rt2500pci.c 65 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143
  1. /*
  2. Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2500pci
  19. Abstract: rt2500pci device specific routines.
  20. Supported chipsets: RT2560.
  21. */
  22. #include <linux/delay.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/pci.h>
  28. #include <linux/eeprom_93cx6.h>
  29. #include <linux/slab.h>
  30. #include "rt2x00.h"
  31. #include "rt2x00mmio.h"
  32. #include "rt2x00pci.h"
  33. #include "rt2500pci.h"
  34. /*
  35. * Register access.
  36. * All access to the CSR registers will go through the methods
  37. * rt2x00mmio_register_read and rt2x00mmio_register_write.
  38. * BBP and RF register require indirect register access,
  39. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  40. * These indirect registers work with busy bits,
  41. * and we will try maximal REGISTER_BUSY_COUNT times to access
  42. * the register while taking a REGISTER_BUSY_DELAY us delay
  43. * between each attampt. When the busy bit is still set at that time,
  44. * the access attempt is considered to have failed,
  45. * and we will print an error.
  46. */
  47. #define WAIT_FOR_BBP(__dev, __reg) \
  48. rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
  49. #define WAIT_FOR_RF(__dev, __reg) \
  50. rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
  51. static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  52. const unsigned int word, const u8 value)
  53. {
  54. u32 reg;
  55. mutex_lock(&rt2x00dev->csr_mutex);
  56. /*
  57. * Wait until the BBP becomes available, afterwards we
  58. * can safely write the new data into the register.
  59. */
  60. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  61. reg = 0;
  62. rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  63. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  64. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  65. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  66. rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
  67. }
  68. mutex_unlock(&rt2x00dev->csr_mutex);
  69. }
  70. static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  71. const unsigned int word, u8 *value)
  72. {
  73. u32 reg;
  74. mutex_lock(&rt2x00dev->csr_mutex);
  75. /*
  76. * Wait until the BBP becomes available, afterwards we
  77. * can safely write the read request into the register.
  78. * After the data has been written, we wait until hardware
  79. * returns the correct value, if at any time the register
  80. * doesn't become available in time, reg will be 0xffffffff
  81. * which means we return 0xff to the caller.
  82. */
  83. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  84. reg = 0;
  85. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  86. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  87. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
  88. rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
  89. WAIT_FOR_BBP(rt2x00dev, &reg);
  90. }
  91. *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
  92. mutex_unlock(&rt2x00dev->csr_mutex);
  93. }
  94. static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
  95. const unsigned int word, const u32 value)
  96. {
  97. u32 reg;
  98. mutex_lock(&rt2x00dev->csr_mutex);
  99. /*
  100. * Wait until the RF becomes available, afterwards we
  101. * can safely write the new data into the register.
  102. */
  103. if (WAIT_FOR_RF(rt2x00dev, &reg)) {
  104. reg = 0;
  105. rt2x00_set_field32(&reg, RFCSR_VALUE, value);
  106. rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
  107. rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
  108. rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
  109. rt2x00mmio_register_write(rt2x00dev, RFCSR, reg);
  110. rt2x00_rf_write(rt2x00dev, word, value);
  111. }
  112. mutex_unlock(&rt2x00dev->csr_mutex);
  113. }
  114. static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  115. {
  116. struct rt2x00_dev *rt2x00dev = eeprom->data;
  117. u32 reg;
  118. rt2x00mmio_register_read(rt2x00dev, CSR21, &reg);
  119. eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
  120. eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
  121. eeprom->reg_data_clock =
  122. !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
  123. eeprom->reg_chip_select =
  124. !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
  125. }
  126. static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  127. {
  128. struct rt2x00_dev *rt2x00dev = eeprom->data;
  129. u32 reg = 0;
  130. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
  131. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
  132. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
  133. !!eeprom->reg_data_clock);
  134. rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
  135. !!eeprom->reg_chip_select);
  136. rt2x00mmio_register_write(rt2x00dev, CSR21, reg);
  137. }
  138. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  139. static const struct rt2x00debug rt2500pci_rt2x00debug = {
  140. .owner = THIS_MODULE,
  141. .csr = {
  142. .read = rt2x00mmio_register_read,
  143. .write = rt2x00mmio_register_write,
  144. .flags = RT2X00DEBUGFS_OFFSET,
  145. .word_base = CSR_REG_BASE,
  146. .word_size = sizeof(u32),
  147. .word_count = CSR_REG_SIZE / sizeof(u32),
  148. },
  149. .eeprom = {
  150. .read = rt2x00_eeprom_read,
  151. .write = rt2x00_eeprom_write,
  152. .word_base = EEPROM_BASE,
  153. .word_size = sizeof(u16),
  154. .word_count = EEPROM_SIZE / sizeof(u16),
  155. },
  156. .bbp = {
  157. .read = rt2500pci_bbp_read,
  158. .write = rt2500pci_bbp_write,
  159. .word_base = BBP_BASE,
  160. .word_size = sizeof(u8),
  161. .word_count = BBP_SIZE / sizeof(u8),
  162. },
  163. .rf = {
  164. .read = rt2x00_rf_read,
  165. .write = rt2500pci_rf_write,
  166. .word_base = RF_BASE,
  167. .word_size = sizeof(u32),
  168. .word_count = RF_SIZE / sizeof(u32),
  169. },
  170. };
  171. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  172. static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  173. {
  174. u32 reg;
  175. rt2x00mmio_register_read(rt2x00dev, GPIOCSR, &reg);
  176. return rt2x00_get_field32(reg, GPIOCSR_VAL0);
  177. }
  178. #ifdef CONFIG_RT2X00_LIB_LEDS
  179. static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
  180. enum led_brightness brightness)
  181. {
  182. struct rt2x00_led *led =
  183. container_of(led_cdev, struct rt2x00_led, led_dev);
  184. unsigned int enabled = brightness != LED_OFF;
  185. u32 reg;
  186. rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, &reg);
  187. if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
  188. rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
  189. else if (led->type == LED_TYPE_ACTIVITY)
  190. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
  191. rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
  192. }
  193. static int rt2500pci_blink_set(struct led_classdev *led_cdev,
  194. unsigned long *delay_on,
  195. unsigned long *delay_off)
  196. {
  197. struct rt2x00_led *led =
  198. container_of(led_cdev, struct rt2x00_led, led_dev);
  199. u32 reg;
  200. rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, &reg);
  201. rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
  202. rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
  203. rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
  204. return 0;
  205. }
  206. static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
  207. struct rt2x00_led *led,
  208. enum led_type type)
  209. {
  210. led->rt2x00dev = rt2x00dev;
  211. led->type = type;
  212. led->led_dev.brightness_set = rt2500pci_brightness_set;
  213. led->led_dev.blink_set = rt2500pci_blink_set;
  214. led->flags = LED_INITIALIZED;
  215. }
  216. #endif /* CONFIG_RT2X00_LIB_LEDS */
  217. /*
  218. * Configuration handlers.
  219. */
  220. static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
  221. const unsigned int filter_flags)
  222. {
  223. u32 reg;
  224. /*
  225. * Start configuration steps.
  226. * Note that the version error will always be dropped
  227. * and broadcast frames will always be accepted since
  228. * there is no filter for it at this time.
