hw.c 67 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428
  1. /******************************************************************************
  2. *
  3. * Copyright(c) 2009-2012 Realtek Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of version 2 of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
  17. *
  18. * The full GNU General Public License is included in this distribution in the
  19. * file called LICENSE.
  20. *
  21. * Contact Information:
  22. * wlanfae <wlanfae@realtek.com>
  23. * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
  24. * Hsinchu 300, Taiwan.
  25. *
  26. * Larry Finger <Larry.Finger@lwfinger.net>
  27. *
  28. *****************************************************************************/
  29. #include "../wifi.h"
  30. #include "../efuse.h"
  31. #include "../base.h"
  32. #include "../regd.h"
  33. #include "../cam.h"
  34. #include "../ps.h"
  35. #include "../pci.h"
  36. #include "reg.h"
  37. #include "def.h"
  38. #include "phy.h"
  39. #include "../rtl8192c/fw_common.h"
  40. #include "dm.h"
  41. #include "led.h"
  42. #include "hw.h"
  43. #define LLT_CONFIG 5
  44. static void _rtl92ce_set_bcn_ctrl_reg(struct ieee80211_hw *hw,
  45. u8 set_bits, u8 clear_bits)
  46. {
  47. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  48. struct rtl_priv *rtlpriv = rtl_priv(hw);
  49. rtlpci->reg_bcn_ctrl_val |= set_bits;
  50. rtlpci->reg_bcn_ctrl_val &= ~clear_bits;
  51. rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8) rtlpci->reg_bcn_ctrl_val);
  52. }
  53. static void _rtl92ce_stop_tx_beacon(struct ieee80211_hw *hw)
  54. {
  55. struct rtl_priv *rtlpriv = rtl_priv(hw);
  56. u8 tmp1byte;
  57. tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
  58. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte & (~BIT(6)));
  59. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64);
  60. tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
  61. tmp1byte &= ~(BIT(0));
  62. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
  63. }
  64. static void _rtl92ce_resume_tx_beacon(struct ieee80211_hw *hw)
  65. {
  66. struct rtl_priv *rtlpriv = rtl_priv(hw);
  67. u8 tmp1byte;
  68. tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
  69. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte | BIT(6));
  70. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
  71. tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
  72. tmp1byte |= BIT(0);
  73. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
  74. }
  75. static void _rtl92ce_enable_bcn_sub_func(struct ieee80211_hw *hw)
  76. {
  77. _rtl92ce_set_bcn_ctrl_reg(hw, 0, BIT(1));
  78. }
  79. static void _rtl92ce_disable_bcn_sub_func(struct ieee80211_hw *hw)
  80. {
  81. _rtl92ce_set_bcn_ctrl_reg(hw, BIT(1), 0);
  82. }
  83. void rtl92ce_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
  84. {
  85. struct rtl_priv *rtlpriv = rtl_priv(hw);
  86. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  87. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  88. switch (variable) {
  89. case HW_VAR_RCR:
  90. *((u32 *) (val)) = rtlpci->receive_config;
  91. break;
  92. case HW_VAR_RF_STATE:
  93. *((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
  94. break;
  95. case HW_VAR_FWLPS_RF_ON:{
  96. enum rf_pwrstate rfState;
  97. u32 val_rcr;
  98. rtlpriv->cfg->ops->get_hw_reg(hw,
  99. HW_VAR_RF_STATE,
  100. (u8 *) (&rfState));
  101. if (rfState == ERFOFF) {
  102. *((bool *) (val)) = true;
  103. } else {
  104. val_rcr = rtl_read_dword(rtlpriv, REG_RCR);
  105. val_rcr &= 0x00070000;
  106. if (val_rcr)
  107. *((bool *) (val)) = false;
  108. else
  109. *((bool *) (val)) = true;
  110. }
  111. break;
  112. }
  113. case HW_VAR_FW_PSMODE_STATUS:
  114. *((bool *) (val)) = ppsc->fw_current_inpsmode;
  115. break;
  116. case HW_VAR_CORRECT_TSF:{
  117. u64 tsf;
  118. u32 *ptsf_low = (u32 *)&tsf;
  119. u32 *ptsf_high = ((u32 *)&tsf) + 1;
  120. *ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4));
  121. *ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR);
  122. *((u64 *) (val)) = tsf;
  123. break;
  124. }
  125. default:
  126. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  127. "switch case not processed\n");
  128. break;
  129. }
  130. }
  131. void rtl92ce_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
  132. {
  133. struct rtl_priv *rtlpriv = rtl_priv(hw);
  134. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  135. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  136. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  137. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  138. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  139. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  140. u8 idx;
  141. switch (variable) {
  142. case HW_VAR_ETHER_ADDR:{
  143. for (idx = 0; idx < ETH_ALEN; idx++) {
  144. rtl_write_byte(rtlpriv, (REG_MACID + idx),
  145. val[idx]);
  146. }
  147. break;
  148. }
  149. case HW_VAR_BASIC_RATE:{
  150. u16 rate_cfg = ((u16 *) val)[0];
  151. u8 rate_index = 0;
  152. rate_cfg &= 0x15f;
  153. rate_cfg |= 0x01;
  154. rtl_write_byte(rtlpriv, REG_RRSR, rate_cfg & 0xff);
  155. rtl_write_byte(rtlpriv, REG_RRSR + 1,
  156. (rate_cfg >> 8) & 0xff);
  157. while (rate_cfg > 0x1) {
  158. rate_cfg = (rate_cfg >> 1);
  159. rate_index++;
  160. }
  161. rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL,
  162. rate_index);
  163. break;
  164. }
  165. case HW_VAR_BSSID:{
  166. for (idx = 0; idx < ETH_ALEN; idx++) {
  167. rtl_write_byte(rtlpriv, (REG_BSSID + idx),
  168. val[idx]);
  169. }
  170. break;
  171. }
  172. case HW_VAR_SIFS:{
  173. rtl_write_byte(rtlpriv, REG_SIFS_CTX + 1, val[0]);
  174. rtl_write_byte(rtlpriv, REG_SIFS_TRX + 1, val[1]);
  175. rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]);
  176. rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]);
  177. if (!mac->ht_enable)
  178. rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
  179. 0x0e0e);
  180. else
  181. rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
  182. *((u16 *) val));
  183. break;
  184. }
  185. case HW_VAR_SLOT_TIME:{
  186. u8 e_aci;
  187. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  188. "HW_VAR_SLOT_TIME %x\n", val[0]);
  189. rtl_write_byte(rtlpriv, REG_SLOT, val[0]);
  190. for (e_aci = 0; e_aci < AC_MAX; e_aci++) {
  191. rtlpriv->cfg->ops->set_hw_reg(hw,
  192. HW_VAR_AC_PARAM,
  193. &e_aci);
  194. }
  195. break;
  196. }
  197. case HW_VAR_ACK_PREAMBLE:{
  198. u8 reg_tmp;
  199. u8 short_preamble = (bool)*val;
  200. reg_tmp = (mac->cur_40_prime_sc) << 5;
  201. if (short_preamble)
  202. reg_tmp |= 0x80;
  203. rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_tmp);
  204. break;
  205. }
  206. case HW_VAR_AMPDU_MIN_SPACE:{
  207. u8 min_spacing_to_set;
  208. u8 sec_min_space;
  209. min_spacing_to_set = *val;
  210. if (min_spacing_to_set <= 7) {
  211. sec_min_space = 0;
  212. if (min_spacing_to_set < sec_min_space)
  213. min_spacing_to_set = sec_min_space;
  214. mac->min_space_cfg = ((mac->min_space_cfg &
  215. 0xf8) |
  216. min_spacing_to_set);
  217. *val = min_spacing_to_set;
  218. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  219. "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
  220. mac->min_space_cfg);
  221. rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
  222. mac->min_space_cfg);
  223. }
  224. break;
  225. }
  226. case HW_VAR_SHORTGI_DENSITY:{
  227. u8 density_to_set;
  228. density_to_set = *val;
  229. mac->min_space_cfg |= (density_to_set << 3);
  230. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  231. "Set HW_VAR_SHORTGI_DENSITY: %#x\n",
  232. mac->min_space_cfg);
  233. rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
  234. mac->min_space_cfg);
  235. break;
  236. }
  237. case HW_VAR_AMPDU_FACTOR:{
  238. u8 regtoset_normal[4] = {0x41, 0xa8, 0x72, 0xb9};
  239. u8 regtoset_bt[4] = {0x31, 0x74, 0x42, 0x97};
  240. u8 factor_toset;
  241. u8 *p_regtoset = NULL;
  242. u8 index = 0;
  243. if ((rtlpcipriv->bt_coexist.bt_coexistence) &&
  244. (rtlpcipriv->bt_coexist.bt_coexist_type ==
  245. BT_CSR_BC4))
  246. p_regtoset = regtoset_bt;
  247. else
  248. p_regtoset = regtoset_normal;
  249. factor_toset = *(val);
  250. if (factor_toset <= 3) {
  251. factor_toset = (1 << (factor_toset + 2));
  252. if (factor_toset > 0xf)
  253. factor_toset = 0xf;
  254. for (index = 0; index < 4; index++) {
  255. if ((p_regtoset[index] & 0xf0) >
  256. (factor_toset << 4))
  257. p_regtoset[index] =
  258. (p_regtoset[index] & 0x0f) |
  259. (factor_toset << 4);
  260. if ((p_regtoset[index] & 0x0f) >
  261. factor_toset)
  262. p_regtoset[index] =
  263. (p_regtoset[index] & 0xf0) |
  264. (factor_toset);
  265. rtl_write_byte(rtlpriv,
  266. (REG_AGGLEN_LMT + index),
  267. p_regtoset[index]);
  268. }
  269. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  270. "Set HW_VAR_AMPDU_FACTOR: %#x\n",
  271. factor_toset);
  272. }
  273. break;
  274. }
  275. case HW_VAR_AC_PARAM:{
  276. u8 e_aci = *(val);
  277. rtl92c_dm_init_edca_turbo(hw);
  278. if (rtlpci->acm_method != eAcmWay2_SW)
  279. rtlpriv->cfg->ops->set_hw_reg(hw,
  280. HW_VAR_ACM_CTRL,
  281. (&e_aci));
  282. break;
  283. }
  284. case HW_VAR_ACM_CTRL:{
  285. u8 e_aci = *(val);
  286. union aci_aifsn *p_aci_aifsn =
  287. (union aci_aifsn *)(&(mac->ac[0].aifs));
  288. u8 acm = p_aci_aifsn->f.acm;
  289. u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL);
  290. acm_ctrl =
  291. acm_ctrl | ((rtlpci->acm_method == 2) ? 0x0 : 0x1);
  292. if (acm) {
  293. switch (e_aci) {
  294. case AC0_BE:
  295. acm_ctrl |= AcmHw_BeqEn;
  296. break;
  297. case AC2_VI:
  298. acm_ctrl |= AcmHw_ViqEn;
  299. break;
  300. case AC3_VO:
  301. acm_ctrl |= AcmHw_VoqEn;
  302. break;
  303. default:
  304. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  305. "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
  306. acm);
  307. break;
  308. }
  309. } else {
  310. switch (e_aci) {
  311. case AC0_BE:
  312. acm_ctrl &= (~AcmHw_BeqEn);
  313. break;
  314. case AC2_VI:
  315. acm_ctrl &= (~AcmHw_ViqEn);
  316. break;
  317. case AC3_VO:
  318. acm_ctrl &= (~AcmHw_BeqEn);
  319. break;
  320. default:
  321. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  322. "switch case not processed\n");
  323. break;
  324. }
  325. }
  326. RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
  327. "SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n",
