efuse.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238
  1. /******************************************************************************
  2. *
  3. * Copyright(c) 2009-2012 Realtek Corporation.
  4. *
  5. * Tmis program is free software; you can redistribute it and/or modify it
  6. * under the terms of version 2 of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * Tmis program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * tmis program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
  17. *
  18. * Tme full GNU General Public License is included in this distribution in the
  19. * file called LICENSE.
  20. *
  21. * Contact Information:
  22. * wlanfae <wlanfae@realtek.com>
  23. * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
  24. * Hsinchu 300, Taiwan.
  25. *
  26. * Larry Finger <Larry.Finger@lwfinger.net>
  27. *
  28. *****************************************************************************/
  29. #include <linux/export.h>
  30. #include "wifi.h"
  31. #include "efuse.h"
  32. static const u8 MAX_PGPKT_SIZE = 9;
  33. static const u8 PGPKT_DATA_SIZE = 8;
  34. static const int EFUSE_MAX_SIZE = 512;
  35. static const struct efuse_map RTL8712_SDIO_EFUSE_TABLE[] = {
  36. {0, 0, 0, 2},
  37. {0, 1, 0, 2},
  38. {0, 2, 0, 2},
  39. {1, 0, 0, 1},
  40. {1, 0, 1, 1},
  41. {1, 1, 0, 1},
  42. {1, 1, 1, 3},
  43. {1, 3, 0, 17},
  44. {3, 3, 1, 48},
  45. {10, 0, 0, 6},
  46. {10, 3, 0, 1},
  47. {10, 3, 1, 1},
  48. {11, 0, 0, 28}
  49. };
  50. static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset,
  51. u8 *value);
  52. static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset,
  53. u16 *value);
  54. static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset,
  55. u32 *value);
  56. static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset,
  57. u8 value);
  58. static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset,
  59. u16 value);
  60. static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset,
  61. u32 value);
  62. static int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr,
  63. u8 *data);
  64. static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr,
  65. u8 data);
  66. static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse);
  67. static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset,
  68. u8 *data);
  69. static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset,
  70. u8 word_en, u8 *data);
  71. static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
  72. u8 *targetdata);
  73. static u8 efuse_word_enable_data_write(struct ieee80211_hw *hw,
  74. u16 efuse_addr, u8 word_en, u8 *data);
  75. static void efuse_power_switch(struct ieee80211_hw *hw, u8 write,
  76. u8 pwrstate);
  77. static u16 efuse_get_current_size(struct ieee80211_hw *hw);
  78. static u8 efuse_calculate_word_cnts(u8 word_en);
  79. void efuse_initialize(struct ieee80211_hw *hw)
  80. {
  81. struct rtl_priv *rtlpriv = rtl_priv(hw);
  82. u8 bytetemp;
  83. u8 temp;
  84. bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1);
  85. temp = bytetemp | 0x20;
  86. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1, temp);
  87. bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1);
  88. temp = bytetemp & 0xFE;
  89. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1, temp);
  90. bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3);
  91. temp = bytetemp | 0x80;
  92. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, temp);
  93. rtl_write_byte(rtlpriv, 0x2F8, 0x3);
  94. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
  95. }
  96. u8 efuse_read_1byte(struct ieee80211_hw *hw, u16 address)
  97. {
  98. struct rtl_priv *rtlpriv = rtl_priv(hw);
  99. u8 data;
  100. u8 bytetemp;
  101. u8 temp;
  102. u32 k = 0;
  103. const u32 efuse_len =
  104. rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
  105. if (address < efuse_len) {
  106. temp = address & 0xFF;
  107. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
  108. temp);
  109. bytetemp = rtl_read_byte(rtlpriv,
  110. rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
  111. temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
  112. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
  113. temp);
  114. bytetemp = rtl_read_byte(rtlpriv,
  115. rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
  116. temp = bytetemp & 0x7F;
  117. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
  118. temp);
  119. bytetemp = rtl_read_byte(rtlpriv,
  120. rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
  121. while (!(bytetemp & 0x80)) {
  122. bytetemp = rtl_read_byte(rtlpriv,
  123. rtlpriv->cfg->
  124. maps[EFUSE_CTRL] + 3);
  125. k++;
  126. if (k == 1000) {
  127. k = 0;
  128. break;
  129. }
