: {
  294. rtlefuse->efuse_usedpercentage = *val;
  295. break;
  296. }
  297. case HW_VAR_IO_CMD: {
  298. break;
  299. }
  300. case HW_VAR_WPA_CONFIG: {
  301. rtl_write_byte(rtlpriv, REG_SECR, *val);
  302. break;
  303. }
  304. case HW_VAR_SET_RPWM:{
  305. break;
  306. }
  307. case HW_VAR_H2C_FW_PWRMODE:{
  308. break;
  309. }
  310. case HW_VAR_FW_PSMODE_STATUS: {
  311. ppsc->fw_current_inpsmode = *((bool *) val);
  312. break;
  313. }
  314. case HW_VAR_H2C_FW_JOINBSSRPT:{
  315. break;
  316. }
  317. case HW_VAR_AID:{
  318. break;
  319. }
  320. case HW_VAR_CORRECT_TSF:{
  321. break;
  322. }
  323. case HW_VAR_MRC: {
  324. bool bmrc_toset = *((bool *)val);
  325. u8 u1bdata = 0;
  326. if (bmrc_toset) {
  327. rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
  328. MASKBYTE0, 0x33);
  329. u1bdata = (u8)rtl_get_bbreg(hw,
  330. ROFDM1_TRXPATHENABLE,
  331. MASKBYTE0);
  332. rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE,
  333. MASKBYTE0,
  334. ((u1bdata & 0xf0) | 0x03));
  335. u1bdata = (u8)rtl_get_bbreg(hw,
  336. ROFDM0_TRXPATHENABLE,
  337. MASKBYTE1);
  338. rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
  339. MASKBYTE1,
  340. (u1bdata | 0x04));
  341. /* Update current settings. */
  342. rtlpriv->dm.current_mrc_switch = bmrc_toset;
  343. } else {
  344. rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
  345. MASKBYTE0, 0x13);
  346. u1bdata = (u8)rtl_get_bbreg(hw,
  347. ROFDM1_TRXPATHENABLE,
  348. MASKBYTE0);
  349. rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE,
  350. MASKBYTE0,
  351. ((u1bdata & 0xf0) | 0x01));
  352. u1bdata = (u8)rtl_get_bbreg(hw,
  353. ROFDM0_TRXPATHENABLE,
  354. MASKBYTE1);
  355. rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
  356. MASKBYTE1, (u1bdata & 0xfb));
  357. /* Update current settings. */
  358. rtlpriv->dm.current_mrc_switch = bmrc_toset;
  359. }
  360. break;
  361. }
  362. case HW_VAR_FW_LPS_ACTION: {
  363. bool enter_fwlps = *((bool *)val);
  364. u8 rpwm_val, fw_pwrmode;
  365. bool fw_current_inps;
  366. if (enter_fwlps) {
  367. rpwm_val = 0x02; /* RF off */
  368. fw_current_inps = true;
  369. rtlpriv->cfg->ops->set_hw_reg(hw,
  370. HW_VAR_FW_PSMODE_STATUS,
  371. (u8 *)(&fw_current_inps));
  372. rtlpriv->cfg->ops->set_hw_reg(hw,
  373. HW_VAR_H2C_FW_PWRMODE,
  374. (u8 *)(&ppsc->fwctrl_psmode));
  375. rtlpriv->cfg->ops->set_hw_reg(hw,
  376. HW_VAR_SET_RPWM,
  377. (u8 *)(&rpwm_val));
  378. } else {
  379. rpwm_val = 0x0C; /* RF on */
  380. fw_pwrmode = FW_PS_ACTIVE_MODE;
  381. fw_current_inps = false;
  382. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM,
  383. (u8 *)(&rpwm_val));
  384. rtlpriv->cfg->ops->set_hw_reg(hw,
  385. HW_VAR_H2C_FW_PWRMODE,
  386. (u8 *)(&fw_pwrmode));
  387. rtlpriv->cfg->ops->set_hw_reg(hw,
  388. HW_VAR_FW_PSMODE_STATUS,
  389. (u8 *)(&fw_current_inps));
  390. }
  391. break; }
  392. default:
  393. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  394. "switch case not processed\n");
  395. break;
  396. }
  397. }
  398. void rtl92se_enable_hw_security_config(struct ieee80211_hw *hw)
  399. {
  400. struct rtl_priv *rtlpriv = rtl_priv(hw);
  401. u8 sec_reg_value = 0x0;
  402. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  403. "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
  404. rtlpriv->sec.pairwise_enc_algorithm,
  405. rtlpriv->sec.group_enc_algorithm);
  406. if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
  407. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  408. "not open hw encryption\n");
  409. return;
  410. }
  411. sec_reg_value = SCR_TXENCENABLE | SCR_RXENCENABLE;
  412. if (rtlpriv->sec.use_defaultkey) {
  413. sec_reg_value |= SCR_TXUSEDK;
  414. sec_reg_value |= SCR_RXUSEDK;
  415. }
  416. RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD, "The SECR-value %x\n",
  417. sec_reg_value);
  418. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
  419. }
  420. static u8 _rtl92se_halset_sysclk(struct ieee80211_hw *hw, u8 data)
  421. {
  422. struct rtl_priv *rtlpriv = rtl_priv(hw);
  423. u8 waitcount = 100;
  424. bool bresult = false;
  425. u8 tmpvalue;
  426. rtl_write_byte(rtlpriv, SYS_CLKR + 1, data);
  427. /* Wait the MAC synchronized. */
  428. udelay(400);
  429. /* Check if it is set ready. */
  430. tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
  431. bresult = ((tmpvalue & BIT(7)) == (data & BIT(7)));
  432. if ((data & (BIT(6) | BIT(7))) == false) {
  433. waitcount = 100;
  434. tmpvalue = 0;
  435. while (1) {
  436. waitcount--;
  437. tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
  438. if ((tmpvalue & BIT(6)))
  439. break;
  440. pr_err("wait for BIT(6) return value %x\n", tmpvalue);
  441. if (waitcount == 0)
  442. break;
  443. udelay(10);
  444. }
  445. if (waitcount == 0)
  446. bresult = false;
  447. else
  448. bresult = true;
  449. }
  450. return bresult;
  451. }
  452. void rtl8192se_gpiobit3_cfg_inputmode(struct ieee80211_hw *hw)
  453. {
  454. struct rtl_priv *rtlpriv = rtl_priv(hw);
  455. u8 u1tmp;
  456. /* The following config GPIO function */
  457. rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO));
  458. u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL);
  459. /* config GPIO3 to input */
  460. u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK;
  461. rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp);
  462. }
  463. static u8 _rtl92se_rf_onoff_detect(struct ieee80211_hw *hw)
  464. {
  465. struct rtl_priv *rtlpriv = rtl_priv(hw);
  466. u8 u1tmp;
  467. u8 retval = ERFON;
  468. /* The following config GPIO function */
  469. rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO));
  470. u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL);
  471. /* config GPIO3 to input */
  472. u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK;
  473. rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp);
  474. /* On some of the platform, driver cannot read correct
  475. * value without delay between Write_GPIO_SEL and Read_GPIO_IN */
  476. mdelay(10);
  477. /* check GPIO3 */
  478. u1tmp = rtl_read_byte(rtlpriv, GPIO_IN_SE);
  479. retval = (u1tmp & HAL_8192S_HW_GPIO_OFF_BIT) ? ERFON : ERFOFF;
  480. return retval;
  481. }
  482. static void _rtl92se_macconfig_before_fwdownload(struct ieee80211_hw *hw)
  483. {
  484. struct rtl_priv *rtlpriv = rtl_priv(hw);
  485. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  486. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  487. u8 i;
  488. u8 tmpu1b;
  489. u16 tmpu2b;
  490. u8 pollingcnt = 20;
  491. if (rtlpci->first_init) {
  492. /* Reset PCIE Digital */
  493. tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
  494. tmpu1b &= 0xFE;
  495. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
  496. udelay(1);
  497. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b | BIT(0));
  498. }
  499. /* Switch to SW IO control */
  500. tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
  501. if (tmpu1b & BIT(7)) {
  502. tmpu1b &= ~(BIT(6) | BIT(7));
  503. /* Set failed, return to prevent hang. */
  504. if (!_rtl92se_halset_sysclk(hw, tmpu1b))
  505. return;
  506. }
  507. rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0);
  508. udelay(50);
  509. rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
  510. udelay(50);
  511. /* Clear FW RPWM for FW control LPS.*/
  512. rtl_write_byte(rtlpriv, RPWM, 0x0);
  513. /* Reset MAC-IO and CPU and Core Digital BIT(10)/11/15 */
  514. tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
  515. tmpu1b &= 0x73;
  516. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
  517. /* wait for BIT 10/11/15 to pull high automatically!! */
  518. mdelay(1);
  519. rtl_write_byte(rtlpriv, CMDR, 0);
  520. rtl_write_byte(rtlpriv, TCR, 0);
  521. /* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
  522. tmpu1b = rtl_read_byte(rtlpriv, 0x562);
  523. tmpu1b |= 0x08;
  524. rtl_write_byte(rtlpriv, 0x562, tmpu1b);
  525. tmpu1b &= ~(BIT(3));
  526. rtl_write_byte(rtlpriv, 0x562, tmpu1b);
  527. /* Enable AFE clock source */
  528. tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL);
  529. rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01));
