falcon.c 83 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843
  1. /****************************************************************************
  2. * Driver for Solarflare network controllers and boards
  3. * Copyright 2005-2006 Fen Systems Ltd.
  4. * Copyright 2006-2013 Solarflare Communications Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation, incorporated herein by reference.
  9. */
  10. #include <linux/bitops.h>
  11. #include <linux/delay.h>
  12. #include <linux/pci.h>
  13. #include <linux/module.h>
  14. #include <linux/seq_file.h>
  15. #include <linux/i2c.h>
  16. #include <linux/mii.h>
  17. #include <linux/slab.h>
  18. #include "net_driver.h"
  19. #include "bitfield.h"
  20. #include "efx.h"
  21. #include "nic.h"
  22. #include "farch_regs.h"
  23. #include "io.h"
  24. #include "phy.h"
  25. #include "workarounds.h"
  26. #include "selftest.h"
  27. #include "mdio_10g.h"
  28. /* Hardware control for SFC4000 (aka Falcon). */
  29. /**************************************************************************
  30. *
  31. * NIC stats
  32. *
  33. **************************************************************************
  34. */
  35. #define FALCON_MAC_STATS_SIZE 0x100
  36. #define XgRxOctets_offset 0x0
  37. #define XgRxOctets_WIDTH 48
  38. #define XgRxOctetsOK_offset 0x8
  39. #define XgRxOctetsOK_WIDTH 48
  40. #define XgRxPkts_offset 0x10
  41. #define XgRxPkts_WIDTH 32
  42. #define XgRxPktsOK_offset 0x14
  43. #define XgRxPktsOK_WIDTH 32
  44. #define XgRxBroadcastPkts_offset 0x18
  45. #define XgRxBroadcastPkts_WIDTH 32
  46. #define XgRxMulticastPkts_offset 0x1C
  47. #define XgRxMulticastPkts_WIDTH 32
  48. #define XgRxUnicastPkts_offset 0x20
  49. #define XgRxUnicastPkts_WIDTH 32
  50. #define XgRxUndersizePkts_offset 0x24
  51. #define XgRxUndersizePkts_WIDTH 32
  52. #define XgRxOversizePkts_offset 0x28
  53. #define XgRxOversizePkts_WIDTH 32
  54. #define XgRxJabberPkts_offset 0x2C
  55. #define XgRxJabberPkts_WIDTH 32
  56. #define XgRxUndersizeFCSerrorPkts_offset 0x30
  57. #define XgRxUndersizeFCSerrorPkts_WIDTH 32
  58. #define XgRxDropEvents_offset 0x34
  59. #define XgRxDropEvents_WIDTH 32
  60. #define XgRxFCSerrorPkts_offset 0x38
  61. #define XgRxFCSerrorPkts_WIDTH 32
  62. #define XgRxAlignError_offset 0x3C
  63. #define XgRxAlignError_WIDTH 32
  64. #define XgRxSymbolError_offset 0x40
  65. #define XgRxSymbolError_WIDTH 32
  66. #define XgRxInternalMACError_offset 0x44
  67. #define XgRxInternalMACError_WIDTH 32
  68. #define XgRxControlPkts_offset 0x48
  69. #define XgRxControlPkts_WIDTH 32
  70. #define XgRxPausePkts_offset 0x4C
  71. #define XgRxPausePkts_WIDTH 32
  72. #define XgRxPkts64Octets_offset 0x50
  73. #define XgRxPkts64Octets_WIDTH 32
  74. #define XgRxPkts65to127Octets_offset 0x54
  75. #define XgRxPkts65to127Octets_WIDTH 32
  76. #define XgRxPkts128to255Octets_offset 0x58
  77. #define XgRxPkts128to255Octets_WIDTH 32
  78. #define XgRxPkts256to511Octets_offset 0x5C
  79. #define XgRxPkts256to511Octets_WIDTH 32
  80. #define XgRxPkts512to1023Octets_offset 0x60
  81. #define XgRxPkts512to1023Octets_WIDTH 32
  82. #define XgRxPkts1024to15xxOctets_offset 0x64
  83. #define XgRxPkts1024to15xxOctets_WIDTH 32
  84. #define XgRxPkts15xxtoMaxOctets_offset 0x68
  85. #define XgRxPkts15xxtoMaxOctets_WIDTH 32
  86. #define XgRxLengthError_offset 0x6C
  87. #define XgRxLengthError_WIDTH 32
  88. #define XgTxPkts_offset 0x80
  89. #define XgTxPkts_WIDTH 32
  90. #define XgTxOctets_offset 0x88
  91. #define XgTxOctets_WIDTH 48
  92. #define XgTxMulticastPkts_offset 0x90
  93. #define XgTxMulticastPkts_WIDTH 32
  94. #define XgTxBroadcastPkts_offset 0x94
  95. #define XgTxBroadcastPkts_WIDTH 32
  96. #define XgTxUnicastPkts_offset 0x98
  97. #define XgTxUnicastPkts_WIDTH 32
  98. #define XgTxControlPkts_offset 0x9C
  99. #define XgTxControlPkts_WIDTH 32
  100. #define XgTxPausePkts_offset 0xA0
  101. #define XgTxPausePkts_WIDTH 32
  102. #define XgTxPkts64Octets_offset 0xA4
  103. #define XgTxPkts64Octets_WIDTH 32
  104. #define XgTxPkts65to127Octets_offset 0xA8
  105. #define XgTxPkts65to127Octets_WIDTH 32
  106. #define XgTxPkts128to255Octets_offset 0xAC
  107. #define XgTxPkts128to255Octets_WIDTH 32
  108. #define XgTxPkts256to511Octets_offset 0xB0
  109. #define XgTxPkts256to511Octets_WIDTH 32
  110. #define XgTxPkts512to1023Octets_offset 0xB4
  111. #define XgTxPkts512to1023Octets_WIDTH 32
  112. #define XgTxPkts1024to15xxOctets_offset 0xB8
  113. #define XgTxPkts1024to15xxOctets_WIDTH 32
  114. #define XgTxPkts1519toMaxOctets_offset 0xBC
  115. #define XgTxPkts1519toMaxOctets_WIDTH 32
  116. #define XgTxUndersizePkts_offset 0xC0
  117. #define XgTxUndersizePkts_WIDTH 32
  118. #define XgTxOversizePkts_offset 0xC4
  119. #define XgTxOversizePkts_WIDTH 32
  120. #define XgTxNonTcpUdpPkt_offset 0xC8
  121. #define XgTxNonTcpUdpPkt_WIDTH 16
  122. #define XgTxMacSrcErrPkt_offset 0xCC
  123. #define XgTxMacSrcErrPkt_WIDTH 16
  124. #define XgTxIpSrcErrPkt_offset 0xD0
  125. #define XgTxIpSrcErrPkt_WIDTH 16
  126. #define XgDmaDone_offset 0xD4
  127. #define XgDmaDone_WIDTH 32
  128. #define FALCON_XMAC_STATS_DMA_FLAG(efx) \
  129. (*(u32 *)((efx)->stats_buffer.addr + XgDmaDone_offset))
  130. #define FALCON_DMA_STAT(ext_name, hw_name) \
  131. [FALCON_STAT_ ## ext_name] = \
  132. { #ext_name, \
  133. /* 48-bit stats are zero-padded to 64 on DMA */ \
  134. hw_name ## _ ## WIDTH == 48 ? 64 : hw_name ## _ ## WIDTH, \
  135. hw_name ## _ ## offset }
  136. #define FALCON_OTHER_STAT(ext_name) \
  137. [FALCON_STAT_ ## ext_name] = { #ext_name, 0, 0 }
  138. static const struct efx_hw_stat_desc falcon_stat_desc[FALCON_STAT_COUNT] = {
  139. FALCON_DMA_STAT(tx_bytes, XgTxOctets),
  140. FALCON_DMA_STAT(tx_packets, XgTxPkts),
  141. FALCON_DMA_STAT(tx_pause, XgTxPausePkts),
  142. FALCON_DMA_STAT(tx_control, XgTxControlPkts),
  143. FALCON_DMA_STAT(tx_unicast, XgTxUnicastPkts),
  144. FALCON_DMA_STAT(tx_multicast, XgTxMulticastPkts),
  145. FALCON_DMA_STAT(tx_broadcast, XgTxBroadcastPkts),
  146. FALCON_DMA_STAT(tx_lt64, XgTxUndersizePkts),
  147. FALCON_DMA_STAT(tx_64, XgTxPkts64Octets),
  148. FALCON_DMA_STAT(tx_65_to_127, XgTxPkts65to127Octets),
  149. FALCON_DMA_STAT(tx_128_to_255, XgTxPkts128to255Octets),
  150. FALCON_DMA_STAT(tx_256_to_511, XgTxPkts256to511Octets),
  151. FALCON_DMA_STAT(tx_512_to_1023, XgTxPkts512to1023Octets),
  152. FALCON_DMA_STAT(tx_1024_to_15xx, XgTxPkts1024to15xxOctets),
  153. FALCON_DMA_STAT(tx_15xx_to_jumbo, XgTxPkts1519toMaxOctets),
  154. FALCON_DMA_STAT(tx_gtjumbo, XgTxOversizePkts),
  155. FALCON_DMA_STAT(tx_non_tcpudp, XgTxNonTcpUdpPkt),
  156. FALCON_DMA_STAT(tx_mac_src_error, XgTxMacSrcErrPkt),
  157. FALCON_DMA_STAT(tx_ip_src_error, XgTxIpSrcErrPkt),
  158. FALCON_DMA_STAT(rx_bytes, XgRxOctets),
  159. FALCON_DMA_STAT(rx_good_bytes, XgRxOctetsOK),
  160. FALCON_OTHER_STAT(rx_bad_bytes),
  161. FALCON_DMA_STAT(rx_packets, XgRxPkts),
  162. FALCON_DMA_STAT(rx_good, XgRxPktsOK),
  163. FALCON_DMA_STAT(rx_bad, XgRxFCSerrorPkts),
  164. FALCON_DMA_STAT(rx_pause, XgRxPausePkts),
  165. FALCON_DMA_STAT(rx_control, XgRxControlPkts),
  166. FALCON_DMA_STAT(rx_unicast, XgRxUnicastPkts),
  167. FALCON_DMA_STAT(rx_multicast, XgRxMulticastPkts),
  168. FALCON_DMA_STAT(rx_broadcast, XgRxBroadcastPkts),
  169. FALCON_DMA_STAT(rx_lt64, XgRxUndersizePkts),
  170. FALCON_DMA_STAT(rx_64, XgRxPkts64Octets),
  171. FALCON_DMA_STAT(rx_65_to_127, XgRxPkts65to127Octets),
  172. FALCON_DMA_STAT(rx_128_to_255, XgRxPkts128to255Octets),
  173. FALCON_DMA_STAT(rx_256_to_511, XgRxPkts256to511Octets),
  174. FALCON_DMA_STAT(rx_512_to_1023, XgRxPkts512to1023Octets),
  175. FALCON_DMA_STAT(rx_1024_to_15xx, XgRxPkts1024to15xxOctets),
  176. FALCON_DMA_STAT(rx_15xx_to_jumbo, XgRxPkts15xxtoMaxOctets),
  177. FALCON_DMA_STAT(rx_gtjumbo, XgRxOversizePkts),
  178. FALCON_DMA_STAT(rx_bad_lt64, XgRxUndersizeFCSerrorPkts),
  179. FALCON_DMA_STAT(rx_bad_gtjumbo, XgRxJabberPkts),
  180. FALCON_DMA_STAT(rx_overflow, XgRxDropEvents),
  181. FALCON_DMA_STAT(rx_symbol_error, XgRxSymbolError),
  182. FALCON_DMA_STAT(rx_align_error, XgRxAlignError),
  183. FALCON_DMA_STAT(rx_length_error, XgRxLengthError),
  184. FALCON_DMA_STAT(rx_internal_error, XgRxInternalMACError),
  185. FALCON_OTHER_STAT(rx_nodesc_drop_cnt),
  186. };
  187. static const unsigned long falcon_stat_mask[] = {
  188. [0 ... BITS_TO_LONGS(FALCON_STAT_COUNT) - 1] = ~0UL,
  189. };
  190. /**************************************************************************
  191. *
  192. * Basic SPI command set and bit definitions
  193. *