  130. }
  131. data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
  132. return data;
  133. } else
  134. return 0xFF;
  135. }
  136. EXPORT_SYMBOL(efuse_read_1byte);
  137. void efuse_write_1byte(struct ieee80211_hw *hw, u16 address, u8 value)
  138. {
  139. struct rtl_priv *rtlpriv = rtl_priv(hw);
  140. u8 bytetemp;
  141. u8 temp;
  142. u32 k = 0;
  143. const u32 efuse_len =
  144. rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
  145. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "Addr=%x Data =%x\n",
  146. address, value);
  147. if (address < efuse_len) {
  148. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], value);
  149. temp = address & 0xFF;
  150. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
  151. temp);
  152. bytetemp = rtl_read_byte(rtlpriv,
  153. rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
  154. temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
  155. rtl_write_byte(rtlpriv,
  156. rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp);
  157. bytetemp = rtl_read_byte(rtlpriv,
  158. rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
  159. temp = bytetemp | 0x80;
  160. rtl_write_byte(rtlpriv,
  161. rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp);
  162. bytetemp = rtl_read_byte(rtlpriv,
  163. rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
  164. while (bytetemp & 0x80) {
  165. bytetemp = rtl_read_byte(rtlpriv,
  166. rtlpriv->cfg->
  167. maps[EFUSE_CTRL] + 3);
  168. k++;
  169. if (k == 100) {
  170. k = 0;
  171. break;
  172. }
  173. }
  174. }
  175. }
  176. void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf)
  177. {
  178. struct rtl_priv *rtlpriv = rtl_priv(hw);
  179. u32 value32;
  180. u8 readbyte;
  181. u16 retry;
  182. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
  183. (_offset & 0xff));
  184. readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
  185. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
  186. ((_offset >> 8) & 0x03) | (readbyte & 0xfc));
  187. readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
  188. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
  189. (readbyte & 0x7f));
  190. retry = 0;
  191. value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
  192. while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) {
  193. value32 = rtl_read_dword(rtlpriv,
  194. rtlpriv->cfg->maps[EFUSE_CTRL]);
  195. retry++;
  196. }
  197. udelay(50);
  198. value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
  199. *pbuf = (u8) (value32 & 0xff);
  200. }
  201. EXPORT_SYMBOL_GPL(read_efuse_byte);
  202. void read_efuse(struct ieee80211_hw *hw, u16 _offset, u16 _size_byte, u8 *pbuf)
  203. {
  204. struct rtl_priv *rtlpriv = rtl_priv(hw);
  205. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  206. u8 *efuse_tbl;
  207. u8 rtemp8[1];
  208. u16 efuse_addr = 0;
  209. u8 offset, wren;
  210. u8 u1temp = 0;
  211. u16 i;
  212. u16 j;
  213. const u16 efuse_max_section =
  214. rtlpriv->cfg->maps[EFUSE_MAX_SECTION_MAP];
  215. const u32 efuse_len =
  216. rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
  217. u16 **efuse_word;
  218. u16 efuse_utilized = 0;
  219. u8 efuse_usage;
  220. if ((_offset + _size_byte) > rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]) {
  221. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  222. "read_efuse(): Invalid offset(%#x) with read bytes(%#x)!!\n",
  223. _offset, _size_byte);
  224. return;
  225. }
  226. /* allocate memory for efuse_tbl and efuse_word */
  227. efuse_tbl = kmalloc(rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE] *
  228. sizeof(u8), GFP_ATOMIC);
  229. if (!efuse_tbl)
  230. return;
  231. efuse_word = kmalloc(EFUSE_MAX_WORD_UNIT * sizeof(u16 *), GFP_ATOMIC);
  232. if (!efuse_word)
  233. goto done;
  234. for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
  235. efuse_word[i] = kmalloc(efuse_max_section * sizeof(u16),
  236. GFP_ATOMIC);
  237. if (!efuse_word[i])
  238. goto done;
  239. }
  240. for (i = 0; i < efuse_max_section; i++)
  241. for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
  242. efuse_word[j][i] = 0xFFFF;
  243. read_efuse_byte(hw, efuse_addr, rtemp8);
  244. if (*rtemp8 != 0xFF) {
  245. efuse_utilized++;
  246. RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
  247. "Addr=%d\n", efuse_addr);
  248. efuse_addr++;
  249. }
  250. while ((*rtemp8 != 0xFF) && (efuse_addr < efuse_len)) {
  251. /* Check PG header for section num. */
  252. if ((*rtemp8 & 0x1F) == 0x0F) {/* extended header */
  253. u1temp = ((*rtemp8 & 0xE0) >> 5);
  254. read_efuse_byte(hw, efuse_addr, rtemp8);
  255. if ((*rtemp8 & 0x0F) == 0x0F) {
  256. efuse_addr++;
  257. read_efuse_byte(hw, efuse_addr, rtemp8);
  258. if (*rtemp8 != 0xFF &&