  530. /* Delay 1.5ms */
  531. mdelay(2);
  532. tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1);
  533. rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb));
  534. /* Enable AFE Macro Block's Bandgap */
  535. tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
  536. rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0)));
  537. mdelay(1);
  538. /* Enable AFE Mbias */
  539. tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
  540. rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02));
  541. mdelay(1);
  542. /* Enable LDOA15 block */
  543. tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL);
  544. rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0)));
  545. /* Set Digital Vdd to Retention isolation Path. */
  546. tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
  547. rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11)));
  548. /* For warm reboot NIC disappera bug. */
  549. tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
  550. rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13)));
  551. rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68);
  552. /* Enable AFE PLL Macro Block */
  553. /* We need to delay 100u before enabling PLL. */
  554. udelay(200);
  555. tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL);
  556. rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
  557. /* for divider reset */
  558. udelay(100);
  559. rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) |
  560. BIT(4) | BIT(6)));
  561. udelay(10);
  562. rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
  563. udelay(10);
  564. /* Enable MAC 80MHZ clock */
  565. tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1);
  566. rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0)));
  567. mdelay(1);
  568. /* Release isolation AFE PLL & MD */
  569. rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6);
  570. /* Enable MAC clock */
  571. tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
  572. rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11)));
  573. /* Enable Core digital and enable IOREG R/W */
  574. tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
  575. rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11)));
  576. tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
  577. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b & ~(BIT(7)));
  578. /* enable REG_EN */
  579. rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15)));
  580. /* Switch the control path. */
  581. tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
  582. rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2))));
  583. tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
  584. tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6)));
  585. if (!_rtl92se_halset_sysclk(hw, tmpu1b))
  586. return; /* Set failed, return to prevent hang. */
  587. rtl_write_word(rtlpriv, CMDR, 0x07FC);
  588. /* MH We must enable the section of code to prevent load IMEM fail. */
  589. /* Load MAC register from WMAc temporarily We simulate macreg. */
  590. /* txt HW will provide MAC txt later */
  591. rtl_write_byte(rtlpriv, 0x6, 0x30);
  592. rtl_write_byte(rtlpriv, 0x49, 0xf0);
  593. rtl_write_byte(rtlpriv, 0x4b, 0x81);
  594. rtl_write_byte(rtlpriv, 0xb5, 0x21);
  595. rtl_write_byte(rtlpriv, 0xdc, 0xff);
  596. rtl_write_byte(rtlpriv, 0xdd, 0xff);
  597. rtl_write_byte(rtlpriv, 0xde, 0xff);
  598. rtl_write_byte(rtlpriv, 0xdf, 0xff);
  599. rtl_write_byte(rtlpriv, 0x11a, 0x00);
  600. rtl_write_byte(rtlpriv, 0x11b, 0x00);
  601. for (i = 0; i < 32; i++)
  602. rtl_write_byte(rtlpriv, INIMCS_SEL + i, 0x1b);
  603. rtl_write_byte(rtlpriv, 0x236, 0xff);
  604. rtl_write_byte(rtlpriv, 0x503, 0x22);
  605. if (ppsc->support_aspm && !ppsc->support_backdoor)
  606. rtl_write_byte(rtlpriv, 0x560, 0x40);
  607. else
  608. rtl_write_byte(rtlpriv, 0x560, 0x00);
  609. rtl_write_byte(rtlpriv, DBG_PORT, 0x91);
  610. /* Set RX Desc Address */
  611. rtl_write_dword(rtlpriv, RDQDA, rtlpci->rx_ring[RX_MPDU_QUEUE].dma);
  612. rtl_write_dword(rtlpriv, RCDA, rtlpci->rx_ring[RX_CMD_QUEUE].dma);
  613. /* Set TX Desc Address */
  614. rtl_write_dword(rtlpriv, TBKDA, rtlpci->tx_ring[BK_QUEUE].dma);
  615. rtl_write_dword(rtlpriv, TBEDA, rtlpci->tx_ring[BE_QUEUE].dma);
  616. rtl_write_dword(rtlpriv, TVIDA, rtlpci->tx_ring[VI_QUEUE].dma);
  617. rtl_write_dword(rtlpriv, TVODA, rtlpci->tx_ring[VO_QUEUE].dma);
  618. rtl_write_dword(rtlpriv, TBDA, rtlpci->tx_ring[BEACON_QUEUE].dma);
  619. rtl_write_dword(rtlpriv, TCDA, rtlpci->tx_ring[TXCMD_QUEUE].dma);
  620. rtl_write_dword(rtlpriv, TMDA, rtlpci->tx_ring[MGNT_QUEUE].dma);
  621. rtl_write_dword(rtlpriv, THPDA, rtlpci->tx_ring[HIGH_QUEUE].dma);
  622. rtl_write_dword(rtlpriv, HDA, rtlpci->tx_ring[HCCA_QUEUE].dma);
  623. rtl_write_word(rtlpriv, CMDR, 0x37FC);
  624. /* To make sure that TxDMA can ready to download FW. */
  625. /* We should reset TxDMA if IMEM RPT was not ready. */
  626. do {
  627. tmpu1b = rtl_read_byte(rtlpriv, TCR);
  628. if ((tmpu1b & TXDMA_INIT_VALUE) == TXDMA_INIT_VALUE)
  629. break;
  630. udelay(5);
  631. } while (pollingcnt--);
  632. if (pollingcnt <= 0) {
  633. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  634. "Polling TXDMA_INIT_VALUE timeout!! Current TCR(%#x)\n",
  635. tmpu1b);
  636. tmpu1b = rtl_read_byte(rtlpriv, CMDR);
  637. rtl_write_byte(rtlpriv, CMDR, tmpu1b & (~TXDMA_EN));
  638. udelay(2);
  639. /* Reset TxDMA */
  640. rtl_write_byte(rtlpriv, CMDR, tmpu1b | TXDMA_EN);
  641. }
  642. /* After MACIO reset,we must refresh LED state. */
  643. if ((ppsc->rfoff_reason == RF_CHANGE_BY_IPS) ||
  644. (ppsc->rfoff_reason == 0)) {
  645. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  646. struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
  647. enum rf_pwrstate rfpwr_state_toset;
  648. rfpwr_state_toset = _rtl92se_rf_onoff_detect(hw);
  649. if (rfpwr_state_toset == ERFON)
  650. rtl92se_sw_led_on(hw, pLed0);
  651. }
  652. }
  653. static void _rtl92se_macconfig_after_fwdownload(struct ieee80211_hw *hw)
  654. {
  655. struct rtl_priv *rtlpriv = rtl_priv(hw);
  656. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  657. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  658. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  659. u8 i;
  660. u16 tmpu2b;
  661. /* 1. System Configure Register (Offset: 0x0000 - 0x003F) */
  662. /* 2. Command Control Register (Offset: 0x0040 - 0x004F) */
  663. /* Turn on 0x40 Command register */
  664. rtl_write_word(rtlpriv, CMDR, (BBRSTN | BB_GLB_RSTN |
  665. SCHEDULE_EN | MACRXEN | MACTXEN | DDMA_EN | FW2HW_EN |
  666. RXDMA_EN | TXDMA_EN | HCI_RXDMA_EN | HCI_TXDMA_EN));
  667. /* Set TCR TX DMA pre 2 FULL enable bit */
  668. rtl_write_dword(rtlpriv, TCR, rtl_read_dword(rtlpriv, TCR) |
  669. TXDMAPRE2FULL);
  670. /* Set RCR */
  671. rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config);
  672. /* 3. MACID Setting Register (Offset: 0x0050 - 0x007F) */
  673. /* 4. Timing Control Register (Offset: 0x0080 - 0x009F) */
  674. /* Set CCK/OFDM SIFS */
  675. /* CCK SIFS shall always be 10us. */
  676. rtl_write_word(rtlpriv, SIFS_CCK, 0x0a0a);
  677. rtl_write_word(rtlpriv, SIFS_OFDM, 0x1010);
  678. /* Set AckTimeout */
  679. rtl_write_byte(rtlpriv, ACK_TIMEOUT, 0x40);
  680. /* Beacon related */
  681. rtl_write_word(rtlpriv, BCN_INTERVAL, 100);
  682. rtl_write_word(rtlpriv, ATIMWND, 2);
  683. /* 5. FIFO Control Register (Offset: 0x00A0 - 0x015F) */
  684. /* 5.1 Initialize Number of Reserved Pages in Firmware Queue */
  685. /* Firmware allocate now, associate with FW internal setting.!!! */
  686. /* 5.2 Setting TX/RX page size 0/1/2/3/4=64/128/256/512/1024 */
  687. /* 5.3 Set driver info, we only accept PHY status now. */
  688. /* 5.4 Set RXDMA arbitration to control RXDMA/MAC/FW R/W for RXFIFO */
  689. rtl_write_byte(rtlpriv, RXDMA, rtl_read_byte(rtlpriv, RXDMA) | BIT(6));
  690. /* 6. Adaptive Control Register (Offset: 0x0160 - 0x01CF) */
  691. /* Set RRSR to all legacy rate and HT rate
  692. * CCK rate is supported by default.
  693. * CCK rate will be filtered out only when associated
  694. * AP does not support it.