  328. acm_ctrl);
  329. rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl);
  330. break;
  331. }
  332. case HW_VAR_RCR:{
  333. rtl_write_dword(rtlpriv, REG_RCR, ((u32 *) (val))[0]);
  334. rtlpci->receive_config = ((u32 *) (val))[0];
  335. break;
  336. }
  337. case HW_VAR_RETRY_LIMIT:{
  338. u8 retry_limit = val[0];
  339. rtl_write_word(rtlpriv, REG_RL,
  340. retry_limit << RETRY_LIMIT_SHORT_SHIFT |
  341. retry_limit << RETRY_LIMIT_LONG_SHIFT);
  342. break;
  343. }
  344. case HW_VAR_DUAL_TSF_RST:
  345. rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1)));
  346. break;
  347. case HW_VAR_EFUSE_BYTES:
  348. rtlefuse->efuse_usedbytes = *((u16 *) val);
  349. break;
  350. case HW_VAR_EFUSE_USAGE:
  351. rtlefuse->efuse_usedpercentage = *val;
  352. break;
  353. case HW_VAR_IO_CMD:
  354. rtl92c_phy_set_io_cmd(hw, (*(enum io_type *)val));
  355. break;
  356. case HW_VAR_WPA_CONFIG:
  357. rtl_write_byte(rtlpriv, REG_SECCFG, *val);
  358. break;
  359. case HW_VAR_SET_RPWM:{
  360. u8 rpwm_val;
  361. rpwm_val = rtl_read_byte(rtlpriv, REG_PCIE_HRPWM);
  362. udelay(1);
  363. if (rpwm_val & BIT(7)) {
  364. rtl_write_byte(rtlpriv, REG_PCIE_HRPWM, *val);
  365. } else {
  366. rtl_write_byte(rtlpriv, REG_PCIE_HRPWM,
  367. *val | BIT(7));
  368. }
  369. break;
  370. }
  371. case HW_VAR_H2C_FW_PWRMODE:{
  372. u8 psmode = *val;
  373. if ((psmode != FW_PS_ACTIVE_MODE) &&
  374. (!IS_92C_SERIAL(rtlhal->version))) {
  375. rtl92c_dm_rf_saving(hw, true);
  376. }
  377. rtl92c_set_fw_pwrmode_cmd(hw, *val);
  378. break;
  379. }
  380. case HW_VAR_FW_PSMODE_STATUS:
  381. ppsc->fw_current_inpsmode = *((bool *) val);
  382. break;
  383. case HW_VAR_H2C_FW_JOINBSSRPT:{
  384. u8 mstatus = *val;
  385. u8 tmp_regcr, tmp_reg422;
  386. bool recover = false;
  387. if (mstatus == RT_MEDIA_CONNECT) {
  388. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AID,
  389. NULL);
  390. tmp_regcr = rtl_read_byte(rtlpriv, REG_CR + 1);
  391. rtl_write_byte(rtlpriv, REG_CR + 1,
  392. (tmp_regcr | BIT(0)));
  393. _rtl92ce_set_bcn_ctrl_reg(hw, 0, BIT(3));
  394. _rtl92ce_set_bcn_ctrl_reg(hw, BIT(4), 0);
  395. tmp_reg422 =
  396. rtl_read_byte(rtlpriv,
  397. REG_FWHW_TXQ_CTRL + 2);
  398. if (tmp_reg422 & BIT(6))
  399. recover = true;
  400. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
  401. tmp_reg422 & (~BIT(6)));
  402. rtl92c_set_fw_rsvdpagepkt(hw, 0);
  403. _rtl92ce_set_bcn_ctrl_reg(hw, BIT(3), 0);
  404. _rtl92ce_set_bcn_ctrl_reg(hw, 0, BIT(4));
  405. if (recover) {
  406. rtl_write_byte(rtlpriv,
  407. REG_FWHW_TXQ_CTRL + 2,
  408. tmp_reg422);
  409. }
  410. rtl_write_byte(rtlpriv, REG_CR + 1,
  411. (tmp_regcr & ~(BIT(0))));
  412. }
  413. rtl92c_set_fw_joinbss_report_cmd(hw, *val);
  414. break;
  415. }
  416. case HW_VAR_H2C_FW_P2P_PS_OFFLOAD:
  417. rtl92c_set_p2p_ps_offload_cmd(hw, (*(u8 *)val));
  418. break;
  419. case HW_VAR_AID:{
  420. u16 u2btmp;
  421. u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT);
  422. u2btmp &= 0xC000;
  423. rtl_write_word(rtlpriv, REG_BCN_PSR_RPT, (u2btmp |
  424. mac->assoc_id));
  425. break;
  426. }
  427. case HW_VAR_CORRECT_TSF:{
  428. u8 btype_ibss = val[0];
  429. if (btype_ibss)
  430. _rtl92ce_stop_tx_beacon(hw);
  431. _rtl92ce_set_bcn_ctrl_reg(hw, 0, BIT(3));
  432. rtl_write_dword(rtlpriv, REG_TSFTR,
  433. (u32) (mac->tsf & 0xffffffff));
  434. rtl_write_dword(rtlpriv, REG_TSFTR + 4,
  435. (u32) ((mac->tsf >> 32) & 0xffffffff));
  436. _rtl92ce_set_bcn_ctrl_reg(hw, BIT(3), 0);
  437. if (btype_ibss)
  438. _rtl92ce_resume_tx_beacon(hw);
  439. break;
  440. }
  441. case HW_VAR_FW_LPS_ACTION: {
  442. bool enter_fwlps = *((bool *)val);
  443. u8 rpwm_val, fw_pwrmode;
  444. bool fw_current_inps;
  445. if (enter_fwlps) {
  446. rpwm_val = 0x02; /* RF off */
  447. fw_current_inps = true;
  448. rtlpriv->cfg->ops->set_hw_reg(hw,
  449. HW_VAR_FW_PSMODE_STATUS,
  450. (u8 *)(&fw_current_inps));
  451. rtlpriv->cfg->ops->set_hw_reg(hw,
  452. HW_VAR_H2C_FW_PWRMODE,
  453. (u8 *)(&ppsc->fwctrl_psmode));
  454. rtlpriv->cfg->ops->set_hw_reg(hw,
  455. HW_VAR_SET_RPWM,
  456. (u8 *)(&rpwm_val));
  457. } else {
  458. rpwm_val = 0x0C; /* RF on */
  459. fw_pwrmode = FW_PS_ACTIVE_MODE;
  460. fw_current_inps = false;
  461. rtlpriv->cfg->ops->set_hw_reg(hw,
  462. HW_VAR_SET_RPWM,
  463. (u8 *)(&rpwm_val));
  464. rtlpriv->cfg->ops->set_hw_reg(hw,
  465. HW_VAR_H2C_FW_PWRMODE,
  466. (u8 *)(&fw_pwrmode));
  467. rtlpriv->cfg->ops->set_hw_reg(hw,
  468. HW_VAR_FW_PSMODE_STATUS,
  469. (u8 *)(&fw_current_inps));
  470. }
  471. break; }
  472. default:
  473. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  474. "switch case not processed\n");
  475. break;
  476. }
  477. }
  478. static bool _rtl92ce_llt_write(struct ieee80211_hw *hw, u32 address, u32 data)
  479. {
  480. struct rtl_priv *rtlpriv = rtl_priv(hw);
  481. bool status = true;
  482. long count = 0;
  483. u32 value = _LLT_INIT_ADDR(address) |
  484. _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS);
  485. rtl_write_dword(rtlpriv, REG_LLT_INIT, value);
  486. do {
  487. value = rtl_read_dword(rtlpriv, REG_LLT_INIT);
  488. if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value))
  489. break;
  490. if (count > POLLING_LLT_THRESHOLD) {
  491. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  492. "Failed to polling write LLT done at address %d!\n",
  493. address);
  494. status = false;
  495. break;
  496. }
  497. } while (++count);
  498. return status;
  499. }
  500. static bool _rtl92ce_llt_table_init(struct ieee80211_hw *hw)
  501. {
  502. struct rtl_priv *rtlpriv = rtl_priv(hw);
  503. unsigned short i;
  504. u8 txpktbuf_bndy;
  505. u8 maxPage;
  506. bool status;
  507. #if LLT_CONFIG == 1
  508. maxPage = 255;
  509. txpktbuf_bndy = 252;
  510. #elif LLT_CONFIG == 2
  511. maxPage = 127;
  512. txpktbuf_bndy = 124;
  513. #elif LLT_CONFIG == 3
  514. maxPage = 255;
  515. txpktbuf_bndy = 174;
  516. #elif LLT_CONFIG == 4
  517. maxPage = 255;
  518. txpktbuf_bndy = 246;
  519. #elif LLT_CONFIG == 5
  520. maxPage = 255;
  521. txpktbuf_bndy = 246;
  522. #endif
  523. #if LLT_CONFIG == 1
  524. rtl_write_byte(rtlpriv, REG_RQPN_NPQ, 0x1c);
  525. rtl_write_dword(rtlpriv, REG_RQPN, 0x80a71c1c);
  526. #elif LLT_CONFIG == 2
  527. rtl_write_dword(rtlpriv, REG_RQPN, 0x845B1010);
  528. #elif LLT_CONFIG == 3
  529. rtl_write_dword(rtlpriv, REG_RQPN, 0x84838484);
  530. #elif LLT_CONFIG == 4
  531. rtl_write_dword(rtlpriv, REG_RQPN, 0x80bd1c1c);
  532. #elif LLT_CONFIG == 5
  533. rtl_write_word(rtlpriv, REG_RQPN_NPQ, 0x0000);
  534. rtl_write_dword(rtlpriv, REG_RQPN, 0x80b01c29);
  535. #endif
  536. rtl_write_dword(rtlpriv, REG_TRXFF_BNDY, (0x27FF0000 | txpktbuf_bndy));
  537. rtl_write_byte(rtlpriv, REG_TDECTRL + 1, txpktbuf_bndy);
  538. rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy);
  539. rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy);
  540. rtl_write_byte(rtlpriv, 0x45D, txpktbuf_bndy);
  541. rtl_write_byte(rtlpriv, REG_PBP, 0x11);
  542. rtl_write_byte(rtlpriv, REG_RX_DRVINFO_SZ, 0x4);
  543. for (i = 0; i < (txpktbuf_bndy - 1); i++) {
  544. status = _rtl92ce_llt_write(hw, i, i + 1);
  545. if (true != status)
  546. return status;
  547. }
  548. status = _rtl92ce_llt_write(hw, (txpktbuf_bndy - 1), 0xFF);
  549. if (true != status)
  550. return status;
  551. for (i = txpktbuf_bndy; i < maxPage; i++) {
  552. status = _rtl92ce_llt_write(hw, i, (i + 1));
  553. if (true != status)
  554. return status;
  555. }
  556. status = _rtl92ce_llt_write(hw, maxPage, txpktbuf_bndy);
  557. if (true != status)
  558. return status;
  559. return true;
  560. }
  561. static void _rtl92ce_gen_refresh_led_state(struct ieee80211_hw *hw)
  562. {
  563. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  564. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  565. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  566. struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
  567. if (rtlpci->up_first_time)
  568. return;
  569. if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS)
  570. rtl92ce_sw_led_on(hw, pLed0);
  571. else if (ppsc->rfoff_reason == RF_CHANGE_BY_INIT)
  572. rtl92ce_sw_led_on(hw, pLed0);
  573. else
  574. rtl92ce_sw_led_off(hw, pLed0);
  575. }
  576. static bool _rtl92ce_init_mac(struct ieee80211_hw *hw)
  577. {
  578. struct rtl_priv *rtlpriv = rtl_priv(hw);
  579. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  580. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  581. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  582. unsigned char bytetmp;
  583. unsigned short wordtmp;
  584. u16 retry;
  585. rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x00);
  586. if (rtlpcipriv->bt_coexist.bt_coexistence) {
  587. u32 value32;
  588. value32 = rtl_read_dword(rtlpriv, REG_APS_FSMCO);
  589. value32 |= (SOP_ABG | SOP_AMB | XOP_BTCK);
  590. rtl_write_dword(rtlpriv, REG_APS_FSMCO, value32);
  591. }
  592. rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b);
  593. rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL, 0x0F);
  594. if (rtlpcipriv->bt_coexist.bt_coexistence) {
  595. u32 u4b_tmp = rtl_read_dword(rtlpriv, REG_AFE_XTAL_CTRL);
  596. u4b_tmp &= (~0x00024800);
  597. rtl_write_dword(rtlpriv, REG_AFE_XTAL_CTRL, u4b_tmp);
  598. }
  599. bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1) | BIT(0);
  600. udelay(2);
  601. rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, bytetmp);
  602. udelay(2);
  603. bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
  604. udelay(2);
  605. retry = 0;
  606. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "reg0xec:%x:%x\n",
  607. rtl_read_dword(rtlpriv, 0xEC), bytetmp);
  608. while ((bytetmp & BIT(0)) && retry < 1000) {
  609. retry++;
  610. udelay(50);
  611. bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
  612. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "reg0xec:%x:%x\n",
  613. rtl_read_dword(rtlpriv, 0xEC), bytetmp);
  614. udelay(50);
  615. }
  616. rtl_write_word(rtlpriv, REG_APS_FSMCO, 0x1012);
  617. rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x82);
  618. udelay(2);
  619. if (rtlpcipriv->bt_coexist.bt_coexistence) {
  620. bytetmp = rtl_read_byte(rtlpriv, REG_AFE_XTAL_CTRL+2) & 0xfd;
  621. rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL+2, bytetmp);
  622. }
  623. rtl_write_word(rtlpriv, REG_CR, 0x2ff);
  624. if (!_rtl92ce_llt_table_init(hw))