  229. */
  230. rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
  231. rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
  232. !(filter_flags & FIF_FCSFAIL));
  233. rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
  234. !(filter_flags & FIF_PLCPFAIL));
  235. rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
  236. !(filter_flags & FIF_CONTROL));
  237. rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
  238. !(filter_flags & FIF_PROMISC_IN_BSS));
  239. rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
  240. !(filter_flags & FIF_PROMISC_IN_BSS) &&
  241. !rt2x00dev->intf_ap_count);
  242. rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
  243. rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
  244. !(filter_flags & FIF_ALLMULTI));
  245. rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
  246. rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
  247. }
  248. static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
  249. struct rt2x00_intf *intf,
  250. struct rt2x00intf_conf *conf,
  251. const unsigned int flags)
  252. {
  253. struct data_queue *queue = rt2x00dev->bcn;
  254. unsigned int bcn_preload;
  255. u32 reg;
  256. if (flags & CONFIG_UPDATE_TYPE) {
  257. /*
  258. * Enable beacon config
  259. */
  260. bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
  261. rt2x00mmio_register_read(rt2x00dev, BCNCSR1, &reg);
  262. rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
  263. rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
  264. rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg);
  265. /*
  266. * Enable synchronisation.
  267. */
  268. rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
  269. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
  270. rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
  271. }
  272. if (flags & CONFIG_UPDATE_MAC)
  273. rt2x00mmio_register_multiwrite(rt2x00dev, CSR3,
  274. conf->mac, sizeof(conf->mac));
  275. if (flags & CONFIG_UPDATE_BSSID)
  276. rt2x00mmio_register_multiwrite(rt2x00dev, CSR5,
  277. conf->bssid, sizeof(conf->bssid));
  278. }
  279. static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
  280. struct rt2x00lib_erp *erp,
  281. u32 changed)
  282. {
  283. int preamble_mask;
  284. u32 reg;
  285. /*
  286. * When short preamble is enabled, we should set bit 0x08
  287. */
  288. if (changed & BSS_CHANGED_ERP_PREAMBLE) {
  289. preamble_mask = erp->short_preamble << 3;
  290. rt2x00mmio_register_read(rt2x00dev, TXCSR1, &reg);
  291. rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x162);
  292. rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0xa2);
  293. rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
  294. rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
  295. rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg);
  296. rt2x00mmio_register_read(rt2x00dev, ARCSR2, &reg);
  297. rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
  298. rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
  299. rt2x00_set_field32(&reg, ARCSR2_LENGTH,
  300. GET_DURATION(ACK_SIZE, 10));
  301. rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg);
  302. rt2x00mmio_register_read(rt2x00dev, ARCSR3, &reg);
  303. rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
  304. rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
  305. rt2x00_set_field32(&reg, ARCSR2_LENGTH,
  306. GET_DURATION(ACK_SIZE, 20));
  307. rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg);
  308. rt2x00mmio_register_read(rt2x00dev, ARCSR4, &reg);
  309. rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
  310. rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
  311. rt2x00_set_field32(&reg, ARCSR2_LENGTH,
  312. GET_DURATION(ACK_SIZE, 55));
  313. rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg);
  314. rt2x00mmio_register_read(rt2x00dev, ARCSR5, &reg);
  315. rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
  316. rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
  317. rt2x00_set_field32(&reg, ARCSR2_LENGTH,
  318. GET_DURATION(ACK_SIZE, 110));
  319. rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg);
  320. }
  321. if (changed & BSS_CHANGED_BASIC_RATES)
  322. rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
  323. if (changed & BSS_CHANGED_ERP_SLOT) {
  324. rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
  325. rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
  326. rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
  327. rt2x00mmio_register_read(rt2x00dev, CSR18, &reg);
  328. rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
  329. rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
  330. rt2x00mmio_register_write(rt2x00dev, CSR18, reg);
  331. rt2x00mmio_register_read(rt2x00dev, CSR19, &reg);
  332. rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
  333. rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
  334. rt2x00mmio_register_write(rt2x00dev, CSR19, reg);
  335. }
  336. if (changed & BSS_CHANGED_BEACON_INT) {
  337. rt2x00mmio_register_read(rt2x00dev, CSR12, &reg);
  338. rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
  339. erp->beacon_int * 16);
  340. rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
  341. erp->beacon_int * 16);
  342. rt2x00mmio_register_write(rt2x00dev, CSR12, reg);
  343. }
  344. }
  345. static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
  346. struct antenna_setup *ant)
  347. {
  348. u32 reg;
  349. u8 r14;
  350. u8 r2;
  351. /*
  352. * We should never come here because rt2x00lib is supposed
  353. * to catch this and send us the correct antenna explicitely.
  354. */
  355. BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
  356. ant->tx == ANTENNA_SW_DIVERSITY);
  357. rt2x00mmio_register_read(rt2x00dev, BBPCSR1, &reg);
  358. rt2500pci_bbp_read(rt2x00dev, 14, &r14);
  359. rt2500pci_bbp_read(rt2x00dev, 2, &r2);
  360. /*
  361. * Configure the TX antenna.
  362. */
  363. switch (ant->tx) {
  364. case ANTENNA_A:
  365. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
  366. rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
  367. rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
  368. break;
  369. case ANTENNA_B:
  370. default:
  371. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
  372. rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
  373. rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
  374. break;
  375. }
  376. /*
  377. * Configure the RX antenna.
  378. */
  379. switch (ant->rx) {
  380. case ANTENNA_A:
  381. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
  382. break;
  383. case ANTENNA_B:
  384. default:
  385. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
  386. break;
  387. }
  388. /*
  389. * RT2525E and RT5222 need to flip TX I/Q
  390. */
  391. if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
  392. rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
  393. rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
  394. rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
  395. /*
  396. * RT2525E does not need RX I/Q Flip.
  397. */
  398. if (rt2x00_rf(rt2x00dev, RF2525E))
  399. rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
  400. } else {
  401. rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
  402. rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
  403. }
  404. rt2x00mmio_register_write(rt2x00dev, BBPCSR1, reg);
  405. rt2500pci_bbp_write(rt2x00dev, 14, r14);
  406. rt2500pci_bbp_write(rt2x00dev, 2, r2);
  407. }
  408. static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
  409. struct rf_channel *rf, const int txpower)
  410. {
  411. u8 r70;
  412. /*
  413. * Set TXpower.
  414. */
  415. rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  416. /*
  417. * Switch on tuning bits.
  418. * For RT2523 devices we do not need to update the R1 register.
  419. */
  420. if (!rt2x00_rf(rt2x00dev, RF2523))
  421. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
  422. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
  423. /*
  424. * For RT2525 we should first set the channel to half band higher.
  425. */
  426. if (rt2x00_rf(rt2x00dev, RF2525)) {
  427. static const u32 vals[] = {
  428. 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
  429. 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
  430. 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
  431. 0x00080d2e, 0x00080d3a
  432. };
  433. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  434. rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
  435. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  436. if (rf->rf4)
  437. rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
  438. }
  439. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  440. rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
  441. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  442. if (rf->rf4)
  443. rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
  444. /*
  445. * Channel 14 requires the Japan filter bit to be set.
  446. */
  447. r70 = 0x46;
  448. rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
  449. rt2500pci_bbp_write(rt2x00dev, 70, r70);
  450. msleep(1);
  451. /*
  452. * Switch off tuning bits.
  453. * For RT2523 devices we do not need to update the R1 register.
  454. */
  455. if (!rt2x00_rf(rt2x00dev, RF2523)) {
  456. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
  457. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  458. }
  459. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
  460. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  461. /*
  462. * Clear false CRC during channel switch.