  259. (efuse_addr < efuse_len)) {
  260. efuse_addr++;
  261. }
  262. continue;
  263. } else {
  264. offset = ((*rtemp8 & 0xF0) >> 1) | u1temp;
  265. wren = (*rtemp8 & 0x0F);
  266. efuse_addr++;
  267. }
  268. } else {
  269. offset = ((*rtemp8 >> 4) & 0x0f);
  270. wren = (*rtemp8 & 0x0f);
  271. }
  272. if (offset < efuse_max_section) {
  273. RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
  274. "offset-%d Worden=%x\n", offset, wren);
  275. for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
  276. if (!(wren & 0x01)) {
  277. RTPRINT(rtlpriv, FEEPROM,
  278. EFUSE_READ_ALL,
  279. "Addr=%d\n", efuse_addr);
  280. read_efuse_byte(hw, efuse_addr, rtemp8);
  281. efuse_addr++;
  282. efuse_utilized++;
  283. efuse_word[i][offset] =
  284. (*rtemp8 & 0xff);
  285. if (efuse_addr >= efuse_len)
  286. break;
  287. RTPRINT(rtlpriv, FEEPROM,
  288. EFUSE_READ_ALL,
  289. "Addr=%d\n", efuse_addr);
  290. read_efuse_byte(hw, efuse_addr, rtemp8);
  291. efuse_addr++;
  292. efuse_utilized++;
  293. efuse_word[i][offset] |=
  294. (((u16)*rtemp8 << 8) & 0xff00);
  295. if (efuse_addr >= efuse_len)
  296. break;
  297. }
  298. wren >>= 1;
  299. }
  300. }
  301. RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
  302. "Addr=%d\n", efuse_addr);
  303. read_efuse_byte(hw, efuse_addr, rtemp8);
  304. if (*rtemp8 != 0xFF && (efuse_addr < efuse_len)) {
  305. efuse_utilized++;
  306. efuse_addr++;
  307. }
  308. }
  309. for (i = 0; i < efuse_max_section; i++) {
  310. for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
  311. efuse_tbl[(i * 8) + (j * 2)] =
  312. (efuse_word[j][i] & 0xff);
  313. efuse_tbl[(i * 8) + ((j * 2) + 1)] =
  314. ((efuse_word[j][i] >> 8) & 0xff);
  315. }
  316. }
  317. for (i = 0; i < _size_byte; i++)
  318. pbuf[i] = efuse_tbl[_offset + i];
  319. rtlefuse->efuse_usedbytes = efuse_utilized;
  320. efuse_usage = (u8) ((efuse_utilized * 100) / efuse_len);
  321. rtlefuse->efuse_usedpercentage = efuse_usage;
  322. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_BYTES,
  323. (u8 *)&efuse_utilized);
  324. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_USAGE,
  325. &efuse_usage);
  326. done:
  327. for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++)
  328. kfree(efuse_word[i]);
  329. kfree(efuse_word);
  330. kfree(efuse_tbl);
  331. }
  332. bool efuse_shadow_update_chk(struct ieee80211_hw *hw)
  333. {
  334. struct rtl_priv *rtlpriv = rtl_priv(hw);
  335. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  336. u8 section_idx, i, Base;
  337. u16 words_need = 0, hdr_num = 0, totalbytes, efuse_used;
  338. bool wordchanged, result = true;
  339. for (section_idx = 0; section_idx < 16; section_idx++) {
  340. Base = section_idx * 8;
  341. wordchanged = false;
  342. for (i = 0; i < 8; i = i + 2) {
  343. if ((rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i] !=
  344. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i]) ||
  345. (rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i + 1] !=
  346. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i +
  347. 1])) {
  348. words_need++;
  349. wordchanged = true;
  350. }
  351. }
  352. if (wordchanged)
  353. hdr_num++;
  354. }
  355. totalbytes = hdr_num + words_need * 2;
  356. efuse_used = rtlefuse->efuse_usedbytes;
  357. if ((totalbytes + efuse_used) >=
  358. (EFUSE_MAX_SIZE -
  359. rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))
  360. result = false;
  361. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  362. "efuse_shadow_update_chk(): totalbytes(%#x), hdr_num(%#x), words_need(%#x), efuse_used(%d)\n",
  363. totalbytes, hdr_num, words_need, efuse_used);
  364. return result;
  365. }
  366. void efuse_shadow_read(struct ieee80211_hw *hw, u8 type,
  367. u16 offset, u32 *value)
  368. {
  369. if (type == 1)
  370. efuse_shadow_read_1byte(hw, offset, (u8 *) value);
  371. else if (type == 2)
  372. efuse_shadow_read_2byte(hw, offset, (u16 *) value);
  373. else if (type == 4)
  374. efuse_shadow_read_4byte(hw, offset, value);
  375. }
  376. void efuse_shadow_write(struct ieee80211_hw *hw, u8 type, u16 offset,
  377. u32 value)
  378. {
  379. if (type == 1)
  380. efuse_shadow_write_1byte(hw, offset, (u8) value);
  381. else if (type == 2)
  382. efuse_shadow_write_2byte(hw, offset, (u16) value);
  383. else if (type == 4)
  384. efuse_shadow_write_4byte(hw, offset, value);
  385. }
  386. bool efuse_shadow_update(struct ieee80211_hw *hw)
  387. {
  388. struct rtl_priv *rtlpriv = rtl_priv(hw);
  389. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  390. u16 i, offset, base;
  391. u8 word_en = 0x0F;
  392. u8 first_pg = false;
  393. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "--->\n");
  394. if (!efuse_shadow_update_chk(hw)) {