  194. *************************************************************************/
  195. #define SPI_WRSR 0x01 /* Write status register */
  196. #define SPI_WRITE 0x02 /* Write data to memory array */
  197. #define SPI_READ 0x03 /* Read data from memory array */
  198. #define SPI_WRDI 0x04 /* Reset write enable latch */
  199. #define SPI_RDSR 0x05 /* Read status register */
  200. #define SPI_WREN 0x06 /* Set write enable latch */
  201. #define SPI_SST_EWSR 0x50 /* SST: Enable write to status register */
  202. #define SPI_STATUS_WPEN 0x80 /* Write-protect pin enabled */
  203. #define SPI_STATUS_BP2 0x10 /* Block protection bit 2 */
  204. #define SPI_STATUS_BP1 0x08 /* Block protection bit 1 */
  205. #define SPI_STATUS_BP0 0x04 /* Block protection bit 0 */
  206. #define SPI_STATUS_WEN 0x02 /* State of the write enable latch */
  207. #define SPI_STATUS_NRDY 0x01 /* Device busy flag */
  208. /**************************************************************************
  209. *
  210. * Non-volatile memory layout
  211. *
  212. **************************************************************************
  213. */
  214. /* SFC4000 flash is partitioned into:
  215. * 0-0x400 chip and board config (see struct falcon_nvconfig)
  216. * 0x400-0x8000 unused (or may contain VPD if EEPROM not present)
  217. * 0x8000-end boot code (mapped to PCI expansion ROM)
  218. * SFC4000 small EEPROM (size < 0x400) is used for VPD only.
  219. * SFC4000 large EEPROM (size >= 0x400) is partitioned into:
  220. * 0-0x400 chip and board config
  221. * configurable VPD
  222. * 0x800-0x1800 boot config
  223. * Aside from the chip and board config, all of these are optional and may
  224. * be absent or truncated depending on the devices used.
  225. */
  226. #define FALCON_NVCONFIG_END 0x400U
  227. #define FALCON_FLASH_BOOTCODE_START 0x8000U
  228. #define FALCON_EEPROM_BOOTCONFIG_START 0x800U
  229. #define FALCON_EEPROM_BOOTCONFIG_END 0x1800U
  230. /* Board configuration v2 (v1 is obsolete; later versions are compatible) */
  231. struct falcon_nvconfig_board_v2 {
  232. __le16 nports;
  233. u8 port0_phy_addr;
  234. u8 port0_phy_type;
  235. u8 port1_phy_addr;
  236. u8 port1_phy_type;
  237. __le16 asic_sub_revision;
  238. __le16 board_revision;
  239. } __packed;
  240. /* Board configuration v3 extra information */
  241. struct falcon_nvconfig_board_v3 {
  242. __le32 spi_device_type[2];
  243. } __packed;
  244. /* Bit numbers for spi_device_type */
  245. #define SPI_DEV_TYPE_SIZE_LBN 0
  246. #define SPI_DEV_TYPE_SIZE_WIDTH 5
  247. #define SPI_DEV_TYPE_ADDR_LEN_LBN 6
  248. #define SPI_DEV_TYPE_ADDR_LEN_WIDTH 2
  249. #define SPI_DEV_TYPE_ERASE_CMD_LBN 8
  250. #define SPI_DEV_TYPE_ERASE_CMD_WIDTH 8
  251. #define SPI_DEV_TYPE_ERASE_SIZE_LBN 16
  252. #define SPI_DEV_TYPE_ERASE_SIZE_WIDTH 5
  253. #define SPI_DEV_TYPE_BLOCK_SIZE_LBN 24
  254. #define SPI_DEV_TYPE_BLOCK_SIZE_WIDTH 5
  255. #define SPI_DEV_TYPE_FIELD(type, field) \
  256. (((type) >> EFX_LOW_BIT(field)) & EFX_MASK32(EFX_WIDTH(field)))
  257. #define FALCON_NVCONFIG_OFFSET 0x300
  258. #define FALCON_NVCONFIG_BOARD_MAGIC_NUM 0xFA1C
  259. struct falcon_nvconfig {
  260. efx_oword_t ee_vpd_cfg_reg; /* 0x300 */
  261. u8 mac_address[2][8]; /* 0x310 */
  262. efx_oword_t pcie_sd_ctl0123_reg; /* 0x320 */
  263. efx_oword_t pcie_sd_ctl45_reg; /* 0x330 */
  264. efx_oword_t pcie_pcs_ctl_stat_reg; /* 0x340 */
  265. efx_oword_t hw_init_reg; /* 0x350 */
  266. efx_oword_t nic_stat_reg; /* 0x360 */
  267. efx_oword_t glb_ctl_reg; /* 0x370 */
  268. efx_oword_t srm_cfg_reg; /* 0x380 */
  269. efx_oword_t spare_reg; /* 0x390 */
  270. __le16 board_magic_num; /* 0x3A0 */
  271. __le16 board_struct_ver;
  272. __le16 board_checksum;
  273. struct falcon_nvconfig_board_v2 board_v2;
  274. efx_oword_t ee_base_page_reg; /* 0x3B0 */
  275. struct falcon_nvconfig_board_v3 board_v3; /* 0x3C0 */
  276. } __packed;
  277. /*************************************************************************/
  278. static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method);
  279. static void falcon_reconfigure_mac_wrapper(struct efx_nic *efx);
  280. static const unsigned int
  281. /* "Large" EEPROM device: Atmel AT25640 or similar
  282. * 8 KB, 16-bit address, 32 B write block */
  283. large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
  284. | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
  285. | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
  286. /* Default flash device: Atmel AT25F1024
  287. * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
  288. default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
  289. | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
  290. | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
  291. | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
  292. | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
  293. /**************************************************************************
  294. *
  295. * I2C bus - this is a bit-bashing interface using GPIO pins
  296. * Note that it uses the output enables to tristate the outputs
  297. * SDA is the data pin and SCL is the clock
  298. *
  299. **************************************************************************
  300. */
  301. static void falcon_setsda(void *data, int state)
  302. {
  303. struct efx_nic *efx = (struct efx_nic *)data;
  304. efx_oword_t reg;
  305. efx_reado(efx, &reg, FR_AB_GPIO_CTL);
  306. EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
  307. efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
  308. }
  309. static void falcon_setscl(void *data, int state)
  310. {
  311. struct efx_nic *efx = (struct efx_nic *)data;
  312. efx_oword_t reg;
  313. efx_reado(efx, &reg, FR_AB_GPIO_CTL);
  314. EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
  315. efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
  316. }
  317. static int falcon_getsda(void *data)
  318. {
  319. struct efx_nic *efx = (struct efx_nic *)data;
  320. efx_oword_t reg;
  321. efx_reado(efx, &reg, FR_AB_GPIO_CTL);
  322. return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
  323. }
  324. static int falcon_getscl(void *data)
  325. {
  326. struct efx_nic *efx = (struct efx_nic *)data;
  327. efx_oword_t reg;
  328. efx_reado(efx, &reg, FR_AB_GPIO_CTL);
  329. return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
  330. }
  331. static const struct i2c_algo_bit_data falcon_i2c_bit_operations = {
  332. .setsda = falcon_setsda,
  333. .setscl = falcon_setscl,
  334. .getsda = falcon_getsda,
  335. .getscl = falcon_getscl,
  336. .udelay = 5,
  337. /* Wait up to 50 ms for slave to let us pull SCL high */
  338. .timeout = DIV_ROUND_UP(HZ, 20),
  339. };
  340. static void falcon_push_irq_moderation(struct efx_channel *channel)
  341. {
  342. efx_dword_t timer_cmd;
  343. struct efx_nic *efx = channel->efx;
  344. /* Set timer register */
  345. if (channel->irq_moderation) {
  346. EFX_POPULATE_DWORD_2(timer_cmd,
  347. FRF_AB_TC_TIMER_MODE,
  348. FFE_BB_TIMER_MODE_INT_HLDOFF,
  349. FRF_AB_TC_TIMER_VAL,
  350. channel->irq_moderation - 1);
  351. } else {
  352. EFX_POPULATE_DWORD_2(timer_cmd,
  353. FRF_AB_TC_TIMER_MODE,
  354. FFE_BB_TIMER_MODE_DIS,
  355. FRF_AB_TC_TIMER_VAL, 0);
  356. }
  357. BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
  358. efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
  359. channel->channel);
  360. }
  361. static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx);
  362. static void falcon_prepare_flush(struct efx_nic *efx)
  363. {
  364. falcon_deconfigure_mac_wrapper(efx);
  365. /* Wait for the tx and rx fifo's to get to the next packet boundary
  366. * (~1ms without back-pressure), then to drain the remainder of the
  367. * fifo's at data path speeds (negligible), with a healthy margin. */
  368. msleep(10);
  369. }
  370. /* Acknowledge a legacy interrupt from Falcon
  371. *
  372. * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
  373. *
  374. * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
  375. * BIU. Interrupt acknowledge is read sensitive so must write instead
  376. * (then read to ensure the BIU collector is flushed)
  377. *
  378. * NB most hardware supports MSI interrupts
  379. */
  380. static inline void falcon_irq_ack_a1(struct efx_nic *efx)
  381. {
  382. efx_dword_t reg;
  383. EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
  384. efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
  385. efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
  386. }
  387. static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
