sdio_chip.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955
  1. /*
  2. * Copyright (c) 2011 Broadcom Corporation
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  11. * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
  13. * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
  14. * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. /* ***** SDIO interface chip backplane handle functions ***** */
  17. #include <linux/types.h>
  18. #include <linux/netdevice.h>
  19. #include <linux/mmc/card.h>
  20. #include <linux/ssb/ssb_regs.h>
  21. #include <linux/bcma/bcma.h>
  22. #include <chipcommon.h>
  23. #include <brcm_hw_ids.h>
  24. #include <brcmu_wifi.h>
  25. #include <brcmu_utils.h>
  26. #include <soc.h>
  27. #include "dhd_dbg.h"
  28. #include "sdio_host.h"
  29. #include "sdio_chip.h"
  30. /* chip core base & ramsize */
  31. /* bcm4329 */
  32. /* SDIO device core, ID 0x829 */
  33. #define BCM4329_CORE_BUS_BASE 0x18011000
  34. /* internal memory core, ID 0x80e */
  35. #define BCM4329_CORE_SOCRAM_BASE 0x18003000
  36. /* ARM Cortex M3 core, ID 0x82a */
  37. #define BCM4329_CORE_ARM_BASE 0x18002000
  38. #define BCM4329_RAMSIZE 0x48000
  39. /* bcm43143 */
  40. /* SDIO device core */
  41. #define BCM43143_CORE_BUS_BASE 0x18002000
  42. /* internal memory core */
  43. #define BCM43143_CORE_SOCRAM_BASE 0x18004000
  44. /* ARM Cortex M3 core, ID 0x82a */
  45. #define BCM43143_CORE_ARM_BASE 0x18003000
  46. #define BCM43143_RAMSIZE 0x70000
  47. #define SBCOREREV(sbidh) \
  48. ((((sbidh) & SSB_IDHIGH_RCHI) >> SSB_IDHIGH_RCHI_SHIFT) | \
  49. ((sbidh) & SSB_IDHIGH_RCLO))
  50. /* SOC Interconnect types (aka chip types) */
  51. #define SOCI_SB 0
  52. #define SOCI_AI 1
  53. /* EROM CompIdentB */
  54. #define CIB_REV_MASK 0xff000000
  55. #define CIB_REV_SHIFT 24
  56. /* ARM CR4 core specific control flag bits */
  57. #define ARMCR4_BCMA_IOCTL_CPUHALT 0x0020
  58. #define SDIOD_DRVSTR_KEY(chip, pmu) (((chip) << 16) | (pmu))
  59. /* SDIO Pad drive strength to select value mappings */
  60. struct sdiod_drive_str {
  61. u8 strength; /* Pad Drive Strength in mA */
  62. u8 sel; /* Chip-specific select value */
  63. };
  64. /* SDIO Drive Strength to sel value table for PMU Rev 11 (1.8V) */
  65. static const struct sdiod_drive_str sdiod_drvstr_tab1_1v8[] = {
  66. {32, 0x6},
  67. {26, 0x7},
  68. {22, 0x4},
  69. {16, 0x5},
  70. {12, 0x2},
  71. {8, 0x3},
  72. {4, 0x0},
  73. {0, 0x1}
  74. };
  75. /* SDIO Drive Strength to sel value table for 43143 PMU Rev 17 (3.3V) */
  76. static const struct sdiod_drive_str sdiod_drvstr_tab2_3v3[] = {
  77. {16, 0x7},
  78. {12, 0x5},
  79. {8, 0x3},
  80. {4, 0x1}
  81. };
  82. u8
  83. brcmf_sdio_chip_getinfidx(struct chip_info *ci, u16 coreid)
  84. {
  85. u8 idx;
  86. for (idx = 0; idx < BRCMF_MAX_CORENUM; idx++)
  87. if (coreid == ci->c_inf[idx].id)
  88. return idx;
  89. return BRCMF_MAX_CORENUM;
  90. }
  91. static u32
  92. brcmf_sdio_sb_corerev(struct brcmf_sdio_dev *sdiodev,
  93. struct chip_info *ci, u16 coreid)
  94. {
  95. u32 regdata;
  96. u8 idx;
  97. idx = brcmf_sdio_chip_getinfidx(ci, coreid);
  98. regdata = brcmf_sdio_regrl(sdiodev,
  99. CORE_SB(ci->c_inf[idx].base, sbidhigh),
  100. NULL);
  101. return SBCOREREV(regdata);
  102. }
  103. static u32
  104. brcmf_sdio_ai_corerev(struct brcmf_sdio_dev *sdiodev,
  105. struct chip_info *ci, u16 coreid)
  106. {
  107. u8 idx;
  108. idx = brcmf_sdio_chip_getinfidx(ci, coreid);
  109. return (ci->c_inf[idx].cib & CIB_REV_MASK) >> CIB_REV_SHIFT;
  110. }
  111. static bool
  112. brcmf_sdio_sb_iscoreup(struct brcmf_sdio_dev *sdiodev,
  113. struct chip_info *ci, u16 coreid)
  114. {
  115. u32 regdata;
  116. u8 idx;
  117. idx = brcmf_sdio_chip_getinfidx(ci, coreid);