  625. return false;
  626. rtl_write_dword(rtlpriv, REG_HISR, 0xffffffff);
  627. rtl_write_byte(rtlpriv, REG_HISRE, 0xff);
  628. rtl_write_word(rtlpriv, REG_TRXFF_BNDY + 2, 0x27ff);
  629. wordtmp = rtl_read_word(rtlpriv, REG_TRXDMA_CTRL);
  630. wordtmp &= 0xf;
  631. wordtmp |= 0xF771;
  632. rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, wordtmp);
  633. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 1, 0x1F);
  634. rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
  635. rtl_write_dword(rtlpriv, REG_TCR, rtlpci->transmit_config);
  636. rtl_write_byte(rtlpriv, 0x4d0, 0x0);
  637. rtl_write_dword(rtlpriv, REG_BCNQ_DESA,
  638. ((u64) rtlpci->tx_ring[BEACON_QUEUE].dma) &
  639. DMA_BIT_MASK(32));
  640. rtl_write_dword(rtlpriv, REG_MGQ_DESA,
  641. (u64) rtlpci->tx_ring[MGNT_QUEUE].dma &
  642. DMA_BIT_MASK(32));
  643. rtl_write_dword(rtlpriv, REG_VOQ_DESA,
  644. (u64) rtlpci->tx_ring[VO_QUEUE].dma & DMA_BIT_MASK(32));
  645. rtl_write_dword(rtlpriv, REG_VIQ_DESA,
  646. (u64) rtlpci->tx_ring[VI_QUEUE].dma & DMA_BIT_MASK(32));
  647. rtl_write_dword(rtlpriv, REG_BEQ_DESA,
  648. (u64) rtlpci->tx_ring[BE_QUEUE].dma & DMA_BIT_MASK(32));
  649. rtl_write_dword(rtlpriv, REG_BKQ_DESA,
  650. (u64) rtlpci->tx_ring[BK_QUEUE].dma & DMA_BIT_MASK(32));
  651. rtl_write_dword(rtlpriv, REG_HQ_DESA,
  652. (u64) rtlpci->tx_ring[HIGH_QUEUE].dma &
  653. DMA_BIT_MASK(32));
  654. rtl_write_dword(rtlpriv, REG_RX_DESA,
  655. (u64) rtlpci->rx_ring[RX_MPDU_QUEUE].dma &
  656. DMA_BIT_MASK(32));
  657. if (IS_92C_SERIAL(rtlhal->version))
  658. rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 3, 0x77);
  659. else
  660. rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 3, 0x22);
  661. rtl_write_dword(rtlpriv, REG_INT_MIG, 0);
  662. bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
  663. rtl_write_byte(rtlpriv, REG_APSD_CTRL, bytetmp & ~BIT(6));
  664. do {
  665. retry++;
  666. bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
  667. } while ((retry < 200) && (bytetmp & BIT(7)));
  668. _rtl92ce_gen_refresh_led_state(hw);
  669. rtl_write_dword(rtlpriv, REG_MCUTST_1, 0x0);
  670. return true;
  671. }
  672. static void _rtl92ce_hw_configure(struct ieee80211_hw *hw)
  673. {
  674. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  675. struct rtl_priv *rtlpriv = rtl_priv(hw);
  676. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  677. u8 reg_bw_opmode;
  678. u32 reg_prsr;
  679. reg_bw_opmode = BW_OPMODE_20MHZ;
  680. reg_prsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
  681. rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, 0x8);
  682. rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
  683. rtl_write_dword(rtlpriv, REG_RRSR, reg_prsr);
  684. rtl_write_byte(rtlpriv, REG_SLOT, 0x09);
  685. rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, 0x0);
  686. rtl_write_word(rtlpriv, REG_FWHW_TXQ_CTRL, 0x1F80);
  687. rtl_write_word(rtlpriv, REG_RL, 0x0707);
  688. rtl_write_dword(rtlpriv, REG_BAR_MODE_CTRL, 0x02012802);
  689. rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, 0xFF);
  690. rtl_write_dword(rtlpriv, REG_DARFRC, 0x01000000);
  691. rtl_write_dword(rtlpriv, REG_DARFRC + 4, 0x07060504);
  692. rtl_write_dword(rtlpriv, REG_RARFRC, 0x01000000);
  693. rtl_write_dword(rtlpriv, REG_RARFRC + 4, 0x07060504);
  694. if ((rtlpcipriv->bt_coexist.bt_coexistence) &&
  695. (rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC4))
  696. rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0x97427431);
  697. else
  698. rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb972a841);
  699. rtl_write_byte(rtlpriv, REG_ATIMWND, 0x2);
  700. rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0xff);
  701. rtlpci->reg_bcn_ctrl_val = 0x1f;
  702. rtl_write_byte(rtlpriv, REG_BCN_CTRL, rtlpci->reg_bcn_ctrl_val);
  703. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
  704. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
  705. rtl_write_byte(rtlpriv, REG_PIFS, 0x1C);
  706. rtl_write_byte(rtlpriv, REG_AGGR_BREAK_TIME, 0x16);
  707. if ((rtlpcipriv->bt_coexist.bt_coexistence) &&
  708. (rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC4)) {
  709. rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020);
  710. rtl_write_word(rtlpriv, REG_PROT_MODE_CTRL, 0x0402);
  711. } else {
  712. rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020);
  713. rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020);
  714. }
  715. if ((rtlpcipriv->bt_coexist.bt_coexistence) &&
  716. (rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC4))
  717. rtl_write_dword(rtlpriv, REG_FAST_EDCA_CTRL, 0x03086666);
  718. else
  719. rtl_write_dword(rtlpriv, REG_FAST_EDCA_CTRL, 0x086666);
  720. rtl_write_byte(rtlpriv, REG_ACKTO, 0x40);
  721. rtl_write_word(rtlpriv, REG_SPEC_SIFS, 0x1010);
  722. rtl_write_word(rtlpriv, REG_MAC_SPEC_SIFS, 0x1010);
  723. rtl_write_word(rtlpriv, REG_SIFS_CTX, 0x1010);
  724. rtl_write_word(rtlpriv, REG_SIFS_TRX, 0x1010);
  725. rtl_write_dword(rtlpriv, REG_MAR, 0xffffffff);
  726. rtl_write_dword(rtlpriv, REG_MAR + 4, 0xffffffff);
  727. }
  728. static void _rtl92ce_enable_aspm_back_door(struct ieee80211_hw *hw)
  729. {
  730. struct rtl_priv *rtlpriv = rtl_priv(hw);
  731. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  732. rtl_write_byte(rtlpriv, 0x34b, 0x93);
  733. rtl_write_word(rtlpriv, 0x350, 0x870c);
  734. rtl_write_byte(rtlpriv, 0x352, 0x1);
  735. if (ppsc->support_backdoor)
  736. rtl_write_byte(rtlpriv, 0x349, 0x1b);
  737. else
  738. rtl_write_byte(rtlpriv, 0x349, 0x03);
  739. rtl_write_word(rtlpriv, 0x350, 0x2718);
  740. rtl_write_byte(rtlpriv, 0x352, 0x1);
  741. }
  742. void rtl92ce_enable_hw_security_config(struct ieee80211_hw *hw)
  743. {
  744. struct rtl_priv *rtlpriv = rtl_priv(hw);
  745. u8 sec_reg_value;
  746. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  747. "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
  748. rtlpriv->sec.pairwise_enc_algorithm,
  749. rtlpriv->sec.group_enc_algorithm);
  750. if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
  751. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  752. "not open hw encryption\n");
  753. return;
  754. }
  755. sec_reg_value = SCR_TxEncEnable | SCR_RxDecEnable;
  756. if (rtlpriv->sec.use_defaultkey) {
  757. sec_reg_value |= SCR_TxUseDK;
  758. sec_reg_value |= SCR_RxUseDK;
  759. }
  760. sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK);
  761. rtl_write_byte(rtlpriv, REG_CR + 1, 0x02);
  762. RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
  763. "The SECR-value %x\n", sec_reg_value);
  764. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
  765. }
  766. int rtl92ce_hw_init(struct ieee80211_hw *hw)
  767. {
  768. struct rtl_priv *rtlpriv = rtl_priv(hw);
  769. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  770. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  771. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  772. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  773. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  774. bool rtstatus = true;
  775. bool is92c;
  776. int err;
  777. u8 tmp_u1b;
  778. rtlpci->being_init_adapter = true;
  779. rtlpriv->intf_ops->disable_aspm(hw);
  780. rtstatus = _rtl92ce_init_mac(hw);
  781. if (!rtstatus) {
  782. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Init MAC failed\n");
  783. err = 1;
  784. return err;
  785. }
  786. err = rtl92c_download_fw(hw);
  787. if (err) {
  788. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  789. "Failed to download FW. Init HW without FW now..\n");
  790. err = 1;
  791. return err;
  792. }
  793. rtlhal->last_hmeboxnum = 0;
  794. rtl92c_phy_mac_config(hw);
  795. /* because last function modify RCR, so we update
  796. * rcr var here, or TP will unstable for receive_config
  797. * is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx
  798. * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252*/
  799. rtlpci->receive_config = rtl_read_dword(rtlpriv, REG_RCR);
  800. rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV);
  801. rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
  802. rtl92c_phy_bb_config(hw);
  803. rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
  804. rtl92c_phy_rf_config(hw);
  805. if (IS_VENDOR_UMC_A_CUT(rtlhal->version) &&
  806. !IS_92C_SERIAL(rtlhal->version)) {
  807. rtl_set_rfreg(hw, RF90_PATH_A, RF_RX_G1, MASKDWORD, 0x30255);
  808. rtl_set_rfreg(hw, RF90_PATH_A, RF_RX_G2, MASKDWORD, 0x50a00);
  809. } else if (IS_81xxC_VENDOR_UMC_B_CUT(rtlhal->version)) {
  810. rtl_set_rfreg(hw, RF90_PATH_A, 0x0C, MASKDWORD, 0x894AE);
  811. rtl_set_rfreg(hw, RF90_PATH_A, 0x0A, MASKDWORD, 0x1AF31);
  812. rtl_set_rfreg(hw, RF90_PATH_A, RF_IPA, MASKDWORD, 0x8F425);
  813. rtl_set_rfreg(hw, RF90_PATH_A, RF_SYN_G2, MASKDWORD, 0x4F200);
  814. rtl_set_rfreg(hw, RF90_PATH_A, RF_RCK1, MASKDWORD, 0x44053);
  815. rtl_set_rfreg(hw, RF90_PATH_A, RF_RCK2, MASKDWORD, 0x80201);
  816. }
  817. rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0,
  818. RF_CHNLBW, RFREG_OFFSET_MASK);
  819. rtlphy->rfreg_chnlval[1] = rtl_get_rfreg(hw, (enum radio_path)1,
  820. RF_CHNLBW, RFREG_OFFSET_MASK);
  821. rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
  822. rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
  823. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10), 1);
  824. _rtl92ce_hw_configure(hw);
  825. rtl_cam_reset_all_entry(hw);
  826. rtl92ce_enable_hw_security_config(hw);
  827. ppsc->rfpwr_state = ERFON;
  828. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr);
  829. _rtl92ce_enable_aspm_back_door(hw);
  830. rtlpriv->intf_ops->enable_aspm(hw);
  831. rtl8192ce_bt_hw_init(hw);
  832. if (ppsc->rfpwr_state == ERFON) {
  833. rtl92c_phy_set_rfpath_switch(hw, 1);
  834. if (rtlphy->iqk_initialized) {
  835. rtl92c_phy_iq_calibrate(hw, true);
  836. } else {
  837. rtl92c_phy_iq_calibrate(hw, false);
  838. rtlphy->iqk_initialized = true;
  839. }
  840. rtl92c_dm_check_txpower_tracking(hw);
  841. rtl92c_phy_lc_calibrate(hw);
  842. }
  843. is92c = IS_92C_SERIAL(rtlhal->version);
  844. tmp_u1b = efuse_read_1byte(hw, 0x1FA);
  845. if (!(tmp_u1b & BIT(0))) {
  846. rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0F, 0x05);
  847. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "PA BIAS path A\n");
  848. }
  849. if (!(tmp_u1b & BIT(1)) && is92c) {
  850. rtl_set_rfreg(hw, RF90_PATH_B, 0x15, 0x0F, 0x05);