  388. {
  389. struct efx_nic *efx = dev_id;
  390. efx_oword_t *int_ker = efx->irq_status.addr;
  391. int syserr;
  392. int queues;
  393. /* Check to see if this is our interrupt. If it isn't, we
  394. * exit without having touched the hardware.
  395. */
  396. if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
  397. netif_vdbg(efx, intr, efx->net_dev,
  398. "IRQ %d on CPU %d not for me\n", irq,
  399. raw_smp_processor_id());
  400. return IRQ_NONE;
  401. }
  402. efx->last_irq_cpu = raw_smp_processor_id();
  403. netif_vdbg(efx, intr, efx->net_dev,
  404. "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
  405. irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
  406. if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
  407. return IRQ_HANDLED;
  408. /* Check to see if we have a serious error condition */
  409. syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
  410. if (unlikely(syserr))
  411. return efx_farch_fatal_interrupt(efx);
  412. /* Determine interrupting queues, clear interrupt status
  413. * register and acknowledge the device interrupt.
  414. */
  415. BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS);
  416. queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
  417. EFX_ZERO_OWORD(*int_ker);
  418. wmb(); /* Ensure the vector is cleared before interrupt ack */
  419. falcon_irq_ack_a1(efx);
  420. if (queues & 1)
  421. efx_schedule_channel_irq(efx_get_channel(efx, 0));
  422. if (queues & 2)
  423. efx_schedule_channel_irq(efx_get_channel(efx, 1));
  424. return IRQ_HANDLED;
  425. }
  426. /**************************************************************************
  427. *
  428. * EEPROM/flash
  429. *
  430. **************************************************************************
  431. */
  432. #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
  433. static int falcon_spi_poll(struct efx_nic *efx)
  434. {
  435. efx_oword_t reg;
  436. efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
  437. return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
  438. }
  439. /* Wait for SPI command completion */
  440. static int falcon_spi_wait(struct efx_nic *efx)
  441. {
  442. /* Most commands will finish quickly, so we start polling at
  443. * very short intervals. Sometimes the command may have to
  444. * wait for VPD or expansion ROM access outside of our
  445. * control, so we allow up to 100 ms. */
  446. unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
  447. int i;
  448. for (i = 0; i < 10; i++) {
  449. if (!falcon_spi_poll(efx))
  450. return 0;
  451. udelay(10);
  452. }
  453. for (;;) {
  454. if (!falcon_spi_poll(efx))
  455. return 0;
  456. if (time_after_eq(jiffies, timeout)) {
  457. netif_err(efx, hw, efx->net_dev,
  458. "timed out waiting for SPI\n");
  459. return -ETIMEDOUT;
  460. }
  461. schedule_timeout_uninterruptible(1);
  462. }
  463. }
  464. static int
  465. falcon_spi_cmd(struct efx_nic *efx, const struct falcon_spi_device *spi,
  466. unsigned int command, int address,
  467. const void *in, void *out, size_t len)
  468. {
  469. bool addressed = (address >= 0);
  470. bool reading = (out != NULL);
  471. efx_oword_t reg;
  472. int rc;
  473. /* Input validation */
  474. if (len > FALCON_SPI_MAX_LEN)
  475. return -EINVAL;
  476. /* Check that previous command is not still running */
  477. rc = falcon_spi_poll(efx);
  478. if (rc)
  479. return rc;
  480. /* Program address register, if we have an address */
  481. if (addressed) {
  482. EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
  483. efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
  484. }
  485. /* Program data register, if we have data */
  486. if (in != NULL) {
  487. memcpy(&reg, in, len);
  488. efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
  489. }
  490. /* Issue read/write command */
  491. EFX_POPULATE_OWORD_7(reg,
  492. FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
  493. FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
  494. FRF_AB_EE_SPI_HCMD_DABCNT, len,
  495. FRF_AB_EE_SPI_HCMD_READ, reading,
  496. FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
  497. FRF_AB_EE_SPI_HCMD_ADBCNT,
  498. (addressed ? spi->addr_len : 0),
  499. FRF_AB_EE_SPI_HCMD_ENC, command);
  500. efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
  501. /* Wait for read/write to complete */
  502. rc = falcon_spi_wait(efx);
  503. if (rc)
  504. return rc;
  505. /* Read data */
  506. if (out != NULL) {
  507. efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
  508. memcpy(out, &reg, len);
  509. }
  510. return 0;
  511. }
  512. static inline u8
  513. falcon_spi_munge_command(const struct falcon_spi_device *spi,
  514. const u8 command, const unsigned int address)
  515. {
  516. return command | (((address >> 8) & spi->munge_address) << 3);
  517. }
  518. static int
  519. falcon_spi_read(struct efx_nic *efx, const struct falcon_spi_device *spi,
  520. loff_t start, size_t len, size_t *retlen, u8 *buffer)
  521. {
  522. size_t block_len, pos = 0;
  523. unsigned int command;
  524. int rc = 0;
  525. while (pos < len) {
  526. block_len = min(len - pos, FALCON_SPI_MAX_LEN);
  527. command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
  528. rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
  529. buffer + pos, block_len);
  530. if (rc)
  531. break;
  532. pos += block_len;
  533. /* Avoid locking up the system */
  534. cond_resched();
  535. if (signal_pending(current)) {
  536. rc = -EINTR;
  537. break;
  538. }
  539. }
  540. if (retlen)
  541. *retlen = pos;
  542. return rc;
  543. }
  544. #ifdef CONFIG_SFC_MTD
  545. struct falcon_mtd_partition {
  546. struct efx_mtd_partition common;
  547. const struct falcon_spi_device *spi;
  548. size_t offset;
  549. };
  550. #define to_falcon_mtd_partition(mtd) \
  551. container_of(mtd, struct falcon_mtd_partition, common.mtd)
  552. static size_t
  553. falcon_spi_write_limit(const struct falcon_spi_device *spi, size_t start)
  554. {
  555. return min(FALCON_SPI_MAX_LEN,
  556. (spi->block_size - (start & (spi->block_size - 1))));
  557. }
  558. /* Wait up to 10 ms for buffered write completion */
  559. static int
  560. falcon_spi_wait_write(struct efx_nic *efx, const struct falcon_spi_device *spi)
  561. {
  562. unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
  563. u8 status;
  564. int rc;
  565. for (;;) {
  566. rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
  567. &status, sizeof(status));
  568. if (rc)
  569. return rc;
  570. if (!(status & SPI_STATUS_NRDY))
  571. return 0;
  572. if (time_after_eq(jiffies, timeout)) {
  573. netif_err(efx, hw, efx->net_dev,
  574. "SPI write timeout on device %d"
  575. " last status=0x%02x\n",
  576. spi->device_id, status);
  577. return -ETIMEDOUT;
  578. }
  579. schedule_timeout_uninterruptible(1);
  580. }
  581. }
  582. static int
  583. falcon_spi_write(struct efx_nic *efx, const struct falcon_spi_device *spi,
  584. loff_t start, size_t len, size_t *retlen, const u8 *buffer)
  585. {
  586. u8 verify_buffer[FALCON_SPI_MAX_LEN];
  587. size_t block_len, pos = 0;
  588. unsigned int command;
  589. int rc = 0;
  590. while (pos < len) {
  591. rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
  592. if (rc)
  593. break;
  594. block_len = min(len - pos,
  595. falcon_spi_write_limit(spi, start + pos));
  596. command = falcon_spi_munge_command(spi, SPI_WRITE, start + pos);
  597. rc = falcon_spi_cmd(efx, spi, command, start + pos,
  598. buffer + pos, NULL, block_len);
  599. if (rc)
  600. break;
  601. rc = falcon_spi_wait_write(efx, spi);
  602. if (rc)
  603. break;
  604. command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
  605. rc = falcon_spi_cmd(efx, spi, command, start + pos,
  606. NULL, verify_buffer, block_len);
  607. if (memcmp(verify_buffer, buffer + pos, block_len)) {
  608. rc = -EIO;
  609. break;
  610. }
  611. pos += block_len;
  612. /* Avoid locking up the system */
  613. cond_resched();
  614. if (signal_pending(current)) {
  615. rc = -EINTR;
  616. break;
  617. }
  618. }
  619. if (retlen)
  620. *retlen = pos;
  621. return rc;
  622. }
  623. static int
  624. falcon_spi_slow_wait(struct falcon_mtd_partition *part, bool uninterruptible)
  625. {
  626. const struct falcon_spi_device *spi = part->spi;
  627. struct efx_nic *efx = part->common.mtd.priv;
  628. u8 status;
  629. int rc, i;
  630. /* Wait up to 4s for flash/EEPROM to finish a slow operation. */
  631. for (i = 0; i < 40; i++) {
  632. __set_current_state(uninterruptible ?