  118. regdata = brcmf_sdio_regrl(sdiodev,
  119. CORE_SB(ci->c_inf[idx].base, sbtmstatelow),
  120. NULL);
  121. regdata &= (SSB_TMSLOW_RESET | SSB_TMSLOW_REJECT |
  122. SSB_IMSTATE_REJECT | SSB_TMSLOW_CLOCK);
  123. return (SSB_TMSLOW_CLOCK == regdata);
  124. }
  125. static bool
  126. brcmf_sdio_ai_iscoreup(struct brcmf_sdio_dev *sdiodev,
  127. struct chip_info *ci, u16 coreid)
  128. {
  129. u32 regdata;
  130. u8 idx;
  131. bool ret;
  132. idx = brcmf_sdio_chip_getinfidx(ci, coreid);
  133. regdata = brcmf_sdio_regrl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL,
  134. NULL);
  135. ret = (regdata & (BCMA_IOCTL_FGC | BCMA_IOCTL_CLK)) == BCMA_IOCTL_CLK;
  136. regdata = brcmf_sdio_regrl(sdiodev,
  137. ci->c_inf[idx].wrapbase+BCMA_RESET_CTL,
  138. NULL);
  139. ret = ret && ((regdata & BCMA_RESET_CTL_RESET) == 0);
  140. return ret;
  141. }
  142. static void
  143. brcmf_sdio_sb_coredisable(struct brcmf_sdio_dev *sdiodev,
  144. struct chip_info *ci, u16 coreid, u32 core_bits)
  145. {
  146. u32 regdata, base;
  147. u8 idx;
  148. idx = brcmf_sdio_chip_getinfidx(ci, coreid);
  149. base = ci->c_inf[idx].base;
  150. regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbtmstatelow), NULL);
  151. if (regdata & SSB_TMSLOW_RESET)
  152. return;
  153. regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbtmstatelow), NULL);
  154. if ((regdata & SSB_TMSLOW_CLOCK) != 0) {
  155. /*
  156. * set target reject and spin until busy is clear
  157. * (preserve core-specific bits)
  158. */
  159. regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbtmstatelow),
  160. NULL);
  161. brcmf_sdio_regwl(sdiodev, CORE_SB(base, sbtmstatelow),
  162. regdata | SSB_TMSLOW_REJECT, NULL);
  163. regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbtmstatelow),
  164. NULL);
  165. udelay(1);
  166. SPINWAIT((brcmf_sdio_regrl(sdiodev,
  167. CORE_SB(base, sbtmstatehigh),
  168. NULL) &
  169. SSB_TMSHIGH_BUSY), 100000);
  170. regdata = brcmf_sdio_regrl(sdiodev,
  171. CORE_SB(base, sbtmstatehigh),
  172. NULL);
  173. if (regdata & SSB_TMSHIGH_BUSY)
  174. brcmf_err("core state still busy\n");
  175. regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbidlow),
  176. NULL);
  177. if (regdata & SSB_IDLOW_INITIATOR) {
  178. regdata = brcmf_sdio_regrl(sdiodev,
  179. CORE_SB(base, sbimstate),
  180. NULL);
  181. regdata |= SSB_IMSTATE_REJECT;
  182. brcmf_sdio_regwl(sdiodev, CORE_SB(base, sbimstate),
  183. regdata, NULL);
  184. regdata = brcmf_sdio_regrl(sdiodev,
  185. CORE_SB(base, sbimstate),
  186. NULL);
  187. udelay(1);
  188. SPINWAIT((brcmf_sdio_regrl(sdiodev,
  189. CORE_SB(base, sbimstate),
  190. NULL) &
  191. SSB_IMSTATE_BUSY), 100000);
  192. }
  193. /* set reset and reject while enabling the clocks */
  194. regdata = SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
  195. SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET;
  196. brcmf_sdio_regwl(sdiodev, CORE_SB(base, sbtmstatelow),
  197. regdata, NULL);
  198. regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbtmstatelow),
  199. NULL);
  200. udelay(10);
  201. /* clear the initiator reject bit */
  202. regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbidlow),
  203. NULL);
  204. if (regdata & SSB_IDLOW_INITIATOR) {
  205. regdata = brcmf_sdio_regrl(sdiodev,
  206. CORE_SB(base, sbimstate),
  207. NULL);
  208. regdata &= ~SSB_IMSTATE_REJECT;
  209. brcmf_sdio_regwl(sdiodev, CORE_SB(base, sbimstate),
  210. regdata, NULL);
  211. }
  212. }
  213. /* leave reset and reject asserted */
  214. brcmf_sdio_regwl(sdiodev, CORE_SB(base, sbtmstatelow),
  215. (SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET), NULL);
  216. udelay(1);
  217. }
  218. static void
