wmi.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074
  1. /*
  2. * Copyright (c) 2012 Qualcomm Atheros, Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/etherdevice.h>
  17. #include <linux/if_arp.h>
  18. #include "wil6210.h"
  19. #include "txrx.h"
  20. #include "wmi.h"
  21. #include "trace.h"
  22. /**
  23. * WMI event receiving - theory of operations
  24. *
  25. * When firmware about to report WMI event, it fills memory area
  26. * in the mailbox and raises misc. IRQ. Thread interrupt handler invoked for
  27. * the misc IRQ, function @wmi_recv_cmd called by thread IRQ handler.
  28. *
  29. * @wmi_recv_cmd reads event, allocates memory chunk and attaches it to the
  30. * event list @wil->pending_wmi_ev. Then, work queue @wil->wmi_wq wakes up
  31. * and handles events within the @wmi_event_worker. Every event get detached
  32. * from list, processed and deleted.
  33. *
  34. * Purpose for this mechanism is to release IRQ thread; otherwise,
  35. * if WMI event handling involves another WMI command flow, this 2-nd flow
  36. * won't be completed because of blocked IRQ thread.
  37. */
  38. /**
  39. * Addressing - theory of operations
  40. *
  41. * There are several buses present on the WIL6210 card.
  42. * Same memory areas are visible at different address on
  43. * the different busses. There are 3 main bus masters:
  44. * - MAC CPU (ucode)
  45. * - User CPU (firmware)
  46. * - AHB (host)
  47. *
  48. * On the PCI bus, there is one BAR (BAR0) of 2Mb size, exposing
  49. * AHB addresses starting from 0x880000
  50. *
  51. * Internally, firmware uses addresses that allows faster access but
  52. * are invisible from the host. To read from these addresses, alternative
  53. * AHB address must be used.
  54. *
  55. * Memory mapping
  56. * Linker address PCI/Host address
  57. * 0x880000 .. 0xa80000 2Mb BAR0
  58. * 0x800000 .. 0x807000 0x900000 .. 0x907000 28k DCCM
  59. * 0x840000 .. 0x857000 0x908000 .. 0x91f000 92k PERIPH
  60. */
  61. /**
  62. * @fw_mapping provides memory remapping table
  63. */
  64. static const struct {
  65. u32 from; /* linker address - from, inclusive */
  66. u32 to; /* linker address - to, exclusive */
  67. u32 host; /* PCI/Host address - BAR0 + 0x880000 */
  68. } fw_mapping[] = {
  69. {0x000000, 0x040000, 0x8c0000}, /* FW code RAM 256k */
  70. {0x800000, 0x808000, 0x900000}, /* FW data RAM 32k */
  71. {0x840000, 0x860000, 0x908000}, /* peripheral data RAM 128k/96k used */
  72. {0x880000, 0x88a000, 0x880000}, /* various RGF */
  73. {0x8c0000, 0x949000, 0x8c0000}, /* trivial mapping for upper area */
  74. /*
  75. * 920000..930000 ucode code RAM
  76. * 930000..932000 ucode data RAM
  77. * 932000..949000 back-door debug data
  78. */
  79. };
  80. /**
  81. * return AHB address for given firmware/ucode internal (linker) address
  82. * @x - internal address
  83. * If address have no valid AHB mapping, return 0
  84. */
  85. static u32 wmi_addr_remap(u32 x)
  86. {
  87. uint i;
  88. for (i = 0; i < ARRAY_SIZE(fw_mapping); i++) {
  89. if ((x >= fw_mapping[i].from) && (x < fw_mapping[i].to))
  90. return x + fw_mapping[i].host - fw_mapping[i].from;
  91. }
  92. return 0;
  93. }
  94. /**
  95. * Check address validity for WMI buffer; remap if needed
  96. * @ptr - internal (linker) fw/ucode address
  97. *
  98. * Valid buffer should be DWORD aligned
  99. *
  100. * return address for accessing buffer from the host;
  101. * if buffer is not valid, return NULL.
  102. */
  103. void __iomem *wmi_buffer(struct wil6210_priv *wil, __le32 ptr_)
  104. {
  105. u32 off;
  106. u32 ptr = le32_to_cpu(ptr_);
  107. if (ptr % 4)
  108. return NULL;
  109. ptr = wmi_addr_remap(ptr);
  110. if (ptr < WIL6210_FW_HOST_OFF)
  111. return NULL;
  112. off = HOSTADDR(ptr);
  113. if (off > WIL6210_MEM_SIZE - 4)
  114. return NULL;
  115. return wil->csr + off;
  116. }
  117. /**
  118. * Check address validity
  119. */
  120. void __iomem *wmi_addr(struct wil6210_priv *wil, u32 ptr)
  121. {
  122. u32 off;
  123. if (ptr % 4)
  124. return NULL;
  125. if (ptr < WIL6210_FW_HOST_OFF)
  126. return NULL;
  127. off = HOSTADDR(ptr);