  463. */
  464. rt2x00mmio_register_read(rt2x00dev, CNT0, &rf->rf1);
  465. }
  466. static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
  467. const int txpower)
  468. {
  469. u32 rf3;
  470. rt2x00_rf_read(rt2x00dev, 3, &rf3);
  471. rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  472. rt2500pci_rf_write(rt2x00dev, 3, rf3);
  473. }
  474. static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
  475. struct rt2x00lib_conf *libconf)
  476. {
  477. u32 reg;
  478. rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
  479. rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
  480. libconf->conf->long_frame_max_tx_count);
  481. rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
  482. libconf->conf->short_frame_max_tx_count);
  483. rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
  484. }
  485. static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
  486. struct rt2x00lib_conf *libconf)
  487. {
  488. enum dev_state state =
  489. (libconf->conf->flags & IEEE80211_CONF_PS) ?
  490. STATE_SLEEP : STATE_AWAKE;
  491. u32 reg;
  492. if (state == STATE_SLEEP) {
  493. rt2x00mmio_register_read(rt2x00dev, CSR20, &reg);
  494. rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
  495. (rt2x00dev->beacon_int - 20) * 16);
  496. rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
  497. libconf->conf->listen_interval - 1);
  498. /* We must first disable autowake before it can be enabled */
  499. rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
  500. rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
  501. rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
  502. rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
  503. } else {
  504. rt2x00mmio_register_read(rt2x00dev, CSR20, &reg);
  505. rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
  506. rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
  507. }
  508. rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
  509. }
  510. static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
  511. struct rt2x00lib_conf *libconf,
  512. const unsigned int flags)
  513. {
  514. if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
  515. rt2500pci_config_channel(rt2x00dev, &libconf->rf,
  516. libconf->conf->power_level);
  517. if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
  518. !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
  519. rt2500pci_config_txpower(rt2x00dev,
  520. libconf->conf->power_level);
  521. if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
  522. rt2500pci_config_retry_limit(rt2x00dev, libconf);
  523. if (flags & IEEE80211_CONF_CHANGE_PS)
  524. rt2500pci_config_ps(rt2x00dev, libconf);
  525. }
  526. /*
  527. * Link tuning
  528. */
  529. static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
  530. struct link_qual *qual)
  531. {
  532. u32 reg;
  533. /*
  534. * Update FCS error count from register.
  535. */
  536. rt2x00mmio_register_read(rt2x00dev, CNT0, &reg);
  537. qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
  538. /*
  539. * Update False CCA count from register.
  540. */
  541. rt2x00mmio_register_read(rt2x00dev, CNT3, &reg);
  542. qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
  543. }
  544. static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
  545. struct link_qual *qual, u8 vgc_level)
  546. {
  547. if (qual->vgc_level_reg != vgc_level) {
  548. rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
  549. qual->vgc_level = vgc_level;
  550. qual->vgc_level_reg = vgc_level;
  551. }
  552. }
  553. static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
  554. struct link_qual *qual)
  555. {
  556. rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
  557. }
  558. static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
  559. struct link_qual *qual, const u32 count)
  560. {
  561. /*
  562. * To prevent collisions with MAC ASIC on chipsets
  563. * up to version C the link tuning should halt after 20
  564. * seconds while being associated.
  565. */
  566. if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D &&
  567. rt2x00dev->intf_associated && count > 20)
  568. return;
  569. /*
  570. * Chipset versions C and lower should directly continue
  571. * to the dynamic CCA tuning. Chipset version D and higher
  572. * should go straight to dynamic CCA tuning when they
  573. * are not associated.
  574. */
  575. if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D ||
  576. !rt2x00dev->intf_associated)
  577. goto dynamic_cca_tune;
  578. /*
  579. * A too low RSSI will cause too much false CCA which will
  580. * then corrupt the R17 tuning. To remidy this the tuning should
  581. * be stopped (While making sure the R17 value will not exceed limits)
  582. */
  583. if (qual->rssi < -80 && count > 20) {
  584. if (qual->vgc_level_reg >= 0x41)
  585. rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
  586. return;
  587. }
  588. /*
  589. * Special big-R17 for short distance
  590. */
  591. if (qual->rssi >= -58) {
  592. rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
  593. return;
  594. }
  595. /*
  596. * Special mid-R17 for middle distance
  597. */
  598. if (qual->rssi >= -74) {
  599. rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
  600. return;
  601. }
  602. /*
  603. * Leave short or middle distance condition, restore r17
  604. * to the dynamic tuning range.
  605. */
  606. if (qual->vgc_level_reg >= 0x41) {
  607. rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
  608. return;
  609. }
  610. dynamic_cca_tune:
  611. /*
  612. * R17 is inside the dynamic tuning range,
  613. * start tuning the link based on the false cca counter.
  614. */
  615. if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40)
  616. rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
  617. else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32)
  618. rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
  619. }
  620. /*
  621. * Queue handlers.
  622. */
  623. static void rt2500pci_start_queue(struct data_queue *queue)
  624. {
  625. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  626. u32 reg;
  627. switch (queue->qid) {
  628. case QID_RX:
  629. rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
  630. rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
  631. rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
  632. break;
  633. case QID_BEACON:
  634. rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
  635. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  636. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  637. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
  638. rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
  639. break;
  640. default:
  641. break;
  642. }
  643. }
  644. static void rt2500pci_kick_queue(struct data_queue *queue)
  645. {
  646. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  647. u32 reg;
  648. switch (queue->qid) {
  649. case QID_AC_VO:
  650. rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
  651. rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
  652. rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
  653. break;
  654. case QID_AC_VI:
  655. rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
  656. rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
  657. rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
  658. break;
  659. case QID_ATIM:
  660. rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
  661. rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
  662. rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
  663. break;
  664. default:
  665. break;
  666. }
  667. }
  668. static void rt2500pci_stop_queue(struct data_queue *queue)
  669. {
  670. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  671. u32 reg;
  672. switch (queue->qid) {
  673. case QID_AC_VO:
  674. case QID_AC_VI:
  675. case QID_ATIM:
  676. rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
  677. rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
  678. rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
  679. break;
  680. case QID_RX:
  681. rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
  682. rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
  683. rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
  684. break;
  685. case QID_BEACON:
  686. rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
  687. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
  688. rt2x00_set_field32(&reg, CSR14_TBCN, 0);
  689. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  690. rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
  691. /*
  692. * Wait for possibly running tbtt tasklets.
  693. */
  694. tasklet_kill(&rt2x00dev->tbtt_tasklet);
  695. break;
  696. default:
  697. break;
  698. }
  699. }
  700. /*
  701. * Initialization functions.
  702. */
  703. static bool rt2500pci_get_entry_state(struct queue_entry *entry)
  704. {
  705. struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
  706. u32 word;
  707. if (entry->queue->qid == QID_RX) {
  708. rt2x00_desc_read(entry_priv->desc, 0, &word);
  709. return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
  710. } else {
  711. rt2x00_desc_read(entry_priv->desc, 0, &word);
  712. return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  713. rt2x00_get_field32(word, TXD_W0_VALID));
  714. }
  715. }
  716. static void rt2500pci_clear_entry(struct queue_entry *entry)
  717. {
  718. struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
  719. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  720. u32 word;
  721. if (entry->queue->qid == QID_RX) {
  722. rt2x00_desc_read(entry_priv->desc, 1, &word);
  723. rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  724. rt2x00_desc_write(entry_priv->desc, 1, word);
  725. rt2x00_desc_read(entry_priv->desc, 0, &word);
  726. rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
  727. rt2x00_desc_write(entry_priv->desc, 0, word);
  728. } else {
  729. rt2x00_desc_read(entry_priv->desc, 0, &word);
  730. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  731. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
  732. rt2x00_desc_write(entry_priv->desc, 0, word);
  733. }
  734. }
  735. static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
  736. {
  737. struct queue_entry_priv_mmio *entry_priv;
  738. u32 reg;
  739. /*
  740. * Initialize registers.