  219. brcmf_sdio_ai_coredisable(struct brcmf_sdio_dev *sdiodev,
  220. struct chip_info *ci, u16 coreid, u32 core_bits)
  221. {
  222. u8 idx;
  223. u32 regdata;
  224. idx = brcmf_sdio_chip_getinfidx(ci, coreid);
  225. /* if core is already in reset, just return */
  226. regdata = brcmf_sdio_regrl(sdiodev,
  227. ci->c_inf[idx].wrapbase+BCMA_RESET_CTL,
  228. NULL);
  229. if ((regdata & BCMA_RESET_CTL_RESET) != 0)
  230. return;
  231. /* ensure no pending backplane operation
  232. * 300uc should be sufficient for backplane ops to be finish
  233. * extra 10ms is taken into account for firmware load stage
  234. * after 10300us carry on disabling the core anyway
  235. */
  236. SPINWAIT(brcmf_sdio_regrl(sdiodev,
  237. ci->c_inf[idx].wrapbase+BCMA_RESET_ST,
  238. NULL), 10300);
  239. regdata = brcmf_sdio_regrl(sdiodev,
  240. ci->c_inf[idx].wrapbase+BCMA_RESET_ST,
  241. NULL);
  242. if (regdata)
  243. brcmf_err("disabling core 0x%x with reset status %x\n",
  244. coreid, regdata);
  245. brcmf_sdio_regwl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_RESET_CTL,
  246. BCMA_RESET_CTL_RESET, NULL);
  247. udelay(1);
  248. brcmf_sdio_regwl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL,
  249. core_bits, NULL);
  250. regdata = brcmf_sdio_regrl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL,
  251. NULL);
  252. usleep_range(10, 20);
  253. }
  254. static void
  255. brcmf_sdio_sb_resetcore(struct brcmf_sdio_dev *sdiodev,
  256. struct chip_info *ci, u16 coreid, u32 core_bits)
  257. {
  258. u32 regdata;
  259. u8 idx;
  260. idx = brcmf_sdio_chip_getinfidx(ci, coreid);
  261. /*
  262. * Must do the disable sequence first to work for
  263. * arbitrary current core state.
  264. */
  265. brcmf_sdio_sb_coredisable(sdiodev, ci, coreid, 0);
  266. /*
  267. * Now do the initialization sequence.
  268. * set reset while enabling the clock and
  269. * forcing them on throughout the core
  270. */
  271. brcmf_sdio_regwl(sdiodev,
  272. CORE_SB(ci->c_inf[idx].base, sbtmstatelow),
  273. SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK | SSB_TMSLOW_RESET,
  274. NULL);
  275. regdata = brcmf_sdio_regrl(sdiodev,
  276. CORE_SB(ci->c_inf[idx].base, sbtmstatelow),
  277. NULL);
  278. udelay(1);
  279. /* clear any serror */
  280. regdata = brcmf_sdio_regrl(sdiodev,
  281. CORE_SB(ci->c_inf[idx].base, sbtmstatehigh),
  282. NULL);
  283. if (regdata & SSB_TMSHIGH_SERR)
  284. brcmf_sdio_regwl(sdiodev,
  285. CORE_SB(ci->c_inf[idx].base, sbtmstatehigh),
  286. 0, NULL);
  287. regdata = brcmf_sdio_regrl(sdiodev,
  288. CORE_SB(ci->c_inf[idx].base, sbimstate),
  289. NULL);
  290. if (regdata & (SSB_IMSTATE_IBE | SSB_IMSTATE_TO))
  291. brcmf_sdio_regwl(sdiodev,
  292. CORE_SB(ci->c_inf[idx].base, sbimstate),
  293. regdata & ~(SSB_IMSTATE_IBE | SSB_IMSTATE_TO),
  294. NULL);
  295. /* clear reset and allow it to propagate throughout the core */
  296. brcmf_sdio_regwl(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatelow),
  297. SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK, NULL);
  298. regdata = brcmf_sdio_regrl(sdiodev,
  299. CORE_SB(ci->c_inf[idx].base, sbtmstatelow),
  300. NULL);
  301. udelay(1);
  302. /* leave clock enabled */
  303. brcmf_sdio_regwl(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatelow),
  304. SSB_TMSLOW_CLOCK, NULL);
  305. regdata = brcmf_sdio_regrl(sdiodev,
  306. CORE_SB(ci->c_inf[idx].base, sbtmstatelow),
  307. NULL);
  308. udelay(1);
  309. }
  310. static void
  311. brcmf_sdio_ai_resetcore(struct brcmf_sdio_dev *sdiodev,
  312. struct chip_info *ci, u16 coreid, u32 core_bits)
  313. {
  314. u8 idx;
  315. u32 regdata;
  316. idx = brcmf_sdio_chip_getinfidx(ci, coreid);
  317. /* must disable first to work for arbitrary current core state */