  128. if (off > WIL6210_MEM_SIZE - 4)
  129. return NULL;
  130. return wil->csr + off;
  131. }
  132. int wmi_read_hdr(struct wil6210_priv *wil, __le32 ptr,
  133. struct wil6210_mbox_hdr *hdr)
  134. {
  135. void __iomem *src = wmi_buffer(wil, ptr);
  136. if (!src)
  137. return -EINVAL;
  138. wil_memcpy_fromio_32(hdr, src, sizeof(*hdr));
  139. return 0;
  140. }
  141. static int __wmi_send(struct wil6210_priv *wil, u16 cmdid, void *buf, u16 len)
  142. {
  143. struct {
  144. struct wil6210_mbox_hdr hdr;
  145. struct wil6210_mbox_hdr_wmi wmi;
  146. } __packed cmd = {
  147. .hdr = {
  148. .type = WIL_MBOX_HDR_TYPE_WMI,
  149. .flags = 0,
  150. .len = cpu_to_le16(sizeof(cmd.wmi) + len),
  151. },
  152. .wmi = {
  153. .mid = 0,
  154. .id = cpu_to_le16(cmdid),
  155. },
  156. };
  157. struct wil6210_mbox_ring *r = &wil->mbox_ctl.tx;
  158. struct wil6210_mbox_ring_desc d_head;
  159. u32 next_head;
  160. void __iomem *dst;
  161. void __iomem *head = wmi_addr(wil, r->head);
  162. uint retry;
  163. if (sizeof(cmd) + len > r->entry_size) {
  164. wil_err(wil, "WMI size too large: %d bytes, max is %d\n",
  165. (int)(sizeof(cmd) + len), r->entry_size);
  166. return -ERANGE;
  167. }
  168. might_sleep();
  169. if (!test_bit(wil_status_fwready, &wil->status)) {
  170. wil_err(wil, "FW not ready\n");
  171. return -EAGAIN;
  172. }
  173. if (!head) {
  174. wil_err(wil, "WMI head is garbage: 0x%08x\n", r->head);
  175. return -EINVAL;
  176. }
  177. /* read Tx head till it is not busy */
  178. for (retry = 5; retry > 0; retry--) {
  179. wil_memcpy_fromio_32(&d_head, head, sizeof(d_head));
  180. if (d_head.sync == 0)
  181. break;
  182. msleep(20);
  183. }
  184. if (d_head.sync != 0) {
  185. wil_err(wil, "WMI head busy\n");
  186. return -EBUSY;
  187. }
  188. /* next head */
  189. next_head = r->base + ((r->head - r->base + sizeof(d_head)) % r->size);
  190. wil_dbg_wmi(wil, "Head 0x%08x -> 0x%08x\n", r->head, next_head);
  191. /* wait till FW finish with previous command */
  192. for (retry = 5; retry > 0; retry--) {
  193. r->tail = ioread32(wil->csr + HOST_MBOX +
  194. offsetof(struct wil6210_mbox_ctl, tx.tail));
  195. if (next_head != r->tail)
  196. break;
  197. msleep(20);
  198. }
  199. if (next_head == r->tail) {
  200. wil_err(wil, "WMI ring full\n");
  201. return -EBUSY;
  202. }
  203. dst = wmi_buffer(wil, d_head.addr);
  204. if (!dst) {
  205. wil_err(wil, "invalid WMI buffer: 0x%08x\n",
  206. le32_to_cpu(d_head.addr));
  207. return -EINVAL;
  208. }
  209. cmd.hdr.seq = cpu_to_le16(++wil->wmi_seq);
  210. /* set command */
  211. wil_dbg_wmi(wil, "WMI command 0x%04x [%d]\n", cmdid, len);
  212. wil_hex_dump_wmi("Cmd ", DUMP_PREFIX_OFFSET, 16, 1, &cmd,
  213. sizeof(cmd), true);
  214. wil_hex_dump_wmi("cmd ", DUMP_PREFIX_OFFSET, 16, 1, buf,
  215. len, true);
  216. wil_memcpy_toio_32(dst, &cmd, sizeof(cmd));
  217. wil_memcpy_toio_32(dst + sizeof(cmd), buf, len);
  218. /* mark entry as full */
  219. iowrite32(1, wil->csr + HOSTADDR(r->head) +
  220. offsetof(struct wil6210_mbox_ring_desc, sync));
  221. /* advance next ptr */
  222. iowrite32(r->head = next_head, wil->csr + HOST_MBOX +
  223. offsetof(struct wil6210_mbox_ctl, tx.head));
  224. trace_wil6210_wmi_cmd(&cmd.wmi, buf, len);
  225. /* interrupt to FW */
  226. iowrite32(SW_INT_MBOX, wil->csr + HOST_SW_INT);
  227. return 0;
  228. }
  229. int wmi_send(struct wil6210_priv *wil, u16 cmdid, void *buf, u16 len)
  230. {
  231. int rc;
  232. mutex_lock(&wil->wmi_mutex);
  233. rc = __wmi_send(wil, cmdid, buf, len);
  234. mutex_unlock(&wil->wmi_mutex);
  235. return rc;
  236. }
  237. /*=== Event handlers ===*/
  238. static void wmi_evt_ready(struct wil6210_priv *wil, int id, void *d, int len)
  239. {
  240. struct net_device *ndev = wil_to_ndev(wil);
  241. struct wireless_dev *wdev = wil->wdev;
  242. struct wmi_ready_event *evt = d;
  243. wil->fw_version = le32_to_cpu(evt->sw_version);
  244. wil->n_mids = evt->numof_additional_mids;
  245. wil_dbg_wmi(wil, "FW ver. %d; MAC %pM; %d MID's\n", wil->fw_version,
  246. evt->mac, wil->n_mids);
  247. if (!is_valid_ether_addr(ndev->dev_addr)) {