  851. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "PA BIAS path B\n");
  852. }
  853. if (!(tmp_u1b & BIT(4))) {
  854. tmp_u1b = rtl_read_byte(rtlpriv, 0x16);
  855. tmp_u1b &= 0x0F;
  856. rtl_write_byte(rtlpriv, 0x16, tmp_u1b | 0x80);
  857. udelay(10);
  858. rtl_write_byte(rtlpriv, 0x16, tmp_u1b | 0x90);
  859. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "under 1.5V\n");
  860. }
  861. rtl92c_dm_init(hw);
  862. rtlpci->being_init_adapter = false;
  863. return err;
  864. }
  865. static enum version_8192c _rtl92ce_read_chip_version(struct ieee80211_hw *hw)
  866. {
  867. struct rtl_priv *rtlpriv = rtl_priv(hw);
  868. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  869. enum version_8192c version = VERSION_UNKNOWN;
  870. u32 value32;
  871. const char *versionid;
  872. value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG);
  873. if (value32 & TRP_VAUX_EN) {
  874. version = (value32 & TYPE_ID) ? VERSION_A_CHIP_92C :
  875. VERSION_A_CHIP_88C;
  876. } else {
  877. version = (enum version_8192c) (CHIP_VER_B |
  878. ((value32 & TYPE_ID) ? CHIP_92C_BITMASK : 0) |
  879. ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : 0));
  880. if ((!IS_CHIP_VENDOR_UMC(version)) && (value32 &
  881. CHIP_VER_RTL_MASK)) {
  882. version = (enum version_8192c)(version |
  883. ((((value32 & CHIP_VER_RTL_MASK) == BIT(12))
  884. ? CHIP_VENDOR_UMC_B_CUT : CHIP_UNKNOWN) |
  885. CHIP_VENDOR_UMC));
  886. }
  887. if (IS_92C_SERIAL(version)) {
  888. value32 = rtl_read_dword(rtlpriv, REG_HPON_FSM);
  889. version = (enum version_8192c)(version |
  890. ((CHIP_BONDING_IDENTIFIER(value32)
  891. == CHIP_BONDING_92C_1T2R) ?
  892. RF_TYPE_1T2R : 0));
  893. }
  894. }
  895. switch (version) {
  896. case VERSION_B_CHIP_92C:
  897. versionid = "B_CHIP_92C";
  898. break;
  899. case VERSION_B_CHIP_88C:
  900. versionid = "B_CHIP_88C";
  901. break;
  902. case VERSION_A_CHIP_92C:
  903. versionid = "A_CHIP_92C";
  904. break;
  905. case VERSION_A_CHIP_88C:
  906. versionid = "A_CHIP_88C";
  907. break;
  908. case VERSION_NORMAL_UMC_CHIP_92C_1T2R_A_CUT:
  909. versionid = "A_CUT_92C_1T2R";
  910. break;
  911. case VERSION_NORMAL_UMC_CHIP_92C_A_CUT:
  912. versionid = "A_CUT_92C";
  913. break;
  914. case VERSION_NORMAL_UMC_CHIP_88C_A_CUT:
  915. versionid = "A_CUT_88C";
  916. break;
  917. case VERSION_NORMAL_UMC_CHIP_92C_1T2R_B_CUT:
  918. versionid = "B_CUT_92C_1T2R";
  919. break;
  920. case VERSION_NORMAL_UMC_CHIP_92C_B_CUT:
  921. versionid = "B_CUT_92C";
  922. break;
  923. case VERSION_NORMAL_UMC_CHIP_88C_B_CUT:
  924. versionid = "B_CUT_88C";
  925. break;
  926. default:
  927. versionid = "Unknown. Bug?";
  928. break;
  929. }
  930. RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG,
  931. "Chip Version ID: %s\n", versionid);
  932. switch (version & 0x3) {
  933. case CHIP_88C:
  934. rtlphy->rf_type = RF_1T1R;
  935. break;
  936. case CHIP_92C:
  937. rtlphy->rf_type = RF_2T2R;
  938. break;
  939. case CHIP_92C_1T2R:
  940. rtlphy->rf_type = RF_1T2R;
  941. break;
  942. default:
  943. rtlphy->rf_type = RF_1T1R;
  944. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  945. "ERROR RF_Type is set!!\n");
  946. break;
  947. }
  948. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Chip RF Type: %s\n",
  949. rtlphy->rf_type == RF_2T2R ? "RF_2T2R" : "RF_1T1R");
  950. return version;
  951. }
  952. static int _rtl92ce_set_media_status(struct ieee80211_hw *hw,
  953. enum nl80211_iftype type)
  954. {
  955. struct rtl_priv *rtlpriv = rtl_priv(hw);
  956. u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
  957. enum led_ctl_mode ledaction = LED_CTL_NO_LINK;
  958. bt_msr &= 0xfc;
  959. if (type == NL80211_IFTYPE_UNSPECIFIED ||
  960. type == NL80211_IFTYPE_STATION) {
  961. _rtl92ce_stop_tx_beacon(hw);
  962. _rtl92ce_enable_bcn_sub_func(hw);
  963. } else if (type == NL80211_IFTYPE_ADHOC || type == NL80211_IFTYPE_AP ||
  964. type == NL80211_IFTYPE_MESH_POINT) {
  965. _rtl92ce_resume_tx_beacon(hw);
  966. _rtl92ce_disable_bcn_sub_func(hw);
  967. } else {
  968. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  969. "Set HW_VAR_MEDIA_STATUS: No such media status(%x)\n",
  970. type);
  971. }
  972. switch (type) {
  973. case NL80211_IFTYPE_UNSPECIFIED:
  974. bt_msr |= MSR_NOLINK;
  975. ledaction = LED_CTL_LINK;
  976. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  977. "Set Network type to NO LINK!\n");
  978. break;
  979. case NL80211_IFTYPE_ADHOC:
  980. bt_msr |= MSR_ADHOC;
  981. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  982. "Set Network type to Ad Hoc!\n");
  983. break;
  984. case NL80211_IFTYPE_STATION:
  985. bt_msr |= MSR_INFRA;
  986. ledaction = LED_CTL_LINK;
  987. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  988. "Set Network type to STA!\n");
  989. break;
  990. case NL80211_IFTYPE_AP:
  991. bt_msr |= MSR_AP;
  992. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  993. "Set Network type to AP!\n");
  994. break;
  995. case NL80211_IFTYPE_MESH_POINT:
  996. bt_msr |= MSR_ADHOC;
  997. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  998. "Set Network type to Mesh Point!\n");
  999. break;
  1000. default:
  1001. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1002. "Network type %d not supported!\n", type);
  1003. return 1;
  1004. break;
  1005. }
  1006. rtl_write_byte(rtlpriv, (MSR), bt_msr);
  1007. rtlpriv->cfg->ops->led_control(hw, ledaction);
  1008. if ((bt_msr & 0xfc) == MSR_AP)
  1009. rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00);
  1010. else
  1011. rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66);
  1012. return 0;
  1013. }
  1014. void rtl92ce_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
  1015. {
  1016. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1017. u32 reg_rcr = rtl_read_dword(rtlpriv, REG_RCR);
  1018. if (rtlpriv->psc.rfpwr_state != ERFON)
  1019. return;
  1020. if (check_bssid) {
  1021. reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN);
  1022. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR,
  1023. (u8 *) (&reg_rcr));
  1024. _rtl92ce_set_bcn_ctrl_reg(hw, 0, BIT(4));
  1025. } else if (!check_bssid) {
  1026. reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN));
  1027. _rtl92ce_set_bcn_ctrl_reg(hw, BIT(4), 0);
  1028. rtlpriv->cfg->ops->set_hw_reg(hw,
  1029. HW_VAR_RCR, (u8 *) (&reg_rcr));
  1030. }
  1031. }
  1032. int rtl92ce_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
  1033. {
  1034. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1035. if (_rtl92ce_set_media_status(hw, type))
  1036. return -EOPNOTSUPP;
  1037. if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
  1038. if (type != NL80211_IFTYPE_AP &&
  1039. type != NL80211_IFTYPE_MESH_POINT)
  1040. rtl92ce_set_check_bssid(hw, true);
  1041. } else {
  1042. rtl92ce_set_check_bssid(hw, false);
  1043. }
  1044. return 0;
  1045. }
  1046. /* don't set REG_EDCA_BE_PARAM here because mac80211 will send pkt when scan */
  1047. void rtl92ce_set_qos(struct ieee80211_hw *hw, int aci)
  1048. {
  1049. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1050. rtl92c_dm_init_edca_turbo(hw);
  1051. switch (aci) {
  1052. case AC1_BK:
  1053. rtl_write_dword(rtlpriv, REG_EDCA_BK_PARAM, 0xa44f);
  1054. break;
  1055. case AC0_BE:
  1056. /* rtl_write_dword(rtlpriv, REG_EDCA_BE_PARAM, u4b_ac_param); */
  1057. break;
  1058. case AC2_VI:
  1059. rtl_write_dword(rtlpriv, REG_EDCA_VI_PARAM, 0x5e4322);
  1060. break;
  1061. case AC3_VO:
  1062. rtl_write_dword(rtlpriv, REG_EDCA_VO_PARAM, 0x2f3222);
  1063. break;
  1064. default:
  1065. RT_ASSERT(false, "invalid aci: %d !\n", aci);
  1066. break;
  1067. }
  1068. }
  1069. void rtl92ce_enable_interrupt(struct ieee80211_hw *hw)
  1070. {
  1071. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1072. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1073. rtl_write_dword(rtlpriv, REG_HIMR, rtlpci->irq_mask[0] & 0xFFFFFFFF);
  1074. rtl_write_dword(rtlpriv, REG_HIMRE, rtlpci->irq_mask[1] & 0xFFFFFFFF);
  1075. }
  1076. void rtl92ce_disable_interrupt(struct ieee80211_hw *hw)
  1077. {
  1078. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1079. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1080. rtl_write_dword(rtlpriv, REG_HIMR, IMR8190_DISABLED);
  1081. rtl_write_dword(rtlpriv, REG_HIMRE, IMR8190_DISABLED);
  1082. synchronize_irq(rtlpci->pdev->irq);
  1083. }
  1084. static void _rtl92ce_poweroff_adapter(struct ieee80211_hw *hw)
  1085. {
  1086. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1087. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  1088. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  1089. u8 u1b_tmp;
  1090. u32 u4b_tmp;
  1091. rtlpriv->intf_ops->enable_aspm(hw);
  1092. rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF);
  1093. rtl_set_rfreg(hw, RF90_PATH_A, 0x00, RFREG_OFFSET_MASK, 0x00);
  1094. rtl_write_byte(rtlpriv, REG_RF_CTRL, 0x00);
  1095. rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x40);
  1096. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
  1097. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE0);
  1098. if (rtl_read_byte(rtlpriv, REG_MCUFWDL) & BIT(7))
  1099. rtl92c_firmware_selfreset(hw);
  1100. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, 0x51);
  1101. rtl_write_byte(rtlpriv, REG_MCUFWDL, 0x00);
  1102. rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, 0x00000000);
  1103. u1b_tmp = rtl_read_byte(rtlpriv, REG_GPIO_PIN_CTRL);
  1104. if ((rtlpcipriv->bt_coexist.bt_coexistence) &&
  1105. ((rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC4) ||
  1106. (rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC8))) {
  1107. rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, 0x00F30000 |
  1108. (u1b_tmp << 8));
  1109. } else {
  1110. rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, 0x00FF0000 |
  1111. (u1b_tmp << 8));
  1112. }
  1113. rtl_write_word(rtlpriv, REG_GPIO_IO_SEL, 0x0790);
  1114. rtl_write_word(rtlpriv, REG_LEDCFG0, 0x8080);
  1115. rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL, 0x80);
  1116. if (!IS_81xxC_VENDOR_UMC_B_CUT(rtlhal->version))
  1117. rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x23);
  1118. if (rtlpcipriv->bt_coexist.bt_coexistence) {
  1119. u4b_tmp = rtl_read_dword(rtlpriv, REG_AFE_XTAL_CTRL);
  1120. u4b_tmp |= 0x03824800;
  1121. rtl_write_dword(rtlpriv, REG_AFE_XTAL_CTRL, u4b_tmp);
  1122. } else {
  1123. rtl_write_dword(rtlpriv, REG_AFE_XTAL_CTRL, 0x0e);