  318. brcmf_sdio_ai_coredisable(sdiodev, ci, coreid, core_bits);
  319. /* now do initialization sequence */
  320. brcmf_sdio_regwl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL,
  321. core_bits | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK, NULL);
  322. regdata = brcmf_sdio_regrl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL,
  323. NULL);
  324. brcmf_sdio_regwl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_RESET_CTL,
  325. 0, NULL);
  326. regdata = brcmf_sdio_regrl(sdiodev,
  327. ci->c_inf[idx].wrapbase+BCMA_RESET_CTL,
  328. NULL);
  329. udelay(1);
  330. brcmf_sdio_regwl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL,
  331. core_bits | BCMA_IOCTL_CLK, NULL);
  332. regdata = brcmf_sdio_regrl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL,
  333. NULL);
  334. udelay(1);
  335. }
  336. #ifdef DEBUG
  337. /* safety check for chipinfo */
  338. static int brcmf_sdio_chip_cichk(struct chip_info *ci)
  339. {
  340. u8 core_idx;
  341. /* check RAM core presence for ARM CM3 core */
  342. core_idx = brcmf_sdio_chip_getinfidx(ci, BCMA_CORE_ARM_CM3);
  343. if (BRCMF_MAX_CORENUM != core_idx) {
  344. core_idx = brcmf_sdio_chip_getinfidx(ci,
  345. BCMA_CORE_INTERNAL_MEM);
  346. if (BRCMF_MAX_CORENUM == core_idx) {
  347. brcmf_err("RAM core not provided with ARM CM3 core\n");
  348. return -ENODEV;
  349. }
  350. }
  351. /* check RAM base for ARM CR4 core */
  352. core_idx = brcmf_sdio_chip_getinfidx(ci, BCMA_CORE_ARM_CR4);
  353. if (BRCMF_MAX_CORENUM != core_idx) {
  354. if (ci->rambase == 0) {
  355. brcmf_err("RAM base not provided with ARM CR4 core\n");
  356. return -ENOMEM;
  357. }
  358. }
  359. return 0;
  360. }
  361. #else /* DEBUG */
  362. static inline int brcmf_sdio_chip_cichk(struct chip_info *ci)
  363. {
  364. return 0;
  365. }
  366. #endif
  367. static int brcmf_sdio_chip_recognition(struct brcmf_sdio_dev *sdiodev,
  368. struct chip_info *ci, u32 regs)
  369. {
  370. u32 regdata;
  371. int ret;
  372. /* Get CC core rev
  373. * Chipid is assume to be at offset 0 from regs arg
  374. * For different chiptypes or old sdio hosts w/o chipcommon,
  375. * other ways of recognition should be added here.
  376. */
  377. ci->c_inf[0].id = BCMA_CORE_CHIPCOMMON;
  378. ci->c_inf[0].base = regs;
  379. regdata = brcmf_sdio_regrl(sdiodev,
  380. CORE_CC_REG(ci->c_inf[0].base, chipid),
  381. NULL);
  382. ci->chip = regdata & CID_ID_MASK;
  383. ci->chiprev = (regdata & CID_REV_MASK) >> CID_REV_SHIFT;
  384. ci->socitype = (regdata & CID_TYPE_MASK) >> CID_TYPE_SHIFT;
  385. brcmf_dbg(INFO, "chipid=0x%x chiprev=%d\n", ci->chip, ci->chiprev);
  386. /* Address of cores for new chips should be added here */
  387. switch (ci->chip) {
  388. case BCM43143_CHIP_ID:
  389. ci->c_inf[0].wrapbase = ci->c_inf[0].base + 0x00100000;
  390. ci->c_inf[0].cib = 0x2b000000;
  391. ci->c_inf[1].id = BCMA_CORE_SDIO_DEV;
  392. ci->c_inf[1].base = BCM43143_CORE_BUS_BASE;
  393. ci->c_inf[1].wrapbase = ci->c_inf[1].base + 0x00100000;
  394. ci->c_inf[1].cib = 0x18000000;
  395. ci->c_inf[2].id = BCMA_CORE_INTERNAL_MEM;
  396. ci->c_inf[2].base = BCM43143_CORE_SOCRAM_BASE;
  397. ci->c_inf[2].wrapbase = ci->c_inf[2].base + 0x00100000;
  398. ci->c_inf[2].cib = 0x14000000;
  399. ci->c_inf[3].id = BCMA_CORE_ARM_CM3;
  400. ci->c_inf[3].base = BCM43143_CORE_ARM_BASE;
  401. ci->c_inf[3].wrapbase = ci->c_inf[3].base + 0x00100000;
  402. ci->c_inf[3].cib = 0x07000000;
  403. ci->ramsize = BCM43143_RAMSIZE;
  404. break;
  405. case BCM43241_CHIP_ID:
  406. ci->c_inf[0].wrapbase = 0x18100000;
  407. ci->c_inf[0].cib = 0x2a084411;
  408. ci->c_inf[1].id = BCMA_CORE_SDIO_DEV;
  409. ci->c_inf[1].base = 0x18002000;
  410. ci->c_inf[1].wrapbase = 0x18102000;