  695. * Only enable ACK rate to OFDM 24M
  696. * Disable RRSR for CCK rate in A-Cut */
  697. if (rtlhal->version == VERSION_8192S_ACUT)
  698. rtl_write_byte(rtlpriv, RRSR, 0xf0);
  699. else if (rtlhal->version == VERSION_8192S_BCUT)
  700. rtl_write_byte(rtlpriv, RRSR, 0xff);
  701. rtl_write_byte(rtlpriv, RRSR + 1, 0x01);
  702. rtl_write_byte(rtlpriv, RRSR + 2, 0x00);
  703. /* A-Cut IC do not support CCK rate. We forbid ARFR to */
  704. /* fallback to CCK rate */
  705. for (i = 0; i < 8; i++) {
  706. /*Disable RRSR for CCK rate in A-Cut */
  707. if (rtlhal->version == VERSION_8192S_ACUT)
  708. rtl_write_dword(rtlpriv, ARFR0 + i * 4, 0x1f0ff0f0);
  709. }
  710. /* Different rate use different AMPDU size */
  711. /* MCS32/ MCS15_SG use max AMPDU size 15*2=30K */
  712. rtl_write_byte(rtlpriv, AGGLEN_LMT_H, 0x0f);
  713. /* MCS0/1/2/3 use max AMPDU size 4*2=8K */
  714. rtl_write_word(rtlpriv, AGGLEN_LMT_L, 0x7442);
  715. /* MCS4/5 use max AMPDU size 8*2=16K 6/7 use 10*2=20K */
  716. rtl_write_word(rtlpriv, AGGLEN_LMT_L + 2, 0xddd7);
  717. /* MCS8/9 use max AMPDU size 8*2=16K 10/11 use 10*2=20K */
  718. rtl_write_word(rtlpriv, AGGLEN_LMT_L + 4, 0xd772);
  719. /* MCS12/13/14/15 use max AMPDU size 15*2=30K */
  720. rtl_write_word(rtlpriv, AGGLEN_LMT_L + 6, 0xfffd);
  721. /* Set Data / Response auto rate fallack retry count */
  722. rtl_write_dword(rtlpriv, DARFRC, 0x04010000);
  723. rtl_write_dword(rtlpriv, DARFRC + 4, 0x09070605);
  724. rtl_write_dword(rtlpriv, RARFRC, 0x04010000);
  725. rtl_write_dword(rtlpriv, RARFRC + 4, 0x09070605);
  726. /* 7. EDCA Setting Register (Offset: 0x01D0 - 0x01FF) */
  727. /* Set all rate to support SG */
  728. rtl_write_word(rtlpriv, SG_RATE, 0xFFFF);
  729. /* 8. WMAC, BA, and CCX related Register (Offset: 0x0200 - 0x023F) */
  730. /* Set NAV protection length */
  731. rtl_write_word(rtlpriv, NAV_PROT_LEN, 0x0080);
  732. /* CF-END Threshold */
  733. rtl_write_byte(rtlpriv, CFEND_TH, 0xFF);
  734. /* Set AMPDU minimum space */
  735. rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, 0x07);
  736. /* Set TXOP stall control for several queue/HI/BCN/MGT/ */
  737. rtl_write_byte(rtlpriv, TXOP_STALL_CTRL, 0x00);
  738. /* 9. Security Control Register (Offset: 0x0240 - 0x025F) */
  739. /* 10. Power Save Control Register (Offset: 0x0260 - 0x02DF) */
  740. /* 11. General Purpose Register (Offset: 0x02E0 - 0x02FF) */
  741. /* 12. Host Interrupt Status Register (Offset: 0x0300 - 0x030F) */
  742. /* 13. Test Mode and Debug Control Register (Offset: 0x0310 - 0x034F) */
  743. /* 14. Set driver info, we only accept PHY status now. */
  744. rtl_write_byte(rtlpriv, RXDRVINFO_SZ, 4);
  745. /* 15. For EEPROM R/W Workaround */
  746. /* 16. For EFUSE to share REG_SYS_FUNC_EN with EEPROM!!! */
  747. tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN);
  748. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, tmpu2b | BIT(13));
  749. tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL);
  750. rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, tmpu2b & (~BIT(8)));
  751. /* 17. For EFUSE */
  752. /* We may R/W EFUSE in EEPROM mode */
  753. if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
  754. u8 tempval;
  755. tempval = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL + 1);
  756. tempval &= 0xFE;
  757. rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, tempval);
  758. /* Change Program timing */
  759. rtl_write_byte(rtlpriv, REG_EFUSE_CTRL + 3, 0x72);
  760. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "EFUSE CONFIG OK\n");
  761. }
  762. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "OK\n");
  763. }
  764. static void _rtl92se_hw_configure(struct ieee80211_hw *hw)
  765. {
  766. struct rtl_priv *rtlpriv = rtl_priv(hw);
  767. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  768. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  769. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  770. u8 reg_bw_opmode = 0;
  771. u32 reg_rrsr = 0;
  772. u8 regtmp = 0;
  773. reg_bw_opmode = BW_OPMODE_20MHZ;
  774. reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
  775. regtmp = rtl_read_byte(rtlpriv, INIRTSMCS_SEL);
  776. reg_rrsr = ((reg_rrsr & 0x000fffff) << 8) | regtmp;
  777. rtl_write_dword(rtlpriv, INIRTSMCS_SEL, reg_rrsr);
  778. rtl_write_byte(rtlpriv, BW_OPMODE, reg_bw_opmode);
  779. /* Set Retry Limit here */
  780. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RETRY_LIMIT,
  781. (u8 *)(&rtlpci->shortretry_limit));
  782. rtl_write_byte(rtlpriv, MLT, 0x8f);
  783. /* For Min Spacing configuration. */
  784. switch (rtlphy->rf_type) {
  785. case RF_1T2R:
  786. case RF_1T1R:
  787. rtlhal->minspace_cfg = (MAX_MSS_DENSITY_1T << 3);
  788. break;
  789. case RF_2T2R:
  790. case RF_2T2R_GREEN:
  791. rtlhal->minspace_cfg = (MAX_MSS_DENSITY_2T << 3);
  792. break;
  793. }
  794. rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, rtlhal->minspace_cfg);
  795. }
  796. int rtl92se_hw_init(struct ieee80211_hw *hw)
  797. {
  798. struct rtl_priv *rtlpriv = rtl_priv(hw);
  799. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  800. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  801. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  802. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  803. u8 tmp_byte = 0;
  804. bool rtstatus = true;
  805. u8 tmp_u1b;
  806. int err = false;
  807. u8 i;
  808. int wdcapra_add[] = {
  809. EDCAPARA_BE, EDCAPARA_BK,
  810. EDCAPARA_VI, EDCAPARA_VO};
  811. u8 secr_value = 0x0;
  812. rtlpci->being_init_adapter = true;
  813. rtlpriv->intf_ops->disable_aspm(hw);
  814. /* 1. MAC Initialize */
  815. /* Before FW download, we have to set some MAC register */
  816. _rtl92se_macconfig_before_fwdownload(hw);
  817. rtlhal->version = (enum version_8192s)((rtl_read_dword(rtlpriv,
  818. PMC_FSM) >> 16) & 0xF);
  819. rtl8192se_gpiobit3_cfg_inputmode(hw);
  820. /* 2. download firmware */
  821. rtstatus = rtl92s_download_fw(hw);
  822. if (!rtstatus) {
  823. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  824. "Failed to download FW. Init HW without FW now... "
  825. "Please copy FW into /lib/firmware/rtlwifi\n");
  826. return 1;
  827. }
  828. /* After FW download, we have to reset MAC register */
  829. _rtl92se_macconfig_after_fwdownload(hw);
  830. /*Retrieve default FW Cmd IO map. */
  831. rtlhal->fwcmd_iomap = rtl_read_word(rtlpriv, LBUS_MON_ADDR);
  832. rtlhal->fwcmd_ioparam = rtl_read_dword(rtlpriv, LBUS_ADDR_MASK);
  833. /* 3. Initialize MAC/PHY Config by MACPHY_reg.txt */
  834. if (!rtl92s_phy_mac_config(hw)) {
  835. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "MAC Config failed\n");
  836. return rtstatus;
  837. }
  838. /* because last function modify RCR, so we update
  839. * rcr var here, or TP will unstable for receive_config
  840. * is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx
  841. * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252
  842. */
  843. rtlpci->receive_config = rtl_read_dword(rtlpriv, RCR);
  844. rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV);
  845. rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config);
  846. /* Make sure BB/RF write OK. We should prevent enter IPS. radio off. */
  847. /* We must set flag avoid BB/RF config period later!! */
  848. rtl_write_dword(rtlpriv, CMDR, 0x37FC);
  849. /* 4. Initialize BB After MAC Config PHY_reg.txt, AGC_Tab.txt */
  850. if (!rtl92s_phy_bb_config(hw)) {
  851. RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG, "BB Config failed\n");
  852. return rtstatus;
  853. }
  854. /* 5. Initiailze RF RAIO_A.txt RF RAIO_B.txt */
  855. /* Before initalizing RF. We can not use FW to do RF-R/W. */
  856. rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
  857. /* Before RF-R/W we must execute the IO from Scott's suggestion. */
  858. rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, 0xDB);
  859. if (rtlhal->version == VERSION_8192S_ACUT)
  860. rtl_write_byte(rtlpriv, SPS1_CTRL + 3, 0x07);
  861. else
  862. rtl_write_byte(rtlpriv, RF_CTRL, 0x07);
  863. if (!rtl92s_phy_rf_config(hw)) {
  864. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "RF Config failed\n");
  865. return rtstatus;
  866. }
  867. /* After read predefined TXT, we must set BB/MAC/RF
  868. * register as our requirement */
  869. rtlphy->rfreg_chnlval[0] = rtl92s_phy_query_rf_reg(hw,
  870. (enum radio_path)0,
  871. RF_CHNLBW,
  872. RFREG_OFFSET_MASK);
  873. rtlphy->rfreg_chnlval[1] = rtl92s_phy_query_rf_reg(hw,
  874. (enum radio_path)1,
  875. RF_CHNLBW,
  876. RFREG_OFFSET_MASK);
  877. /*---- Set CCK and OFDM Block "ON"----*/
  878. rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
  879. rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
  880. /*3 Set Hardware(Do nothing now) */
  881. _rtl92se_hw_configure(hw);
  882. /* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */
  883. /* TX power index for different rate set. */
  884. /* Get original hw reg values */
  885. rtl92s_phy_get_hw_reg_originalvalue(hw);
  886. /* Write correct tx power index */
  887. rtl92s_phy_set_txpower(hw, rtlphy->current_channel);
  888. /* We must set MAC address after firmware download. */
  889. for (i = 0; i < 6; i++)
  890. rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]);
  891. /* EEPROM R/W workaround */
  892. tmp_u1b = rtl_read_byte(rtlpriv, MAC_PINMUX_CFG);
  893. rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, tmp_u1b & (~BIT(3)));
  894. rtl_write_byte(rtlpriv, 0x4d, 0x0);
  895. if (hal_get_firmwareversion(rtlpriv) >= 0x49) {
  896. tmp_byte = rtl_read_byte(rtlpriv, FW_RSVD_PG_CRTL) & (~BIT(4));
  897. tmp_byte = tmp_byte | BIT(5);
  898. rtl_write_byte(rtlpriv, FW_RSVD_PG_CRTL, tmp_byte);
  899. rtl_write_dword(rtlpriv, TXDESC_MSK, 0xFFFFCFFF);
  900. }
  901. /* We enable high power and RA related mechanism after NIC
  902. * initialized. */
  903. if (hal_get_firmwareversion(rtlpriv) >= 0x35) {
  904. /* Fw v.53 and later. */
  905. rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_INIT);
  906. } else if (hal_get_firmwareversion(rtlpriv) == 0x34) {
  907. /* Fw v.52. */
  908. rtl_write_dword(rtlpriv, WFM5, FW_RA_INIT);
  909. rtl92s_phy_chk_fwcmd_iodone(hw);
  910. } else {
  911. /* Compatible earlier FW version. */
  912. rtl_write_dword(rtlpriv, WFM5, FW_RA_RESET);
  913. rtl92s_phy_chk_fwcmd_iodone(hw);
  914. rtl_write_dword(rtlpriv, WFM5, FW_RA_ACTIVE);
  915. rtl92s_phy_chk_fwcmd_iodone(hw);
  916. rtl_write_dword(rtlpriv, WFM5, FW_RA_REFRESH);
  917. rtl92s_phy_chk_fwcmd_iodone(hw);
  918. }
  919. /* Add to prevent ASPM bug. */
  920. /* Always enable hst and NIC clock request. */
  921. rtl92s_phy_switch_ephy_parameter(hw);
  922. /* Security related
  923. * 1. Clear all H/W keys.