  633. TASK_UNINTERRUPTIBLE : TASK_INTERRUPTIBLE);
  634. schedule_timeout(HZ / 10);
  635. rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
  636. &status, sizeof(status));
  637. if (rc)
  638. return rc;
  639. if (!(status & SPI_STATUS_NRDY))
  640. return 0;
  641. if (signal_pending(current))
  642. return -EINTR;
  643. }
  644. pr_err("%s: timed out waiting for %s\n",
  645. part->common.name, part->common.dev_type_name);
  646. return -ETIMEDOUT;
  647. }
  648. static int
  649. falcon_spi_unlock(struct efx_nic *efx, const struct falcon_spi_device *spi)
  650. {
  651. const u8 unlock_mask = (SPI_STATUS_BP2 | SPI_STATUS_BP1 |
  652. SPI_STATUS_BP0);
  653. u8 status;
  654. int rc;
  655. rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
  656. &status, sizeof(status));
  657. if (rc)
  658. return rc;
  659. if (!(status & unlock_mask))
  660. return 0; /* already unlocked */
  661. rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
  662. if (rc)
  663. return rc;
  664. rc = falcon_spi_cmd(efx, spi, SPI_SST_EWSR, -1, NULL, NULL, 0);
  665. if (rc)
  666. return rc;
  667. status &= ~unlock_mask;
  668. rc = falcon_spi_cmd(efx, spi, SPI_WRSR, -1, &status,
  669. NULL, sizeof(status));
  670. if (rc)
  671. return rc;
  672. rc = falcon_spi_wait_write(efx, spi);
  673. if (rc)
  674. return rc;
  675. return 0;
  676. }
  677. #define FALCON_SPI_VERIFY_BUF_LEN 16
  678. static int
  679. falcon_spi_erase(struct falcon_mtd_partition *part, loff_t start, size_t len)
  680. {
  681. const struct falcon_spi_device *spi = part->spi;
  682. struct efx_nic *efx = part->common.mtd.priv;
  683. unsigned pos, block_len;
  684. u8 empty[FALCON_SPI_VERIFY_BUF_LEN];
  685. u8 buffer[FALCON_SPI_VERIFY_BUF_LEN];
  686. int rc;
  687. if (len != spi->erase_size)
  688. return -EINVAL;
  689. if (spi->erase_command == 0)
  690. return -EOPNOTSUPP;
  691. rc = falcon_spi_unlock(efx, spi);
  692. if (rc)
  693. return rc;
  694. rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
  695. if (rc)
  696. return rc;
  697. rc = falcon_spi_cmd(efx, spi, spi->erase_command, start, NULL,
  698. NULL, 0);
  699. if (rc)
  700. return rc;
  701. rc = falcon_spi_slow_wait(part, false);
  702. /* Verify the entire region has been wiped */
  703. memset(empty, 0xff, sizeof(empty));
  704. for (pos = 0; pos < len; pos += block_len) {
  705. block_len = min(len - pos, sizeof(buffer));
  706. rc = falcon_spi_read(efx, spi, start + pos, block_len,
  707. NULL, buffer);
  708. if (rc)
  709. return rc;
  710. if (memcmp(empty, buffer, block_len))
  711. return -EIO;
  712. /* Avoid locking up the system */
  713. cond_resched();
  714. if (signal_pending(current))
  715. return -EINTR;
  716. }
  717. return rc;
  718. }
  719. static void falcon_mtd_rename(struct efx_mtd_partition *part)
  720. {
  721. struct efx_nic *efx = part->mtd.priv;
  722. snprintf(part->name, sizeof(part->name), "%s %s",
  723. efx->name, part->type_name);
  724. }
  725. static int falcon_mtd_read(struct mtd_info *mtd, loff_t start,
  726. size_t len, size_t *retlen, u8 *buffer)
  727. {
  728. struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
  729. struct efx_nic *efx = mtd->priv;
  730. struct falcon_nic_data *nic_data = efx->nic_data;
  731. int rc;
  732. rc = mutex_lock_interruptible(&nic_data->spi_lock);
  733. if (rc)
  734. return rc;
  735. rc = falcon_spi_read(efx, part->spi, part->offset + start,
  736. len, retlen, buffer);
  737. mutex_unlock(&nic_data->spi_lock);
  738. return rc;
  739. }
  740. static int falcon_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
  741. {
  742. struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
  743. struct efx_nic *efx = mtd->priv;
  744. struct falcon_nic_data *nic_data = efx->nic_data;
  745. int rc;
  746. rc = mutex_lock_interruptible(&nic_data->spi_lock);
  747. if (rc)
  748. return rc;
  749. rc = falcon_spi_erase(part, part->offset + start, len);
  750. mutex_unlock(&nic_data->spi_lock);
  751. return rc;
  752. }
  753. static int falcon_mtd_write(struct mtd_info *mtd, loff_t start,
  754. size_t len, size_t *retlen, const u8 *buffer)
  755. {
  756. struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
  757. struct efx_nic *efx = mtd->priv;
  758. struct falcon_nic_data *nic_data = efx->nic_data;
  759. int rc;
  760. rc = mutex_lock_interruptible(&nic_data->spi_lock);
  761. if (rc)
  762. return rc;
  763. rc = falcon_spi_write(efx, part->spi, part->offset + start,
  764. len, retlen, buffer);
  765. mutex_unlock(&nic_data->spi_lock);
  766. return rc;
  767. }
  768. static int falcon_mtd_sync(struct mtd_info *mtd)
  769. {
  770. struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
  771. struct efx_nic *efx = mtd->priv;
  772. struct falcon_nic_data *nic_data = efx->nic_data;
  773. int rc;
  774. mutex_lock(&nic_data->spi_lock);
  775. rc = falcon_spi_slow_wait(part, true);
  776. mutex_unlock(&nic_data->spi_lock);
  777. return rc;
  778. }
  779. static int falcon_mtd_probe(struct efx_nic *efx)
  780. {
  781. struct falcon_nic_data *nic_data = efx->nic_data;
  782. struct falcon_mtd_partition *parts;
  783. struct falcon_spi_device *spi;
  784. size_t n_parts;
  785. int rc = -ENODEV;
  786. ASSERT_RTNL();
  787. /* Allocate space for maximum number of partitions */
  788. parts = kcalloc(2, sizeof(*parts), GFP_KERNEL);
  789. if (!parts)
  790. return -ENOMEM;
  791. n_parts = 0;
  792. spi = &nic_data->spi_flash;
  793. if (falcon_spi_present(spi) && spi->size > FALCON_FLASH_BOOTCODE_START) {
  794. parts[n_parts].spi = spi;
  795. parts[n_parts].offset = FALCON_FLASH_BOOTCODE_START;
  796. parts[n_parts].common.dev_type_name = "flash";
  797. parts[n_parts].common.type_name = "sfc_flash_bootrom";
  798. parts[n_parts].common.mtd.type = MTD_NORFLASH;
  799. parts[n_parts].common.mtd.flags = MTD_CAP_NORFLASH;
  800. parts[n_parts].common.mtd.size = spi->size - FALCON_FLASH_BOOTCODE_START;
  801. parts[n_parts].common.mtd.erasesize = spi->erase_size;
  802. n_parts++;
  803. }
  804. spi = &nic_data->spi_eeprom;
  805. if (falcon_spi_present(spi) && spi->size > FALCON_EEPROM_BOOTCONFIG_START) {
  806. parts[n_parts].spi = spi;
  807. parts[n_parts].offset = FALCON_EEPROM_BOOTCONFIG_START;
  808. parts[n_parts].common.dev_type_name = "EEPROM";
  809. parts[n_parts].common.type_name = "sfc_bootconfig";
  810. parts[n_parts].common.mtd.type = MTD_RAM;
  811. parts[n_parts].common.mtd.flags = MTD_CAP_RAM;
  812. parts[n_parts].common.mtd.size =
  813. min(spi->size, FALCON_EEPROM_BOOTCONFIG_END) -
  814. FALCON_EEPROM_BOOTCONFIG_START;
  815. parts[n_parts].common.mtd.erasesize = spi->erase_size;
  816. n_parts++;
  817. }
  818. rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
  819. if (rc)
  820. kfree(parts);
  821. return rc;
  822. }
  823. #endif /* CONFIG_SFC_MTD */
  824. /**************************************************************************
  825. *
  826. * XMAC operations
  827. *
  828. **************************************************************************
  829. */
  830. /* Configure the XAUI driver that is an output from Falcon */
  831. static void falcon_setup_xaui(struct efx_nic *efx)
  832. {
  833. efx_oword_t sdctl, txdrv;