  411. ci->c_inf[1].cib = 0x0e004211;
  412. ci->c_inf[2].id = BCMA_CORE_INTERNAL_MEM;
  413. ci->c_inf[2].base = 0x18004000;
  414. ci->c_inf[2].wrapbase = 0x18104000;
  415. ci->c_inf[2].cib = 0x14080401;
  416. ci->c_inf[3].id = BCMA_CORE_ARM_CM3;
  417. ci->c_inf[3].base = 0x18003000;
  418. ci->c_inf[3].wrapbase = 0x18103000;
  419. ci->c_inf[3].cib = 0x07004211;
  420. ci->ramsize = 0x90000;
  421. break;
  422. case BCM4329_CHIP_ID:
  423. ci->c_inf[1].id = BCMA_CORE_SDIO_DEV;
  424. ci->c_inf[1].base = BCM4329_CORE_BUS_BASE;
  425. ci->c_inf[2].id = BCMA_CORE_INTERNAL_MEM;
  426. ci->c_inf[2].base = BCM4329_CORE_SOCRAM_BASE;
  427. ci->c_inf[3].id = BCMA_CORE_ARM_CM3;
  428. ci->c_inf[3].base = BCM4329_CORE_ARM_BASE;
  429. ci->ramsize = BCM4329_RAMSIZE;
  430. break;
  431. case BCM4330_CHIP_ID:
  432. ci->c_inf[0].wrapbase = 0x18100000;
  433. ci->c_inf[0].cib = 0x27004211;
  434. ci->c_inf[1].id = BCMA_CORE_SDIO_DEV;
  435. ci->c_inf[1].base = 0x18002000;
  436. ci->c_inf[1].wrapbase = 0x18102000;
  437. ci->c_inf[1].cib = 0x07004211;
  438. ci->c_inf[2].id = BCMA_CORE_INTERNAL_MEM;
  439. ci->c_inf[2].base = 0x18004000;
  440. ci->c_inf[2].wrapbase = 0x18104000;
  441. ci->c_inf[2].cib = 0x0d080401;
  442. ci->c_inf[3].id = BCMA_CORE_ARM_CM3;
  443. ci->c_inf[3].base = 0x18003000;
  444. ci->c_inf[3].wrapbase = 0x18103000;
  445. ci->c_inf[3].cib = 0x03004211;
  446. ci->ramsize = 0x48000;
  447. break;
  448. case BCM4334_CHIP_ID:
  449. ci->c_inf[0].wrapbase = 0x18100000;
  450. ci->c_inf[0].cib = 0x29004211;
  451. ci->c_inf[1].id = BCMA_CORE_SDIO_DEV;
  452. ci->c_inf[1].base = 0x18002000;
  453. ci->c_inf[1].wrapbase = 0x18102000;
  454. ci->c_inf[1].cib = 0x0d004211;
  455. ci->c_inf[2].id = BCMA_CORE_INTERNAL_MEM;
  456. ci->c_inf[2].base = 0x18004000;
  457. ci->c_inf[2].wrapbase = 0x18104000;
  458. ci->c_inf[2].cib = 0x13080401;
  459. ci->c_inf[3].id = BCMA_CORE_ARM_CM3;
  460. ci->c_inf[3].base = 0x18003000;
  461. ci->c_inf[3].wrapbase = 0x18103000;
  462. ci->c_inf[3].cib = 0x07004211;
  463. ci->ramsize = 0x80000;
  464. break;
  465. case BCM4335_CHIP_ID:
  466. ci->c_inf[0].wrapbase = 0x18100000;
  467. ci->c_inf[0].cib = 0x2b084411;
  468. ci->c_inf[1].id = BCMA_CORE_SDIO_DEV;
  469. ci->c_inf[1].base = 0x18005000;
  470. ci->c_inf[1].wrapbase = 0x18105000;
  471. ci->c_inf[1].cib = 0x0f004211;
  472. ci->c_inf[2].id = BCMA_CORE_ARM_CR4;
  473. ci->c_inf[2].base = 0x18002000;
  474. ci->c_inf[2].wrapbase = 0x18102000;
  475. ci->c_inf[2].cib = 0x01084411;
  476. ci->ramsize = 0xc0000;
  477. ci->rambase = 0x180000;
  478. break;
  479. default:
  480. brcmf_err("chipid 0x%x is not supported\n", ci->chip);
  481. return -ENODEV;
  482. }
  483. ret = brcmf_sdio_chip_cichk(ci);
  484. if (ret)
  485. return ret;
  486. switch (ci->socitype) {
  487. case SOCI_SB:
  488. ci->iscoreup = brcmf_sdio_sb_iscoreup;
  489. ci->corerev = brcmf_sdio_sb_corerev;
  490. ci->coredisable = brcmf_sdio_sb_coredisable;
  491. ci->resetcore = brcmf_sdio_sb_resetcore;
  492. break;
  493. case SOCI_AI:
  494. ci->iscoreup = brcmf_sdio_ai_iscoreup;
  495. ci->corerev = brcmf_sdio_ai_corerev;
  496. ci->coredisable = brcmf_sdio_ai_coredisable;
  497. ci->resetcore = brcmf_sdio_ai_resetcore;
  498. break;
  499. default:
  500. brcmf_err("socitype %u not supported\n", ci->socitype);
  501. return -ENODEV;
  502. }
  503. return 0;
  504. }
  505. static int
  506. brcmf_sdio_chip_buscoreprep(struct brcmf_sdio_dev *sdiodev)
  507. {
  508. int err = 0;
  509. u8 clkval, clkset;
  510. /* Try forcing SDIO core to do ALPAvail request only */
  511. clkset = SBSDIO_FORCE_HW_CLKREQ_OFF | SBSDIO_ALP_AVAIL_REQ;
  512. brcmf_sdio_regwb(sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, clkset, &err);
  513. if (err) {