  1124. }
  1125. rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0e);
  1126. rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, 0x10);
  1127. }
  1128. void rtl92ce_card_disable(struct ieee80211_hw *hw)
  1129. {
  1130. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1131. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1132. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1133. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1134. enum nl80211_iftype opmode;
  1135. mac->link_state = MAC80211_NOLINK;
  1136. opmode = NL80211_IFTYPE_UNSPECIFIED;
  1137. _rtl92ce_set_media_status(hw, opmode);
  1138. if (rtlpci->driver_is_goingto_unload ||
  1139. ppsc->rfoff_reason > RF_CHANGE_BY_PS)
  1140. rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
  1141. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
  1142. _rtl92ce_poweroff_adapter(hw);
  1143. /* after power off we should do iqk again */
  1144. rtlpriv->phy.iqk_initialized = false;
  1145. }
  1146. void rtl92ce_interrupt_recognized(struct ieee80211_hw *hw,
  1147. u32 *p_inta, u32 *p_intb)
  1148. {
  1149. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1150. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1151. *p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
  1152. rtl_write_dword(rtlpriv, ISR, *p_inta);
  1153. /*
  1154. * *p_intb = rtl_read_dword(rtlpriv, REG_HISRE) & rtlpci->irq_mask[1];
  1155. * rtl_write_dword(rtlpriv, ISR + 4, *p_intb);
  1156. */
  1157. }
  1158. void rtl92ce_set_beacon_related_registers(struct ieee80211_hw *hw)
  1159. {
  1160. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1161. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1162. u16 bcn_interval, atim_window;
  1163. bcn_interval = mac->beacon_interval;
  1164. atim_window = 2; /*FIX MERGE */
  1165. rtl92ce_disable_interrupt(hw);
  1166. rtl_write_word(rtlpriv, REG_ATIMWND, atim_window);
  1167. rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
  1168. rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660f);
  1169. rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x18);
  1170. rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x18);
  1171. rtl_write_byte(rtlpriv, 0x606, 0x30);
  1172. rtl92ce_enable_interrupt(hw);
  1173. }
  1174. void rtl92ce_set_beacon_interval(struct ieee80211_hw *hw)
  1175. {
  1176. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1177. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1178. u16 bcn_interval = mac->beacon_interval;
  1179. RT_TRACE(rtlpriv, COMP_BEACON, DBG_DMESG,
  1180. "beacon_interval:%d\n", bcn_interval);
  1181. rtl92ce_disable_interrupt(hw);
  1182. rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
  1183. rtl92ce_enable_interrupt(hw);
  1184. }
  1185. void rtl92ce_update_interrupt_mask(struct ieee80211_hw *hw,
  1186. u32 add_msr, u32 rm_msr)
  1187. {
  1188. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1189. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1190. RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n",
  1191. add_msr, rm_msr);
  1192. if (add_msr)
  1193. rtlpci->irq_mask[0] |= add_msr;
  1194. if (rm_msr)
  1195. rtlpci->irq_mask[0] &= (~rm_msr);
  1196. rtl92ce_disable_interrupt(hw);
  1197. rtl92ce_enable_interrupt(hw);
  1198. }
  1199. static void _rtl92ce_read_txpower_info_from_hwpg(struct ieee80211_hw *hw,
  1200. bool autoload_fail,
  1201. u8 *hwinfo)
  1202. {
  1203. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1204. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1205. u8 rf_path, index, tempval;
  1206. u16 i;
  1207. for (rf_path = 0; rf_path < 2; rf_path++) {
  1208. for (i = 0; i < 3; i++) {
  1209. if (!autoload_fail) {
  1210. rtlefuse->
  1211. eeprom_chnlarea_txpwr_cck[rf_path][i] =
  1212. hwinfo[EEPROM_TXPOWERCCK + rf_path * 3 + i];
  1213. rtlefuse->
  1214. eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
  1215. hwinfo[EEPROM_TXPOWERHT40_1S + rf_path * 3 +
  1216. i];
  1217. } else {
  1218. rtlefuse->
  1219. eeprom_chnlarea_txpwr_cck[rf_path][i] =
  1220. EEPROM_DEFAULT_TXPOWERLEVEL;
  1221. rtlefuse->
  1222. eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
  1223. EEPROM_DEFAULT_TXPOWERLEVEL;
  1224. }
  1225. }
  1226. }
  1227. for (i = 0; i < 3; i++) {
  1228. if (!autoload_fail)
  1229. tempval = hwinfo[EEPROM_TXPOWERHT40_2SDIFF + i];
  1230. else
  1231. tempval = EEPROM_DEFAULT_HT40_2SDIFF;
  1232. rtlefuse->eprom_chnl_txpwr_ht40_2sdf[RF90_PATH_A][i] =
  1233. (tempval & 0xf);
  1234. rtlefuse->eprom_chnl_txpwr_ht40_2sdf[RF90_PATH_B][i] =
  1235. ((tempval & 0xf0) >> 4);
  1236. }
  1237. for (rf_path = 0; rf_path < 2; rf_path++)
  1238. for (i = 0; i < 3; i++)
  1239. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  1240. "RF(%d) EEPROM CCK Area(%d) = 0x%x\n",
  1241. rf_path, i,
  1242. rtlefuse->
  1243. eeprom_chnlarea_txpwr_cck[rf_path][i]);
  1244. for (rf_path = 0; rf_path < 2; rf_path++)
  1245. for (i = 0; i < 3; i++)
  1246. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  1247. "RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n",
  1248. rf_path, i,
  1249. rtlefuse->
  1250. eeprom_chnlarea_txpwr_ht40_1s[rf_path][i]);
  1251. for (rf_path = 0; rf_path < 2; rf_path++)
  1252. for (i = 0; i < 3; i++)
  1253. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  1254. "RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n",
  1255. rf_path, i,
  1256. rtlefuse->
  1257. eprom_chnl_txpwr_ht40_2sdf[rf_path][i]);
  1258. for (rf_path = 0; rf_path < 2; rf_path++) {
  1259. for (i = 0; i < 14; i++) {
  1260. index = _rtl92c_get_chnl_group((u8) i);
  1261. rtlefuse->txpwrlevel_cck[rf_path][i] =
  1262. rtlefuse->eeprom_chnlarea_txpwr_cck[rf_path][index];
  1263. rtlefuse->txpwrlevel_ht40_1s[rf_path][i] =
  1264. rtlefuse->
  1265. eeprom_chnlarea_txpwr_ht40_1s[rf_path][index];
  1266. if ((rtlefuse->
  1267. eeprom_chnlarea_txpwr_ht40_1s[rf_path][index] -
  1268. rtlefuse->
  1269. eprom_chnl_txpwr_ht40_2sdf[rf_path][index])
  1270. > 0) {
  1271. rtlefuse->txpwrlevel_ht40_2s[rf_path][i] =
  1272. rtlefuse->
  1273. eeprom_chnlarea_txpwr_ht40_1s[rf_path]
  1274. [index] -
  1275. rtlefuse->
  1276. eprom_chnl_txpwr_ht40_2sdf[rf_path]
  1277. [index];
  1278. } else {
  1279. rtlefuse->txpwrlevel_ht40_2s[rf_path][i] = 0;
  1280. }
  1281. }
  1282. for (i = 0; i < 14; i++) {
  1283. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1284. "RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = [0x%x / 0x%x / 0x%x]\n",
  1285. rf_path, i,
  1286. rtlefuse->txpwrlevel_cck[rf_path][i],
  1287. rtlefuse->txpwrlevel_ht40_1s[rf_path][i],
  1288. rtlefuse->txpwrlevel_ht40_2s[rf_path][i]);
  1289. }
  1290. }
  1291. for (i = 0; i < 3; i++) {
  1292. if (!autoload_fail) {
  1293. rtlefuse->eeprom_pwrlimit_ht40[i] =
  1294. hwinfo[EEPROM_TXPWR_GROUP + i];
  1295. rtlefuse->eeprom_pwrlimit_ht20[i] =
  1296. hwinfo[EEPROM_TXPWR_GROUP + 3 + i];
  1297. } else {
  1298. rtlefuse->eeprom_pwrlimit_ht40[i] = 0;
  1299. rtlefuse->eeprom_pwrlimit_ht20[i] = 0;
  1300. }
  1301. }
  1302. for (rf_path = 0; rf_path < 2; rf_path++) {
  1303. for (i = 0; i < 14; i++) {
  1304. index = _rtl92c_get_chnl_group((u8) i);
  1305. if (rf_path == RF90_PATH_A) {
  1306. rtlefuse->pwrgroup_ht20[rf_path][i] =
  1307. (rtlefuse->eeprom_pwrlimit_ht20[index]
  1308. & 0xf);
  1309. rtlefuse->pwrgroup_ht40[rf_path][i] =
  1310. (rtlefuse->eeprom_pwrlimit_ht40[index]
  1311. & 0xf);
  1312. } else if (rf_path == RF90_PATH_B) {
  1313. rtlefuse->pwrgroup_ht20[rf_path][i] =
  1314. ((rtlefuse->eeprom_pwrlimit_ht20[index]
  1315. & 0xf0) >> 4);
  1316. rtlefuse->pwrgroup_ht40[rf_path][i] =
  1317. ((rtlefuse->eeprom_pwrlimit_ht40[index]
  1318. & 0xf0) >> 4);
  1319. }
  1320. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1321. "RF-%d pwrgroup_ht20[%d] = 0x%x\n",
  1322. rf_path, i,
  1323. rtlefuse->pwrgroup_ht20[rf_path][i]);
  1324. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1325. "RF-%d pwrgroup_ht40[%d] = 0x%x\n",
  1326. rf_path, i,
  1327. rtlefuse->pwrgroup_ht40[rf_path][i]);
  1328. }
  1329. }
  1330. for (i = 0; i < 14; i++) {
  1331. index = _rtl92c_get_chnl_group((u8) i);
  1332. if (!autoload_fail)
  1333. tempval = hwinfo[EEPROM_TXPOWERHT20DIFF + index];
  1334. else
  1335. tempval = EEPROM_DEFAULT_HT20_DIFF;
  1336. rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] = (tempval & 0xF);
  1337. rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] =
  1338. ((tempval >> 4) & 0xF);
  1339. if (rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] & BIT(3))
  1340. rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] |= 0xF0;
  1341. if (rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] & BIT(3))
  1342. rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] |= 0xF0;
  1343. index = _rtl92c_get_chnl_group((u8) i);
  1344. if (!autoload_fail)
  1345. tempval = hwinfo[EEPROM_TXPOWER_OFDMDIFF + index];
  1346. else
  1347. tempval = EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF;
  1348. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i] = (tempval & 0xF);
  1349. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i] =
  1350. ((tempval >> 4) & 0xF);
  1351. }
  1352. rtlefuse->legacy_ht_txpowerdiff =
  1353. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][7];
  1354. for (i = 0; i < 14; i++)
  1355. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1356. "RF-A Ht20 to HT40 Diff[%d] = 0x%x\n",
  1357. i, rtlefuse->txpwr_ht20diff[RF90_PATH_A][i]);
  1358. for (i = 0; i < 14; i++)
  1359. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1360. "RF-A Legacy to Ht40 Diff[%d] = 0x%x\n",
  1361. i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i]);
  1362. for (i = 0; i < 14; i++)
  1363. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1364. "RF-B Ht20 to HT40 Diff[%d] = 0x%x\n",
  1365. i, rtlefuse->txpwr_ht20diff[RF90_PATH_B][i]);
  1366. for (i = 0; i < 14; i++)
  1367. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1368. "RF-B Legacy to HT40 Diff[%d] = 0x%x\n",
  1369. i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i]);
  1370. if (!autoload_fail)
  1371. rtlefuse->eeprom_regulatory = (hwinfo[RF_OPTION1] & 0x7);
  1372. else
  1373. rtlefuse->eeprom_regulatory = 0;
  1374. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1375. "eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
  1376. if (!autoload_fail) {
  1377. rtlefuse->eeprom_tssi[RF90_PATH_A] = hwinfo[EEPROM_TSSI_A];
  1378. rtlefuse->eeprom_tssi[RF90_PATH_B] = hwinfo[EEPROM_TSSI_B];