  834. /* Move the XAUI into low power, unless there is no PHY, in
  835. * which case the XAUI will have to drive a cable. */
  836. if (efx->phy_type == PHY_TYPE_NONE)
  837. return;
  838. efx_reado(efx, &sdctl, FR_AB_XX_SD_CTL);
  839. EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
  840. EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
  841. EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
  842. EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
  843. EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
  844. EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
  845. EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
  846. EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
  847. efx_writeo(efx, &sdctl, FR_AB_XX_SD_CTL);
  848. EFX_POPULATE_OWORD_8(txdrv,
  849. FRF_AB_XX_DEQD, FFE_AB_XX_TXDRV_DEQ_DEF,
  850. FRF_AB_XX_DEQC, FFE_AB_XX_TXDRV_DEQ_DEF,
  851. FRF_AB_XX_DEQB, FFE_AB_XX_TXDRV_DEQ_DEF,
  852. FRF_AB_XX_DEQA, FFE_AB_XX_TXDRV_DEQ_DEF,
  853. FRF_AB_XX_DTXD, FFE_AB_XX_TXDRV_DTX_DEF,
  854. FRF_AB_XX_DTXC, FFE_AB_XX_TXDRV_DTX_DEF,
  855. FRF_AB_XX_DTXB, FFE_AB_XX_TXDRV_DTX_DEF,
  856. FRF_AB_XX_DTXA, FFE_AB_XX_TXDRV_DTX_DEF);
  857. efx_writeo(efx, &txdrv, FR_AB_XX_TXDRV_CTL);
  858. }
  859. int falcon_reset_xaui(struct efx_nic *efx)
  860. {
  861. struct falcon_nic_data *nic_data = efx->nic_data;
  862. efx_oword_t reg;
  863. int count;
  864. /* Don't fetch MAC statistics over an XMAC reset */
  865. WARN_ON(nic_data->stats_disable_count == 0);
  866. /* Start reset sequence */
  867. EFX_POPULATE_OWORD_1(reg, FRF_AB_XX_RST_XX_EN, 1);
  868. efx_writeo(efx, &reg, FR_AB_XX_PWR_RST);
  869. /* Wait up to 10 ms for completion, then reinitialise */
  870. for (count = 0; count < 1000; count++) {
  871. efx_reado(efx, &reg, FR_AB_XX_PWR_RST);
  872. if (EFX_OWORD_FIELD(reg, FRF_AB_XX_RST_XX_EN) == 0 &&
  873. EFX_OWORD_FIELD(reg, FRF_AB_XX_SD_RST_ACT) == 0) {
  874. falcon_setup_xaui(efx);
  875. return 0;
  876. }
  877. udelay(10);
  878. }
  879. netif_err(efx, hw, efx->net_dev,
  880. "timed out waiting for XAUI/XGXS reset\n");
  881. return -ETIMEDOUT;
  882. }
  883. static void falcon_ack_status_intr(struct efx_nic *efx)
  884. {
  885. struct falcon_nic_data *nic_data = efx->nic_data;
  886. efx_oword_t reg;
  887. if ((efx_nic_rev(efx) != EFX_REV_FALCON_B0) || LOOPBACK_INTERNAL(efx))
  888. return;
  889. /* We expect xgmii faults if the wireside link is down */
  890. if (!efx->link_state.up)
  891. return;
  892. /* We can only use this interrupt to signal the negative edge of
  893. * xaui_align [we have to poll the positive edge]. */
  894. if (nic_data->xmac_poll_required)
  895. return;
  896. efx_reado(efx, &reg, FR_AB_XM_MGT_INT_MSK);
  897. }
  898. static bool falcon_xgxs_link_ok(struct efx_nic *efx)
  899. {
  900. efx_oword_t reg;
  901. bool align_done, link_ok = false;
  902. int sync_status;
  903. /* Read link status */
  904. efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
  905. align_done = EFX_OWORD_FIELD(reg, FRF_AB_XX_ALIGN_DONE);
  906. sync_status = EFX_OWORD_FIELD(reg, FRF_AB_XX_SYNC_STAT);
  907. if (align_done && (sync_status == FFE_AB_XX_STAT_ALL_LANES))
  908. link_ok = true;
  909. /* Clear link status ready for next read */
  910. EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_COMMA_DET, FFE_AB_XX_STAT_ALL_LANES);
  911. EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_CHAR_ERR, FFE_AB_XX_STAT_ALL_LANES);
  912. EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_DISPERR, FFE_AB_XX_STAT_ALL_LANES);
  913. efx_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
  914. return link_ok;
  915. }
  916. static bool falcon_xmac_link_ok(struct efx_nic *efx)
  917. {
  918. /*
  919. * Check MAC's XGXS link status except when using XGMII loopback
  920. * which bypasses the XGXS block.
  921. * If possible, check PHY's XGXS link status except when using
  922. * MAC loopback.
  923. */
  924. return (efx->loopback_mode == LOOPBACK_XGMII ||
  925. falcon_xgxs_link_ok(efx)) &&
  926. (!(efx->mdio.mmds & (1 << MDIO_MMD_PHYXS)) ||
  927. LOOPBACK_INTERNAL(efx) ||
  928. efx_mdio_phyxgxs_lane_sync(efx));
  929. }
  930. static void falcon_reconfigure_xmac_core(struct efx_nic *efx)
  931. {
  932. unsigned int max_frame_len;
  933. efx_oword_t reg;
  934. bool rx_fc = !!(efx->link_state.fc & EFX_FC_RX);
  935. bool tx_fc = !!(efx->link_state.fc & EFX_FC_TX);
  936. /* Configure MAC - cut-thru mode is hard wired on */
  937. EFX_POPULATE_OWORD_3(reg,
  938. FRF_AB_XM_RX_JUMBO_MODE, 1,
  939. FRF_AB_XM_TX_STAT_EN, 1,
  940. FRF_AB_XM_RX_STAT_EN, 1);
  941. efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
  942. /* Configure TX */
  943. EFX_POPULATE_OWORD_6(reg,
  944. FRF_AB_XM_TXEN, 1,
  945. FRF_AB_XM_TX_PRMBL, 1,
  946. FRF_AB_XM_AUTO_PAD, 1,
  947. FRF_AB_XM_TXCRC, 1,
  948. FRF_AB_XM_FCNTL, tx_fc,
  949. FRF_AB_XM_IPG, 0x3);
  950. efx_writeo(efx, &reg, FR_AB_XM_TX_CFG);
  951. /* Configure RX */
  952. EFX_POPULATE_OWORD_5(reg,
  953. FRF_AB_XM_RXEN, 1,
  954. FRF_AB_XM_AUTO_DEPAD, 0,
  955. FRF_AB_XM_ACPT_ALL_MCAST, 1,
  956. FRF_AB_XM_ACPT_ALL_UCAST, !efx->unicast_filter,
  957. FRF_AB_XM_PASS_CRC_ERR, 1);
  958. efx_writeo(efx, &reg, FR_AB_XM_RX_CFG);
  959. /* Set frame length */
  960. max_frame_len = EFX_MAX_FRAME_LEN(efx->net_dev->mtu);
  961. EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_MAX_RX_FRM_SIZE, max_frame_len);
  962. efx_writeo(efx, &reg, FR_AB_XM_RX_PARAM);
  963. EFX_POPULATE_OWORD_2(reg,
  964. FRF_AB_XM_MAX_TX_FRM_SIZE, max_frame_len,
  965. FRF_AB_XM_TX_JUMBO_MODE, 1);
  966. efx_writeo(efx, &reg, FR_AB_XM_TX_PARAM);
  967. EFX_POPULATE_OWORD_2(reg,
  968. FRF_AB_XM_PAUSE_TIME, 0xfffe, /* MAX PAUSE TIME */
  969. FRF_AB_XM_DIS_FCNTL, !rx_fc);
  970. efx_writeo(efx, &reg, FR_AB_XM_FC);
  971. /* Set MAC address */
  972. memcpy(&reg, &efx->net_dev->dev_addr[0], 4);
  973. efx_writeo(efx, &reg, FR_AB_XM_ADR_LO);
  974. memcpy(&reg, &efx->net_dev->dev_addr[4], 2);
  975. efx_writeo(efx, &reg, FR_AB_XM_ADR_HI);
  976. }
  977. static void falcon_reconfigure_xgxs_core(struct efx_nic *efx)
  978. {
  979. efx_oword_t reg;
  980. bool xgxs_loopback = (efx->loopback_mode == LOOPBACK_XGXS);
  981. bool xaui_loopback = (efx->loopback_mode == LOOPBACK_XAUI);
  982. bool xgmii_loopback = (efx->loopback_mode == LOOPBACK_XGMII);
  983. bool old_xgmii_loopback, old_xgxs_loopback, old_xaui_loopback;
  984. /* XGXS block is flaky and will need to be reset if moving
  985. * into our out of XGMII, XGXS or XAUI loopbacks. */
  986. efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
  987. old_xgxs_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN);
  988. old_xgmii_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN);
  989. efx_reado(efx, &reg, FR_AB_XX_SD_CTL);
  990. old_xaui_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_LPBKA);
  991. /* The PHY driver may have turned XAUI off */
  992. if ((xgxs_loopback != old_xgxs_loopback) ||
  993. (xaui_loopback != old_xaui_loopback) ||
  994. (xgmii_loopback != old_xgmii_loopback))
  995. falcon_reset_xaui(efx);
  996. efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
  997. EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_FORCE_SIG,
  998. (xgxs_loopback || xaui_loopback) ?