  741. */
  742. rt2x00mmio_register_read(rt2x00dev, TXCSR2, &reg);
  743. rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
  744. rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
  745. rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
  746. rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
  747. rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg);
  748. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  749. rt2x00mmio_register_read(rt2x00dev, TXCSR3, &reg);
  750. rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
  751. entry_priv->desc_dma);
  752. rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg);
  753. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  754. rt2x00mmio_register_read(rt2x00dev, TXCSR5, &reg);
  755. rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
  756. entry_priv->desc_dma);
  757. rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg);
  758. entry_priv = rt2x00dev->atim->entries[0].priv_data;
  759. rt2x00mmio_register_read(rt2x00dev, TXCSR4, &reg);
  760. rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
  761. entry_priv->desc_dma);
  762. rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg);
  763. entry_priv = rt2x00dev->bcn->entries[0].priv_data;
  764. rt2x00mmio_register_read(rt2x00dev, TXCSR6, &reg);
  765. rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
  766. entry_priv->desc_dma);
  767. rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg);
  768. rt2x00mmio_register_read(rt2x00dev, RXCSR1, &reg);
  769. rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
  770. rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
  771. rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg);
  772. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  773. rt2x00mmio_register_read(rt2x00dev, RXCSR2, &reg);
  774. rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
  775. entry_priv->desc_dma);
  776. rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg);
  777. return 0;
  778. }
  779. static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
  780. {
  781. u32 reg;
  782. rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002);
  783. rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002);
  784. rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00020002);
  785. rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002);
  786. rt2x00mmio_register_read(rt2x00dev, TIMECSR, &reg);
  787. rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
  788. rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
  789. rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
  790. rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg);
  791. rt2x00mmio_register_read(rt2x00dev, CSR9, &reg);
  792. rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
  793. rt2x00dev->rx->data_size / 128);
  794. rt2x00mmio_register_write(rt2x00dev, CSR9, reg);
  795. /*
  796. * Always use CWmin and CWmax set in descriptor.
  797. */
  798. rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
  799. rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
  800. rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
  801. rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
  802. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
  803. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
  804. rt2x00_set_field32(&reg, CSR14_TBCN, 0);
  805. rt2x00_set_field32(&reg, CSR14_TCFP, 0);
  806. rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
  807. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  808. rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
  809. rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
  810. rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
  811. rt2x00mmio_register_write(rt2x00dev, CNT3, 0);
  812. rt2x00mmio_register_read(rt2x00dev, TXCSR8, &reg);
  813. rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
  814. rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
  815. rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
  816. rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
  817. rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
  818. rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
  819. rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
  820. rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
  821. rt2x00mmio_register_write(rt2x00dev, TXCSR8, reg);
  822. rt2x00mmio_register_read(rt2x00dev, ARTCSR0, &reg);
  823. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
  824. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
  825. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
  826. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
  827. rt2x00mmio_register_write(rt2x00dev, ARTCSR0, reg);
  828. rt2x00mmio_register_read(rt2x00dev, ARTCSR1, &reg);
  829. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
  830. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
  831. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
  832. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
  833. rt2x00mmio_register_write(rt2x00dev, ARTCSR1, reg);
  834. rt2x00mmio_register_read(rt2x00dev, ARTCSR2, &reg);
  835. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
  836. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
  837. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
  838. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
  839. rt2x00mmio_register_write(rt2x00dev, ARTCSR2, reg);
  840. rt2x00mmio_register_read(rt2x00dev, RXCSR3, &reg);
  841. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
  842. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
  843. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
  844. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
  845. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
  846. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
  847. rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
  848. rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
  849. rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg);
  850. rt2x00mmio_register_read(rt2x00dev, PCICSR, &reg);
  851. rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
  852. rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
  853. rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
  854. rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
  855. rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
  856. rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
  857. rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
  858. rt2x00mmio_register_write(rt2x00dev, PCICSR, reg);
  859. rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
  860. rt2x00mmio_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
  861. rt2x00mmio_register_write(rt2x00dev, TESTCSR, 0x000000f0);
  862. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  863. return -EBUSY;
  864. rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00213223);
  865. rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518);
  866. rt2x00mmio_register_read(rt2x00dev, MACCSR2, &reg);
  867. rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
  868. rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg);
  869. rt2x00mmio_register_read(rt2x00dev, RALINKCSR, &reg);
  870. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
  871. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
  872. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
  873. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
  874. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
  875. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
  876. rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg);
  877. rt2x00mmio_register_write(rt2x00dev, BBPCSR1, 0x82188200);
  878. rt2x00mmio_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
  879. rt2x00mmio_register_read(rt2x00dev, CSR1, &reg);
  880. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
  881. rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
  882. rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
  883. rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
  884. rt2x00mmio_register_read(rt2x00dev, CSR1, &reg);
  885. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
  886. rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
  887. rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
  888. /*
  889. * We must clear the FCS and FIFO error count.
  890. * These registers are cleared on read,
  891. * so we may pass a useless variable to store the value.
  892. */
  893. rt2x00mmio_register_read(rt2x00dev, CNT0, &reg);
  894. rt2x00mmio_register_read(rt2x00dev, CNT4, &reg);
  895. return 0;
  896. }
  897. static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
  898. {
  899. unsigned int i;
  900. u8 value;
  901. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  902. rt2500pci_bbp_read(rt2x00dev, 0, &value);
  903. if ((value != 0xff) && (value != 0x00))
  904. return 0;
  905. udelay(REGISTER_BUSY_DELAY);
  906. }
  907. rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
  908. return -EACCES;
  909. }
  910. static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
  911. {
  912. unsigned int i;
  913. u16 eeprom;
  914. u8 reg_id;
  915. u8 value;
  916. if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
  917. return -EACCES;
  918. rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
  919. rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
  920. rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
  921. rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
  922. rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
  923. rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
  924. rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
  925. rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
  926. rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
  927. rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
  928. rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
  929. rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
  930. rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
  931. rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
  932. rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
  933. rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
  934. rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
  935. rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
  936. rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
  937. rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
  938. rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
  939. rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
  940. rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
  941. rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
  942. rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
  943. rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
  944. rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
  945. rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
  946. rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
  947. rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
  948. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  949. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  950. if (eeprom != 0xffff && eeprom != 0x0000) {
  951. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  952. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  953. rt2500pci_bbp_write(rt2x00dev, reg_id, value);
  954. }
  955. }
  956. return 0;
  957. }
  958. /*
  959. * Device state switch handlers.
  960. */
  961. static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  962. enum dev_state state)
  963. {
  964. int mask = (state == STATE_RADIO_IRQ_OFF);
  965. u32 reg;
  966. unsigned long flags;
  967. /*
  968. * When interrupts are being enabled, the interrupt registers
  969. * should clear the register to assure a clean state.
  970. */
  971. if (state == STATE_RADIO_IRQ_ON) {
  972. rt2x00mmio_register_read(rt2x00dev, CSR7, &reg);
  973. rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
  974. }
  975. /*
  976. * Only toggle the interrupts bits we are going to use.
  977. * Non-checked interrupt bits are disabled by default.
  978. */
  979. spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
  980. rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
  981. rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
  982. rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
  983. rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
  984. rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
  985. rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
  986. rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
  987. spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
  988. if (state == STATE_RADIO_IRQ_OFF) {
  989. /*
  990. * Ensure that all tasklets are finished.