  924. * 2. Enable H/W encryption/decryption. */
  925. rtl_cam_reset_all_entry(hw);
  926. secr_value |= SCR_TXENCENABLE;
  927. secr_value |= SCR_RXENCENABLE;
  928. secr_value |= SCR_NOSKMC;
  929. rtl_write_byte(rtlpriv, REG_SECR, secr_value);
  930. for (i = 0; i < 4; i++)
  931. rtl_write_dword(rtlpriv, wdcapra_add[i], 0x5e4322);
  932. if (rtlphy->rf_type == RF_1T2R) {
  933. bool mrc2set = true;
  934. /* Turn on B-Path */
  935. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_MRC, (u8 *)&mrc2set);
  936. }
  937. rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_ON);
  938. rtl92s_dm_init(hw);
  939. rtlpci->being_init_adapter = false;
  940. return err;
  941. }
  942. void rtl92se_set_mac_addr(struct rtl_io *io, const u8 *addr)
  943. {
  944. /* This is a stub. */
  945. }
  946. void rtl92se_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
  947. {
  948. struct rtl_priv *rtlpriv = rtl_priv(hw);
  949. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  950. u32 reg_rcr = rtlpci->receive_config;
  951. if (rtlpriv->psc.rfpwr_state != ERFON)
  952. return;
  953. if (check_bssid) {
  954. reg_rcr |= (RCR_CBSSID);
  955. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
  956. } else if (!check_bssid) {
  957. reg_rcr &= (~RCR_CBSSID);
  958. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
  959. }
  960. }
  961. static int _rtl92se_set_media_status(struct ieee80211_hw *hw,
  962. enum nl80211_iftype type)
  963. {
  964. struct rtl_priv *rtlpriv = rtl_priv(hw);
  965. u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
  966. u32 temp;
  967. bt_msr &= ~MSR_LINK_MASK;
  968. switch (type) {
  969. case NL80211_IFTYPE_UNSPECIFIED:
  970. bt_msr |= (MSR_LINK_NONE << MSR_LINK_SHIFT);
  971. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  972. "Set Network type to NO LINK!\n");
  973. break;
  974. case NL80211_IFTYPE_ADHOC:
  975. bt_msr |= (MSR_LINK_ADHOC << MSR_LINK_SHIFT);
  976. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  977. "Set Network type to Ad Hoc!\n");
  978. break;
  979. case NL80211_IFTYPE_STATION:
  980. bt_msr |= (MSR_LINK_MANAGED << MSR_LINK_SHIFT);
  981. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  982. "Set Network type to STA!\n");
  983. break;
  984. case NL80211_IFTYPE_AP:
  985. bt_msr |= (MSR_LINK_MASTER << MSR_LINK_SHIFT);
  986. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  987. "Set Network type to AP!\n");
  988. break;
  989. default:
  990. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  991. "Network type %d not supported!\n", type);
  992. return 1;
  993. break;
  994. }
  995. rtl_write_byte(rtlpriv, (MSR), bt_msr);
  996. temp = rtl_read_dword(rtlpriv, TCR);
  997. rtl_write_dword(rtlpriv, TCR, temp & (~BIT(8)));
  998. rtl_write_dword(rtlpriv, TCR, temp | BIT(8));
  999. return 0;
  1000. }
  1001. /* HW_VAR_MEDIA_STATUS & HW_VAR_CECHK_BSSID */
  1002. int rtl92se_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
  1003. {
  1004. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1005. if (_rtl92se_set_media_status(hw, type))
  1006. return -EOPNOTSUPP;
  1007. if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
  1008. if (type != NL80211_IFTYPE_AP)
  1009. rtl92se_set_check_bssid(hw, true);
  1010. } else {
  1011. rtl92se_set_check_bssid(hw, false);
  1012. }
  1013. return 0;
  1014. }
  1015. /* don't set REG_EDCA_BE_PARAM here because mac80211 will send pkt when scan */
  1016. void rtl92se_set_qos(struct ieee80211_hw *hw, int aci)
  1017. {
  1018. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1019. rtl92s_dm_init_edca_turbo(hw);
  1020. switch (aci) {
  1021. case AC1_BK:
  1022. rtl_write_dword(rtlpriv, EDCAPARA_BK, 0xa44f);
  1023. break;
  1024. case AC0_BE:
  1025. /* rtl_write_dword(rtlpriv, EDCAPARA_BE, u4b_ac_param); */
  1026. break;
  1027. case AC2_VI:
  1028. rtl_write_dword(rtlpriv, EDCAPARA_VI, 0x5e4322);
  1029. break;
  1030. case AC3_VO:
  1031. rtl_write_dword(rtlpriv, EDCAPARA_VO, 0x2f3222);
  1032. break;
  1033. default:
  1034. RT_ASSERT(false, "invalid aci: %d !\n", aci);
  1035. break;
  1036. }
  1037. }
  1038. void rtl92se_enable_interrupt(struct ieee80211_hw *hw)
  1039. {
  1040. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1041. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1042. rtl_write_dword(rtlpriv, INTA_MASK, rtlpci->irq_mask[0]);
  1043. /* Support Bit 32-37(Assign as Bit 0-5) interrupt setting now */
  1044. rtl_write_dword(rtlpriv, INTA_MASK + 4, rtlpci->irq_mask[1] & 0x3F);
  1045. }
  1046. void rtl92se_disable_interrupt(struct ieee80211_hw *hw)
  1047. {
  1048. struct rtl_priv *rtlpriv;
  1049. struct rtl_pci *rtlpci;
  1050. rtlpriv = rtl_priv(hw);
  1051. /* if firmware not available, no interrupts */
  1052. if (!rtlpriv || !rtlpriv->max_fw_size)
  1053. return;
  1054. rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1055. rtl_write_dword(rtlpriv, INTA_MASK, 0);
  1056. rtl_write_dword(rtlpriv, INTA_MASK + 4, 0);
  1057. synchronize_irq(rtlpci->pdev->irq);
  1058. }
  1059. static u8 _rtl92s_set_sysclk(struct ieee80211_hw *hw, u8 data)
  1060. {
  1061. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1062. u8 waitcnt = 100;
  1063. bool result = false;
  1064. u8 tmp;
  1065. rtl_write_byte(rtlpriv, SYS_CLKR + 1, data);
  1066. /* Wait the MAC synchronized. */
  1067. udelay(400);
  1068. /* Check if it is set ready. */
  1069. tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
  1070. result = ((tmp & BIT(7)) == (data & BIT(7)));
  1071. if ((data & (BIT(6) | BIT(7))) == false) {
  1072. waitcnt = 100;
  1073. tmp = 0;
  1074. while (1) {
  1075. waitcnt--;
  1076. tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
  1077. if ((tmp & BIT(6)))
  1078. break;
  1079. pr_err("wait for BIT(6) return value %x\n", tmp);
  1080. if (waitcnt == 0)
  1081. break;
  1082. udelay(10);
  1083. }
  1084. if (waitcnt == 0)
  1085. result = false;
  1086. else
  1087. result = true;
  1088. }
  1089. return result;
  1090. }
  1091. static void _rtl92s_phy_set_rfhalt(struct ieee80211_hw *hw)
  1092. {
  1093. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1094. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1095. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1096. u8 u1btmp;
  1097. if (rtlhal->driver_going2unload)
  1098. rtl_write_byte(rtlpriv, 0x560, 0x0);
  1099. /* Power save for BB/RF */
  1100. u1btmp = rtl_read_byte(rtlpriv, LDOV12D_CTRL);
  1101. u1btmp |= BIT(0);
  1102. rtl_write_byte(rtlpriv, LDOV12D_CTRL, u1btmp);
  1103. rtl_write_byte(rtlpriv, SPS1_CTRL, 0x0);
  1104. rtl_write_byte(rtlpriv, TXPAUSE, 0xFF);
  1105. rtl_write_word(rtlpriv, CMDR, 0x57FC);
  1106. udelay(100);
  1107. rtl_write_word(rtlpriv, CMDR, 0x77FC);
  1108. rtl_write_byte(rtlpriv, PHY_CCA, 0x0);
  1109. udelay(10);
  1110. rtl_write_word(rtlpriv, CMDR, 0x37FC);
  1111. udelay(10);
  1112. rtl_write_word(rtlpriv, CMDR, 0x77FC);
  1113. udelay(10);
  1114. rtl_write_word(rtlpriv, CMDR, 0x57FC);
  1115. rtl_write_word(rtlpriv, CMDR, 0x0000);
  1116. if (rtlhal->driver_going2unload) {
  1117. u1btmp = rtl_read_byte(rtlpriv, (REG_SYS_FUNC_EN + 1));
  1118. u1btmp &= ~(BIT(0));
  1119. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, u1btmp);
  1120. }
  1121. u1btmp = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
  1122. /* Add description. After switch control path. register
  1123. * after page1 will be invisible. We can not do any IO
  1124. * for register>0x40. After resume&MACIO reset, we need
  1125. * to remember previous reg content. */
  1126. if (u1btmp & BIT(7)) {
  1127. u1btmp &= ~(BIT(6) | BIT(7));
  1128. if (!_rtl92s_set_sysclk(hw, u1btmp)) {
  1129. pr_err("Switch ctrl path fail\n");
  1130. return;
  1131. }
  1132. }
  1133. /* Power save for MAC */
  1134. if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS &&
  1135. !rtlhal->driver_going2unload) {
  1136. /* enable LED function */
  1137. rtl_write_byte(rtlpriv, 0x03, 0xF9);
  1138. /* SW/HW radio off or halt adapter!! For example S3/S4 */
  1139. } else {
  1140. /* LED function disable. Power range is about 8mA now. */
  1141. /* if write 0xF1 disconnet_pci power
  1142. * ifconfig wlan0 down power are both high 35:70 */
  1143. /* if write oxF9 disconnet_pci power
  1144. * ifconfig wlan0 down power are both low 12:45*/
  1145. rtl_write_byte(rtlpriv, 0x03, 0xF9);
  1146. }
  1147. rtl_write_byte(rtlpriv, SYS_CLKR + 1, 0x70);
  1148. rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, 0x68);
  1149. rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x00);
  1150. rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
  1151. rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, 0x0E);
  1152. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
  1153. }
  1154. static void _rtl92se_gen_refreshledstate(struct ieee80211_hw *hw)
  1155. {
  1156. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1157. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1158. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  1159. struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
  1160. if (rtlpci->up_first_time == 1)
  1161. return;
  1162. if (rtlpriv->psc.rfoff_reason == RF_CHANGE_BY_IPS)
  1163. rtl92se_sw_led_on(hw, pLed0);
  1164. else
  1165. rtl92se_sw_led_off(hw, pLed0);
  1166. }
  1167. static void _rtl92se_power_domain_init(struct ieee80211_hw *hw)
  1168. {
  1169. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1170. u16 tmpu2b;
  1171. u8 tmpu1b;
  1172. rtlpriv->psc.pwrdomain_protect = true;
  1173. tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
  1174. if (tmpu1b & BIT(7)) {
  1175. tmpu1b &= ~(BIT(6) | BIT(7));
  1176. if (!_rtl92s_set_sysclk(hw, tmpu1b)) {
  1177. rtlpriv->psc.pwrdomain_protect = false;
  1178. return;
  1179. }
  1180. }
  1181. rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0);
  1182. rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
  1183. /* Reset MAC-IO and CPU and Core Digital BIT10/11/15 */
  1184. tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
  1185. /* If IPS we need to turn LED on. So we not
  1186. * not disable BIT 3/7 of reg3. */