  1379. } else {
  1380. rtlefuse->eeprom_tssi[RF90_PATH_A] = EEPROM_DEFAULT_TSSI;
  1381. rtlefuse->eeprom_tssi[RF90_PATH_B] = EEPROM_DEFAULT_TSSI;
  1382. }
  1383. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "TSSI_A = 0x%x, TSSI_B = 0x%x\n",
  1384. rtlefuse->eeprom_tssi[RF90_PATH_A],
  1385. rtlefuse->eeprom_tssi[RF90_PATH_B]);
  1386. if (!autoload_fail)
  1387. tempval = hwinfo[EEPROM_THERMAL_METER];
  1388. else
  1389. tempval = EEPROM_DEFAULT_THERMALMETER;
  1390. rtlefuse->eeprom_thermalmeter = (tempval & 0x1f);
  1391. if (rtlefuse->eeprom_thermalmeter == 0x1f || autoload_fail)
  1392. rtlefuse->apk_thermalmeterignore = true;
  1393. rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter;
  1394. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1395. "thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
  1396. }
  1397. static void _rtl92ce_read_adapter_info(struct ieee80211_hw *hw)
  1398. {
  1399. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1400. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1401. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1402. u16 i, usvalue;
  1403. u8 hwinfo[HWSET_MAX_SIZE];
  1404. u16 eeprom_id;
  1405. if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
  1406. rtl_efuse_shadow_map_update(hw);
  1407. memcpy((void *)hwinfo,
  1408. (void *)&rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
  1409. HWSET_MAX_SIZE);
  1410. } else if (rtlefuse->epromtype == EEPROM_93C46) {
  1411. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1412. "RTL819X Not boot from eeprom, check it !!");
  1413. }
  1414. RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
  1415. hwinfo, HWSET_MAX_SIZE);
  1416. eeprom_id = *((u16 *)&hwinfo[0]);
  1417. if (eeprom_id != RTL8190_EEPROM_ID) {
  1418. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  1419. "EEPROM ID(%#x) is invalid!!\n", eeprom_id);
  1420. rtlefuse->autoload_failflag = true;
  1421. } else {
  1422. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
  1423. rtlefuse->autoload_failflag = false;
  1424. }
  1425. if (rtlefuse->autoload_failflag)
  1426. return;
  1427. rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID];
  1428. rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID];
  1429. rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID];
  1430. rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID];
  1431. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1432. "EEPROMId = 0x%4x\n", eeprom_id);
  1433. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1434. "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
  1435. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1436. "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
  1437. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1438. "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
  1439. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1440. "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
  1441. for (i = 0; i < 6; i += 2) {
  1442. usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i];
  1443. *((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
  1444. }
  1445. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
  1446. _rtl92ce_read_txpower_info_from_hwpg(hw,
  1447. rtlefuse->autoload_failflag,
  1448. hwinfo);
  1449. rtl8192ce_read_bt_coexist_info_from_hwpg(hw,
  1450. rtlefuse->autoload_failflag,
  1451. hwinfo);
  1452. rtlefuse->eeprom_channelplan = *&hwinfo[EEPROM_CHANNELPLAN];
  1453. rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION];
  1454. rtlefuse->txpwr_fromeprom = true;
  1455. rtlefuse->eeprom_oemid = *&hwinfo[EEPROM_CUSTOMER_ID];
  1456. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1457. "EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid);
  1458. /* set channel paln to world wide 13 */
  1459. rtlefuse->channel_plan = COUNTRY_CODE_WORLD_WIDE_13;
  1460. if (rtlhal->oem_id == RT_CID_DEFAULT) {
  1461. switch (rtlefuse->eeprom_oemid) {
  1462. case EEPROM_CID_DEFAULT:
  1463. if (rtlefuse->eeprom_did == 0x8176) {
  1464. if ((rtlefuse->eeprom_svid == 0x103C &&
  1465. rtlefuse->eeprom_smid == 0x1629))
  1466. rtlhal->oem_id = RT_CID_819x_HP;
  1467. else
  1468. rtlhal->oem_id = RT_CID_DEFAULT;
  1469. } else {
  1470. rtlhal->oem_id = RT_CID_DEFAULT;
  1471. }
  1472. break;
  1473. case EEPROM_CID_TOSHIBA:
  1474. rtlhal->oem_id = RT_CID_TOSHIBA;
  1475. break;
  1476. case EEPROM_CID_QMI:
  1477. rtlhal->oem_id = RT_CID_819x_QMI;
  1478. break;
  1479. case EEPROM_CID_WHQL:
  1480. default:
  1481. rtlhal->oem_id = RT_CID_DEFAULT;
  1482. break;
  1483. }
  1484. }
  1485. }
  1486. static void _rtl92ce_hal_customized_behavior(struct ieee80211_hw *hw)
  1487. {
  1488. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1489. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  1490. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1491. switch (rtlhal->oem_id) {
  1492. case RT_CID_819x_HP:
  1493. pcipriv->ledctl.led_opendrain = true;
  1494. break;
  1495. case RT_CID_819x_Lenovo:
  1496. case RT_CID_DEFAULT:
  1497. case RT_CID_TOSHIBA:
  1498. case RT_CID_CCX:
  1499. case RT_CID_819x_Acer:
  1500. case RT_CID_WHQL:
  1501. default:
  1502. break;
  1503. }
  1504. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
  1505. "RT Customized ID: 0x%02X\n", rtlhal->oem_id);
  1506. }
  1507. void rtl92ce_read_eeprom_info(struct ieee80211_hw *hw)
  1508. {
  1509. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1510. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1511. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1512. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1513. u8 tmp_u1b;
  1514. rtlhal->version = _rtl92ce_read_chip_version(hw);
  1515. if (get_rf_type(rtlphy) == RF_1T1R)
  1516. rtlpriv->dm.rfpath_rxenable[0] = true;
  1517. else
  1518. rtlpriv->dm.rfpath_rxenable[0] =
  1519. rtlpriv->dm.rfpath_rxenable[1] = true;
  1520. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "VersionID = 0x%4x\n",
  1521. rtlhal->version);
  1522. tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR);
  1523. if (tmp_u1b & BIT(4)) {
  1524. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
  1525. rtlefuse->epromtype = EEPROM_93C46;
  1526. } else {
  1527. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
  1528. rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
  1529. }
  1530. if (tmp_u1b & BIT(5)) {
  1531. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
  1532. rtlefuse->autoload_failflag = false;
  1533. _rtl92ce_read_adapter_info(hw);
  1534. } else {
  1535. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Autoload ERR!!\n");
  1536. }
  1537. _rtl92ce_hal_customized_behavior(hw);
  1538. }
  1539. static void rtl92ce_update_hal_rate_table(struct ieee80211_hw *hw,
  1540. struct ieee80211_sta *sta)
  1541. {
  1542. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1543. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  1544. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1545. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1546. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1547. u32 ratr_value;
  1548. u8 ratr_index = 0;
  1549. u8 nmode = mac->ht_enable;
  1550. u8 mimo_ps = IEEE80211_SMPS_OFF;
  1551. u16 shortgi_rate;
  1552. u32 tmp_ratr_value;
  1553. u8 curtxbw_40mhz = mac->bw_40;
  1554. u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
  1555. 1 : 0;
  1556. u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
  1557. 1 : 0;
  1558. enum wireless_mode wirelessmode = mac->mode;
  1559. if (rtlhal->current_bandtype == BAND_ON_5G)
  1560. ratr_value = sta->supp_rates[1] << 4;
  1561. else
  1562. ratr_value = sta->supp_rates[0];
  1563. if (mac->opmode == NL80211_IFTYPE_ADHOC)
  1564. ratr_value = 0xfff;
  1565. ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
  1566. sta->ht_cap.mcs.rx_mask[0] << 12);
  1567. switch (wirelessmode) {
  1568. case WIRELESS_MODE_B:
  1569. if (ratr_value & 0x0000000c)
  1570. ratr_value &= 0x0000000d;
  1571. else
  1572. ratr_value &= 0x0000000f;
  1573. break;
  1574. case WIRELESS_MODE_G:
  1575. ratr_value &= 0x00000FF5;
  1576. break;
  1577. case WIRELESS_MODE_N_24G:
  1578. case WIRELESS_MODE_N_5G:
  1579. nmode = 1;
  1580. if (mimo_ps == IEEE80211_SMPS_STATIC) {
  1581. ratr_value &= 0x0007F005;
  1582. } else {
  1583. u32 ratr_mask;
  1584. if (get_rf_type(rtlphy) == RF_1T2R ||
  1585. get_rf_type(rtlphy) == RF_1T1R)
  1586. ratr_mask = 0x000ff005;
  1587. else
  1588. ratr_mask = 0x0f0ff005;
  1589. ratr_value &= ratr_mask;
  1590. }
  1591. break;
  1592. default:
  1593. if (rtlphy->rf_type == RF_1T2R)
  1594. ratr_value &= 0x000ff0ff;
  1595. else
  1596. ratr_value &= 0x0f0ff0ff;
  1597. break;
  1598. }
  1599. if ((rtlpcipriv->bt_coexist.bt_coexistence) &&
  1600. (rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC4) &&
  1601. (rtlpcipriv->bt_coexist.bt_cur_state) &&
  1602. (rtlpcipriv->bt_coexist.bt_ant_isolation) &&
  1603. ((rtlpcipriv->bt_coexist.bt_service == BT_SCO) ||
  1604. (rtlpcipriv->bt_coexist.bt_service == BT_BUSY)))
  1605. ratr_value &= 0x0fffcfc0;
  1606. else
  1607. ratr_value &= 0x0FFFFFFF;
  1608. if (nmode && ((curtxbw_40mhz &&
  1609. curshortgi_40mhz) || (!curtxbw_40mhz &&
  1610. curshortgi_20mhz))) {
  1611. ratr_value |= 0x10000000;
  1612. tmp_ratr_value = (ratr_value >> 12);
  1613. for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
  1614. if ((1 << shortgi_rate) & tmp_ratr_value)
  1615. break;
  1616. }
  1617. shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
  1618. (shortgi_rate << 4) | (shortgi_rate);
  1619. }
  1620. rtl_write_dword(rtlpriv, REG_ARFR0 + ratr_index * 4, ratr_value);
  1621. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n",
  1622. rtl_read_dword(rtlpriv, REG_ARFR0));
  1623. }
  1624. static void rtl92ce_update_hal_rate_mask(struct ieee80211_hw *hw,
  1625. struct ieee80211_sta *sta, u8 rssi_level)
  1626. {
  1627. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1628. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1629. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1630. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1631. struct rtl_sta_info *sta_entry = NULL;
  1632. u32 ratr_bitmap;
  1633. u8 ratr_index;
  1634. u8 curtxbw_40mhz = (sta->bandwidth >= IEEE80211_STA_RX_BW_40) ? 1 : 0;
  1635. u8 curshortgi_40mhz = curtxbw_40mhz &&
  1636. (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