  991. */
  992. tasklet_kill(&rt2x00dev->txstatus_tasklet);
  993. tasklet_kill(&rt2x00dev->rxdone_tasklet);
  994. tasklet_kill(&rt2x00dev->tbtt_tasklet);
  995. }
  996. }
  997. static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  998. {
  999. /*
  1000. * Initialize all registers.
  1001. */
  1002. if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
  1003. rt2500pci_init_registers(rt2x00dev) ||
  1004. rt2500pci_init_bbp(rt2x00dev)))
  1005. return -EIO;
  1006. return 0;
  1007. }
  1008. static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  1009. {
  1010. /*
  1011. * Disable power
  1012. */
  1013. rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0);
  1014. }
  1015. static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
  1016. enum dev_state state)
  1017. {
  1018. u32 reg, reg2;
  1019. unsigned int i;
  1020. char put_to_sleep;
  1021. char bbp_state;
  1022. char rf_state;
  1023. put_to_sleep = (state != STATE_AWAKE);
  1024. rt2x00mmio_register_read(rt2x00dev, PWRCSR1, &reg);
  1025. rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
  1026. rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
  1027. rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
  1028. rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
  1029. rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
  1030. /*
  1031. * Device is not guaranteed to be in the requested state yet.
  1032. * We must wait until the register indicates that the
  1033. * device has entered the correct state.
  1034. */
  1035. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  1036. rt2x00mmio_register_read(rt2x00dev, PWRCSR1, &reg2);
  1037. bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
  1038. rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
  1039. if (bbp_state == state && rf_state == state)
  1040. return 0;
  1041. rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
  1042. msleep(10);
  1043. }
  1044. return -EBUSY;
  1045. }
  1046. static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  1047. enum dev_state state)
  1048. {
  1049. int retval = 0;
  1050. switch (state) {
  1051. case STATE_RADIO_ON:
  1052. retval = rt2500pci_enable_radio(rt2x00dev);
  1053. break;
  1054. case STATE_RADIO_OFF:
  1055. rt2500pci_disable_radio(rt2x00dev);
  1056. break;
  1057. case STATE_RADIO_IRQ_ON:
  1058. case STATE_RADIO_IRQ_OFF:
  1059. rt2500pci_toggle_irq(rt2x00dev, state);
  1060. break;
  1061. case STATE_DEEP_SLEEP:
  1062. case STATE_SLEEP:
  1063. case STATE_STANDBY:
  1064. case STATE_AWAKE:
  1065. retval = rt2500pci_set_state(rt2x00dev, state);
  1066. break;
  1067. default:
  1068. retval = -ENOTSUPP;
  1069. break;
  1070. }
  1071. if (unlikely(retval))
  1072. rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
  1073. state, retval);
  1074. return retval;
  1075. }
  1076. /*
  1077. * TX descriptor initialization
  1078. */
  1079. static void rt2500pci_write_tx_desc(struct queue_entry *entry,
  1080. struct txentry_desc *txdesc)
  1081. {
  1082. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  1083. struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
  1084. __le32 *txd = entry_priv->desc;
  1085. u32 word;
  1086. /*
  1087. * Start writing the descriptor words.
  1088. */
  1089. rt2x00_desc_read(txd, 1, &word);
  1090. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  1091. rt2x00_desc_write(txd, 1, word);
  1092. rt2x00_desc_read(txd, 2, &word);
  1093. rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
  1094. rt2x00_set_field32(&word, TXD_W2_AIFS, entry->queue->aifs);
  1095. rt2x00_set_field32(&word, TXD_W2_CWMIN, entry->queue->cw_min);
  1096. rt2x00_set_field32(&word, TXD_W2_CWMAX, entry->queue->cw_max);
  1097. rt2x00_desc_write(txd, 2, word);
  1098. rt2x00_desc_read(txd, 3, &word);
  1099. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
  1100. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
  1101. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW,
  1102. txdesc->u.plcp.length_low);
  1103. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH,
  1104. txdesc->u.plcp.length_high);
  1105. rt2x00_desc_write(txd, 3, word);
  1106. rt2x00_desc_read(txd, 10, &word);
  1107. rt2x00_set_field32(&word, TXD_W10_RTS,
  1108. test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
  1109. rt2x00_desc_write(txd, 10, word);
  1110. /*
  1111. * Writing TXD word 0 must the last to prevent a race condition with
  1112. * the device, whereby the device may take hold of the TXD before we
  1113. * finished updating it.
  1114. */
  1115. rt2x00_desc_read(txd, 0, &word);
  1116. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
  1117. rt2x00_set_field32(&word, TXD_W0_VALID, 1);
  1118. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  1119. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  1120. rt2x00_set_field32(&word, TXD_W0_ACK,
  1121. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  1122. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  1123. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  1124. rt2x00_set_field32(&word, TXD_W0_OFDM,
  1125. (txdesc->rate_mode == RATE_MODE_OFDM));
  1126. rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
  1127. rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
  1128. rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
  1129. test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
  1130. rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
  1131. rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
  1132. rt2x00_desc_write(txd, 0, word);
  1133. /*
  1134. * Register descriptor details in skb frame descriptor.
  1135. */
  1136. skbdesc->desc = txd;
  1137. skbdesc->desc_len = TXD_DESC_SIZE;
  1138. }
  1139. /*
  1140. * TX data initialization
  1141. */
  1142. static void rt2500pci_write_beacon(struct queue_entry *entry,
  1143. struct txentry_desc *txdesc)
  1144. {
  1145. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  1146. u32 reg;
  1147. /*
  1148. * Disable beaconing while we are reloading the beacon data,
  1149. * otherwise we might be sending out invalid data.
  1150. */
  1151. rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
  1152. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  1153. rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
  1154. if (rt2x00queue_map_txskb(entry)) {
  1155. rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n");
  1156. goto out;
  1157. }
  1158. /*
  1159. * Write the TX descriptor for the beacon.
  1160. */
  1161. rt2500pci_write_tx_desc(entry, txdesc);
  1162. /*
  1163. * Dump beacon to userspace through debugfs.
  1164. */
  1165. rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
  1166. out:
  1167. /*
  1168. * Enable beaconing again.
  1169. */
  1170. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
  1171. rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
  1172. }
  1173. /*
  1174. * RX control handlers
  1175. */
  1176. static void rt2500pci_fill_rxdone(struct queue_entry *entry,
  1177. struct rxdone_entry_desc *rxdesc)
  1178. {
  1179. struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
  1180. u32 word0;
  1181. u32 word2;
  1182. rt2x00_desc_read(entry_priv->desc, 0, &word0);
  1183. rt2x00_desc_read(entry_priv->desc, 2, &word2);
  1184. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  1185. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  1186. if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
  1187. rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
  1188. /*
  1189. * Obtain the status about this packet.
  1190. * When frame was received with an OFDM bitrate,
  1191. * the signal is the PLCP value. If it was received with
  1192. * a CCK bitrate the signal is the rate in 100kbit/s.
  1193. */
  1194. rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
  1195. rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
  1196. entry->queue->rt2x00dev->rssi_offset;
  1197. rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  1198. if (rt2x00_get_field32(word0, RXD_W0_OFDM))
  1199. rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
  1200. else
  1201. rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
  1202. if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
  1203. rxdesc->dev_flags |= RXDONE_MY_BSS;
  1204. }
  1205. /*
  1206. * Interrupt functions.