  395. efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
  396. memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
  397. &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
  398. rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
  399. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  400. "<---efuse out of capacity!!\n");
  401. return false;
  402. }
  403. efuse_power_switch(hw, true, true);
  404. for (offset = 0; offset < 16; offset++) {
  405. word_en = 0x0F;
  406. base = offset * 8;
  407. for (i = 0; i < 8; i++) {
  408. if (first_pg) {
  409. word_en &= ~(BIT(i / 2));
  410. rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
  411. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
  412. } else {
  413. if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
  414. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) {
  415. word_en &= ~(BIT(i / 2));
  416. rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
  417. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
  418. }
  419. }
  420. }
  421. if (word_en != 0x0F) {
  422. u8 tmpdata[8];
  423. memcpy(tmpdata,
  424. &rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base],
  425. 8);
  426. RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD,
  427. "U-efuse", tmpdata, 8);
  428. if (!efuse_pg_packet_write(hw, (u8) offset, word_en,
  429. tmpdata)) {
  430. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  431. "PG section(%#x) fail!!\n", offset);
  432. break;
  433. }
  434. }
  435. }
  436. efuse_power_switch(hw, true, false);
  437. efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
  438. memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
  439. &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
  440. rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
  441. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "<---\n");
  442. return true;
  443. }
  444. void rtl_efuse_shadow_map_update(struct ieee80211_hw *hw)
  445. {
  446. struct rtl_priv *rtlpriv = rtl_priv(hw);
  447. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  448. if (rtlefuse->autoload_failflag)
  449. memset(&rtlefuse->efuse_map[EFUSE_INIT_MAP][0], 0xFF,
  450. rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
  451. else
  452. efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
  453. memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
  454. &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
  455. rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
  456. }
  457. EXPORT_SYMBOL(rtl_efuse_shadow_map_update);
  458. void efuse_force_write_vendor_Id(struct ieee80211_hw *hw)
  459. {
  460. u8 tmpdata[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF };
  461. efuse_power_switch(hw, true, true);
  462. efuse_pg_packet_write(hw, 1, 0xD, tmpdata);
  463. efuse_power_switch(hw, true, false);
  464. }
  465. void efuse_re_pg_section(struct ieee80211_hw *hw, u8 section_idx)
  466. {
  467. }
  468. static void efuse_shadow_read_1byte(struct ieee80211_hw *hw,
  469. u16 offset, u8 *value)
  470. {
  471. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  472. *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
  473. }
  474. static void efuse_shadow_read_2byte(struct ieee80211_hw *hw,
  475. u16 offset, u16 *value)
  476. {
  477. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  478. *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
  479. *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
  480. }
  481. static void efuse_shadow_read_4byte(struct ieee80211_hw *hw,
  482. u16 offset, u32 *value)
  483. {
  484. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  485. *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
  486. *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
  487. *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] << 16;
  488. *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] << 24;
  489. }
  490. static void efuse_shadow_write_1byte(struct ieee80211_hw *hw,
  491. u16 offset, u8 value)
  492. {
  493. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  494. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value;
  495. }
  496. static void efuse_shadow_write_2byte(struct ieee80211_hw *hw,
  497. u16 offset, u16 value)
  498. {
  499. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  500. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value & 0x00FF;
  501. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = value >> 8;
  502. }
  503. static void efuse_shadow_write_4byte(struct ieee80211_hw *hw,
  504. u16 offset, u32 value)
  505. {
  506. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  507. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] =
  508. (u8) (value & 0x000000FF);