  248. memcpy(ndev->dev_addr, evt->mac, ETH_ALEN);
  249. memcpy(ndev->perm_addr, evt->mac, ETH_ALEN);
  250. }
  251. snprintf(wdev->wiphy->fw_version, sizeof(wdev->wiphy->fw_version),
  252. "%d", wil->fw_version);
  253. }
  254. static void wmi_evt_fw_ready(struct wil6210_priv *wil, int id, void *d,
  255. int len)
  256. {
  257. wil_dbg_wmi(wil, "WMI: FW ready\n");
  258. set_bit(wil_status_fwready, &wil->status);
  259. /* reuse wmi_ready for the firmware ready indication */
  260. complete(&wil->wmi_ready);
  261. }
  262. static void wmi_evt_rx_mgmt(struct wil6210_priv *wil, int id, void *d, int len)
  263. {
  264. struct wmi_rx_mgmt_packet_event *data = d;
  265. struct wiphy *wiphy = wil_to_wiphy(wil);
  266. struct ieee80211_mgmt *rx_mgmt_frame =
  267. (struct ieee80211_mgmt *)data->payload;
  268. int ch_no = data->info.channel+1;
  269. u32 freq = ieee80211_channel_to_frequency(ch_no,
  270. IEEE80211_BAND_60GHZ);
  271. struct ieee80211_channel *channel = ieee80211_get_channel(wiphy, freq);
  272. /* TODO convert LE to CPU */
  273. s32 signal = 0; /* TODO */
  274. __le16 fc = rx_mgmt_frame->frame_control;
  275. u32 d_len = le32_to_cpu(data->info.len);
  276. u16 d_status = le16_to_cpu(data->info.status);
  277. wil_dbg_wmi(wil, "MGMT: channel %d MCS %d SNR %d\n",
  278. data->info.channel, data->info.mcs, data->info.snr);
  279. wil_dbg_wmi(wil, "status 0x%04x len %d fc 0x%04x\n", d_status, d_len,
  280. le16_to_cpu(fc));
  281. wil_dbg_wmi(wil, "qid %d mid %d cid %d\n",
  282. data->info.qid, data->info.mid, data->info.cid);
  283. if (!channel) {
  284. wil_err(wil, "Frame on unsupported channel\n");
  285. return;
  286. }
  287. if (ieee80211_is_beacon(fc) || ieee80211_is_probe_resp(fc)) {
  288. struct cfg80211_bss *bss;
  289. bss = cfg80211_inform_bss_frame(wiphy, channel, rx_mgmt_frame,
  290. d_len, signal, GFP_KERNEL);
  291. if (bss) {
  292. wil_dbg_wmi(wil, "Added BSS %pM\n",
  293. rx_mgmt_frame->bssid);
  294. cfg80211_put_bss(wiphy, bss);
  295. } else {
  296. wil_err(wil, "cfg80211_inform_bss() failed\n");
  297. }
  298. } else {
  299. cfg80211_rx_mgmt(wil->wdev, freq, signal,
  300. (void *)rx_mgmt_frame, d_len, 0, GFP_KERNEL);
  301. }
  302. }
  303. static void wmi_evt_scan_complete(struct wil6210_priv *wil, int id,
  304. void *d, int len)
  305. {
  306. if (wil->scan_request) {
  307. struct wmi_scan_complete_event *data = d;
  308. bool aborted = (data->status != 0);
  309. wil_dbg_wmi(wil, "SCAN_COMPLETE(0x%08x)\n", data->status);
  310. cfg80211_scan_done(wil->scan_request, aborted);
  311. wil->scan_request = NULL;
  312. } else {
  313. wil_err(wil, "SCAN_COMPLETE while not scanning\n");
  314. }
  315. }
  316. static void wmi_evt_connect(struct wil6210_priv *wil, int id, void *d, int len)
  317. {
  318. struct net_device *ndev = wil_to_ndev(wil);
  319. struct wireless_dev *wdev = wil->wdev;
  320. struct wmi_connect_event *evt = d;
  321. int ch; /* channel number */
  322. struct station_info sinfo;
  323. u8 *assoc_req_ie, *assoc_resp_ie;
  324. size_t assoc_req_ielen, assoc_resp_ielen;
  325. /* capinfo(u16) + listen_interval(u16) + IEs */
  326. const size_t assoc_req_ie_offset = sizeof(u16) * 2;
  327. /* capinfo(u16) + status_code(u16) + associd(u16) + IEs */
  328. const size_t assoc_resp_ie_offset = sizeof(u16) * 3;
  329. if (len < sizeof(*evt)) {
  330. wil_err(wil, "Connect event too short : %d bytes\n", len);
  331. return;
  332. }
  333. if (len != sizeof(*evt) + evt->beacon_ie_len + evt->assoc_req_len +
  334. evt->assoc_resp_len) {
  335. wil_err(wil,
  336. "Connect event corrupted : %d != %d + %d + %d + %d\n",
  337. len, (int)sizeof(*evt), evt->beacon_ie_len,
  338. evt->assoc_req_len, evt->assoc_resp_len);
  339. return;
  340. }
  341. ch = evt->channel + 1;
  342. wil_dbg_wmi(wil, "Connect %pM channel [%d] cid %d\n",
  343. evt->bssid, ch, evt->cid);
  344. wil_hex_dump_wmi("connect AI : ", DUMP_PREFIX_OFFSET, 16, 1,
  345. evt->assoc_info, len - sizeof(*evt), true);
  346. /* figure out IE's */
  347. assoc_req_ie = &evt->assoc_info[evt->beacon_ie_len +
  348. assoc_req_ie_offset];