  1207. */
  1208. static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
  1209. const enum data_queue_qid queue_idx)
  1210. {
  1211. struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
  1212. struct queue_entry_priv_mmio *entry_priv;
  1213. struct queue_entry *entry;
  1214. struct txdone_entry_desc txdesc;
  1215. u32 word;
  1216. while (!rt2x00queue_empty(queue)) {
  1217. entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  1218. entry_priv = entry->priv_data;
  1219. rt2x00_desc_read(entry_priv->desc, 0, &word);
  1220. if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  1221. !rt2x00_get_field32(word, TXD_W0_VALID))
  1222. break;
  1223. /*
  1224. * Obtain the status about this packet.
  1225. */
  1226. txdesc.flags = 0;
  1227. switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
  1228. case 0: /* Success */
  1229. case 1: /* Success with retry */
  1230. __set_bit(TXDONE_SUCCESS, &txdesc.flags);
  1231. break;
  1232. case 2: /* Failure, excessive retries */
  1233. __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
  1234. /* Don't break, this is a failed frame! */
  1235. default: /* Failure */
  1236. __set_bit(TXDONE_FAILURE, &txdesc.flags);
  1237. }
  1238. txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
  1239. rt2x00lib_txdone(entry, &txdesc);
  1240. }
  1241. }
  1242. static inline void rt2500pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
  1243. struct rt2x00_field32 irq_field)
  1244. {
  1245. u32 reg;
  1246. /*
  1247. * Enable a single interrupt. The interrupt mask register
  1248. * access needs locking.
  1249. */
  1250. spin_lock_irq(&rt2x00dev->irqmask_lock);
  1251. rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
  1252. rt2x00_set_field32(&reg, irq_field, 0);
  1253. rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
  1254. spin_unlock_irq(&rt2x00dev->irqmask_lock);
  1255. }
  1256. static void rt2500pci_txstatus_tasklet(unsigned long data)
  1257. {
  1258. struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
  1259. u32 reg;
  1260. /*
  1261. * Handle all tx queues.
  1262. */
  1263. rt2500pci_txdone(rt2x00dev, QID_ATIM);
  1264. rt2500pci_txdone(rt2x00dev, QID_AC_VO);
  1265. rt2500pci_txdone(rt2x00dev, QID_AC_VI);
  1266. /*
  1267. * Enable all TXDONE interrupts again.
  1268. */
  1269. if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
  1270. spin_lock_irq(&rt2x00dev->irqmask_lock);
  1271. rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
  1272. rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
  1273. rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
  1274. rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
  1275. rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
  1276. spin_unlock_irq(&rt2x00dev->irqmask_lock);
  1277. }
  1278. }
  1279. static void rt2500pci_tbtt_tasklet(unsigned long data)
  1280. {
  1281. struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
  1282. rt2x00lib_beacondone(rt2x00dev);
  1283. if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  1284. rt2500pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
  1285. }
  1286. static void rt2500pci_rxdone_tasklet(unsigned long data)
  1287. {
  1288. struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
  1289. if (rt2x00mmio_rxdone(rt2x00dev))
  1290. tasklet_schedule(&rt2x00dev->rxdone_tasklet);
  1291. else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  1292. rt2500pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
  1293. }
  1294. static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
  1295. {
  1296. struct rt2x00_dev *rt2x00dev = dev_instance;
  1297. u32 reg, mask;
  1298. /*
  1299. * Get the interrupt sources & saved to local variable.
  1300. * Write register value back to clear pending interrupts.
  1301. */
  1302. rt2x00mmio_register_read(rt2x00dev, CSR7, &reg);
  1303. rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
  1304. if (!reg)
  1305. return IRQ_NONE;
  1306. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  1307. return IRQ_HANDLED;
  1308. mask = reg;
  1309. /*
  1310. * Schedule tasklets for interrupt handling.
  1311. */
  1312. if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
  1313. tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
  1314. if (rt2x00_get_field32(reg, CSR7_RXDONE))
  1315. tasklet_schedule(&rt2x00dev->rxdone_tasklet);
  1316. if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
  1317. rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
  1318. rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
  1319. tasklet_schedule(&rt2x00dev->txstatus_tasklet);
  1320. /*
  1321. * Mask out all txdone interrupts.
  1322. */
  1323. rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
  1324. rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
  1325. rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
  1326. }
  1327. /*
  1328. * Disable all interrupts for which a tasklet was scheduled right now,
  1329. * the tasklet will reenable the appropriate interrupts.
  1330. */
  1331. spin_lock(&rt2x00dev->irqmask_lock);
  1332. rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
  1333. reg |= mask;
  1334. rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
  1335. spin_unlock(&rt2x00dev->irqmask_lock);
  1336. return IRQ_HANDLED;
  1337. }
  1338. /*
  1339. * Device probe functions.
  1340. */
  1341. static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1342. {
  1343. struct eeprom_93cx6 eeprom;
  1344. u32 reg;
  1345. u16 word;
  1346. u8 *mac;
  1347. rt2x00mmio_register_read(rt2x00dev, CSR21, &reg);
  1348. eeprom.data = rt2x00dev;
  1349. eeprom.register_read = rt2500pci_eepromregister_read;
  1350. eeprom.register_write = rt2500pci_eepromregister_write;
  1351. eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
  1352. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  1353. eeprom.reg_data_in = 0;
  1354. eeprom.reg_data_out = 0;
  1355. eeprom.reg_data_clock = 0;
  1356. eeprom.reg_chip_select = 0;
  1357. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  1358. EEPROM_SIZE / sizeof(u16));
  1359. /*
  1360. * Start validation of the data that has been read.
  1361. */
  1362. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1363. if (!is_valid_ether_addr(mac)) {
  1364. eth_random_addr(mac);
  1365. rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
  1366. }
  1367. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1368. if (word == 0xffff) {
  1369. rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
  1370. rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
  1371. ANTENNA_SW_DIVERSITY);
  1372. rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
  1373. ANTENNA_SW_DIVERSITY);
  1374. rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
  1375. LED_MODE_DEFAULT);
  1376. rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
  1377. rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
  1378. rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
  1379. rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
  1380. rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
  1381. }
  1382. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
  1383. if (word == 0xffff) {
  1384. rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
  1385. rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
  1386. rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
  1387. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
  1388. rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
  1389. }
  1390. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
  1391. if (word == 0xffff) {
  1392. rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
  1393. DEFAULT_RSSI_OFFSET);
  1394. rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
  1395. rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
  1396. word);
  1397. }
  1398. return 0;
  1399. }
  1400. static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1401. {
  1402. u32 reg;
  1403. u16 value;
  1404. u16 eeprom;
  1405. /*
  1406. * Read EEPROM word for configuration.
  1407. */
  1408. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1409. /*
  1410. * Identify RF chipset.
  1411. */
  1412. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1413. rt2x00mmio_register_read(rt2x00dev, CSR0, &reg);
  1414. rt2x00_set_chip(rt2x00dev, RT2560, value,
  1415. rt2x00_get_field32(reg, CSR0_REVISION));
  1416. if (!rt2x00_rf(rt2x00dev, RF2522) &&
  1417. !rt2x00_rf(rt2x00dev, RF2523) &&
  1418. !rt2x00_rf(rt2x00dev, RF2524) &&
  1419. !rt2x00_rf(rt2x00dev, RF2525) &&
  1420. !rt2x00_rf(rt2x00dev, RF2525E) &&
  1421. !rt2x00_rf(rt2x00dev, RF5222)) {
  1422. rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
  1423. return -ENODEV;
  1424. }
  1425. /*
  1426. * Identify default antenna configuration.