  509. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] =
  510. (u8) ((value >> 8) & 0x0000FF);
  511. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] =
  512. (u8) ((value >> 16) & 0x00FF);
  513. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] =
  514. (u8) ((value >> 24) & 0xFF);
  515. }
  516. static int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr, u8 *data)
  517. {
  518. struct rtl_priv *rtlpriv = rtl_priv(hw);
  519. u8 tmpidx = 0;
  520. int result;
  521. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
  522. (u8) (addr & 0xff));
  523. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
  524. ((u8) ((addr >> 8) & 0x03)) |
  525. (rtl_read_byte(rtlpriv,
  526. rtlpriv->cfg->maps[EFUSE_CTRL] + 2) &
  527. 0xFC));
  528. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
  529. while (!(0x80 & rtl_read_byte(rtlpriv,
  530. rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
  531. && (tmpidx < 100)) {
  532. tmpidx++;
  533. }
  534. if (tmpidx < 100) {
  535. *data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
  536. result = true;
  537. } else {
  538. *data = 0xff;
  539. result = false;
  540. }
  541. return result;
  542. }
  543. static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data)
  544. {
  545. struct rtl_priv *rtlpriv = rtl_priv(hw);
  546. u8 tmpidx = 0;
  547. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "Addr = %x Data=%x\n",
  548. addr, data);
  549. rtl_write_byte(rtlpriv,
  550. rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8) (addr & 0xff));
  551. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
  552. (rtl_read_byte(rtlpriv,
  553. rtlpriv->cfg->maps[EFUSE_CTRL] +
  554. 2) & 0xFC) | (u8) ((addr >> 8) & 0x03));
  555. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], data);
  556. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0xF2);
  557. while ((0x80 & rtl_read_byte(rtlpriv,
  558. rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
  559. && (tmpidx < 100)) {
  560. tmpidx++;
  561. }
  562. if (tmpidx < 100)
  563. return true;
  564. return false;
  565. }
  566. static void efuse_read_all_map(struct ieee80211_hw *hw, u8 * efuse)
  567. {
  568. struct rtl_priv *rtlpriv = rtl_priv(hw);
  569. efuse_power_switch(hw, false, true);
  570. read_efuse(hw, 0, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE], efuse);
  571. efuse_power_switch(hw, false, false);
  572. }
  573. static void efuse_read_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
  574. u8 efuse_data, u8 offset, u8 *tmpdata,
  575. u8 *readstate)
  576. {
  577. bool dataempty = true;
  578. u8 hoffset;
  579. u8 tmpidx;
  580. u8 hworden;
  581. u8 word_cnts;
  582. hoffset = (efuse_data >> 4) & 0x0F;
  583. hworden = efuse_data & 0x0F;
  584. word_cnts = efuse_calculate_word_cnts(hworden);
  585. if (hoffset == offset) {
  586. for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) {
  587. if (efuse_one_byte_read(hw, *efuse_addr + 1 + tmpidx,
  588. &efuse_data)) {
  589. tmpdata[tmpidx] = efuse_data;
  590. if (efuse_data != 0xff)
  591. dataempty = true;
  592. }
  593. }
  594. if (dataempty) {
  595. *readstate = PG_STATE_DATA;
  596. } else {
  597. *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
  598. *readstate = PG_STATE_HEADER;
  599. }
  600. } else {
  601. *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
  602. *readstate = PG_STATE_HEADER;
  603. }
  604. }
  605. static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data)
  606. {
  607. u8 readstate = PG_STATE_HEADER;
  608. bool continual = true;
  609. u8 efuse_data, word_cnts = 0;
  610. u16 efuse_addr = 0;
  611. u8 tmpdata[8];
  612. if (data == NULL)
  613. return false;
  614. if (offset > 15)
  615. return false;
  616. memset(data, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
  617. memset(tmpdata, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
  618. while (continual && (efuse_addr < EFUSE_MAX_SIZE)) {
  619. if (readstate & PG_STATE_HEADER) {
  620. if (efuse_one_byte_read(hw, efuse_addr, &efuse_data)
  621. && (efuse_data != 0xFF))
  622. efuse_read_data_case1(hw, &efuse_addr,
  623. efuse_data,
  624. offset, tmpdata,
  625. &readstate);
  626. else
  627. continual = false;
  628. } else if (readstate & PG_STATE_DATA) {
  629. efuse_word_enable_data_read(0, tmpdata, data);
  630. efuse_addr = efuse_addr + (word_cnts * 2) + 1;
  631. readstate = PG_STATE_HEADER;
  632. }
  633. }
  634. if ((data[0] == 0xff) && (data[1] == 0xff) &&
  635. (data[2] == 0xff) && (data[3] == 0xff) &&
  636. (data[4] == 0xff) && (data[5] == 0xff) &&
  637. (data[6] == 0xff) && (data[7] == 0xff))
  638. return false;
  639. else
  640. return true;
  641. }
  642. static void efuse_write_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