  514. brcmf_err("error writing for HT off\n");
  515. return err;
  516. }
  517. /* If register supported, wait for ALPAvail and then force ALP */
  518. /* This may take up to 15 milliseconds */
  519. clkval = brcmf_sdio_regrb(sdiodev,
  520. SBSDIO_FUNC1_CHIPCLKCSR, NULL);
  521. if ((clkval & ~SBSDIO_AVBITS) != clkset) {
  522. brcmf_err("ChipClkCSR access: wrote 0x%02x read 0x%02x\n",
  523. clkset, clkval);
  524. return -EACCES;
  525. }
  526. SPINWAIT(((clkval = brcmf_sdio_regrb(sdiodev,
  527. SBSDIO_FUNC1_CHIPCLKCSR, NULL)),
  528. !SBSDIO_ALPAV(clkval)),
  529. PMU_MAX_TRANSITION_DLY);
  530. if (!SBSDIO_ALPAV(clkval)) {
  531. brcmf_err("timeout on ALPAV wait, clkval 0x%02x\n",
  532. clkval);
  533. return -EBUSY;
  534. }
  535. clkset = SBSDIO_FORCE_HW_CLKREQ_OFF | SBSDIO_FORCE_ALP;
  536. brcmf_sdio_regwb(sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, clkset, &err);
  537. udelay(65);
  538. /* Also, disable the extra SDIO pull-ups */
  539. brcmf_sdio_regwb(sdiodev, SBSDIO_FUNC1_SDIOPULLUP, 0, NULL);
  540. return 0;
  541. }
  542. static void
  543. brcmf_sdio_chip_buscoresetup(struct brcmf_sdio_dev *sdiodev,
  544. struct chip_info *ci)
  545. {
  546. u32 base = ci->c_inf[0].base;
  547. /* get chipcommon rev */
  548. ci->c_inf[0].rev = ci->corerev(sdiodev, ci, ci->c_inf[0].id);
  549. /* get chipcommon capabilites */
  550. ci->c_inf[0].caps = brcmf_sdio_regrl(sdiodev,
  551. CORE_CC_REG(base, capabilities),
  552. NULL);
  553. /* get pmu caps & rev */
  554. if (ci->c_inf[0].caps & CC_CAP_PMU) {
  555. ci->pmucaps =
  556. brcmf_sdio_regrl(sdiodev,
  557. CORE_CC_REG(base, pmucapabilities),
  558. NULL);
  559. ci->pmurev = ci->pmucaps & PCAP_REV_MASK;
  560. }
  561. ci->c_inf[1].rev = ci->corerev(sdiodev, ci, ci->c_inf[1].id);
  562. brcmf_dbg(INFO, "ccrev=%d, pmurev=%d, buscore rev/type=%d/0x%x\n",
  563. ci->c_inf[0].rev, ci->pmurev,
  564. ci->c_inf[1].rev, ci->c_inf[1].id);
  565. /*
  566. * Make sure any on-chip ARM is off (in case strapping is wrong),
  567. * or downloaded code was already running.
  568. */
  569. ci->coredisable(sdiodev, ci, BCMA_CORE_ARM_CM3, 0);
  570. }
  571. int brcmf_sdio_chip_attach(struct brcmf_sdio_dev *sdiodev,
  572. struct chip_info **ci_ptr, u32 regs)
  573. {
  574. int ret;
  575. struct chip_info *ci;
  576. brcmf_dbg(TRACE, "Enter\n");
  577. /* alloc chip_info_t */
  578. ci = kzalloc(sizeof(struct chip_info), GFP_ATOMIC);
  579. if (!ci)
  580. return -ENOMEM;
  581. ret = brcmf_sdio_chip_buscoreprep(sdiodev);
  582. if (ret != 0)
  583. goto err;
  584. ret = brcmf_sdio_chip_recognition(sdiodev, ci, regs);
  585. if (ret != 0)
  586. goto err;
  587. brcmf_sdio_chip_buscoresetup(sdiodev, ci);
  588. brcmf_sdio_regwl(sdiodev, CORE_CC_REG(ci->c_inf[0].base, gpiopullup),
  589. 0, NULL);
  590. brcmf_sdio_regwl(sdiodev, CORE_CC_REG(ci->c_inf[0].base, gpiopulldown),
  591. 0, NULL);
  592. *ci_ptr = ci;
  593. return 0;
  594. err:
  595. kfree(ci);
  596. return ret;
  597. }
  598. void
  599. brcmf_sdio_chip_detach(struct chip_info **ci_ptr)
  600. {
  601. brcmf_dbg(TRACE, "Enter\n");
  602. kfree(*ci_ptr);
  603. *ci_ptr = NULL;
  604. }
  605. static char *brcmf_sdio_chip_name(uint chipid, char *buf, uint len)
  606. {
  607. const char *fmt;
  608. fmt = ((chipid > 0xa000) || (chipid < 0x4000)) ? "%d" : "%x";
  609. snprintf(buf, len, fmt, chipid);
  610. return buf;
  611. }
  612. void
  613. brcmf_sdio_chip_drivestrengthinit(struct brcmf_sdio_dev *sdiodev,
  614. struct chip_info *ci, u32 drivestrength)
  615. {
  616. const struct sdiod_drive_str *str_tab = NULL;
  617. u32 str_mask;
  618. u32 str_shift;
  619. char chn[8];
  620. u32 base = ci->c_inf[0].base;
  621. u32 i;
  622. u32 drivestrength_sel = 0;
  623. u32 cc_data_temp;
  624. u32 addr;