  1427. */
  1428. rt2x00dev->default_ant.tx =
  1429. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1430. rt2x00dev->default_ant.rx =
  1431. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1432. /*
  1433. * Store led mode, for correct led behaviour.
  1434. */
  1435. #ifdef CONFIG_RT2X00_LIB_LEDS
  1436. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1437. rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
  1438. if (value == LED_MODE_TXRX_ACTIVITY ||
  1439. value == LED_MODE_DEFAULT ||
  1440. value == LED_MODE_ASUS)
  1441. rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
  1442. LED_TYPE_ACTIVITY);
  1443. #endif /* CONFIG_RT2X00_LIB_LEDS */
  1444. /*
  1445. * Detect if this device has an hardware controlled radio.
  1446. */
  1447. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
  1448. __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
  1449. /*
  1450. * Check if the BBP tuning should be enabled.
  1451. */
  1452. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
  1453. if (!rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
  1454. __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
  1455. /*
  1456. * Read the RSSI <-> dBm offset information.
  1457. */
  1458. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
  1459. rt2x00dev->rssi_offset =
  1460. rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
  1461. return 0;
  1462. }
  1463. /*
  1464. * RF value list for RF2522
  1465. * Supports: 2.4 GHz
  1466. */
  1467. static const struct rf_channel rf_vals_bg_2522[] = {
  1468. { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
  1469. { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
  1470. { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
  1471. { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
  1472. { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
  1473. { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
  1474. { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
  1475. { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
  1476. { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
  1477. { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
  1478. { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
  1479. { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
  1480. { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
  1481. { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
  1482. };
  1483. /*
  1484. * RF value list for RF2523
  1485. * Supports: 2.4 GHz
  1486. */
  1487. static const struct rf_channel rf_vals_bg_2523[] = {
  1488. { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
  1489. { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
  1490. { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
  1491. { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
  1492. { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
  1493. { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
  1494. { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
  1495. { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
  1496. { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
  1497. { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
  1498. { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
  1499. { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
  1500. { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
  1501. { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
  1502. };
  1503. /*
  1504. * RF value list for RF2524
  1505. * Supports: 2.4 GHz
  1506. */
  1507. static const struct rf_channel rf_vals_bg_2524[] = {
  1508. { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
  1509. { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
  1510. { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
  1511. { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
  1512. { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
  1513. { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
  1514. { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
  1515. { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
  1516. { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
  1517. { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
  1518. { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
  1519. { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
  1520. { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
  1521. { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
  1522. };
  1523. /*
  1524. * RF value list for RF2525
  1525. * Supports: 2.4 GHz
  1526. */
  1527. static const struct rf_channel rf_vals_bg_2525[] = {
  1528. { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
  1529. { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
  1530. { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
  1531. { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
  1532. { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
  1533. { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
  1534. { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
  1535. { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
  1536. { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
  1537. { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
  1538. { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
  1539. { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
  1540. { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
  1541. { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
  1542. };
  1543. /*
  1544. * RF value list for RF2525e
  1545. * Supports: 2.4 GHz
  1546. */
  1547. static const struct rf_channel rf_vals_bg_2525e[] = {
  1548. { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
  1549. { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
  1550. { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
  1551. { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
  1552. { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
  1553. { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
  1554. { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
  1555. { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
  1556. { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
  1557. { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
  1558. { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
  1559. { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
  1560. { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
  1561. { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
  1562. };
  1563. /*
  1564. * RF value list for RF5222
  1565. * Supports: 2.4 GHz & 5.2 GHz
  1566. */
  1567. static const struct rf_channel rf_vals_5222[] = {
  1568. { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
  1569. { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
  1570. { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
  1571. { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
  1572. { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
  1573. { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
  1574. { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
  1575. { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
  1576. { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
  1577. { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
  1578. { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
  1579. { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
  1580. { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
  1581. { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
  1582. /* 802.11 UNI / HyperLan 2 */
  1583. { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
  1584. { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
  1585. { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
  1586. { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
  1587. { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
  1588. { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
  1589. { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
  1590. { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
  1591. /* 802.11 HyperLan 2 */
  1592. { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
  1593. { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
  1594. { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
  1595. { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
  1596. { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
  1597. { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
  1598. { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
  1599. { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
  1600. { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
  1601. { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
  1602. /* 802.11 UNII */
  1603. { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
  1604. { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
  1605. { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
  1606. { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
  1607. { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
  1608. };
  1609. static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1610. {
  1611. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1612. struct channel_info *info;
  1613. char *tx_power;
  1614. unsigned int i;
  1615. /*
  1616. * Initialize all hw fields.
  1617. */
  1618. rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
  1619. IEEE80211_HW_SIGNAL_DBM |
  1620. IEEE80211_HW_SUPPORTS_PS |
  1621. IEEE80211_HW_PS_NULLFUNC_STACK;
  1622. SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
  1623. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1624. rt2x00_eeprom_addr(rt2x00dev,
  1625. EEPROM_MAC_ADDR_0));
  1626. /*
  1627. * Initialize hw_mode information.
  1628. */
  1629. spec->supported_bands = SUPPORT_BAND_2GHZ;
  1630. spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
  1631. if (rt2x00_rf(rt2x00dev, RF2522)) {
  1632. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
  1633. spec->channels = rf_vals_bg_2522;
  1634. } else if (rt2x00_rf(rt2x00dev, RF2523)) {
  1635. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
  1636. spec->channels = rf_vals_bg_2523;
  1637. } else if (rt2x00_rf(rt2x00dev, RF2524)) {
  1638. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
  1639. spec->channels = rf_vals_bg_2524;
  1640. } else if (rt2x00_rf(rt2x00dev, RF2525)) {
  1641. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
  1642. spec->channels = rf_vals_bg_2525;
  1643. } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
  1644. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
  1645. spec->channels = rf_vals_bg_2525e;
  1646. } else if (rt2x00_rf(rt2x00dev, RF5222)) {
  1647. spec->supported_bands |= SUPPORT_BAND_5GHZ;
  1648. spec->num_channels = ARRAY_SIZE(rf_vals_5222);
  1649. spec->channels = rf_vals_5222;
  1650. }
  1651. /*
  1652. * Create channel information array
  1653. */
  1654. info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
  1655. if (!info)
  1656. return -ENOMEM;
  1657. spec->channels_info = info;
  1658. tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1659. for (i = 0; i < 14; i++) {
  1660. info[i].max_power = MAX_TXPOWER;
  1661. info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
  1662. }
  1663. if (spec->num_channels > 14) {
  1664. for (i = 14; i < spec->num_channels; i++) {
  1665. info[i].max_power = MAX_TXPOWER;
  1666. info[i].default_power1 = DEFAULT_TXPOWER;
  1667. }
  1668. }
  1669. return 0;
  1670. }
  1671. static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  1672. {
  1673. int retval;
  1674. u32 reg;
  1675. /*
  1676. * Allocate eeprom data.
  1677. */
  1678. retval = rt2500pci_validate_eeprom(rt2x00dev);
  1679. if (retval)
  1680. return retval;
  1681. retval = rt2500pci_init_eeprom(rt2x00dev);
  1682. if (retval)
  1683. return retval;
  1684. /*
  1685. * Enable rfkill polling by setting GPIO direction of the
  1686. * rfkill switch GPIO pin correctly.
  1687. */
  1688. rt2x00mmio_register_read(rt2x00dev, GPIOCSR, &reg);
  1689. rt2x00_set_field32(&reg, GPIOCSR_DIR0, 1);
  1690. rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg);
  1691. /*
  1692. * Initialize hw specifications.