  349. assoc_req_ielen = evt->assoc_req_len - assoc_req_ie_offset;
  350. if (evt->assoc_req_len <= assoc_req_ie_offset) {
  351. assoc_req_ie = NULL;
  352. assoc_req_ielen = 0;
  353. }
  354. assoc_resp_ie = &evt->assoc_info[evt->beacon_ie_len +
  355. evt->assoc_req_len +
  356. assoc_resp_ie_offset];
  357. assoc_resp_ielen = evt->assoc_resp_len - assoc_resp_ie_offset;
  358. if (evt->assoc_resp_len <= assoc_resp_ie_offset) {
  359. assoc_resp_ie = NULL;
  360. assoc_resp_ielen = 0;
  361. }
  362. if ((wdev->iftype == NL80211_IFTYPE_STATION) ||
  363. (wdev->iftype == NL80211_IFTYPE_P2P_CLIENT)) {
  364. if (!test_bit(wil_status_fwconnecting, &wil->status)) {
  365. wil_err(wil, "Not in connecting state\n");
  366. return;
  367. }
  368. del_timer_sync(&wil->connect_timer);
  369. cfg80211_connect_result(ndev, evt->bssid,
  370. assoc_req_ie, assoc_req_ielen,
  371. assoc_resp_ie, assoc_resp_ielen,
  372. WLAN_STATUS_SUCCESS, GFP_KERNEL);
  373. } else if ((wdev->iftype == NL80211_IFTYPE_AP) ||
  374. (wdev->iftype == NL80211_IFTYPE_P2P_GO)) {
  375. memset(&sinfo, 0, sizeof(sinfo));
  376. sinfo.generation = wil->sinfo_gen++;
  377. if (assoc_req_ie) {
  378. sinfo.assoc_req_ies = assoc_req_ie;
  379. sinfo.assoc_req_ies_len = assoc_req_ielen;
  380. sinfo.filled |= STATION_INFO_ASSOC_REQ_IES;
  381. }
  382. cfg80211_new_sta(ndev, evt->bssid, &sinfo, GFP_KERNEL);
  383. }
  384. clear_bit(wil_status_fwconnecting, &wil->status);
  385. set_bit(wil_status_fwconnected, &wil->status);
  386. /* FIXME FW can transmit only ucast frames to peer */
  387. /* FIXME real ring_id instead of hard coded 0 */
  388. memcpy(wil->dst_addr[0], evt->bssid, ETH_ALEN);
  389. wil->pending_connect_cid = evt->cid;
  390. queue_work(wil->wmi_wq_conn, &wil->connect_worker);
  391. }
  392. static void wmi_evt_disconnect(struct wil6210_priv *wil, int id,
  393. void *d, int len)
  394. {
  395. struct wmi_disconnect_event *evt = d;
  396. wil_dbg_wmi(wil, "Disconnect %pM reason %d proto %d wmi\n",
  397. evt->bssid,
  398. evt->protocol_reason_status, evt->disconnect_reason);
  399. wil->sinfo_gen++;
  400. wil6210_disconnect(wil, evt->bssid);
  401. }
  402. static void wmi_evt_notify(struct wil6210_priv *wil, int id, void *d, int len)
  403. {
  404. struct wmi_notify_req_done_event *evt = d;
  405. if (len < sizeof(*evt)) {
  406. wil_err(wil, "Short NOTIFY event\n");
  407. return;
  408. }
  409. wil->stats.tsf = le64_to_cpu(evt->tsf);
  410. wil->stats.snr = le32_to_cpu(evt->snr_val);
  411. wil->stats.bf_mcs = le16_to_cpu(evt->bf_mcs);
  412. wil->stats.my_rx_sector = le16_to_cpu(evt->my_rx_sector);
  413. wil->stats.my_tx_sector = le16_to_cpu(evt->my_tx_sector);
  414. wil->stats.peer_rx_sector = le16_to_cpu(evt->other_rx_sector);
  415. wil->stats.peer_tx_sector = le16_to_cpu(evt->other_tx_sector);
  416. wil_dbg_wmi(wil, "Link status, MCS %d TSF 0x%016llx\n"
  417. "BF status 0x%08x SNR 0x%08x\n"
  418. "Tx Tpt %d goodput %d Rx goodput %d\n"
  419. "Sectors(rx:tx) my %d:%d peer %d:%d\n",
  420. wil->stats.bf_mcs, wil->stats.tsf, evt->status,
  421. wil->stats.snr, le32_to_cpu(evt->tx_tpt),
  422. le32_to_cpu(evt->tx_goodput), le32_to_cpu(evt->rx_goodput),
  423. wil->stats.my_rx_sector, wil->stats.my_tx_sector,
  424. wil->stats.peer_rx_sector, wil->stats.peer_tx_sector);
  425. }
  426. /*
  427. * Firmware reports EAPOL frame using WME event.
  428. * Reconstruct Ethernet frame and deliver it via normal Rx
  429. */
  430. static void wmi_evt_eapol_rx(struct wil6210_priv *wil, int id,
  431. void *d, int len)
  432. {
  433. struct net_device *ndev = wil_to_ndev(wil);
  434. struct wmi_eapol_rx_event *evt = d;
  435. u16 eapol_len = le16_to_cpu(evt->eapol_len);
  436. int sz = eapol_len + ETH_HLEN;
  437. struct sk_buff *skb;
  438. struct ethhdr *eth;
  439. wil_dbg_wmi(wil, "EAPOL len %d from %pM\n", eapol_len,
  440. evt->src_mac);
  441. if (eapol_len > 196) { /* TODO: revisit size limit */
  442. wil_err(wil, "EAPOL too large\n");
  443. return;
  444. }
  445. skb = alloc_skb(sz, GFP_KERNEL);
  446. if (!skb) {
  447. wil_err(wil, "Failed to allocate skb\n");
  448. return;
  449. }
  450. eth = (struct ethhdr *)skb_put(skb, ETH_HLEN);