  1187. if (rtlpriv->psc.rfoff_reason & (RF_CHANGE_BY_IPS | RF_CHANGE_BY_HW))
  1188. tmpu1b &= 0xFB;
  1189. else
  1190. tmpu1b &= 0x73;
  1191. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
  1192. /* wait for BIT 10/11/15 to pull high automatically!! */
  1193. mdelay(1);
  1194. rtl_write_byte(rtlpriv, CMDR, 0);
  1195. rtl_write_byte(rtlpriv, TCR, 0);
  1196. /* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
  1197. tmpu1b = rtl_read_byte(rtlpriv, 0x562);
  1198. tmpu1b |= 0x08;
  1199. rtl_write_byte(rtlpriv, 0x562, tmpu1b);
  1200. tmpu1b &= ~(BIT(3));
  1201. rtl_write_byte(rtlpriv, 0x562, tmpu1b);
  1202. /* Enable AFE clock source */
  1203. tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL);
  1204. rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01));
  1205. /* Delay 1.5ms */
  1206. udelay(1500);
  1207. tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1);
  1208. rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb));
  1209. /* Enable AFE Macro Block's Bandgap */
  1210. tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
  1211. rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0)));
  1212. mdelay(1);
  1213. /* Enable AFE Mbias */
  1214. tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
  1215. rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02));
  1216. mdelay(1);
  1217. /* Enable LDOA15 block */
  1218. tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL);
  1219. rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0)));
  1220. /* Set Digital Vdd to Retention isolation Path. */
  1221. tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
  1222. rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11)));
  1223. /* For warm reboot NIC disappera bug. */
  1224. tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
  1225. rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13)));
  1226. rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68);
  1227. /* Enable AFE PLL Macro Block */
  1228. tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL);
  1229. rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
  1230. /* Enable MAC 80MHZ clock */
  1231. tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1);
  1232. rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0)));
  1233. mdelay(1);
  1234. /* Release isolation AFE PLL & MD */
  1235. rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6);
  1236. /* Enable MAC clock */
  1237. tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
  1238. rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11)));
  1239. /* Enable Core digital and enable IOREG R/W */
  1240. tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
  1241. rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11)));
  1242. /* enable REG_EN */
  1243. rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15)));
  1244. /* Switch the control path. */
  1245. tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
  1246. rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2))));
  1247. tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
  1248. tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6)));
  1249. if (!_rtl92s_set_sysclk(hw, tmpu1b)) {
  1250. rtlpriv->psc.pwrdomain_protect = false;
  1251. return;
  1252. }
  1253. rtl_write_word(rtlpriv, CMDR, 0x37FC);
  1254. /* After MACIO reset,we must refresh LED state. */
  1255. _rtl92se_gen_refreshledstate(hw);
  1256. rtlpriv->psc.pwrdomain_protect = false;
  1257. }
  1258. void rtl92se_card_disable(struct ieee80211_hw *hw)
  1259. {
  1260. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1261. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1262. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1263. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1264. enum nl80211_iftype opmode;
  1265. u8 wait = 30;
  1266. rtlpriv->intf_ops->enable_aspm(hw);
  1267. if (rtlpci->driver_is_goingto_unload ||
  1268. ppsc->rfoff_reason > RF_CHANGE_BY_PS)
  1269. rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
  1270. /* we should chnge GPIO to input mode
  1271. * this will drop away current about 25mA*/
  1272. rtl8192se_gpiobit3_cfg_inputmode(hw);
  1273. /* this is very important for ips power save */
  1274. while (wait-- >= 10 && rtlpriv->psc.pwrdomain_protect) {
  1275. if (rtlpriv->psc.pwrdomain_protect)
  1276. mdelay(20);
  1277. else
  1278. break;
  1279. }
  1280. mac->link_state = MAC80211_NOLINK;
  1281. opmode = NL80211_IFTYPE_UNSPECIFIED;
  1282. _rtl92se_set_media_status(hw, opmode);
  1283. _rtl92s_phy_set_rfhalt(hw);
  1284. udelay(100);
  1285. }
  1286. void rtl92se_interrupt_recognized(struct ieee80211_hw *hw, u32 *p_inta,
  1287. u32 *p_intb)
  1288. {
  1289. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1290. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1291. *p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
  1292. rtl_write_dword(rtlpriv, ISR, *p_inta);
  1293. *p_intb = rtl_read_dword(rtlpriv, ISR + 4) & rtlpci->irq_mask[1];
  1294. rtl_write_dword(rtlpriv, ISR + 4, *p_intb);
  1295. }
  1296. void rtl92se_set_beacon_related_registers(struct ieee80211_hw *hw)
  1297. {
  1298. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1299. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1300. u16 bcntime_cfg = 0;
  1301. u16 bcn_cw = 6, bcn_ifs = 0xf;
  1302. u16 atim_window = 2;
  1303. /* ATIM Window (in unit of TU). */
  1304. rtl_write_word(rtlpriv, ATIMWND, atim_window);
  1305. /* Beacon interval (in unit of TU). */
  1306. rtl_write_word(rtlpriv, BCN_INTERVAL, mac->beacon_interval);
  1307. /* DrvErlyInt (in unit of TU). (Time to send
  1308. * interrupt to notify driver to change
  1309. * beacon content) */
  1310. rtl_write_word(rtlpriv, BCN_DRV_EARLY_INT, 10 << 4);
  1311. /* BcnDMATIM(in unit of us). Indicates the
  1312. * time before TBTT to perform beacon queue DMA */
  1313. rtl_write_word(rtlpriv, BCN_DMATIME, 256);
  1314. /* Force beacon frame transmission even
  1315. * after receiving beacon frame from
  1316. * other ad hoc STA */
  1317. rtl_write_byte(rtlpriv, BCN_ERR_THRESH, 100);
  1318. /* Beacon Time Configuration */
  1319. if (mac->opmode == NL80211_IFTYPE_ADHOC)
  1320. bcntime_cfg |= (bcn_cw << BCN_TCFG_CW_SHIFT);
  1321. /* TODO: bcn_ifs may required to be changed on ASIC */
  1322. bcntime_cfg |= bcn_ifs << BCN_TCFG_IFS;
  1323. /*for beacon changed */
  1324. rtl92s_phy_set_beacon_hwreg(hw, mac->beacon_interval);
  1325. }
  1326. void rtl92se_set_beacon_interval(struct ieee80211_hw *hw)
  1327. {
  1328. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1329. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1330. u16 bcn_interval = mac->beacon_interval;
  1331. /* Beacon interval (in unit of TU). */
  1332. rtl_write_word(rtlpriv, BCN_INTERVAL, bcn_interval);
  1333. /* 2008.10.24 added by tynli for beacon changed. */
  1334. rtl92s_phy_set_beacon_hwreg(hw, bcn_interval);
  1335. }
  1336. void rtl92se_update_interrupt_mask(struct ieee80211_hw *hw,
  1337. u32 add_msr, u32 rm_msr)
  1338. {
  1339. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1340. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1341. RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n",
  1342. add_msr, rm_msr);
  1343. if (add_msr)
  1344. rtlpci->irq_mask[0] |= add_msr;
  1345. if (rm_msr)
  1346. rtlpci->irq_mask[0] &= (~rm_msr);
  1347. rtl92se_disable_interrupt(hw);
  1348. rtl92se_enable_interrupt(hw);
  1349. }
  1350. static void _rtl8192se_get_IC_Inferiority(struct ieee80211_hw *hw)
  1351. {
  1352. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1353. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1354. u8 efuse_id;
  1355. rtlhal->ic_class = IC_INFERIORITY_A;
  1356. /* Only retrieving while using EFUSE. */
  1357. if ((rtlefuse->epromtype == EEPROM_BOOT_EFUSE) &&
  1358. !rtlefuse->autoload_failflag) {
  1359. efuse_id = efuse_read_1byte(hw, EFUSE_IC_ID_OFFSET);
  1360. if (efuse_id == 0xfe)
  1361. rtlhal->ic_class = IC_INFERIORITY_B;
  1362. }
  1363. }
  1364. static void _rtl92se_read_adapter_info(struct ieee80211_hw *hw)
  1365. {
  1366. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1367. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1368. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1369. u16 i, usvalue;
  1370. u16 eeprom_id;
  1371. u8 tempval;
  1372. u8 hwinfo[HWSET_MAX_SIZE_92S];
  1373. u8 rf_path, index;
  1374. if (rtlefuse->epromtype == EEPROM_93C46) {
  1375. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1376. "RTL819X Not boot from eeprom, check it !!\n");
  1377. } else if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
  1378. rtl_efuse_shadow_map_update(hw);
  1379. memcpy((void *)hwinfo, (void *)
  1380. &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
  1381. HWSET_MAX_SIZE_92S);
  1382. }
  1383. RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
  1384. hwinfo, HWSET_MAX_SIZE_92S);
  1385. eeprom_id = *((u16 *)&hwinfo[0]);
  1386. if (eeprom_id != RTL8190_EEPROM_ID) {
  1387. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  1388. "EEPROM ID(%#x) is invalid!!\n", eeprom_id);
  1389. rtlefuse->autoload_failflag = true;
  1390. } else {
  1391. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
  1392. rtlefuse->autoload_failflag = false;
  1393. }
  1394. if (rtlefuse->autoload_failflag)
  1395. return;
  1396. _rtl8192se_get_IC_Inferiority(hw);
  1397. /* Read IC Version && Channel Plan */
  1398. /* VID, DID SE 0xA-D */
  1399. rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID];
  1400. rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID];
  1401. rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID];
  1402. rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID];
  1403. rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION];
  1404. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1405. "EEPROMId = 0x%4x\n", eeprom_id);
  1406. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1407. "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
  1408. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1409. "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