  999. FFE_AB_XX_FORCE_SIG_ALL_LANES : 0);
  1000. EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN, xgxs_loopback);
  1001. EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN, xgmii_loopback);
  1002. efx_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
  1003. efx_reado(efx, &reg, FR_AB_XX_SD_CTL);
  1004. EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKD, xaui_loopback);
  1005. EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKC, xaui_loopback);
  1006. EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKB, xaui_loopback);
  1007. EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKA, xaui_loopback);
  1008. efx_writeo(efx, &reg, FR_AB_XX_SD_CTL);
  1009. }
  1010. /* Try to bring up the Falcon side of the Falcon-Phy XAUI link */
  1011. static bool falcon_xmac_link_ok_retry(struct efx_nic *efx, int tries)
  1012. {
  1013. bool mac_up = falcon_xmac_link_ok(efx);
  1014. if (LOOPBACK_MASK(efx) & LOOPBACKS_EXTERNAL(efx) & LOOPBACKS_WS ||
  1015. efx_phy_mode_disabled(efx->phy_mode))
  1016. /* XAUI link is expected to be down */
  1017. return mac_up;
  1018. falcon_stop_nic_stats(efx);
  1019. while (!mac_up && tries) {
  1020. netif_dbg(efx, hw, efx->net_dev, "bashing xaui\n");
  1021. falcon_reset_xaui(efx);
  1022. udelay(200);
  1023. mac_up = falcon_xmac_link_ok(efx);
  1024. --tries;
  1025. }
  1026. falcon_start_nic_stats(efx);
  1027. return mac_up;
  1028. }
  1029. static bool falcon_xmac_check_fault(struct efx_nic *efx)
  1030. {
  1031. return !falcon_xmac_link_ok_retry(efx, 5);
  1032. }
  1033. static int falcon_reconfigure_xmac(struct efx_nic *efx)
  1034. {
  1035. struct falcon_nic_data *nic_data = efx->nic_data;
  1036. efx_farch_filter_sync_rx_mode(efx);
  1037. falcon_reconfigure_xgxs_core(efx);
  1038. falcon_reconfigure_xmac_core(efx);
  1039. falcon_reconfigure_mac_wrapper(efx);
  1040. nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 5);
  1041. falcon_ack_status_intr(efx);
  1042. return 0;
  1043. }
  1044. static void falcon_poll_xmac(struct efx_nic *efx)
  1045. {
  1046. struct falcon_nic_data *nic_data = efx->nic_data;
  1047. /* We expect xgmii faults if the wireside link is down */
  1048. if (!efx->link_state.up || !nic_data->xmac_poll_required)
  1049. return;
  1050. nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 1);
  1051. falcon_ack_status_intr(efx);
  1052. }
  1053. /**************************************************************************
  1054. *
  1055. * MAC wrapper
  1056. *
  1057. **************************************************************************
  1058. */
  1059. static void falcon_push_multicast_hash(struct efx_nic *efx)
  1060. {
  1061. union efx_multicast_hash *mc_hash = &efx->multicast_hash;
  1062. WARN_ON(!mutex_is_locked(&efx->mac_lock));
  1063. efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
  1064. efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
  1065. }
  1066. static void falcon_reset_macs(struct efx_nic *efx)
  1067. {
  1068. struct falcon_nic_data *nic_data = efx->nic_data;
  1069. efx_oword_t reg, mac_ctrl;
  1070. int count;
  1071. if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
  1072. /* It's not safe to use GLB_CTL_REG to reset the
  1073. * macs, so instead use the internal MAC resets
  1074. */
  1075. EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
  1076. efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
  1077. for (count = 0; count < 10000; count++) {
  1078. efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
  1079. if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
  1080. 0)
  1081. return;
  1082. udelay(10);
  1083. }
  1084. netif_err(efx, hw, efx->net_dev,
  1085. "timed out waiting for XMAC core reset\n");
  1086. }
  1087. /* Mac stats will fail whist the TX fifo is draining */
  1088. WARN_ON(nic_data->stats_disable_count == 0);
  1089. efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
  1090. EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
  1091. efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
  1092. efx_reado(efx, &reg, FR_AB_GLB_CTL);
  1093. EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
  1094. EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
  1095. EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
  1096. efx_writeo(efx, &reg, FR_AB_GLB_CTL);
  1097. count = 0;
  1098. while (1) {
  1099. efx_reado(efx, &reg, FR_AB_GLB_CTL);
  1100. if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
  1101. !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
  1102. !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
  1103. netif_dbg(efx, hw, efx->net_dev,
  1104. "Completed MAC reset after %d loops\n",
  1105. count);
  1106. break;
  1107. }
  1108. if (count > 20) {
  1109. netif_err(efx, hw, efx->net_dev, "MAC reset failed\n");
  1110. break;
  1111. }
  1112. count++;
  1113. udelay(10);
  1114. }
  1115. /* Ensure the correct MAC is selected before statistics
  1116. * are re-enabled by the caller */
  1117. efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
  1118. falcon_setup_xaui(efx);
  1119. }
  1120. static void falcon_drain_tx_fifo(struct efx_nic *efx)
  1121. {
  1122. efx_oword_t reg;
  1123. if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) ||
  1124. (efx->loopback_mode != LOOPBACK_NONE))
  1125. return;
  1126. efx_reado(efx, &reg, FR_AB_MAC_CTRL);
  1127. /* There is no point in draining more than once */
  1128. if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
  1129. return;
  1130. falcon_reset_macs(efx);
  1131. }
  1132. static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
  1133. {
  1134. efx_oword_t reg;
  1135. if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
  1136. return;
  1137. /* Isolate the MAC -> RX */
  1138. efx_reado(efx, &reg, FR_AZ_RX_CFG);
  1139. EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
  1140. efx_writeo(efx, &reg, FR_AZ_RX_CFG);
  1141. /* Isolate TX -> MAC */
  1142. falcon_drain_tx_fifo(efx);
  1143. }
  1144. static void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
  1145. {
  1146. struct efx_link_state *link_state = &efx->link_state;
  1147. efx_oword_t reg;
  1148. int link_speed, isolate;
  1149. isolate = !!ACCESS_ONCE(efx->reset_pending);
  1150. switch (link_state->speed) {
  1151. case 10000: link_speed = 3; break;
  1152. case 1000: link_speed = 2; break;
  1153. case 100: link_speed = 1; break;
  1154. default: link_speed = 0; break;
  1155. }
  1156. /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
  1157. * as advertised. Disable to ensure packets are not
  1158. * indefinitely held and TX queue can be flushed at any point
  1159. * while the link is down. */
  1160. EFX_POPULATE_OWORD_5(reg,
  1161. FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
  1162. FRF_AB_MAC_BCAD_ACPT, 1,
  1163. FRF_AB_MAC_UC_PROM, !efx->unicast_filter,
  1164. FRF_AB_MAC_LINK_STATUS, 1, /* always set */
  1165. FRF_AB_MAC_SPEED, link_speed);
  1166. /* On B0, MAC backpressure can be disabled and packets get
  1167. * discarded. */
  1168. if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
  1169. EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
  1170. !link_state->up || isolate);
  1171. }
  1172. efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
  1173. /* Restore the multicast hash registers. */
  1174. falcon_push_multicast_hash(efx);
  1175. efx_reado(efx, &reg, FR_AZ_RX_CFG);
  1176. /* Enable XOFF signal from RX FIFO (we enabled it during NIC
  1177. * initialisation but it may read back as 0) */
  1178. EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
  1179. /* Unisolate the MAC -> RX */
  1180. if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
  1181. EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate);
  1182. efx_writeo(efx, &reg, FR_AZ_RX_CFG);
  1183. }
  1184. static void falcon_stats_request(struct efx_nic *efx)
  1185. {
  1186. struct falcon_nic_data *nic_data = efx->nic_data;
  1187. efx_oword_t reg;
  1188. WARN_ON(nic_data->stats_pending);
  1189. WARN_ON(nic_data->stats_disable_count);
  1190. FALCON_XMAC_STATS_DMA_FLAG(efx) = 0;
  1191. nic_data->stats_pending = true;
  1192. wmb(); /* ensure done flag is clear */
  1193. /* Initiate DMA transfer of stats */