  451. memcpy(eth->h_dest, ndev->dev_addr, ETH_ALEN);
  452. memcpy(eth->h_source, evt->src_mac, ETH_ALEN);
  453. eth->h_proto = cpu_to_be16(ETH_P_PAE);
  454. memcpy(skb_put(skb, eapol_len), evt->eapol, eapol_len);
  455. skb->protocol = eth_type_trans(skb, ndev);
  456. if (likely(netif_rx_ni(skb) == NET_RX_SUCCESS)) {
  457. ndev->stats.rx_packets++;
  458. ndev->stats.rx_bytes += skb->len;
  459. } else {
  460. ndev->stats.rx_dropped++;
  461. }
  462. }
  463. static void wmi_evt_linkup(struct wil6210_priv *wil, int id, void *d, int len)
  464. {
  465. struct net_device *ndev = wil_to_ndev(wil);
  466. struct wmi_data_port_open_event *evt = d;
  467. wil_dbg_wmi(wil, "Link UP for CID %d\n", evt->cid);
  468. netif_carrier_on(ndev);
  469. }
  470. static void wmi_evt_linkdown(struct wil6210_priv *wil, int id, void *d, int len)
  471. {
  472. struct net_device *ndev = wil_to_ndev(wil);
  473. struct wmi_wbe_link_down_event *evt = d;
  474. wil_dbg_wmi(wil, "Link DOWN for CID %d, reason %d\n",
  475. evt->cid, le32_to_cpu(evt->reason));
  476. netif_carrier_off(ndev);
  477. }
  478. static void wmi_evt_ba_status(struct wil6210_priv *wil, int id, void *d,
  479. int len)
  480. {
  481. struct wmi_vring_ba_status_event *evt = d;
  482. wil_dbg_wmi(wil, "BACK[%d] %s {%d} timeout %d\n",
  483. evt->ringid, evt->status ? "N/A" : "OK", evt->agg_wsize,
  484. __le16_to_cpu(evt->ba_timeout));
  485. }
  486. static const struct {
  487. int eventid;
  488. void (*handler)(struct wil6210_priv *wil, int eventid,
  489. void *data, int data_len);
  490. } wmi_evt_handlers[] = {
  491. {WMI_READY_EVENTID, wmi_evt_ready},
  492. {WMI_FW_READY_EVENTID, wmi_evt_fw_ready},
  493. {WMI_RX_MGMT_PACKET_EVENTID, wmi_evt_rx_mgmt},
  494. {WMI_SCAN_COMPLETE_EVENTID, wmi_evt_scan_complete},
  495. {WMI_CONNECT_EVENTID, wmi_evt_connect},
  496. {WMI_DISCONNECT_EVENTID, wmi_evt_disconnect},
  497. {WMI_NOTIFY_REQ_DONE_EVENTID, wmi_evt_notify},
  498. {WMI_EAPOL_RX_EVENTID, wmi_evt_eapol_rx},
  499. {WMI_DATA_PORT_OPEN_EVENTID, wmi_evt_linkup},
  500. {WMI_WBE_LINKDOWN_EVENTID, wmi_evt_linkdown},
  501. {WMI_BA_STATUS_EVENTID, wmi_evt_ba_status},
  502. };
  503. /*
  504. * Run in IRQ context
  505. * Extract WMI command from mailbox. Queue it to the @wil->pending_wmi_ev
  506. * that will be eventually handled by the @wmi_event_worker in the thread
  507. * context of thread "wil6210_wmi"
  508. */
  509. void wmi_recv_cmd(struct wil6210_priv *wil)
  510. {
  511. struct wil6210_mbox_ring_desc d_tail;
  512. struct wil6210_mbox_hdr hdr;
  513. struct wil6210_mbox_ring *r = &wil->mbox_ctl.rx;
  514. struct pending_wmi_event *evt;
  515. u8 *cmd;
  516. void __iomem *src;
  517. ulong flags;
  518. if (!test_bit(wil_status_reset_done, &wil->status)) {
  519. wil_err(wil, "Reset not completed\n");
  520. return;
  521. }
  522. for (;;) {
  523. u16 len;
  524. r->head = ioread32(wil->csr + HOST_MBOX +
  525. offsetof(struct wil6210_mbox_ctl, rx.head));
  526. if (r->tail == r->head)
  527. return;
  528. /* read cmd from tail */
  529. wil_memcpy_fromio_32(&d_tail, wil->csr + HOSTADDR(r->tail),
  530. sizeof(struct wil6210_mbox_ring_desc));
  531. if (d_tail.sync == 0) {
  532. wil_err(wil, "Mbox evt not owned by FW?\n");
  533. return;
  534. }
  535. if (0 != wmi_read_hdr(wil, d_tail.addr, &hdr)) {
  536. wil_err(wil, "Mbox evt at 0x%08x?\n",
  537. le32_to_cpu(d_tail.addr));
  538. return;
  539. }
  540. len = le16_to_cpu(hdr.len);
  541. src = wmi_buffer(wil, d_tail.addr) +
  542. sizeof(struct wil6210_mbox_hdr);
  543. evt = kmalloc(ALIGN(offsetof(struct pending_wmi_event,
  544. event.wmi) + len, 4),
  545. GFP_KERNEL);
  546. if (!evt)
  547. return;
  548. evt->event.hdr = hdr;
  549. cmd = (void *)&evt->event.wmi;
  550. wil_memcpy_fromio_32(cmd, src, len);
  551. /* mark entry as empty */
  552. iowrite32(0, wil->csr + HOSTADDR(r->tail) +
  553. offsetof(struct wil6210_mbox_ring_desc, sync));
  554. /* indicate */
  555. wil_dbg_wmi(wil, "Mbox evt %04x %04x %04x %02x\n",
  556. le16_to_cpu(hdr.seq), len, le16_to_cpu(hdr.type),
  557. hdr.flags);
  558. if ((hdr.type == WIL_MBOX_HDR_TYPE_WMI) &&