  1410. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1411. "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
  1412. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1413. "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
  1414. for (i = 0; i < 6; i += 2) {
  1415. usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i];
  1416. *((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
  1417. }
  1418. for (i = 0; i < 6; i++)
  1419. rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]);
  1420. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
  1421. /* Get Tx Power Level by Channel */
  1422. /* Read Tx power of Channel 1 ~ 14 from EEPROM. */
  1423. /* 92S suupport RF A & B */
  1424. for (rf_path = 0; rf_path < 2; rf_path++) {
  1425. for (i = 0; i < 3; i++) {
  1426. /* Read CCK RF A & B Tx power */
  1427. rtlefuse->eeprom_chnlarea_txpwr_cck[rf_path][i] =
  1428. hwinfo[EEPROM_TXPOWERBASE + rf_path * 3 + i];
  1429. /* Read OFDM RF A & B Tx power for 1T */
  1430. rtlefuse->eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
  1431. hwinfo[EEPROM_TXPOWERBASE + 6 + rf_path * 3 + i];
  1432. /* Read OFDM RF A & B Tx power for 2T */
  1433. rtlefuse->eprom_chnl_txpwr_ht40_2sdf[rf_path][i]
  1434. = hwinfo[EEPROM_TXPOWERBASE + 12 +
  1435. rf_path * 3 + i];
  1436. }
  1437. }
  1438. for (rf_path = 0; rf_path < 2; rf_path++)
  1439. for (i = 0; i < 3; i++)
  1440. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  1441. "RF(%d) EEPROM CCK Area(%d) = 0x%x\n",
  1442. rf_path, i,
  1443. rtlefuse->eeprom_chnlarea_txpwr_cck
  1444. [rf_path][i]);
  1445. for (rf_path = 0; rf_path < 2; rf_path++)
  1446. for (i = 0; i < 3; i++)
  1447. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  1448. "RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n",
  1449. rf_path, i,
  1450. rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
  1451. [rf_path][i]);
  1452. for (rf_path = 0; rf_path < 2; rf_path++)
  1453. for (i = 0; i < 3; i++)
  1454. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  1455. "RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n",
  1456. rf_path, i,
  1457. rtlefuse->eprom_chnl_txpwr_ht40_2sdf
  1458. [rf_path][i]);
  1459. for (rf_path = 0; rf_path < 2; rf_path++) {
  1460. /* Assign dedicated channel tx power */
  1461. for (i = 0; i < 14; i++) {
  1462. /* channel 1~3 use the same Tx Power Level. */
  1463. if (i < 3)
  1464. index = 0;
  1465. /* Channel 4-8 */
  1466. else if (i < 8)
  1467. index = 1;
  1468. /* Channel 9-14 */
  1469. else
  1470. index = 2;
  1471. /* Record A & B CCK /OFDM - 1T/2T Channel area
  1472. * tx power */
  1473. rtlefuse->txpwrlevel_cck[rf_path][i] =
  1474. rtlefuse->eeprom_chnlarea_txpwr_cck
  1475. [rf_path][index];
  1476. rtlefuse->txpwrlevel_ht40_1s[rf_path][i] =
  1477. rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
  1478. [rf_path][index];
  1479. rtlefuse->txpwrlevel_ht40_2s[rf_path][i] =
  1480. rtlefuse->eprom_chnl_txpwr_ht40_2sdf
  1481. [rf_path][index];
  1482. }
  1483. for (i = 0; i < 14; i++) {
  1484. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1485. "RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = [0x%x / 0x%x / 0x%x]\n",
  1486. rf_path, i,
  1487. rtlefuse->txpwrlevel_cck[rf_path][i],
  1488. rtlefuse->txpwrlevel_ht40_1s[rf_path][i],
  1489. rtlefuse->txpwrlevel_ht40_2s[rf_path][i]);
  1490. }
  1491. }
  1492. for (rf_path = 0; rf_path < 2; rf_path++) {
  1493. for (i = 0; i < 3; i++) {
  1494. /* Read Power diff limit. */
  1495. rtlefuse->eeprom_pwrgroup[rf_path][i] =
  1496. hwinfo[EEPROM_TXPWRGROUP + rf_path * 3 + i];
  1497. }
  1498. }
  1499. for (rf_path = 0; rf_path < 2; rf_path++) {
  1500. /* Fill Pwr group */
  1501. for (i = 0; i < 14; i++) {
  1502. /* Chanel 1-3 */
  1503. if (i < 3)
  1504. index = 0;
  1505. /* Channel 4-8 */
  1506. else if (i < 8)
  1507. index = 1;
  1508. /* Channel 9-13 */
  1509. else
  1510. index = 2;
  1511. rtlefuse->pwrgroup_ht20[rf_path][i] =
  1512. (rtlefuse->eeprom_pwrgroup[rf_path][index] &
  1513. 0xf);
  1514. rtlefuse->pwrgroup_ht40[rf_path][i] =
  1515. ((rtlefuse->eeprom_pwrgroup[rf_path][index] &
  1516. 0xf0) >> 4);
  1517. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1518. "RF-%d pwrgroup_ht20[%d] = 0x%x\n",
  1519. rf_path, i,
  1520. rtlefuse->pwrgroup_ht20[rf_path][i]);
  1521. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1522. "RF-%d pwrgroup_ht40[%d] = 0x%x\n",
  1523. rf_path, i,
  1524. rtlefuse->pwrgroup_ht40[rf_path][i]);
  1525. }
  1526. }
  1527. for (i = 0; i < 14; i++) {
  1528. /* Read tx power difference between HT OFDM 20/40 MHZ */
  1529. /* channel 1-3 */
  1530. if (i < 3)
  1531. index = 0;
  1532. /* Channel 4-8 */
  1533. else if (i < 8)
  1534. index = 1;
  1535. /* Channel 9-14 */
  1536. else
  1537. index = 2;
  1538. tempval = hwinfo[EEPROM_TX_PWR_HT20_DIFF + index] & 0xff;
  1539. rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] = (tempval & 0xF);
  1540. rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] =
  1541. ((tempval >> 4) & 0xF);
  1542. /* Read OFDM<->HT tx power diff */
  1543. /* Channel 1-3 */
  1544. if (i < 3)
  1545. index = 0;
  1546. /* Channel 4-8 */
  1547. else if (i < 8)
  1548. index = 0x11;
  1549. /* Channel 9-14 */
  1550. else
  1551. index = 1;
  1552. tempval = hwinfo[EEPROM_TX_PWR_OFDM_DIFF + index] & 0xff;
  1553. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i] =
  1554. (tempval & 0xF);
  1555. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i] =
  1556. ((tempval >> 4) & 0xF);
  1557. tempval = hwinfo[TX_PWR_SAFETY_CHK];
  1558. rtlefuse->txpwr_safetyflag = (tempval & 0x01);
  1559. }
  1560. rtlefuse->eeprom_regulatory = 0;
  1561. if (rtlefuse->eeprom_version >= 2) {
  1562. /* BIT(0)~2 */
  1563. if (rtlefuse->eeprom_version >= 4)
  1564. rtlefuse->eeprom_regulatory =
  1565. (hwinfo[EEPROM_REGULATORY] & 0x7);
  1566. else /* BIT(0) */
  1567. rtlefuse->eeprom_regulatory =
  1568. (hwinfo[EEPROM_REGULATORY] & 0x1);
  1569. }
  1570. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1571. "eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
  1572. for (i = 0; i < 14; i++)
  1573. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1574. "RF-A Ht20 to HT40 Diff[%d] = 0x%x\n",
  1575. i, rtlefuse->txpwr_ht20diff[RF90_PATH_A][i]);
  1576. for (i = 0; i < 14; i++)
  1577. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1578. "RF-A Legacy to Ht40 Diff[%d] = 0x%x\n",
  1579. i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i]);
  1580. for (i = 0; i < 14; i++)
  1581. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1582. "RF-B Ht20 to HT40 Diff[%d] = 0x%x\n",
  1583. i, rtlefuse->txpwr_ht20diff[RF90_PATH_B][i]);
  1584. for (i = 0; i < 14; i++)
  1585. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1586. "RF-B Legacy to HT40 Diff[%d] = 0x%x\n",
  1587. i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i]);
  1588. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1589. "TxPwrSafetyFlag = %d\n", rtlefuse->txpwr_safetyflag);
  1590. /* Read RF-indication and Tx Power gain
  1591. * index diff of legacy to HT OFDM rate. */
  1592. tempval = hwinfo[EEPROM_RFIND_POWERDIFF] & 0xff;
  1593. rtlefuse->eeprom_txpowerdiff = tempval;
  1594. rtlefuse->legacy_httxpowerdiff =
  1595. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][0];
  1596. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1597. "TxPowerDiff = %#x\n", rtlefuse->eeprom_txpowerdiff);
  1598. /* Get TSSI value for each path. */
  1599. usvalue = *(u16 *)&hwinfo[EEPROM_TSSI_A];
  1600. rtlefuse->eeprom_tssi[RF90_PATH_A] = (u8)((usvalue & 0xff00) >> 8);
  1601. usvalue = hwinfo[EEPROM_TSSI_B];
  1602. rtlefuse->eeprom_tssi[RF90_PATH_B] = (u8)(usvalue & 0xff);
  1603. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "TSSI_A = 0x%x, TSSI_B = 0x%x\n",
  1604. rtlefuse->eeprom_tssi[RF90_PATH_A],
  1605. rtlefuse->eeprom_tssi[RF90_PATH_B]);
  1606. /* Read antenna tx power offset of B/C/D to A from EEPROM */
  1607. /* and read ThermalMeter from EEPROM */
  1608. tempval = hwinfo[EEPROM_THERMALMETER];
  1609. rtlefuse->eeprom_thermalmeter = tempval;
  1610. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1611. "thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
  1612. /* ThermalMeter, BIT(0)~3 for RFIC1, BIT(4)~7 for RFIC2 */
  1613. rtlefuse->thermalmeter[0] = (rtlefuse->eeprom_thermalmeter & 0x1f);
  1614. rtlefuse->tssi_13dbm = rtlefuse->eeprom_thermalmeter * 100;
  1615. /* Read CrystalCap from EEPROM */
  1616. tempval = hwinfo[EEPROM_CRYSTALCAP] >> 4;
  1617. rtlefuse->eeprom_crystalcap = tempval;
  1618. /* CrystalCap, BIT(12)~15 */
  1619. rtlefuse->crystalcap = rtlefuse->eeprom_crystalcap;
  1620. /* Read IC Version && Channel Plan */
  1621. /* Version ID, Channel plan */
  1622. rtlefuse->eeprom_channelplan = hwinfo[EEPROM_CHANNELPLAN];
  1623. rtlefuse->txpwr_fromeprom = true;
  1624. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1625. "EEPROM ChannelPlan = 0x%4x\n", rtlefuse->eeprom_channelplan);
  1626. /* Read Customer ID or Board Type!!! */
  1627. tempval = hwinfo[EEPROM_BOARDTYPE];
  1628. /* Change RF type definition */
  1629. if (tempval == 0)
  1630. rtlphy->rf_type = RF_2T2R;
  1631. else if (tempval == 1)
  1632. rtlphy->rf_type = RF_1T2R;
  1633. else if (tempval == 2)
  1634. rtlphy->rf_type = RF_1T2R;
  1635. else if (tempval == 3)
  1636. rtlphy->rf_type = RF_1T1R;
  1637. /* 1T2R but 1SS (1x1 receive combining) */
  1638. rtlefuse->b1x1_recvcombine = false;
  1639. if (rtlphy->rf_type == RF_1T2R) {
  1640. tempval = rtl_read_byte(rtlpriv, 0x07);
  1641. if (!(tempval & BIT(0))) {
  1642. rtlefuse->b1x1_recvcombine = true;
  1643. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1644. "RF_TYPE=1T2R but only 1SS\n");
  1645. }
  1646. }
  1647. rtlefuse->b1ss_support = rtlefuse->b1x1_recvcombine;
  1648. rtlefuse->eeprom_oemid = *&hwinfo[EEPROM_CUSTOMID];
  1649. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM Customer ID: 0x%2x",
  1650. rtlefuse->eeprom_oemid);
  1651. /* set channel paln to world wide 13 */
  1652. rtlefuse->channel_plan = COUNTRY_CODE_WORLD_WIDE_13;