  643. u8 efuse_data, u8 offset, int *continual,
  644. u8 *write_state, struct pgpkt_struct *target_pkt,
  645. int *repeat_times, int *result, u8 word_en)
  646. {
  647. struct rtl_priv *rtlpriv = rtl_priv(hw);
  648. struct pgpkt_struct tmp_pkt;
  649. bool dataempty = true;
  650. u8 originaldata[8 * sizeof(u8)];
  651. u8 badworden = 0x0F;
  652. u8 match_word_en, tmp_word_en;
  653. u8 tmpindex;
  654. u8 tmp_header = efuse_data;
  655. u8 tmp_word_cnts;
  656. tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
  657. tmp_pkt.word_en = tmp_header & 0x0F;
  658. tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
  659. if (tmp_pkt.offset != target_pkt->offset) {
  660. *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
  661. *write_state = PG_STATE_HEADER;
  662. } else {
  663. for (tmpindex = 0; tmpindex < (tmp_word_cnts * 2); tmpindex++) {
  664. u16 address = *efuse_addr + 1 + tmpindex;
  665. if (efuse_one_byte_read(hw, address,
  666. &efuse_data) && (efuse_data != 0xFF))
  667. dataempty = false;
  668. }
  669. if (!dataempty) {
  670. *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
  671. *write_state = PG_STATE_HEADER;
  672. } else {
  673. match_word_en = 0x0F;
  674. if (!((target_pkt->word_en & BIT(0)) |
  675. (tmp_pkt.word_en & BIT(0))))
  676. match_word_en &= (~BIT(0));
  677. if (!((target_pkt->word_en & BIT(1)) |
  678. (tmp_pkt.word_en & BIT(1))))
  679. match_word_en &= (~BIT(1));
  680. if (!((target_pkt->word_en & BIT(2)) |
  681. (tmp_pkt.word_en & BIT(2))))
  682. match_word_en &= (~BIT(2));
  683. if (!((target_pkt->word_en & BIT(3)) |
  684. (tmp_pkt.word_en & BIT(3))))
  685. match_word_en &= (~BIT(3));
  686. if ((match_word_en & 0x0F) != 0x0F) {
  687. badworden = efuse_word_enable_data_write(
  688. hw, *efuse_addr + 1,
  689. tmp_pkt.word_en,
  690. target_pkt->data);
  691. if (0x0F != (badworden & 0x0F)) {
  692. u8 reorg_offset = offset;
  693. u8 reorg_worden = badworden;
  694. efuse_pg_packet_write(hw, reorg_offset,
  695. reorg_worden,
  696. originaldata);
  697. }
  698. tmp_word_en = 0x0F;
  699. if ((target_pkt->word_en & BIT(0)) ^
  700. (match_word_en & BIT(0)))
  701. tmp_word_en &= (~BIT(0));
  702. if ((target_pkt->word_en & BIT(1)) ^
  703. (match_word_en & BIT(1)))
  704. tmp_word_en &= (~BIT(1));
  705. if ((target_pkt->word_en & BIT(2)) ^
  706. (match_word_en & BIT(2)))
  707. tmp_word_en &= (~BIT(2));
  708. if ((target_pkt->word_en & BIT(3)) ^
  709. (match_word_en & BIT(3)))
  710. tmp_word_en &= (~BIT(3));
  711. if ((tmp_word_en & 0x0F) != 0x0F) {
  712. *efuse_addr = efuse_get_current_size(hw);
  713. target_pkt->offset = offset;
  714. target_pkt->word_en = tmp_word_en;
  715. } else {
  716. *continual = false;
  717. }
  718. *write_state = PG_STATE_HEADER;
  719. *repeat_times += 1;
  720. if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
  721. *continual = false;
  722. *result = false;
  723. }
  724. } else {
  725. *efuse_addr += (2 * tmp_word_cnts) + 1;
  726. target_pkt->offset = offset;
  727. target_pkt->word_en = word_en;
  728. *write_state = PG_STATE_HEADER;
  729. }
  730. }
  731. }
  732. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse PG_STATE_HEADER-1\n");
  733. }
  734. static void efuse_write_data_case2(struct ieee80211_hw *hw, u16 *efuse_addr,
  735. int *continual, u8 *write_state,
  736. struct pgpkt_struct target_pkt,
  737. int *repeat_times, int *result)
  738. {
  739. struct rtl_priv *rtlpriv = rtl_priv(hw);
  740. struct pgpkt_struct tmp_pkt;
  741. u8 pg_header;
  742. u8 tmp_header;
  743. u8 originaldata[8 * sizeof(u8)];
  744. u8 tmp_word_cnts;
  745. u8 badworden = 0x0F;
  746. pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en;
  747. efuse_one_byte_write(hw, *efuse_addr, pg_header);
  748. efuse_one_byte_read(hw, *efuse_addr, &tmp_header);
  749. if (tmp_header == pg_header) {
  750. *write_state = PG_STATE_DATA;
  751. } else if (tmp_header == 0xFF) {
  752. *write_state = PG_STATE_HEADER;
  753. *repeat_times += 1;
  754. if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
  755. *continual = false;
  756. *result = false;
  757. }
  758. } else {
  759. tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
  760. tmp_pkt.word_en = tmp_header & 0x0F;
  761. tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
  762. memset(originaldata, 0xff, 8 * sizeof(u8));
  763. if (efuse_pg_packet_read(hw, tmp_pkt.offset, originaldata)) {
  764. badworden = efuse_word_enable_data_write(hw,
  765. *efuse_addr + 1, tmp_pkt.word_en,
  766. originaldata);
  767. if (0x0F != (badworden & 0x0F)) {
  768. u8 reorg_offset = tmp_pkt.offset;
  769. u8 reorg_worden = badworden;
  770. efuse_pg_packet_write(hw, reorg_offset,
  771. reorg_worden,