  559. (len >= sizeof(struct wil6210_mbox_hdr_wmi))) {
  560. struct wil6210_mbox_hdr_wmi *wmi = &evt->event.wmi;
  561. u16 id = le16_to_cpu(wmi->id);
  562. u32 tstamp = le32_to_cpu(wmi->timestamp);
  563. wil_dbg_wmi(wil, "WMI event 0x%04x MID %d @%d msec\n",
  564. id, wmi->mid, tstamp);
  565. trace_wil6210_wmi_event(wmi, &wmi[1],
  566. len - sizeof(*wmi));
  567. }
  568. wil_hex_dump_wmi("evt ", DUMP_PREFIX_OFFSET, 16, 1,
  569. &evt->event.hdr, sizeof(hdr) + len, true);
  570. /* advance tail */
  571. r->tail = r->base + ((r->tail - r->base +
  572. sizeof(struct wil6210_mbox_ring_desc)) % r->size);
  573. iowrite32(r->tail, wil->csr + HOST_MBOX +
  574. offsetof(struct wil6210_mbox_ctl, rx.tail));
  575. /* add to the pending list */
  576. spin_lock_irqsave(&wil->wmi_ev_lock, flags);
  577. list_add_tail(&evt->list, &wil->pending_wmi_ev);
  578. spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
  579. {
  580. int q = queue_work(wil->wmi_wq,
  581. &wil->wmi_event_worker);
  582. wil_dbg_wmi(wil, "queue_work -> %d\n", q);
  583. }
  584. }
  585. }
  586. int wmi_call(struct wil6210_priv *wil, u16 cmdid, void *buf, u16 len,
  587. u16 reply_id, void *reply, u8 reply_size, int to_msec)
  588. {
  589. int rc;
  590. int remain;
  591. mutex_lock(&wil->wmi_mutex);
  592. rc = __wmi_send(wil, cmdid, buf, len);
  593. if (rc)
  594. goto out;
  595. wil->reply_id = reply_id;
  596. wil->reply_buf = reply;
  597. wil->reply_size = reply_size;
  598. remain = wait_for_completion_timeout(&wil->wmi_ready,
  599. msecs_to_jiffies(to_msec));
  600. if (0 == remain) {
  601. wil_err(wil, "wmi_call(0x%04x->0x%04x) timeout %d msec\n",
  602. cmdid, reply_id, to_msec);
  603. rc = -ETIME;
  604. } else {
  605. wil_dbg_wmi(wil,
  606. "wmi_call(0x%04x->0x%04x) completed in %d msec\n",
  607. cmdid, reply_id,
  608. to_msec - jiffies_to_msecs(remain));
  609. }
  610. wil->reply_id = 0;
  611. wil->reply_buf = NULL;
  612. wil->reply_size = 0;
  613. out:
  614. mutex_unlock(&wil->wmi_mutex);
  615. return rc;
  616. }
  617. int wmi_echo(struct wil6210_priv *wil)
  618. {
  619. struct wmi_echo_cmd cmd = {
  620. .value = cpu_to_le32(0x12345678),
  621. };
  622. return wmi_call(wil, WMI_ECHO_CMDID, &cmd, sizeof(cmd),
  623. WMI_ECHO_RSP_EVENTID, NULL, 0, 20);
  624. }
  625. int wmi_set_mac_address(struct wil6210_priv *wil, void *addr)
  626. {
  627. struct wmi_set_mac_address_cmd cmd;
  628. memcpy(cmd.mac, addr, ETH_ALEN);
  629. wil_dbg_wmi(wil, "Set MAC %pM\n", addr);
  630. return wmi_send(wil, WMI_SET_MAC_ADDRESS_CMDID, &cmd, sizeof(cmd));
  631. }
  632. int wmi_pcp_start(struct wil6210_priv *wil, int bi, u8 wmi_nettype, u8 chan)
  633. {
  634. int rc;
  635. struct wmi_pcp_start_cmd cmd = {
  636. .bcon_interval = cpu_to_le16(bi),
  637. .network_type = wmi_nettype,
  638. .disable_sec_offload = 1,
  639. .channel = chan - 1,
  640. };
  641. struct {
  642. struct wil6210_mbox_hdr_wmi wmi;
  643. struct wmi_pcp_started_event evt;
  644. } __packed reply;
  645. if (!wil->secure_pcp)
  646. cmd.disable_sec = 1;
  647. /*
  648. * Processing time may be huge, in case of secure AP it takes about
  649. * 3500ms for FW to start AP
  650. */
  651. rc = wmi_call(wil, WMI_PCP_START_CMDID, &cmd, sizeof(cmd),
  652. WMI_PCP_STARTED_EVENTID, &reply, sizeof(reply), 5000);
  653. if (rc)
  654. return rc;
  655. if (reply.evt.status != WMI_FW_STATUS_SUCCESS)
  656. rc = -EINVAL;
  657. return rc;
  658. }
  659. int wmi_pcp_stop(struct wil6210_priv *wil)
  660. {
  661. return wmi_call(wil, WMI_PCP_STOP_CMDID, NULL, 0,
  662. WMI_PCP_STOPPED_EVENTID, NULL, 0, 20);
  663. }
  664. int wmi_set_ssid(struct wil6210_priv *wil, u8 ssid_len, const void *ssid)
  665. {
  666. struct wmi_set_ssid_cmd cmd = {
  667. .ssid_len = cpu_to_le32(ssid_len),
  668. };
  669. if (ssid_len > sizeof(cmd.ssid))
  670. return -EINVAL;
  671. memcpy(cmd.ssid, ssid, ssid_len);
  672. return wmi_send(wil, WMI_SET_SSID_CMDID, &cmd, sizeof(cmd));
  673. }
  674. int wmi_get_ssid(struct wil6210_priv *wil, u8 *ssid_len, void *ssid)
  675. {
  676. int rc;
  677. struct {
  678. struct wil6210_mbox_hdr_wmi wmi;