  1653. }
  1654. void rtl92se_read_eeprom_info(struct ieee80211_hw *hw)
  1655. {
  1656. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1657. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1658. u8 tmp_u1b = 0;
  1659. tmp_u1b = rtl_read_byte(rtlpriv, EPROM_CMD);
  1660. if (tmp_u1b & BIT(4)) {
  1661. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
  1662. rtlefuse->epromtype = EEPROM_93C46;
  1663. } else {
  1664. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
  1665. rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
  1666. }
  1667. if (tmp_u1b & BIT(5)) {
  1668. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
  1669. rtlefuse->autoload_failflag = false;
  1670. _rtl92se_read_adapter_info(hw);
  1671. } else {
  1672. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Autoload ERR!!\n");
  1673. rtlefuse->autoload_failflag = true;
  1674. }
  1675. }
  1676. static void rtl92se_update_hal_rate_table(struct ieee80211_hw *hw,
  1677. struct ieee80211_sta *sta)
  1678. {
  1679. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1680. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1681. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1682. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1683. u32 ratr_value;
  1684. u8 ratr_index = 0;
  1685. u8 nmode = mac->ht_enable;
  1686. u8 mimo_ps = IEEE80211_SMPS_OFF;
  1687. u16 shortgi_rate = 0;
  1688. u32 tmp_ratr_value = 0;
  1689. u8 curtxbw_40mhz = mac->bw_40;
  1690. u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
  1691. 1 : 0;
  1692. u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
  1693. 1 : 0;
  1694. enum wireless_mode wirelessmode = mac->mode;
  1695. if (rtlhal->current_bandtype == BAND_ON_5G)
  1696. ratr_value = sta->supp_rates[1] << 4;
  1697. else
  1698. ratr_value = sta->supp_rates[0];
  1699. if (mac->opmode == NL80211_IFTYPE_ADHOC)
  1700. ratr_value = 0xfff;
  1701. ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
  1702. sta->ht_cap.mcs.rx_mask[0] << 12);
  1703. switch (wirelessmode) {
  1704. case WIRELESS_MODE_B:
  1705. ratr_value &= 0x0000000D;
  1706. break;
  1707. case WIRELESS_MODE_G:
  1708. ratr_value &= 0x00000FF5;
  1709. break;
  1710. case WIRELESS_MODE_N_24G:
  1711. case WIRELESS_MODE_N_5G:
  1712. nmode = 1;
  1713. if (mimo_ps == IEEE80211_SMPS_STATIC) {
  1714. ratr_value &= 0x0007F005;
  1715. } else {
  1716. u32 ratr_mask;
  1717. if (get_rf_type(rtlphy) == RF_1T2R ||
  1718. get_rf_type(rtlphy) == RF_1T1R) {
  1719. if (curtxbw_40mhz)
  1720. ratr_mask = 0x000ff015;
  1721. else
  1722. ratr_mask = 0x000ff005;
  1723. } else {
  1724. if (curtxbw_40mhz)
  1725. ratr_mask = 0x0f0ff015;
  1726. else
  1727. ratr_mask = 0x0f0ff005;
  1728. }
  1729. ratr_value &= ratr_mask;
  1730. }
  1731. break;
  1732. default:
  1733. if (rtlphy->rf_type == RF_1T2R)
  1734. ratr_value &= 0x000ff0ff;
  1735. else
  1736. ratr_value &= 0x0f0ff0ff;
  1737. break;
  1738. }
  1739. if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT)
  1740. ratr_value &= 0x0FFFFFFF;
  1741. else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT)
  1742. ratr_value &= 0x0FFFFFF0;
  1743. if (nmode && ((curtxbw_40mhz &&
  1744. curshortgi_40mhz) || (!curtxbw_40mhz &&
  1745. curshortgi_20mhz))) {
  1746. ratr_value |= 0x10000000;
  1747. tmp_ratr_value = (ratr_value >> 12);
  1748. for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
  1749. if ((1 << shortgi_rate) & tmp_ratr_value)
  1750. break;
  1751. }
  1752. shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
  1753. (shortgi_rate << 4) | (shortgi_rate);
  1754. rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate);
  1755. }
  1756. rtl_write_dword(rtlpriv, ARFR0 + ratr_index * 4, ratr_value);
  1757. if (ratr_value & 0xfffff000)
  1758. rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_N);
  1759. else
  1760. rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_BG);
  1761. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n",
  1762. rtl_read_dword(rtlpriv, ARFR0));
  1763. }
  1764. static void rtl92se_update_hal_rate_mask(struct ieee80211_hw *hw,
  1765. struct ieee80211_sta *sta,
  1766. u8 rssi_level)
  1767. {
  1768. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1769. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1770. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1771. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1772. struct rtl_sta_info *sta_entry = NULL;
  1773. u32 ratr_bitmap;
  1774. u8 ratr_index = 0;
  1775. u8 curtxbw_40mhz = (sta->bandwidth >= IEEE80211_STA_RX_BW_40) ? 1 : 0;
  1776. u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
  1777. 1 : 0;
  1778. u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
  1779. 1 : 0;
  1780. enum wireless_mode wirelessmode = 0;
  1781. bool shortgi = false;
  1782. u32 ratr_value = 0;
  1783. u8 shortgi_rate = 0;
  1784. u32 mask = 0;
  1785. u32 band = 0;
  1786. bool bmulticast = false;
  1787. u8 macid = 0;
  1788. u8 mimo_ps = IEEE80211_SMPS_OFF;
  1789. sta_entry = (struct rtl_sta_info *) sta->drv_priv;
  1790. wirelessmode = sta_entry->wireless_mode;
  1791. if (mac->opmode == NL80211_IFTYPE_STATION)
  1792. curtxbw_40mhz = mac->bw_40;
  1793. else if (mac->opmode == NL80211_IFTYPE_AP ||
  1794. mac->opmode == NL80211_IFTYPE_ADHOC)
  1795. macid = sta->aid + 1;
  1796. if (rtlhal->current_bandtype == BAND_ON_5G)
  1797. ratr_bitmap = sta->supp_rates[1] << 4;
  1798. else
  1799. ratr_bitmap = sta->supp_rates[0];
  1800. if (mac->opmode == NL80211_IFTYPE_ADHOC)
  1801. ratr_bitmap = 0xfff;
  1802. ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
  1803. sta->ht_cap.mcs.rx_mask[0] << 12);
  1804. switch (wirelessmode) {
  1805. case WIRELESS_MODE_B:
  1806. band |= WIRELESS_11B;
  1807. ratr_index = RATR_INX_WIRELESS_B;
  1808. if (ratr_bitmap & 0x0000000c)
  1809. ratr_bitmap &= 0x0000000d;
  1810. else
  1811. ratr_bitmap &= 0x0000000f;
  1812. break;
  1813. case WIRELESS_MODE_G:
  1814. band |= (WIRELESS_11G | WIRELESS_11B);
  1815. ratr_index = RATR_INX_WIRELESS_GB;
  1816. if (rssi_level == 1)
  1817. ratr_bitmap &= 0x00000f00;
  1818. else if (rssi_level == 2)
  1819. ratr_bitmap &= 0x00000ff0;
  1820. else
  1821. ratr_bitmap &= 0x00000ff5;
  1822. break;
  1823. case WIRELESS_MODE_A:
  1824. band |= WIRELESS_11A;
  1825. ratr_index = RATR_INX_WIRELESS_A;
  1826. ratr_bitmap &= 0x00000ff0;
  1827. break;
  1828. case WIRELESS_MODE_N_24G:
  1829. case WIRELESS_MODE_N_5G:
  1830. band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B);
  1831. ratr_index = RATR_INX_WIRELESS_NGB;
  1832. if (mimo_ps == IEEE80211_SMPS_STATIC) {
  1833. if (rssi_level == 1)
  1834. ratr_bitmap &= 0x00070000;
  1835. else if (rssi_level == 2)
  1836. ratr_bitmap &= 0x0007f000;
  1837. else
  1838. ratr_bitmap &= 0x0007f005;
  1839. } else {
  1840. if (rtlphy->rf_type == RF_1T2R ||
  1841. rtlphy->rf_type == RF_1T1R) {
  1842. if (rssi_level == 1) {
  1843. ratr_bitmap &= 0x000f0000;
  1844. } else if (rssi_level == 3) {
  1845. ratr_bitmap &= 0x000fc000;
  1846. } else if (rssi_level == 5) {
  1847. ratr_bitmap &= 0x000ff000;
  1848. } else {
  1849. if (curtxbw_40mhz)
  1850. ratr_bitmap &= 0x000ff015;
  1851. else
  1852. ratr_bitmap &= 0x000ff005;
  1853. }
  1854. } else {
  1855. if (rssi_level == 1) {
  1856. ratr_bitmap &= 0x0f8f0000;
  1857. } else if (rssi_level == 3) {
  1858. ratr_bitmap &= 0x0f8fc000;
  1859. } else if (rssi_level == 5) {
  1860. ratr_bitmap &= 0x0f8ff000;
  1861. } else {
  1862. if (curtxbw_40mhz)
  1863. ratr_bitmap &= 0x0f8ff015;
  1864. else
  1865. ratr_bitmap &= 0x0f8ff005;
  1866. }
  1867. }
  1868. }
  1869. if ((curtxbw_40mhz && curshortgi_40mhz) ||
  1870. (!curtxbw_40mhz && curshortgi_20mhz)) {
  1871. if (macid == 0)
  1872. shortgi = true;
  1873. else if (macid == 1)
  1874. shortgi = false;
  1875. }
  1876. break;
  1877. default:
  1878. band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B);
  1879. ratr_index = RATR_INX_WIRELESS_NGB;
  1880. if (rtlphy->rf_type == RF_1T2R)
  1881. ratr_bitmap &= 0x000ff0ff;
  1882. else
  1883. ratr_bitmap &= 0x0f8ff0ff;
  1884. break;
  1885. }
  1886. sta_entry->ratr_index = ratr_index;
  1887. if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT)
  1888. ratr_bitmap &= 0x0FFFFFFF;
  1889. else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT)
  1890. ratr_bitmap &= 0x0FFFFFF0;
  1891. if (shortgi) {
  1892. ratr_bitmap |= 0x10000000;
  1893. /* Get MAX MCS available. */
  1894. ratr_value = (ratr_bitmap >> 12);
  1895. for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
  1896. if ((1 << shortgi_rate) & ratr_value)
  1897. break;
  1898. }
  1899. shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
  1900. (shortgi_rate << 4) | (shortgi_rate);
  1901. rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate);
  1902. }
  1903. mask |= (bmulticast ? 1 : 0) << 9 | (macid & 0x1f) << 4 | (band & 0xf);
  1904. RT_TRACE(rtlpriv, COMP_RATR, DBG_TRACE, "mask = %x, bitmap = %x\n",
  1905. mask, ratr_bitmap);
  1906. rtl_write_dword(rtlpriv, 0x2c4, ratr_bitmap);
  1907. rtl_write_dword(rtlpriv, WFM5, (FW_RA_UPDATE_MASK | (mask << 8)));
  1908. if (macid != 0)
  1909. sta_entry->ratr_index = ratr_index;
  1910. }
  1911. void rtl92se_update_hal_rate_tbl(struct ieee80211_hw *hw,
  1912. struct ieee80211_sta *sta, u8 rssi_level)
  1913. {
  1914. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1915. if (rtlpriv->dm.useramask)
  1916. rtl92se_update_hal_rate_mask(hw, sta, rssi_level);
  1917. else
  1918. rtl92se_update_hal_rate_table(hw, sta);
  1919. }
  1920. void rtl92se_update_channel_access_setting(struct ieee80211_hw *hw)
  1921. {
  1922. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1923. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1924. u16 sifs_timer;
  1925. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
  1926. &mac->slot_time);
  1927. sifs_timer = 0x0e0e;
  1928. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
  1929. }
  1930. /* this ifunction is for RFKILL, it's different with windows,
  1931. * because UI will disable wireless when GPIO Radio Off.