  1693. */
  1694. retval = rt2500pci_probe_hw_mode(rt2x00dev);
  1695. if (retval)
  1696. return retval;
  1697. /*
  1698. * This device requires the atim queue and DMA-mapped skbs.
  1699. */
  1700. __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
  1701. __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
  1702. __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
  1703. /*
  1704. * Set the rssi offset.
  1705. */
  1706. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1707. return 0;
  1708. }
  1709. /*
  1710. * IEEE80211 stack callback functions.
  1711. */
  1712. static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw,
  1713. struct ieee80211_vif *vif)
  1714. {
  1715. struct rt2x00_dev *rt2x00dev = hw->priv;
  1716. u64 tsf;
  1717. u32 reg;
  1718. rt2x00mmio_register_read(rt2x00dev, CSR17, &reg);
  1719. tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
  1720. rt2x00mmio_register_read(rt2x00dev, CSR16, &reg);
  1721. tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
  1722. return tsf;
  1723. }
  1724. static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
  1725. {
  1726. struct rt2x00_dev *rt2x00dev = hw->priv;
  1727. u32 reg;
  1728. rt2x00mmio_register_read(rt2x00dev, CSR15, &reg);
  1729. return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
  1730. }
  1731. static const struct ieee80211_ops rt2500pci_mac80211_ops = {
  1732. .tx = rt2x00mac_tx,
  1733. .start = rt2x00mac_start,
  1734. .stop = rt2x00mac_stop,
  1735. .add_interface = rt2x00mac_add_interface,
  1736. .remove_interface = rt2x00mac_remove_interface,
  1737. .config = rt2x00mac_config,
  1738. .configure_filter = rt2x00mac_configure_filter,
  1739. .sw_scan_start = rt2x00mac_sw_scan_start,
  1740. .sw_scan_complete = rt2x00mac_sw_scan_complete,
  1741. .get_stats = rt2x00mac_get_stats,
  1742. .bss_info_changed = rt2x00mac_bss_info_changed,
  1743. .conf_tx = rt2x00mac_conf_tx,
  1744. .get_tsf = rt2500pci_get_tsf,
  1745. .tx_last_beacon = rt2500pci_tx_last_beacon,
  1746. .rfkill_poll = rt2x00mac_rfkill_poll,
  1747. .flush = rt2x00mac_flush,
  1748. .set_antenna = rt2x00mac_set_antenna,
  1749. .get_antenna = rt2x00mac_get_antenna,
  1750. .get_ringparam = rt2x00mac_get_ringparam,
  1751. .tx_frames_pending = rt2x00mac_tx_frames_pending,
  1752. };
  1753. static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
  1754. .irq_handler = rt2500pci_interrupt,
  1755. .txstatus_tasklet = rt2500pci_txstatus_tasklet,
  1756. .tbtt_tasklet = rt2500pci_tbtt_tasklet,
  1757. .rxdone_tasklet = rt2500pci_rxdone_tasklet,
  1758. .probe_hw = rt2500pci_probe_hw,
  1759. .initialize = rt2x00mmio_initialize,
  1760. .uninitialize = rt2x00mmio_uninitialize,
  1761. .get_entry_state = rt2500pci_get_entry_state,
  1762. .clear_entry = rt2500pci_clear_entry,
  1763. .set_device_state = rt2500pci_set_device_state,
  1764. .rfkill_poll = rt2500pci_rfkill_poll,
  1765. .link_stats = rt2500pci_link_stats,
  1766. .reset_tuner = rt2500pci_reset_tuner,
  1767. .link_tuner = rt2500pci_link_tuner,
  1768. .start_queue = rt2500pci_start_queue,
  1769. .kick_queue = rt2500pci_kick_queue,
  1770. .stop_queue = rt2500pci_stop_queue,
  1771. .flush_queue = rt2x00mmio_flush_queue,
  1772. .write_tx_desc = rt2500pci_write_tx_desc,
  1773. .write_beacon = rt2500pci_write_beacon,
  1774. .fill_rxdone = rt2500pci_fill_rxdone,
  1775. .config_filter = rt2500pci_config_filter,
  1776. .config_intf = rt2500pci_config_intf,
  1777. .config_erp = rt2500pci_config_erp,
  1778. .config_ant = rt2500pci_config_ant,
  1779. .config = rt2500pci_config,
  1780. };
  1781. static void rt2500pci_queue_init(struct data_queue *queue)
  1782. {
  1783. switch (queue->qid) {
  1784. case QID_RX:
  1785. queue->limit = 32;
  1786. queue->data_size = DATA_FRAME_SIZE;
  1787. queue->desc_size = RXD_DESC_SIZE;
  1788. queue->priv_size = sizeof(struct queue_entry_priv_mmio);
  1789. break;
  1790. case QID_AC_VO:
  1791. case QID_AC_VI:
  1792. case QID_AC_BE:
  1793. case QID_AC_BK:
  1794. queue->limit = 32;
  1795. queue->data_size = DATA_FRAME_SIZE;
  1796. queue->desc_size = TXD_DESC_SIZE;
  1797. queue->priv_size = sizeof(struct queue_entry_priv_mmio);
  1798. break;
  1799. case QID_BEACON:
  1800. queue->limit = 1;
  1801. queue->data_size = MGMT_FRAME_SIZE;
  1802. queue->desc_size = TXD_DESC_SIZE;
  1803. queue->priv_size = sizeof(struct queue_entry_priv_mmio);
  1804. break;
  1805. case QID_ATIM:
  1806. queue->limit = 8;
  1807. queue->data_size = DATA_FRAME_SIZE;
  1808. queue->desc_size = TXD_DESC_SIZE;
  1809. queue->priv_size = sizeof(struct queue_entry_priv_mmio);
  1810. break;
  1811. default:
  1812. BUG();
  1813. break;
  1814. }
  1815. }
  1816. static const struct rt2x00_ops rt2500pci_ops = {
  1817. .name = KBUILD_MODNAME,
  1818. .max_ap_intf = 1,
  1819. .eeprom_size = EEPROM_SIZE,
  1820. .rf_size = RF_SIZE,
  1821. .tx_queues = NUM_TX_QUEUES,
  1822. .queue_init = rt2500pci_queue_init,
  1823. .lib = &rt2500pci_rt2x00_ops,
  1824. .hw = &rt2500pci_mac80211_ops,
  1825. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1826. .debugfs = &rt2500pci_rt2x00debug,
  1827. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1828. };
  1829. /*
  1830. * RT2500pci module information.
  1831. */
  1832. static DEFINE_PCI_DEVICE_TABLE(rt2500pci_device_table) = {
  1833. { PCI_DEVICE(0x1814, 0x0201) },
  1834. { 0, }
  1835. };
  1836. MODULE_AUTHOR(DRV_PROJECT);
  1837. MODULE_VERSION(DRV_VERSION);
  1838. MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
  1839. MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
  1840. MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
  1841. MODULE_LICENSE("GPL");
  1842. static int rt2500pci_probe(struct pci_dev *pci_dev,
  1843. const struct pci_device_id *id)
  1844. {
  1845. return rt2x00pci_probe(pci_dev, &rt2500pci_ops);
  1846. }
  1847. static struct pci_driver rt2500pci_driver = {
  1848. .name = KBUILD_MODNAME,
  1849. .id_table = rt2500pci_device_table,
  1850. .probe = rt2500pci_probe,
  1851. .remove = rt2x00pci_remove,
  1852. .suspend = rt2x00pci_suspend,
  1853. .resume = rt2x00pci_resume,
  1854. };
  1855. module_pci_driver(rt2500pci_driver);