  679. struct wmi_set_ssid_cmd cmd;
  680. } __packed reply;
  681. int len; /* reply.cmd.ssid_len in CPU order */
  682. rc = wmi_call(wil, WMI_GET_SSID_CMDID, NULL, 0, WMI_GET_SSID_EVENTID,
  683. &reply, sizeof(reply), 20);
  684. if (rc)
  685. return rc;
  686. len = le32_to_cpu(reply.cmd.ssid_len);
  687. if (len > sizeof(reply.cmd.ssid))
  688. return -EINVAL;
  689. *ssid_len = len;
  690. memcpy(ssid, reply.cmd.ssid, len);
  691. return 0;
  692. }
  693. int wmi_set_channel(struct wil6210_priv *wil, int channel)
  694. {
  695. struct wmi_set_pcp_channel_cmd cmd = {
  696. .channel = channel - 1,
  697. };
  698. return wmi_send(wil, WMI_SET_PCP_CHANNEL_CMDID, &cmd, sizeof(cmd));
  699. }
  700. int wmi_get_channel(struct wil6210_priv *wil, int *channel)
  701. {
  702. int rc;
  703. struct {
  704. struct wil6210_mbox_hdr_wmi wmi;
  705. struct wmi_set_pcp_channel_cmd cmd;
  706. } __packed reply;
  707. rc = wmi_call(wil, WMI_GET_PCP_CHANNEL_CMDID, NULL, 0,
  708. WMI_GET_PCP_CHANNEL_EVENTID, &reply, sizeof(reply), 20);
  709. if (rc)
  710. return rc;
  711. if (reply.cmd.channel > 3)
  712. return -EINVAL;
  713. *channel = reply.cmd.channel + 1;
  714. return 0;
  715. }
  716. int wmi_p2p_cfg(struct wil6210_priv *wil, int channel)
  717. {
  718. struct wmi_p2p_cfg_cmd cmd = {
  719. .discovery_mode = WMI_DISCOVERY_MODE_NON_OFFLOAD,
  720. .channel = channel - 1,
  721. };
  722. return wmi_send(wil, WMI_P2P_CFG_CMDID, &cmd, sizeof(cmd));
  723. }
  724. int wmi_del_cipher_key(struct wil6210_priv *wil, u8 key_index,
  725. const void *mac_addr)
  726. {
  727. struct wmi_delete_cipher_key_cmd cmd = {
  728. .key_index = key_index,
  729. };
  730. if (mac_addr)
  731. memcpy(cmd.mac, mac_addr, WMI_MAC_LEN);
  732. return wmi_send(wil, WMI_DELETE_CIPHER_KEY_CMDID, &cmd, sizeof(cmd));
  733. }
  734. int wmi_add_cipher_key(struct wil6210_priv *wil, u8 key_index,
  735. const void *mac_addr, int key_len, const void *key)
  736. {
  737. struct wmi_add_cipher_key_cmd cmd = {
  738. .key_index = key_index,
  739. .key_usage = WMI_KEY_USE_PAIRWISE,
  740. .key_len = key_len,
  741. };
  742. if (!key || (key_len > sizeof(cmd.key)))
  743. return -EINVAL;
  744. memcpy(cmd.key, key, key_len);
  745. if (mac_addr)
  746. memcpy(cmd.mac, mac_addr, WMI_MAC_LEN);
  747. return wmi_send(wil, WMI_ADD_CIPHER_KEY_CMDID, &cmd, sizeof(cmd));
  748. }
  749. int wmi_set_ie(struct wil6210_priv *wil, u8 type, u16 ie_len, const void *ie)
  750. {
  751. int rc;
  752. u16 len = sizeof(struct wmi_set_appie_cmd) + ie_len;
  753. struct wmi_set_appie_cmd *cmd = kzalloc(len, GFP_KERNEL);
  754. if (!cmd)
  755. return -ENOMEM;
  756. cmd->mgmt_frm_type = type;
  757. /* BUG: FW API define ieLen as u8. Will fix FW */
  758. cmd->ie_len = cpu_to_le16(ie_len);
  759. memcpy(cmd->ie_info, ie, ie_len);
  760. rc = wmi_send(wil, WMI_SET_APPIE_CMDID, cmd, len);
  761. kfree(cmd);
  762. return rc;
  763. }
  764. int wmi_rx_chain_add(struct wil6210_priv *wil, struct vring *vring)
  765. {
  766. struct wireless_dev *wdev = wil->wdev;
  767. struct net_device *ndev = wil_to_ndev(wil);
  768. struct wmi_cfg_rx_chain_cmd cmd = {
  769. .action = WMI_RX_CHAIN_ADD,
  770. .rx_sw_ring = {
  771. .max_mpdu_size = cpu_to_le16(RX_BUF_LEN),
  772. .ring_mem_base = cpu_to_le64(vring->pa),
  773. .ring_size = cpu_to_le16(vring->size),
  774. },
  775. .mid = 0, /* TODO - what is it? */
  776. .decap_trans_type = WMI_DECAP_TYPE_802_3,
  777. };
  778. struct {
  779. struct wil6210_mbox_hdr_wmi wmi;
  780. struct wmi_cfg_rx_chain_done_event evt;
  781. } __packed evt;
  782. int rc;
  783. if (wdev->iftype == NL80211_IFTYPE_MONITOR) {
  784. struct ieee80211_channel *ch = wdev->preset_chandef.chan;
  785. cmd.sniffer_cfg.mode = cpu_to_le32(WMI_SNIFFER_ON);
  786. if (ch)
  787. cmd.sniffer_cfg.channel = ch->hw_value - 1;
  788. cmd.sniffer_cfg.phy_info_mode =
  789. cpu_to_le32(ndev->type == ARPHRD_IEEE80211_RADIOTAP);
  790. cmd.sniffer_cfg.phy_support =
  791. cpu_to_le32((wil->monitor_flags & MONITOR_FLAG_CONTROL)
  792. ? WMI_SNIFFER_CP : WMI_SNIFFER_DP);
  793. } else {
  794. /* Initialize offload (in non-sniffer mode).