  625. if (!(ci->c_inf[0].caps & CC_CAP_PMU))
  626. return;
  627. switch (SDIOD_DRVSTR_KEY(ci->chip, ci->pmurev)) {
  628. case SDIOD_DRVSTR_KEY(BCM4330_CHIP_ID, 12):
  629. str_tab = sdiod_drvstr_tab1_1v8;
  630. str_mask = 0x00003800;
  631. str_shift = 11;
  632. break;
  633. case SDIOD_DRVSTR_KEY(BCM43143_CHIP_ID, 17):
  634. /* note: 43143 does not support tristate */
  635. i = ARRAY_SIZE(sdiod_drvstr_tab2_3v3) - 1;
  636. if (drivestrength >= sdiod_drvstr_tab2_3v3[i].strength) {
  637. str_tab = sdiod_drvstr_tab2_3v3;
  638. str_mask = 0x00000007;
  639. str_shift = 0;
  640. } else
  641. brcmf_err("Invalid SDIO Drive strength for chip %s, strength=%d\n",
  642. brcmf_sdio_chip_name(ci->chip, chn, 8),
  643. drivestrength);
  644. break;
  645. default:
  646. brcmf_err("No SDIO Drive strength init done for chip %s rev %d pmurev %d\n",
  647. brcmf_sdio_chip_name(ci->chip, chn, 8),
  648. ci->chiprev, ci->pmurev);
  649. break;
  650. }
  651. if (str_tab != NULL) {
  652. for (i = 0; str_tab[i].strength != 0; i++) {
  653. if (drivestrength >= str_tab[i].strength) {
  654. drivestrength_sel = str_tab[i].sel;
  655. break;
  656. }
  657. }
  658. addr = CORE_CC_REG(base, chipcontrol_addr);
  659. brcmf_sdio_regwl(sdiodev, addr, 1, NULL);
  660. cc_data_temp = brcmf_sdio_regrl(sdiodev, addr, NULL);
  661. cc_data_temp &= ~str_mask;
  662. drivestrength_sel <<= str_shift;
  663. cc_data_temp |= drivestrength_sel;
  664. brcmf_sdio_regwl(sdiodev, addr, cc_data_temp, NULL);
  665. brcmf_dbg(INFO, "SDIO: %d mA (req=%d mA) drive strength selected, set to 0x%08x\n",
  666. str_tab[i].strength, drivestrength, cc_data_temp);
  667. }
  668. }
  669. #ifdef DEBUG
  670. static bool
  671. brcmf_sdio_chip_verifynvram(struct brcmf_sdio_dev *sdiodev, u32 nvram_addr,
  672. char *nvram_dat, uint nvram_sz)
  673. {
  674. char *nvram_ularray;
  675. int err;
  676. bool ret = true;
  677. /* read back and verify */
  678. brcmf_dbg(INFO, "Compare NVRAM dl & ul; size=%d\n", nvram_sz);
  679. nvram_ularray = kmalloc(nvram_sz, GFP_KERNEL);
  680. /* do not proceed while no memory but */
  681. if (!nvram_ularray)
  682. return true;
  683. /* Upload image to verify downloaded contents. */
  684. memset(nvram_ularray, 0xaa, nvram_sz);
  685. /* Read the vars list to temp buffer for comparison */
  686. err = brcmf_sdio_ramrw(sdiodev, false, nvram_addr, nvram_ularray,
  687. nvram_sz);
  688. if (err) {
  689. brcmf_err("error %d on reading %d nvram bytes at 0x%08x\n",
  690. err, nvram_sz, nvram_addr);
  691. } else if (memcmp(nvram_dat, nvram_ularray, nvram_sz)) {
  692. brcmf_err("Downloaded NVRAM image is corrupted\n");
  693. ret = false;
  694. }
  695. kfree(nvram_ularray);
  696. return ret;
  697. }
  698. #else /* DEBUG */
  699. static inline bool
  700. brcmf_sdio_chip_verifynvram(struct brcmf_sdio_dev *sdiodev, u32 nvram_addr,
  701. char *nvram_dat, uint nvram_sz)
  702. {
  703. return true;
  704. }
  705. #endif /* DEBUG */
  706. static bool brcmf_sdio_chip_writenvram(struct brcmf_sdio_dev *sdiodev,
  707. struct chip_info *ci,
  708. char *nvram_dat, uint nvram_sz)
  709. {
  710. int err;
  711. u32 nvram_addr;
  712. u32 token;
  713. __le32 token_le;
  714. nvram_addr = (ci->ramsize - 4) - nvram_sz + ci->rambase;
  715. /* Write the vars list */
  716. err = brcmf_sdio_ramrw(sdiodev, true, nvram_addr, nvram_dat, nvram_sz);
  717. if (err) {
  718. brcmf_err("error %d on writing %d nvram bytes at 0x%08x\n",
  719. err, nvram_sz, nvram_addr);
  720. return false;
  721. }
  722. if (!brcmf_sdio_chip_verifynvram(sdiodev, nvram_addr,
  723. nvram_dat, nvram_sz))
  724. return false;
  725. /* generate token:
  726. * nvram size, converted to words, in lower 16-bits, checksum
  727. * in upper 16-bits.