  1637. 1 : 0;
  1638. u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
  1639. 1 : 0;
  1640. enum wireless_mode wirelessmode = 0;
  1641. bool shortgi = false;
  1642. u8 rate_mask[5];
  1643. u8 macid = 0;
  1644. u8 mimo_ps = IEEE80211_SMPS_OFF;
  1645. sta_entry = (struct rtl_sta_info *) sta->drv_priv;
  1646. wirelessmode = sta_entry->wireless_mode;
  1647. if (mac->opmode == NL80211_IFTYPE_STATION ||
  1648. mac->opmode == NL80211_IFTYPE_MESH_POINT)
  1649. curtxbw_40mhz = mac->bw_40;
  1650. else if (mac->opmode == NL80211_IFTYPE_AP ||
  1651. mac->opmode == NL80211_IFTYPE_ADHOC)
  1652. macid = sta->aid + 1;
  1653. if (rtlhal->current_bandtype == BAND_ON_5G)
  1654. ratr_bitmap = sta->supp_rates[1] << 4;
  1655. else
  1656. ratr_bitmap = sta->supp_rates[0];
  1657. if (mac->opmode == NL80211_IFTYPE_ADHOC)
  1658. ratr_bitmap = 0xfff;
  1659. ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
  1660. sta->ht_cap.mcs.rx_mask[0] << 12);
  1661. switch (wirelessmode) {
  1662. case WIRELESS_MODE_B:
  1663. ratr_index = RATR_INX_WIRELESS_B;
  1664. if (ratr_bitmap & 0x0000000c)
  1665. ratr_bitmap &= 0x0000000d;
  1666. else
  1667. ratr_bitmap &= 0x0000000f;
  1668. break;
  1669. case WIRELESS_MODE_G:
  1670. ratr_index = RATR_INX_WIRELESS_GB;
  1671. if (rssi_level == 1)
  1672. ratr_bitmap &= 0x00000f00;
  1673. else if (rssi_level == 2)
  1674. ratr_bitmap &= 0x00000ff0;
  1675. else
  1676. ratr_bitmap &= 0x00000ff5;
  1677. break;
  1678. case WIRELESS_MODE_A:
  1679. ratr_index = RATR_INX_WIRELESS_A;
  1680. ratr_bitmap &= 0x00000ff0;
  1681. break;
  1682. case WIRELESS_MODE_N_24G:
  1683. case WIRELESS_MODE_N_5G:
  1684. ratr_index = RATR_INX_WIRELESS_NGB;
  1685. if (mimo_ps == IEEE80211_SMPS_STATIC) {
  1686. if (rssi_level == 1)
  1687. ratr_bitmap &= 0x00070000;
  1688. else if (rssi_level == 2)
  1689. ratr_bitmap &= 0x0007f000;
  1690. else
  1691. ratr_bitmap &= 0x0007f005;
  1692. } else {
  1693. if (rtlphy->rf_type == RF_1T2R ||
  1694. rtlphy->rf_type == RF_1T1R) {
  1695. if (curtxbw_40mhz) {
  1696. if (rssi_level == 1)
  1697. ratr_bitmap &= 0x000f0000;
  1698. else if (rssi_level == 2)
  1699. ratr_bitmap &= 0x000ff000;
  1700. else
  1701. ratr_bitmap &= 0x000ff015;
  1702. } else {
  1703. if (rssi_level == 1)
  1704. ratr_bitmap &= 0x000f0000;
  1705. else if (rssi_level == 2)
  1706. ratr_bitmap &= 0x000ff000;
  1707. else
  1708. ratr_bitmap &= 0x000ff005;
  1709. }
  1710. } else {
  1711. if (curtxbw_40mhz) {
  1712. if (rssi_level == 1)
  1713. ratr_bitmap &= 0x0f0f0000;
  1714. else if (rssi_level == 2)
  1715. ratr_bitmap &= 0x0f0ff000;
  1716. else
  1717. ratr_bitmap &= 0x0f0ff015;
  1718. } else {
  1719. if (rssi_level == 1)
  1720. ratr_bitmap &= 0x0f0f0000;
  1721. else if (rssi_level == 2)
  1722. ratr_bitmap &= 0x0f0ff000;
  1723. else
  1724. ratr_bitmap &= 0x0f0ff005;
  1725. }
  1726. }
  1727. }
  1728. if ((curtxbw_40mhz && curshortgi_40mhz) ||
  1729. (!curtxbw_40mhz && curshortgi_20mhz)) {
  1730. if (macid == 0)
  1731. shortgi = true;
  1732. else if (macid == 1)
  1733. shortgi = false;
  1734. }
  1735. break;
  1736. default:
  1737. ratr_index = RATR_INX_WIRELESS_NGB;
  1738. if (rtlphy->rf_type == RF_1T2R)
  1739. ratr_bitmap &= 0x000ff0ff;
  1740. else
  1741. ratr_bitmap &= 0x0f0ff0ff;
  1742. break;
  1743. }
  1744. sta_entry->ratr_index = ratr_index;
  1745. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
  1746. "ratr_bitmap :%x\n", ratr_bitmap);
  1747. *(u32 *)&rate_mask = (ratr_bitmap & 0x0fffffff) |
  1748. (ratr_index << 28);
  1749. rate_mask[4] = macid | (shortgi ? 0x20 : 0x00) | 0x80;
  1750. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
  1751. "Rate_index:%x, ratr_val:%x, %5phC\n",
  1752. ratr_index, ratr_bitmap, rate_mask);
  1753. rtl92c_fill_h2c_cmd(hw, H2C_RA_MASK, 5, rate_mask);
  1754. if (macid != 0)
  1755. sta_entry->ratr_index = ratr_index;
  1756. }
  1757. void rtl92ce_update_hal_rate_tbl(struct ieee80211_hw *hw,
  1758. struct ieee80211_sta *sta, u8 rssi_level)
  1759. {
  1760. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1761. if (rtlpriv->dm.useramask)
  1762. rtl92ce_update_hal_rate_mask(hw, sta, rssi_level);
  1763. else
  1764. rtl92ce_update_hal_rate_table(hw, sta);
  1765. }
  1766. void rtl92ce_update_channel_access_setting(struct ieee80211_hw *hw)
  1767. {
  1768. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1769. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1770. u16 sifs_timer;
  1771. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
  1772. &mac->slot_time);
  1773. if (!mac->ht_enable)
  1774. sifs_timer = 0x0a0a;
  1775. else
  1776. sifs_timer = 0x1010;
  1777. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
  1778. }
  1779. bool rtl92ce_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
  1780. {
  1781. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1782. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1783. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1784. enum rf_pwrstate e_rfpowerstate_toset;
  1785. u8 u1tmp;
  1786. bool actuallyset = false;
  1787. unsigned long flag;
  1788. if (rtlpci->being_init_adapter)
  1789. return false;
  1790. if (ppsc->swrf_processing)
  1791. return false;
  1792. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  1793. if (ppsc->rfchange_inprogress) {
  1794. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  1795. return false;
  1796. } else {
  1797. ppsc->rfchange_inprogress = true;
  1798. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  1799. }
  1800. rtl_write_byte(rtlpriv, REG_MAC_PINMUX_CFG, rtl_read_byte(rtlpriv,
  1801. REG_MAC_PINMUX_CFG)&~(BIT(3)));
  1802. u1tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL);
  1803. e_rfpowerstate_toset = (u1tmp & BIT(3)) ? ERFON : ERFOFF;
  1804. if ((ppsc->hwradiooff) && (e_rfpowerstate_toset == ERFON)) {
  1805. RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
  1806. "GPIOChangeRF - HW Radio ON, RF ON\n");
  1807. e_rfpowerstate_toset = ERFON;
  1808. ppsc->hwradiooff = false;
  1809. actuallyset = true;
  1810. } else if (!ppsc->hwradiooff && (e_rfpowerstate_toset == ERFOFF)) {
  1811. RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
  1812. "GPIOChangeRF - HW Radio OFF, RF OFF\n");
  1813. e_rfpowerstate_toset = ERFOFF;
  1814. ppsc->hwradiooff = true;
  1815. actuallyset = true;
  1816. }
  1817. if (actuallyset) {
  1818. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  1819. ppsc->rfchange_inprogress = false;
  1820. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  1821. } else {
  1822. if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC)
  1823. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
  1824. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  1825. ppsc->rfchange_inprogress = false;
  1826. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  1827. }
  1828. *valid = 1;
  1829. return !ppsc->hwradiooff;
  1830. }
  1831. void rtl92ce_set_key(struct ieee80211_hw *hw, u32 key_index,
  1832. u8 *p_macaddr, bool is_group, u8 enc_algo,
  1833. bool is_wepkey, bool clear_all)
  1834. {
  1835. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1836. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1837. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1838. u8 *macaddr = p_macaddr;
  1839. u32 entry_id = 0;
  1840. bool is_pairwise = false;
  1841. static u8 cam_const_addr[4][6] = {
  1842. {0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
  1843. {0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
  1844. {0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
  1845. {0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
  1846. };
  1847. static u8 cam_const_broad[] = {
  1848. 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
  1849. };
  1850. if (clear_all) {
  1851. u8 idx = 0;
  1852. u8 cam_offset = 0;
  1853. u8 clear_number = 5;
  1854. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
  1855. for (idx = 0; idx < clear_number; idx++) {
  1856. rtl_cam_mark_invalid(hw, cam_offset + idx);
  1857. rtl_cam_empty_entry(hw, cam_offset + idx);
  1858. if (idx < 5) {
  1859. memset(rtlpriv->sec.key_buf[idx], 0,
  1860. MAX_KEY_LEN);
  1861. rtlpriv->sec.key_len[idx] = 0;
  1862. }
  1863. }
  1864. } else {
  1865. switch (enc_algo) {
  1866. case WEP40_ENCRYPTION:
  1867. enc_algo = CAM_WEP40;
  1868. break;
  1869. case WEP104_ENCRYPTION:
  1870. enc_algo = CAM_WEP104;
  1871. break;
  1872. case TKIP_ENCRYPTION:
  1873. enc_algo = CAM_TKIP;
  1874. break;
  1875. case AESCCMP_ENCRYPTION:
  1876. enc_algo = CAM_AES;
  1877. break;
  1878. default:
  1879. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1880. "switch case not processed\n");
  1881. enc_algo = CAM_TKIP;
  1882. break;
  1883. }
  1884. if (is_wepkey || rtlpriv->sec.use_defaultkey) {
  1885. macaddr = cam_const_addr[key_index];
  1886. entry_id = key_index;
  1887. } else {
  1888. if (is_group) {
  1889. macaddr = cam_const_broad;
  1890. entry_id = key_index;
  1891. } else {
  1892. if (mac->opmode == NL80211_IFTYPE_AP ||
  1893. mac->opmode == NL80211_IFTYPE_MESH_POINT) {
  1894. entry_id = rtl_cam_get_free_entry(hw,
  1895. p_macaddr);
  1896. if (entry_id >= TOTAL_CAM_ENTRY) {
  1897. RT_TRACE(rtlpriv, COMP_SEC,
  1898. DBG_EMERG,
  1899. "Can not find free hw security cam entry\n");
  1900. return;
  1901. }
  1902. } else {
  1903. entry_id = CAM_PAIRWISE_KEY_POSITION;
  1904. }
  1905. key_index = PAIRWISE_KEYIDX;
  1906. is_pairwise = true;
  1907. }
  1908. }
  1909. if (rtlpriv->sec.key_len[key_index] == 0) {
  1910. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  1911. "delete one entry, entry_id is %d\n",
  1912. entry_id);
  1913. if (mac->opmode == NL80211_IFTYPE_AP ||
  1914. mac->opmode == NL80211_IFTYPE_MESH_POINT)
  1915. rtl_cam_del_entry(hw, p_macaddr);
  1916. rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
  1917. } else {
  1918. RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
  1919. "The insert KEY length is %d\n",
  1920. rtlpriv->sec.key_len[PAIRWISE_KEYIDX]);
  1921. RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
  1922. "The insert KEY is %x %x\n",
  1923. rtlpriv->sec.key_buf[0][0],
  1924. rtlpriv->sec.key_buf[0][1]);
  1925. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  1926. "add one entry\n");
  1927. if (is_pairwise) {
  1928. RT_PRINT_DATA(rtlpriv, COMP_SEC, DBG_LOUD,
  1929. "Pairwise Key content",
  1930. rtlpriv->sec.pairwise_key,
  1931. rtlpriv->sec.