  772. originaldata);
  773. *efuse_addr = efuse_get_current_size(hw);
  774. } else {
  775. *efuse_addr = *efuse_addr + (tmp_word_cnts * 2)
  776. + 1;
  777. }
  778. } else {
  779. *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
  780. }
  781. *write_state = PG_STATE_HEADER;
  782. *repeat_times += 1;
  783. if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
  784. *continual = false;
  785. *result = false;
  786. }
  787. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
  788. "efuse PG_STATE_HEADER-2\n");
  789. }
  790. }
  791. static int efuse_pg_packet_write(struct ieee80211_hw *hw,
  792. u8 offset, u8 word_en, u8 *data)
  793. {
  794. struct rtl_priv *rtlpriv = rtl_priv(hw);
  795. struct pgpkt_struct target_pkt;
  796. u8 write_state = PG_STATE_HEADER;
  797. int continual = true, result = true;
  798. u16 efuse_addr = 0;
  799. u8 efuse_data;
  800. u8 target_word_cnts = 0;
  801. u8 badworden = 0x0F;
  802. static int repeat_times;
  803. if (efuse_get_current_size(hw) >= (EFUSE_MAX_SIZE -
  804. rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
  805. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
  806. "efuse_pg_packet_write error\n");
  807. return false;
  808. }
  809. target_pkt.offset = offset;
  810. target_pkt.word_en = word_en;
  811. memset(target_pkt.data, 0xFF, 8 * sizeof(u8));
  812. efuse_word_enable_data_read(word_en, data, target_pkt.data);
  813. target_word_cnts = efuse_calculate_word_cnts(target_pkt.word_en);
  814. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse Power ON\n");
  815. while (continual && (efuse_addr < (EFUSE_MAX_SIZE -
  816. rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))) {
  817. if (write_state == PG_STATE_HEADER) {
  818. badworden = 0x0F;
  819. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
  820. "efuse PG_STATE_HEADER\n");
  821. if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
  822. (efuse_data != 0xFF))
  823. efuse_write_data_case1(hw, &efuse_addr,
  824. efuse_data, offset,
  825. &continual,
  826. &write_state, &target_pkt,
  827. &repeat_times, &result,
  828. word_en);
  829. else
  830. efuse_write_data_case2(hw, &efuse_addr,
  831. &continual,
  832. &write_state,
  833. target_pkt,
  834. &repeat_times,
  835. &result);
  836. } else if (write_state == PG_STATE_DATA) {
  837. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
  838. "efuse PG_STATE_DATA\n");
  839. badworden =
  840. efuse_word_enable_data_write(hw, efuse_addr + 1,
  841. target_pkt.word_en,
  842. target_pkt.data);
  843. if ((badworden & 0x0F) == 0x0F) {
  844. continual = false;
  845. } else {
  846. efuse_addr += (2 * target_word_cnts) + 1;
  847. target_pkt.offset = offset;
  848. target_pkt.word_en = badworden;
  849. target_word_cnts =
  850. efuse_calculate_word_cnts(target_pkt.
  851. word_en);
  852. write_state = PG_STATE_HEADER;
  853. repeat_times++;
  854. if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
  855. continual = false;
  856. result = false;
  857. }
  858. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
  859. "efuse PG_STATE_HEADER-3\n");
  860. }
  861. }
  862. }
  863. if (efuse_addr >= (EFUSE_MAX_SIZE -
  864. rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
  865. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  866. "efuse_addr(%#x) Out of size!!\n", efuse_addr);
  867. }
  868. return true;
  869. }
  870. static void efuse_word_enable_data_read(u8 word_en,
  871. u8 *sourdata, u8 *targetdata)
  872. {
  873. if (!(word_en & BIT(0))) {
  874. targetdata[0] = sourdata[0];
  875. targetdata[1] = sourdata[1];
  876. }
  877. if (!(word_en & BIT(1))) {
  878. targetdata[2] = sourdata[2];
  879. targetdata[3] = sourdata[3];
  880. }
  881. if (!(word_en & BIT(2))) {
  882. targetdata[4] = sourdata[4];
  883. targetdata[5] = sourdata[5];
  884. }
  885. if (!(word_en & BIT(3))) {
  886. targetdata[6] = sourdata[6];
  887. targetdata[7] = sourdata[7];
  888. }
  889. }
  890. static u8 efuse_word_enable_data_write(struct ieee80211_hw *hw,
  891. u16 efuse_addr, u8 word_en, u8 *data)
  892. {
  893. struct rtl_priv *rtlpriv = rtl_priv(hw);
  894. u16 tmpaddr;
  895. u16 start_addr = efuse_addr;
  896. u8 badworden = 0x0F;
  897. u8 tmpdata[8];
  898. memset(tmpdata, 0xff, PGPKT_DATA_SIZE);
  899. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "word_en = %x efuse_addr=%x\n",
  900. word_en, efuse_addr);
  901. if (!(word_en & BIT(0))) {
  902. tmpaddr = start_addr;
  903. efuse_one_byte_write(hw, start_addr++, data[0]);
  904. efuse_one_byte_write(hw, start_addr++, data[1]);
  905. efuse_one_byte_read(hw, tmpaddr, &tmpdata[0]);
  906. efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[1]);
  907. if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