  1932. * And here we not check or Disable/Enable ASPM like windows*/
  1933. bool rtl92se_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
  1934. {
  1935. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1936. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1937. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1938. enum rf_pwrstate rfpwr_toset /*, cur_rfstate */;
  1939. unsigned long flag = 0;
  1940. bool actuallyset = false;
  1941. bool turnonbypowerdomain = false;
  1942. /* just 8191se can check gpio before firstup, 92c/92d have fixed it */
  1943. if ((rtlpci->up_first_time == 1) || (rtlpci->being_init_adapter))
  1944. return false;
  1945. if (ppsc->swrf_processing)
  1946. return false;
  1947. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  1948. if (ppsc->rfchange_inprogress) {
  1949. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  1950. return false;
  1951. } else {
  1952. ppsc->rfchange_inprogress = true;
  1953. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  1954. }
  1955. /* cur_rfstate = ppsc->rfpwr_state;*/
  1956. /* because after _rtl92s_phy_set_rfhalt, all power
  1957. * closed, so we must open some power for GPIO check,
  1958. * or we will always check GPIO RFOFF here,
  1959. * And we should close power after GPIO check */
  1960. if (RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) {
  1961. _rtl92se_power_domain_init(hw);
  1962. turnonbypowerdomain = true;
  1963. }
  1964. rfpwr_toset = _rtl92se_rf_onoff_detect(hw);
  1965. if ((ppsc->hwradiooff) && (rfpwr_toset == ERFON)) {
  1966. RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
  1967. "RFKILL-HW Radio ON, RF ON\n");
  1968. rfpwr_toset = ERFON;
  1969. ppsc->hwradiooff = false;
  1970. actuallyset = true;
  1971. } else if ((!ppsc->hwradiooff) && (rfpwr_toset == ERFOFF)) {
  1972. RT_TRACE(rtlpriv, COMP_RF,
  1973. DBG_DMESG, "RFKILL-HW Radio OFF, RF OFF\n");
  1974. rfpwr_toset = ERFOFF;
  1975. ppsc->hwradiooff = true;
  1976. actuallyset = true;
  1977. }
  1978. if (actuallyset) {
  1979. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  1980. ppsc->rfchange_inprogress = false;
  1981. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  1982. /* this not include ifconfig wlan0 down case */
  1983. /* } else if (rfpwr_toset == ERFOFF || cur_rfstate == ERFOFF) { */
  1984. } else {
  1985. /* because power_domain_init may be happen when
  1986. * _rtl92s_phy_set_rfhalt, this will open some powers
  1987. * and cause current increasing about 40 mA for ips,
  1988. * rfoff and ifconfig down, so we set
  1989. * _rtl92s_phy_set_rfhalt again here */
  1990. if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC &&
  1991. turnonbypowerdomain) {
  1992. _rtl92s_phy_set_rfhalt(hw);
  1993. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
  1994. }
  1995. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  1996. ppsc->rfchange_inprogress = false;
  1997. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  1998. }
  1999. *valid = 1;
  2000. return !ppsc->hwradiooff;
  2001. }
  2002. /* Is_wepkey just used for WEP used as group & pairwise key
  2003. * if pairwise is AES ang group is WEP Is_wepkey == false.*/
  2004. void rtl92se_set_key(struct ieee80211_hw *hw, u32 key_index, u8 *p_macaddr,
  2005. bool is_group, u8 enc_algo, bool is_wepkey, bool clear_all)
  2006. {
  2007. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2008. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  2009. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  2010. u8 *macaddr = p_macaddr;
  2011. u32 entry_id = 0;
  2012. bool is_pairwise = false;
  2013. static u8 cam_const_addr[4][6] = {
  2014. {0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
  2015. {0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
  2016. {0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
  2017. {0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
  2018. };
  2019. static u8 cam_const_broad[] = {
  2020. 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
  2021. };
  2022. if (clear_all) {
  2023. u8 idx = 0;
  2024. u8 cam_offset = 0;
  2025. u8 clear_number = 5;
  2026. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
  2027. for (idx = 0; idx < clear_number; idx++) {
  2028. rtl_cam_mark_invalid(hw, cam_offset + idx);
  2029. rtl_cam_empty_entry(hw, cam_offset + idx);
  2030. if (idx < 5) {
  2031. memset(rtlpriv->sec.key_buf[idx], 0,
  2032. MAX_KEY_LEN);
  2033. rtlpriv->sec.key_len[idx] = 0;
  2034. }
  2035. }
  2036. } else {
  2037. switch (enc_algo) {
  2038. case WEP40_ENCRYPTION:
  2039. enc_algo = CAM_WEP40;
  2040. break;
  2041. case WEP104_ENCRYPTION:
  2042. enc_algo = CAM_WEP104;
  2043. break;
  2044. case TKIP_ENCRYPTION:
  2045. enc_algo = CAM_TKIP;
  2046. break;
  2047. case AESCCMP_ENCRYPTION:
  2048. enc_algo = CAM_AES;
  2049. break;
  2050. default:
  2051. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  2052. "switch case not processed\n");
  2053. enc_algo = CAM_TKIP;
  2054. break;
  2055. }
  2056. if (is_wepkey || rtlpriv->sec.use_defaultkey) {
  2057. macaddr = cam_const_addr[key_index];
  2058. entry_id = key_index;
  2059. } else {
  2060. if (is_group) {
  2061. macaddr = cam_const_broad;
  2062. entry_id = key_index;
  2063. } else {
  2064. if (mac->opmode == NL80211_IFTYPE_AP) {
  2065. entry_id = rtl_cam_get_free_entry(hw,
  2066. p_macaddr);
  2067. if (entry_id >= TOTAL_CAM_ENTRY) {
  2068. RT_TRACE(rtlpriv,
  2069. COMP_SEC, DBG_EMERG,
  2070. "Can not find free hw security cam entry\n");
  2071. return;
  2072. }
  2073. } else {
  2074. entry_id = CAM_PAIRWISE_KEY_POSITION;
  2075. }
  2076. key_index = PAIRWISE_KEYIDX;
  2077. is_pairwise = true;
  2078. }
  2079. }
  2080. if (rtlpriv->sec.key_len[key_index] == 0) {
  2081. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  2082. "delete one entry, entry_id is %d\n",
  2083. entry_id);
  2084. if (mac->opmode == NL80211_IFTYPE_AP)
  2085. rtl_cam_del_entry(hw, p_macaddr);
  2086. rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
  2087. } else {
  2088. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  2089. "add one entry\n");
  2090. if (is_pairwise) {
  2091. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  2092. "set Pairwise key\n");
  2093. rtl_cam_add_one_entry(hw, macaddr, key_index,
  2094. entry_id, enc_algo,
  2095. CAM_CONFIG_NO_USEDK,
  2096. rtlpriv->sec.key_buf[key_index]);
  2097. } else {
  2098. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  2099. "set group key\n");
  2100. if (mac->opmode == NL80211_IFTYPE_ADHOC) {
  2101. rtl_cam_add_one_entry(hw,
  2102. rtlefuse->dev_addr,
  2103. PAIRWISE_KEYIDX,
  2104. CAM_PAIRWISE_KEY_POSITION,
  2105. enc_algo, CAM_CONFIG_NO_USEDK,
  2106. rtlpriv->sec.key_buf[entry_id]);
  2107. }
  2108. rtl_cam_add_one_entry(hw, macaddr, key_index,
  2109. entry_id, enc_algo,
  2110. CAM_CONFIG_NO_USEDK,
  2111. rtlpriv->sec.key_buf[entry_id]);
  2112. }
  2113. }
  2114. }
  2115. }
  2116. void rtl92se_suspend(struct ieee80211_hw *hw)
  2117. {
  2118. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  2119. rtlpci->up_first_time = true;
  2120. }
  2121. void rtl92se_resume(struct ieee80211_hw *hw)
  2122. {
  2123. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  2124. u32 val;
  2125. pci_read_config_dword(rtlpci->pdev, 0x40, &val);
  2126. if ((val & 0x0000ff00) != 0)
  2127. pci_write_config_dword(rtlpci->pdev, 0x40,
  2128. val & 0xffff00ff);
  2129. }
  2130. /* Turn on AAP (RCR:bit 0) for promicuous mode. */
  2131. void rtl92se_allow_all_destaddr(struct ieee80211_hw *hw,
  2132. bool allow_all_da, bool write_into_reg)
  2133. {
  2134. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2135. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  2136. if (allow_all_da) /* Set BIT0 */
  2137. rtlpci->receive_config |= RCR_AAP;
  2138. else /* Clear BIT0 */
  2139. rtlpci->receive_config &= ~RCR_AAP;
  2140. if (write_into_reg)
  2141. rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config);
  2142. RT_TRACE(rtlpriv, COMP_TURBO | COMP_INIT, DBG_LOUD,
  2143. "receive_config=0x%08X, write_into_reg=%d\n",
  2144. rtlpci->receive_config, write_into_reg);
  2145. }