  1932. key_len[PAIRWISE_KEYIDX]);
  1933. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  1934. "set Pairwise key\n");
  1935. rtl_cam_add_one_entry(hw, macaddr, key_index,
  1936. entry_id, enc_algo,
  1937. CAM_CONFIG_NO_USEDK,
  1938. rtlpriv->sec.
  1939. key_buf[key_index]);
  1940. } else {
  1941. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  1942. "set group key\n");
  1943. if (mac->opmode == NL80211_IFTYPE_ADHOC) {
  1944. rtl_cam_add_one_entry(hw,
  1945. rtlefuse->dev_addr,
  1946. PAIRWISE_KEYIDX,
  1947. CAM_PAIRWISE_KEY_POSITION,
  1948. enc_algo,
  1949. CAM_CONFIG_NO_USEDK,
  1950. rtlpriv->sec.key_buf
  1951. [entry_id]);
  1952. }
  1953. rtl_cam_add_one_entry(hw, macaddr, key_index,
  1954. entry_id, enc_algo,
  1955. CAM_CONFIG_NO_USEDK,
  1956. rtlpriv->sec.key_buf[entry_id]);
  1957. }
  1958. }
  1959. }
  1960. }
  1961. static void rtl8192ce_bt_var_init(struct ieee80211_hw *hw)
  1962. {
  1963. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  1964. rtlpcipriv->bt_coexist.bt_coexistence =
  1965. rtlpcipriv->bt_coexist.eeprom_bt_coexist;
  1966. rtlpcipriv->bt_coexist.bt_ant_num =
  1967. rtlpcipriv->bt_coexist.eeprom_bt_ant_num;
  1968. rtlpcipriv->bt_coexist.bt_coexist_type =
  1969. rtlpcipriv->bt_coexist.eeprom_bt_type;
  1970. if (rtlpcipriv->bt_coexist.reg_bt_iso == 2)
  1971. rtlpcipriv->bt_coexist.bt_ant_isolation =
  1972. rtlpcipriv->bt_coexist.eeprom_bt_ant_isol;
  1973. else
  1974. rtlpcipriv->bt_coexist.bt_ant_isolation =
  1975. rtlpcipriv->bt_coexist.reg_bt_iso;
  1976. rtlpcipriv->bt_coexist.bt_radio_shared_type =
  1977. rtlpcipriv->bt_coexist.eeprom_bt_radio_shared;
  1978. if (rtlpcipriv->bt_coexist.bt_coexistence) {
  1979. if (rtlpcipriv->bt_coexist.reg_bt_sco == 1)
  1980. rtlpcipriv->bt_coexist.bt_service = BT_OTHER_ACTION;
  1981. else if (rtlpcipriv->bt_coexist.reg_bt_sco == 2)
  1982. rtlpcipriv->bt_coexist.bt_service = BT_SCO;
  1983. else if (rtlpcipriv->bt_coexist.reg_bt_sco == 4)
  1984. rtlpcipriv->bt_coexist.bt_service = BT_BUSY;
  1985. else if (rtlpcipriv->bt_coexist.reg_bt_sco == 5)
  1986. rtlpcipriv->bt_coexist.bt_service = BT_OTHERBUSY;
  1987. else
  1988. rtlpcipriv->bt_coexist.bt_service = BT_IDLE;
  1989. rtlpcipriv->bt_coexist.bt_edca_ul = 0;
  1990. rtlpcipriv->bt_coexist.bt_edca_dl = 0;
  1991. rtlpcipriv->bt_coexist.bt_rssi_state = 0xff;
  1992. }
  1993. }
  1994. void rtl8192ce_read_bt_coexist_info_from_hwpg(struct ieee80211_hw *hw,
  1995. bool auto_load_fail, u8 *hwinfo)
  1996. {
  1997. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  1998. u8 val;
  1999. if (!auto_load_fail) {
  2000. rtlpcipriv->bt_coexist.eeprom_bt_coexist =
  2001. ((hwinfo[RF_OPTION1] & 0xe0) >> 5);
  2002. val = hwinfo[RF_OPTION4];
  2003. rtlpcipriv->bt_coexist.eeprom_bt_type = ((val & 0xe) >> 1);
  2004. rtlpcipriv->bt_coexist.eeprom_bt_ant_num = (val & 0x1);
  2005. rtlpcipriv->bt_coexist.eeprom_bt_ant_isol = ((val & 0x10) >> 4);
  2006. rtlpcipriv->bt_coexist.eeprom_bt_radio_shared =
  2007. ((val & 0x20) >> 5);
  2008. } else {
  2009. rtlpcipriv->bt_coexist.eeprom_bt_coexist = 0;
  2010. rtlpcipriv->bt_coexist.eeprom_bt_type = BT_2WIRE;
  2011. rtlpcipriv->bt_coexist.eeprom_bt_ant_num = ANT_X2;
  2012. rtlpcipriv->bt_coexist.eeprom_bt_ant_isol = 0;
  2013. rtlpcipriv->bt_coexist.eeprom_bt_radio_shared = BT_RADIO_SHARED;
  2014. }
  2015. rtl8192ce_bt_var_init(hw);
  2016. }
  2017. void rtl8192ce_bt_reg_init(struct ieee80211_hw *hw)
  2018. {
  2019. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  2020. /* 0:Low, 1:High, 2:From Efuse. */
  2021. rtlpcipriv->bt_coexist.reg_bt_iso = 2;
  2022. /* 0:Idle, 1:None-SCO, 2:SCO, 3:From Counter. */
  2023. rtlpcipriv->bt_coexist.reg_bt_sco = 3;
  2024. /* 0:Disable BT control A-MPDU, 1:Enable BT control A-MPDU. */
  2025. rtlpcipriv->bt_coexist.reg_bt_sco = 0;
  2026. }
  2027. void rtl8192ce_bt_hw_init(struct ieee80211_hw *hw)
  2028. {
  2029. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2030. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2031. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  2032. u8 u1_tmp;
  2033. if (rtlpcipriv->bt_coexist.bt_coexistence &&
  2034. ((rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC4) ||
  2035. rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC8)) {
  2036. if (rtlpcipriv->bt_coexist.bt_ant_isolation)
  2037. rtl_write_byte(rtlpriv, REG_GPIO_MUXCFG, 0xa0);
  2038. u1_tmp = rtl_read_byte(rtlpriv, 0x4fd) &
  2039. BIT_OFFSET_LEN_MASK_32(0, 1);
  2040. u1_tmp = u1_tmp |
  2041. ((rtlpcipriv->bt_coexist.bt_ant_isolation == 1) ?
  2042. 0 : BIT_OFFSET_LEN_MASK_32(1, 1)) |
  2043. ((rtlpcipriv->bt_coexist.bt_service == BT_SCO) ?
  2044. 0 : BIT_OFFSET_LEN_MASK_32(2, 1));
  2045. rtl_write_byte(rtlpriv, 0x4fd, u1_tmp);
  2046. rtl_write_dword(rtlpriv, REG_BT_COEX_TABLE+4, 0xaaaa9aaa);
  2047. rtl_write_dword(rtlpriv, REG_BT_COEX_TABLE+8, 0xffbd0040);
  2048. rtl_write_dword(rtlpriv, REG_BT_COEX_TABLE+0xc, 0x40000010);
  2049. /* Config to 1T1R. */
  2050. if (rtlphy->rf_type == RF_1T1R) {
  2051. u1_tmp = rtl_read_byte(rtlpriv, ROFDM0_TRXPATHENABLE);
  2052. u1_tmp &= ~(BIT_OFFSET_LEN_MASK_32(1, 1));
  2053. rtl_write_byte(rtlpriv, ROFDM0_TRXPATHENABLE, u1_tmp);
  2054. u1_tmp = rtl_read_byte(rtlpriv, ROFDM1_TRXPATHENABLE);
  2055. u1_tmp &= ~(BIT_OFFSET_LEN_MASK_32(1, 1));
  2056. rtl_write_byte(rtlpriv, ROFDM1_TRXPATHENABLE, u1_tmp);
  2057. }
  2058. }
  2059. }
  2060. void rtl92ce_suspend(struct ieee80211_hw *hw)
  2061. {
  2062. }
  2063. void rtl92ce_resume(struct ieee80211_hw *hw)
  2064. {
  2065. }
  2066. /* Turn on AAP (RCR:bit 0) for promicuous mode. */
  2067. void rtl92ce_allow_all_destaddr(struct ieee80211_hw *hw,
  2068. bool allow_all_da, bool write_into_reg)
  2069. {
  2070. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2071. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  2072. if (allow_all_da) {/* Set BIT0 */
  2073. rtlpci->receive_config |= RCR_AAP;
  2074. } else {/* Clear BIT0 */
  2075. rtlpci->receive_config &= ~RCR_AAP;
  2076. }
  2077. if (write_into_reg)
  2078. rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
  2079. RT_TRACE(rtlpriv, COMP_TURBO | COMP_INIT, DBG_LOUD,
  2080. "receive_config=0x%08X, write_into_reg=%d\n",
  2081. rtlpci->receive_config, write_into_reg);
  2082. }