  908. badworden &= (~BIT(0));
  909. }
  910. if (!(word_en & BIT(1))) {
  911. tmpaddr = start_addr;
  912. efuse_one_byte_write(hw, start_addr++, data[2]);
  913. efuse_one_byte_write(hw, start_addr++, data[3]);
  914. efuse_one_byte_read(hw, tmpaddr, &tmpdata[2]);
  915. efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[3]);
  916. if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
  917. badworden &= (~BIT(1));
  918. }
  919. if (!(word_en & BIT(2))) {
  920. tmpaddr = start_addr;
  921. efuse_one_byte_write(hw, start_addr++, data[4]);
  922. efuse_one_byte_write(hw, start_addr++, data[5]);
  923. efuse_one_byte_read(hw, tmpaddr, &tmpdata[4]);
  924. efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[5]);
  925. if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
  926. badworden &= (~BIT(2));
  927. }
  928. if (!(word_en & BIT(3))) {
  929. tmpaddr = start_addr;
  930. efuse_one_byte_write(hw, start_addr++, data[6]);
  931. efuse_one_byte_write(hw, start_addr++, data[7]);
  932. efuse_one_byte_read(hw, tmpaddr, &tmpdata[6]);
  933. efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[7]);
  934. if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
  935. badworden &= (~BIT(3));
  936. }
  937. return badworden;
  938. }
  939. static void efuse_power_switch(struct ieee80211_hw *hw, u8 write, u8 pwrstate)
  940. {
  941. struct rtl_priv *rtlpriv = rtl_priv(hw);
  942. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  943. u8 tempval;
  944. u16 tmpV16;
  945. if (pwrstate && (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE)) {
  946. if (rtlhal->hw_type == HARDWARE_TYPE_RTL8188EE)
  947. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_ACCESS],
  948. 0x69);
  949. tmpV16 = rtl_read_word(rtlpriv,
  950. rtlpriv->cfg->maps[SYS_ISO_CTRL]);
  951. if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_PWC_EV12V])) {
  952. tmpV16 |= rtlpriv->cfg->maps[EFUSE_PWC_EV12V];
  953. rtl_write_word(rtlpriv,
  954. rtlpriv->cfg->maps[SYS_ISO_CTRL],
  955. tmpV16);
  956. }
  957. tmpV16 = rtl_read_word(rtlpriv,
  958. rtlpriv->cfg->maps[SYS_FUNC_EN]);
  959. if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_FEN_ELDR])) {
  960. tmpV16 |= rtlpriv->cfg->maps[EFUSE_FEN_ELDR];
  961. rtl_write_word(rtlpriv,
  962. rtlpriv->cfg->maps[SYS_FUNC_EN], tmpV16);
  963. }
  964. tmpV16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK]);
  965. if ((!(tmpV16 & rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN])) ||
  966. (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_ANA8M]))) {
  967. tmpV16 |= (rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN] |
  968. rtlpriv->cfg->maps[EFUSE_ANA8M]);
  969. rtl_write_word(rtlpriv,
  970. rtlpriv->cfg->maps[SYS_CLK], tmpV16);
  971. }
  972. }
  973. if (pwrstate) {
  974. if (write) {
  975. tempval = rtl_read_byte(rtlpriv,
  976. rtlpriv->cfg->maps[EFUSE_TEST] +
  977. 3);
  978. if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE) {
  979. tempval &= 0x0F;
  980. tempval |= (VOLTAGE_V25 << 4);
  981. }
  982. rtl_write_byte(rtlpriv,
  983. rtlpriv->cfg->maps[EFUSE_TEST] + 3,
  984. (tempval | 0x80));
  985. }
  986. if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
  987. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
  988. 0x03);
  989. }
  990. } else {
  991. if (rtlhal->hw_type == HARDWARE_TYPE_RTL8188EE)
  992. rtl_write_byte(rtlpriv,
  993. rtlpriv->cfg->maps[EFUSE_ACCESS], 0);
  994. if (write) {
  995. tempval = rtl_read_byte(rtlpriv,
  996. rtlpriv->cfg->maps[EFUSE_TEST] +
  997. 3);
  998. rtl_write_byte(rtlpriv,
  999. rtlpriv->cfg->maps[EFUSE_TEST] + 3,
  1000. (tempval & 0x7F));
  1001. }
  1002. if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
  1003. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
  1004. 0x02);
  1005. }
  1006. }
  1007. }
  1008. static u16 efuse_get_current_size(struct ieee80211_hw *hw)
  1009. {
  1010. int continual = true;
  1011. u16 efuse_addr = 0;
  1012. u8 hworden;
  1013. u8 efuse_data, word_cnts;
  1014. while (continual && efuse_one_byte_read(hw, efuse_addr, &efuse_data)
  1015. && (efuse_addr < EFUSE_MAX_SIZE)) {
  1016. if (efuse_data != 0xFF) {
  1017. hworden = efuse_data & 0x0F;
  1018. word_cnts = efuse_calculate_word_cnts(hworden);
  1019. efuse_addr = efuse_addr + (word_cnts * 2) + 1;
  1020. } else {
  1021. continual = false;
  1022. }
  1023. }
  1024. return efuse_addr;
  1025. }
  1026. static u8 efuse_calculate_word_cnts(u8 word_en)
  1027. {
  1028. u8 word_cnts = 0;
  1029. if (!(word_en & BIT(0)))
  1030. word_cnts++;
  1031. if (!(word_en & BIT(1)))
  1032. word_cnts++;
  1033. if (!(word_en & BIT(2)))
  1034. word_cnts++;
  1035. if (!(word_en & BIT(3)))
  1036. word_cnts++;
  1037. return word_cnts;
  1038. }