  795. * Linux IP stack always calculates IP checksum
  796. * HW always calculate TCP/UDP checksum
  797. */
  798. cmd.l3_l4_ctrl |= (1 << L3_L4_CTRL_TCPIP_CHECKSUM_EN_POS);
  799. }
  800. /* typical time for secure PCP is 840ms */
  801. rc = wmi_call(wil, WMI_CFG_RX_CHAIN_CMDID, &cmd, sizeof(cmd),
  802. WMI_CFG_RX_CHAIN_DONE_EVENTID, &evt, sizeof(evt), 2000);
  803. if (rc)
  804. return rc;
  805. vring->hwtail = le32_to_cpu(evt.evt.rx_ring_tail_ptr);
  806. wil_dbg_misc(wil, "Rx init: status %d tail 0x%08x\n",
  807. le32_to_cpu(evt.evt.status), vring->hwtail);
  808. if (le32_to_cpu(evt.evt.status) != WMI_CFG_RX_CHAIN_SUCCESS)
  809. rc = -EINVAL;
  810. return rc;
  811. }
  812. int wmi_get_temperature(struct wil6210_priv *wil, u32 *t_m, u32 *t_r)
  813. {
  814. int rc;
  815. struct wmi_temp_sense_cmd cmd = {
  816. .measure_marlon_m_en = cpu_to_le32(!!t_m),
  817. .measure_marlon_r_en = cpu_to_le32(!!t_r),
  818. };
  819. struct {
  820. struct wil6210_mbox_hdr_wmi wmi;
  821. struct wmi_temp_sense_done_event evt;
  822. } __packed reply;
  823. rc = wmi_call(wil, WMI_TEMP_SENSE_CMDID, &cmd, sizeof(cmd),
  824. WMI_TEMP_SENSE_DONE_EVENTID, &reply, sizeof(reply), 100);
  825. if (rc)
  826. return rc;
  827. if (t_m)
  828. *t_m = le32_to_cpu(reply.evt.marlon_m_t1000);
  829. if (t_r)
  830. *t_r = le32_to_cpu(reply.evt.marlon_r_t1000);
  831. return 0;
  832. }
  833. void wmi_event_flush(struct wil6210_priv *wil)
  834. {
  835. struct pending_wmi_event *evt, *t;
  836. wil_dbg_wmi(wil, "%s()\n", __func__);
  837. list_for_each_entry_safe(evt, t, &wil->pending_wmi_ev, list) {
  838. list_del(&evt->list);
  839. kfree(evt);
  840. }
  841. }
  842. static bool wmi_evt_call_handler(struct wil6210_priv *wil, int id,
  843. void *d, int len)
  844. {
  845. uint i;
  846. for (i = 0; i < ARRAY_SIZE(wmi_evt_handlers); i++) {
  847. if (wmi_evt_handlers[i].eventid == id) {
  848. wmi_evt_handlers[i].handler(wil, id, d, len);
  849. return true;
  850. }
  851. }
  852. return false;
  853. }
  854. static void wmi_event_handle(struct wil6210_priv *wil,
  855. struct wil6210_mbox_hdr *hdr)
  856. {
  857. u16 len = le16_to_cpu(hdr->len);
  858. if ((hdr->type == WIL_MBOX_HDR_TYPE_WMI) &&
  859. (len >= sizeof(struct wil6210_mbox_hdr_wmi))) {
  860. struct wil6210_mbox_hdr_wmi *wmi = (void *)(&hdr[1]);
  861. void *evt_data = (void *)(&wmi[1]);
  862. u16 id = le16_to_cpu(wmi->id);
  863. /* check if someone waits for this event */
  864. if (wil->reply_id && wil->reply_id == id) {
  865. if (wil->reply_buf) {
  866. memcpy(wil->reply_buf, wmi,
  867. min(len, wil->reply_size));
  868. } else {
  869. wmi_evt_call_handler(wil, id, evt_data,
  870. len - sizeof(*wmi));
  871. }
  872. wil_dbg_wmi(wil, "Complete WMI 0x%04x\n", id);
  873. complete(&wil->wmi_ready);
  874. return;
  875. }
  876. /* unsolicited event */
  877. /* search for handler */
  878. if (!wmi_evt_call_handler(wil, id, evt_data,
  879. len - sizeof(*wmi))) {
  880. wil_err(wil, "Unhandled event 0x%04x\n", id);
  881. }
  882. } else {
  883. wil_err(wil, "Unknown event type\n");
  884. print_hex_dump(KERN_ERR, "evt?? ", DUMP_PREFIX_OFFSET, 16, 1,
  885. hdr, sizeof(*hdr) + len, true);
  886. }
  887. }
  888. /*
  889. * Retrieve next WMI event from the pending list
  890. */
  891. static struct list_head *next_wmi_ev(struct wil6210_priv *wil)
  892. {
  893. ulong flags;
  894. struct list_head *ret = NULL;
  895. spin_lock_irqsave(&wil->wmi_ev_lock, flags);
  896. if (!list_empty(&wil->pending_wmi_ev)) {
  897. ret = wil->pending_wmi_ev.next;
  898. list_del(ret);
  899. }
  900. spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
  901. return ret;
  902. }
  903. /*
  904. * Handler for the WMI events
  905. */
  906. void wmi_event_worker(struct work_struct *work)
  907. {
  908. struct wil6210_priv *wil = container_of(work, struct wil6210_priv,
  909. wmi_event_worker);
  910. struct pending_wmi_event *evt;
  911. struct list_head *lh;
  912. while ((lh = next_wmi_ev(wil)) != NULL) {
  913. evt = list_entry(lh, struct pending_wmi_event, list);
  914. wmi_event_handle(wil, &evt->event.hdr);
  915. kfree(evt);
  916. }
  917. }