  728. */
  729. token = nvram_sz / 4;
  730. token = (~token << 16) | (token & 0x0000FFFF);
  731. token_le = cpu_to_le32(token);
  732. brcmf_dbg(INFO, "RAM size: %d\n", ci->ramsize);
  733. brcmf_dbg(INFO, "nvram is placed at %d, size %d, token=0x%08x\n",
  734. nvram_addr, nvram_sz, token);
  735. /* Write the length token to the last word */
  736. if (brcmf_sdio_ramrw(sdiodev, true, (ci->ramsize - 4 + ci->rambase),
  737. (u8 *)&token_le, 4))
  738. return false;
  739. return true;
  740. }
  741. static void
  742. brcmf_sdio_chip_cm3_enterdl(struct brcmf_sdio_dev *sdiodev,
  743. struct chip_info *ci)
  744. {
  745. u32 zeros = 0;
  746. ci->coredisable(sdiodev, ci, BCMA_CORE_ARM_CM3, 0);
  747. ci->resetcore(sdiodev, ci, BCMA_CORE_INTERNAL_MEM, 0);
  748. /* clear length token */
  749. brcmf_sdio_ramrw(sdiodev, true, ci->ramsize - 4, (u8 *)&zeros, 4);
  750. }
  751. static bool
  752. brcmf_sdio_chip_cm3_exitdl(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci,
  753. char *nvram_dat, uint nvram_sz)
  754. {
  755. u8 core_idx;
  756. u32 reg_addr;
  757. if (!ci->iscoreup(sdiodev, ci, BCMA_CORE_INTERNAL_MEM)) {
  758. brcmf_err("SOCRAM core is down after reset?\n");
  759. return false;
  760. }
  761. if (!brcmf_sdio_chip_writenvram(sdiodev, ci, nvram_dat, nvram_sz))
  762. return false;
  763. /* clear all interrupts */
  764. core_idx = brcmf_sdio_chip_getinfidx(ci, BCMA_CORE_SDIO_DEV);
  765. reg_addr = ci->c_inf[core_idx].base;
  766. reg_addr += offsetof(struct sdpcmd_regs, intstatus);
  767. brcmf_sdio_regwl(sdiodev, reg_addr, 0xFFFFFFFF, NULL);
  768. ci->resetcore(sdiodev, ci, BCMA_CORE_ARM_CM3, 0);
  769. return true;
  770. }
  771. static inline void
  772. brcmf_sdio_chip_cr4_enterdl(struct brcmf_sdio_dev *sdiodev,
  773. struct chip_info *ci)
  774. {
  775. ci->resetcore(sdiodev, ci, BCMA_CORE_ARM_CR4,
  776. ARMCR4_BCMA_IOCTL_CPUHALT);
  777. }
  778. static bool
  779. brcmf_sdio_chip_cr4_exitdl(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci,
  780. char *nvram_dat, uint nvram_sz)
  781. {
  782. u8 core_idx;
  783. u32 reg_addr;
  784. if (!brcmf_sdio_chip_writenvram(sdiodev, ci, nvram_dat, nvram_sz))
  785. return false;
  786. /* clear all interrupts */
  787. core_idx = brcmf_sdio_chip_getinfidx(ci, BCMA_CORE_SDIO_DEV);
  788. reg_addr = ci->c_inf[core_idx].base;
  789. reg_addr += offsetof(struct sdpcmd_regs, intstatus);
  790. brcmf_sdio_regwl(sdiodev, reg_addr, 0xFFFFFFFF, NULL);
  791. /* Write reset vector to address 0 */
  792. brcmf_sdio_ramrw(sdiodev, true, 0, (void *)&ci->rst_vec,
  793. sizeof(ci->rst_vec));
  794. /* restore ARM */
  795. ci->resetcore(sdiodev, ci, BCMA_CORE_ARM_CR4, 0);
  796. return true;
  797. }
  798. void brcmf_sdio_chip_enter_download(struct brcmf_sdio_dev *sdiodev,
  799. struct chip_info *ci)
  800. {
  801. u8 arm_core_idx;
  802. arm_core_idx = brcmf_sdio_chip_getinfidx(ci, BCMA_CORE_ARM_CM3);
  803. if (BRCMF_MAX_CORENUM != arm_core_idx) {
  804. brcmf_sdio_chip_cm3_enterdl(sdiodev, ci);
  805. return;
  806. }
  807. brcmf_sdio_chip_cr4_enterdl(sdiodev, ci);
  808. }
  809. bool brcmf_sdio_chip_exit_download(struct brcmf_sdio_dev *sdiodev,
  810. struct chip_info *ci, char *nvram_dat,
  811. uint nvram_sz)
  812. {
  813. u8 arm_core_idx;
  814. arm_core_idx = brcmf_sdio_chip_getinfidx(ci, BCMA_CORE_ARM_CM3);
  815. if (BRCMF_MAX_CORENUM != arm_core_idx)
  816. return brcmf_sdio_chip_cm3_exitdl(sdiodev, ci, nvram_dat,
  817. nvram_sz);
  818. return brcmf_sdio_chip_cr4_exitdl(sdiodev, ci, nvram_dat, nvram_sz);
  819. }