  1194. EFX_POPULATE_OWORD_2(reg,
  1195. FRF_AB_MAC_STAT_DMA_CMD, 1,
  1196. FRF_AB_MAC_STAT_DMA_ADR,
  1197. efx->stats_buffer.dma_addr);
  1198. efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
  1199. mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
  1200. }
  1201. static void falcon_stats_complete(struct efx_nic *efx)
  1202. {
  1203. struct falcon_nic_data *nic_data = efx->nic_data;
  1204. if (!nic_data->stats_pending)
  1205. return;
  1206. nic_data->stats_pending = false;
  1207. if (FALCON_XMAC_STATS_DMA_FLAG(efx)) {
  1208. rmb(); /* read the done flag before the stats */
  1209. efx_nic_update_stats(falcon_stat_desc, FALCON_STAT_COUNT,
  1210. falcon_stat_mask, nic_data->stats,
  1211. efx->stats_buffer.addr, true);
  1212. } else {
  1213. netif_err(efx, hw, efx->net_dev,
  1214. "timed out waiting for statistics\n");
  1215. }
  1216. }
  1217. static void falcon_stats_timer_func(unsigned long context)
  1218. {
  1219. struct efx_nic *efx = (struct efx_nic *)context;
  1220. struct falcon_nic_data *nic_data = efx->nic_data;
  1221. spin_lock(&efx->stats_lock);
  1222. falcon_stats_complete(efx);
  1223. if (nic_data->stats_disable_count == 0)
  1224. falcon_stats_request(efx);
  1225. spin_unlock(&efx->stats_lock);
  1226. }
  1227. static bool falcon_loopback_link_poll(struct efx_nic *efx)
  1228. {
  1229. struct efx_link_state old_state = efx->link_state;
  1230. WARN_ON(!mutex_is_locked(&efx->mac_lock));
  1231. WARN_ON(!LOOPBACK_INTERNAL(efx));
  1232. efx->link_state.fd = true;
  1233. efx->link_state.fc = efx->wanted_fc;
  1234. efx->link_state.up = true;
  1235. efx->link_state.speed = 10000;
  1236. return !efx_link_state_equal(&efx->link_state, &old_state);
  1237. }
  1238. static int falcon_reconfigure_port(struct efx_nic *efx)
  1239. {
  1240. int rc;
  1241. WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0);
  1242. /* Poll the PHY link state *before* reconfiguring it. This means we
  1243. * will pick up the correct speed (in loopback) to select the correct
  1244. * MAC.
  1245. */
  1246. if (LOOPBACK_INTERNAL(efx))
  1247. falcon_loopback_link_poll(efx);
  1248. else
  1249. efx->phy_op->poll(efx);
  1250. falcon_stop_nic_stats(efx);
  1251. falcon_deconfigure_mac_wrapper(efx);
  1252. falcon_reset_macs(efx);
  1253. efx->phy_op->reconfigure(efx);
  1254. rc = falcon_reconfigure_xmac(efx);
  1255. BUG_ON(rc);
  1256. falcon_start_nic_stats(efx);
  1257. /* Synchronise efx->link_state with the kernel */
  1258. efx_link_status_changed(efx);
  1259. return 0;
  1260. }
  1261. /* TX flow control may automatically turn itself off if the link
  1262. * partner (intermittently) stops responding to pause frames. There
  1263. * isn't any indication that this has happened, so the best we do is
  1264. * leave it up to the user to spot this and fix it by cycling transmit
  1265. * flow control on this end.
  1266. */
  1267. static void falcon_a1_prepare_enable_fc_tx(struct efx_nic *efx)
  1268. {
  1269. /* Schedule a reset to recover */
  1270. efx_schedule_reset(efx, RESET_TYPE_INVISIBLE);
  1271. }
  1272. static void falcon_b0_prepare_enable_fc_tx(struct efx_nic *efx)
  1273. {
  1274. /* Recover by resetting the EM block */
  1275. falcon_stop_nic_stats(efx);
  1276. falcon_drain_tx_fifo(efx);
  1277. falcon_reconfigure_xmac(efx);
  1278. falcon_start_nic_stats(efx);
  1279. }
  1280. /**************************************************************************
  1281. *
  1282. * PHY access via GMII
  1283. *
  1284. **************************************************************************
  1285. */
  1286. /* Wait for GMII access to complete */
  1287. static int falcon_gmii_wait(struct efx_nic *efx)
  1288. {
  1289. efx_oword_t md_stat;
  1290. int count;
  1291. /* wait up to 50ms - taken max from datasheet */
  1292. for (count = 0; count < 5000; count++) {
  1293. efx_reado(efx, &md_stat, FR_AB_MD_STAT);
  1294. if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
  1295. if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
  1296. EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
  1297. netif_err(efx, hw, efx->net_dev,
  1298. "error from GMII access "
  1299. EFX_OWORD_FMT"\n",
  1300. EFX_OWORD_VAL(md_stat));
  1301. return -EIO;
  1302. }
  1303. return 0;
  1304. }
  1305. udelay(10);
  1306. }
  1307. netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n");
  1308. return -ETIMEDOUT;
  1309. }
  1310. /* Write an MDIO register of a PHY connected to Falcon. */
  1311. static int falcon_mdio_write(struct net_device *net_dev,
  1312. int prtad, int devad, u16 addr, u16 value)
  1313. {
  1314. struct efx_nic *efx = netdev_priv(net_dev);
  1315. struct falcon_nic_data *nic_data = efx->nic_data;
  1316. efx_oword_t reg;
  1317. int rc;
  1318. netif_vdbg(efx, hw, efx->net_dev,
  1319. "writing MDIO %d register %d.%d with 0x%04x\n",
  1320. prtad, devad, addr, value);
  1321. mutex_lock(&nic_data->mdio_lock);
  1322. /* Check MDIO not currently being accessed */
  1323. rc = falcon_gmii_wait(efx);
  1324. if (rc)
  1325. goto out;
  1326. /* Write the address/ID register */
  1327. EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
  1328. efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
  1329. EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
  1330. FRF_AB_MD_DEV_ADR, devad);
  1331. efx_writeo(efx, &reg, FR_AB_MD_ID);
  1332. /* Write data */
  1333. EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
  1334. efx_writeo(efx, &reg, FR_AB_MD_TXD);
  1335. EFX_POPULATE_OWORD_2(reg,
  1336. FRF_AB_MD_WRC, 1,
  1337. FRF_AB_MD_GC, 0);
  1338. efx_writeo(efx, &reg, FR_AB_MD_CS);
  1339. /* Wait for data to be written */
  1340. rc = falcon_gmii_wait(efx);
  1341. if (rc) {
  1342. /* Abort the write operation */
  1343. EFX_POPULATE_OWORD_2(reg,
  1344. FRF_AB_MD_WRC, 0,
  1345. FRF_AB_MD_GC, 1);
  1346. efx_writeo(efx, &reg, FR_AB_MD_CS);
  1347. udelay(10);
  1348. }
  1349. out:
  1350. mutex_unlock(&nic_data->mdio_lock);
  1351. return rc;
  1352. }
  1353. /* Read an MDIO register of a PHY connected to Falcon. */
  1354. static int falcon_mdio_read(struct net_device *net_dev,
  1355. int prtad, int devad, u16 addr)
  1356. {
  1357. struct efx_nic *efx = netdev_priv(net_dev);
  1358. struct falcon_nic_data *nic_data = efx->nic_data;
  1359. efx_oword_t reg;
  1360. int rc;
  1361. mutex_lock(&nic_data->mdio_lock);
  1362. /* Check MDIO not currently being accessed */
  1363. rc = falcon_gmii_wait(efx);
  1364. if (rc)
  1365. goto out;
  1366. EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
  1367. efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
  1368. EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
  1369. FRF_AB_MD_DEV_ADR, devad);
  1370. efx_writeo(efx, &reg, FR_AB_MD_ID);
  1371. /* Request data to be read */
  1372. EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
  1373. efx_writeo(efx, &reg, FR_AB_MD_CS);
  1374. /* Wait for data to become available */
  1375. rc = falcon_gmii_wait(efx);
  1376. if (rc == 0) {
  1377. efx_reado(efx, &reg, FR_AB_MD_RXD);
  1378. rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
  1379. netif_vdbg(efx, hw, efx->net_dev,
  1380. "read from MDIO %d register %d.%d, got %04x\n",
  1381. prtad, devad, addr, rc);
  1382. } else {
  1383. /* Abort the read operation */
  1384. EFX_POPULATE_OWORD_2(reg,
  1385. FRF_AB_MD_RIC, 0,
  1386. FRF_AB_MD_GC, 1);
  1387. efx_writeo(efx, &reg, FR_AB_MD_CS);
  1388. netif_dbg(efx, hw, efx->net_dev,
  1389. "read from MDIO %d register %d.%d, got error %d\n",
  1390. prtad, devad, addr, rc);
  1391. }
  1392. out:
  1393. mutex_unlock(&nic_data->mdio_lock);
  1394. return rc;
  1395. }
  1396. /* This call is responsible for hooking in the MAC and PHY operations */
  1397. static int falcon_probe_port(struct efx_nic *efx)
  1398. {
  1399. struct falcon_nic_data *nic_data = efx->nic_data;
  1400. int rc;
  1401. switch (efx->phy_type) {
  1402. case PHY_TYPE_SFX7101:
  1403. efx->phy_op = &falcon_sfx7101_phy_ops;
  1404. break;
  1405. case PHY_TYPE_QT2022C2:
  1406. case PHY_TYPE_QT2025C:
  1407. efx->phy_op = &falcon_qt202x_phy_ops;
  1408. break;
  1409. case PHY_TYPE_TXC43128:
  1410. efx->phy_op = &falcon_txc_phy_ops;
  1411. break;
  1412. default:
  1413. netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n",
  1414. efx->phy_type);
  1415. return -ENODEV;
  1416. }
  1417. /* Fill out MDIO structure and loopback modes */
  1418. mutex_init(&nic_data->mdio_lock);
  1419. efx->mdio.mdio_read = falcon_mdio_read;
  1420. efx->mdio.mdio_write = falcon_mdio_write;
  1421. rc = efx->phy_op->probe(efx);
  1422. if (rc != 0)
  1423. return rc;
  1424. /* Initial assumption */
  1425. efx->link_state.speed = 10000;
  1426. efx->link_state.fd = true;
  1427. /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
  1428. if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
  1429. efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
  1430. else
  1431. efx->wanted_fc = EFX_FC_RX;
  1432. if (efx->mdio.mmds & MDIO_DEVS_AN)
  1433. efx->wanted_fc |= EFX_FC_AUTO;
  1434. /* Allocate buffer for stats */
  1435. rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
  1436. FALCON_MAC_STATS_SIZE, GFP_KERNEL);
  1437. if (rc)
  1438. return rc;
  1439. netif_dbg(efx, probe, efx->net_dev,
  1440. "stats buffer at %llx (virt %p phys %llx)\n",
  1441. (u64)efx->stats_buffer.dma_addr,
  1442. efx->stats_buffer.addr,
  1443. (u64)virt_to_phys(efx->stats_buffer.addr));
  1444. return 0;
  1445. }
  1446. static void falcon_remove_port(struct efx_nic *efx)
  1447. {
  1448. efx->phy_op->remove(efx);
  1449. efx_nic_free_buffer(efx, &efx->stats_buffer);
  1450. }
  1451. /* Global events are basically PHY events */
  1452. static bool
  1453. falcon_handle_global_event(struct efx_channel *channel, efx_qword_t *event)
  1454. {
  1455. struct efx_nic *efx = channel->efx;
  1456. struct falcon_nic_data *nic_data = efx->nic_data;
  1457. if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
  1458. EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
  1459. EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR))
  1460. /* Ignored */
  1461. return true;
  1462. if ((efx_nic_rev(efx) == EFX_REV_FALCON_B0) &&
  1463. EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
  1464. nic_data->xmac_poll_required = true;
  1465. return true;
  1466. }
  1467. if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ?
  1468. EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
  1469. EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
  1470. netif_err(efx, rx_err, efx->net_dev,
  1471. "channel %d seen global RX_RESET event. Resetting.\n",
  1472. channel->channel);
  1473. atomic_inc(&efx->rx_reset);
  1474. efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
  1475. RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
  1476. return true;
  1477. }
  1478. return false;
  1479. }
  1480. /**************************************************************************
  1481. *
  1482. * Falcon test code
  1483. *
  1484. **************************************************************************/
  1485. static int
  1486. falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
  1487. {
  1488. struct falcon_nic_data *nic_data = efx->nic_data;
  1489. struct falcon_nvconfig *nvconfig;
  1490. struct falcon_spi_device *spi;
  1491. void *region;
  1492. int rc, magic_num, struct_ver;
  1493. __le16 *word, *limit;
  1494. u32 csum;
  1495. if (falcon_spi_present(&nic_data->spi_flash))
  1496. spi = &nic_data->spi_flash;
  1497. else if (falcon_spi_present(&nic_data->spi_eeprom))
  1498. spi = &nic_data->spi_eeprom;
  1499. else
  1500. return -EINVAL;
  1501. region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
  1502. if (!region)
  1503. return -ENOMEM;
  1504. nvconfig = region + FALCON_NVCONFIG_OFFSET;
  1505. mutex_lock(&nic_data->spi_lock);
  1506. rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
  1507. mutex_unlock(&nic_data->spi_lock);
  1508. if (rc) {
  1509. netif_err(efx, hw, efx->net_dev, "Failed to read %s\n",
  1510. falcon_spi_present(&nic_data->spi_flash) ?
  1511. "flash" : "EEPROM");
  1512. rc = -EIO;
  1513. goto out;
  1514. }
  1515. magic_num = le16_to_cpu(nvconfig->board_magic_num);
  1516. struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
  1517. rc = -EINVAL;
  1518. if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
  1519. netif_err(efx, hw, efx->net_dev,
  1520. "NVRAM bad magic 0x%x\n", magic_num);
  1521. goto out;
  1522. }
  1523. if (struct_ver < 2) {
  1524. netif_err(efx, hw, efx->net_dev,
  1525. "NVRAM has ancient version 0x%x\n", struct_ver);
  1526. goto out;
  1527. } else if (struct_ver < 4) {
  1528. word = &nvconfig->board_magic_num;
  1529. limit = (__le16 *) (nvconfig + 1);
  1530. } else {
  1531. word = region;
  1532. limit = region + FALCON_NVCONFIG_END;
  1533. }
  1534. for (csum = 0; word < limit; ++word)
  1535. csum += le16_to_cpu(*word);
  1536. if (~csum & 0xffff) {
  1537. netif_err(efx, hw, efx->net_dev,
  1538. "NVRAM has incorrect checksum\n");
  1539. goto out;
  1540. }
  1541. rc = 0;
  1542. if (nvconfig_out)
  1543. memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
  1544. out:
  1545. kfree(region);
  1546. return rc;
  1547. }
  1548. static int falcon_test_nvram(struct efx_nic *efx)
  1549. {
  1550. return falcon_read_nvram(efx, NULL);
  1551. }
  1552. static const struct efx_farch_register_test falcon_b0_register_tests[] = {
  1553. { FR_AZ_ADR_REGION,
  1554. EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
  1555. { FR_AZ_RX_CFG,
  1556. EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
  1557. { FR_AZ_TX_CFG,
  1558. EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
  1559. { FR_AZ_TX_RESERVED,
  1560. EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
  1561. { FR_AB_MAC_CTRL,
  1562. EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
  1563. { FR_AZ_SRM_TX_DC_CFG,
  1564. EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
  1565. { FR_AZ_RX_DC_CFG,
  1566. EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
  1567. { FR_AZ_RX_DC_PF_WM,
  1568. EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
  1569. { FR_BZ_DP_CTRL,
  1570. EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
  1571. { FR_AB_GM_CFG2,
  1572. EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
  1573. { FR_AB_GMF_CFG0,
  1574. EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
  1575. { FR_AB_XM_GLB_CFG,
  1576. EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
  1577. { FR_AB_XM_TX_CFG,
  1578. EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
  1579. { FR_AB_XM_RX_CFG,
  1580. EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
  1581. { FR_AB_XM_RX_PARAM,
  1582. EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
  1583. { FR_AB_XM_FC,
  1584. EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
  1585. { FR_AB_XM_ADR_LO,
  1586. EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
  1587. { FR_AB_XX_SD_CTL,
  1588. EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
  1589. };
  1590. static int
  1591. falcon_b0_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
  1592. {
  1593. enum reset_type reset_method = RESET_TYPE_INVISIBLE;
  1594. int rc, rc2;
  1595. mutex_lock(&efx->mac_lock);
  1596. if (efx->loopback_modes) {
  1597. /* We need the 312 clock from the PHY to test the XMAC
  1598. * registers, so move into XGMII loopback if available */
  1599. if (efx->loopback_modes & (1 << LOOPBACK_XGMII))
  1600. efx->loopback_mode = LOOPBACK_XGMII;
  1601. else
  1602. efx->loopback_mode = __ffs(efx->loopback_modes);
  1603. }
  1604. __efx_reconfigure_port(efx);
  1605. mutex_unlock(&efx->mac_lock);
  1606. efx_reset_down(efx, reset_method);
  1607. tests->registers =
  1608. efx_farch_test_registers(efx, falcon_b0_register_tests,
  1609. ARRAY_SIZE(falcon_b0_register_tests))
  1610. ? -1 : 1;
  1611. rc = falcon_reset_hw(efx, reset_method);
  1612. rc2 = efx_reset_up(efx, reset_method, rc == 0);
  1613. return rc ? rc : rc2;
  1614. }
  1615. /**************************************************************************
  1616. *
  1617. * Device reset
  1618. *
  1619. **************************************************************************
  1620. */
  1621. static enum reset_type falcon_map_reset_reason(enum reset_type reason)
  1622. {
  1623. switch (reason) {
  1624. case RESET_TYPE_RX_RECOVERY:
  1625. case RESET_TYPE_DMA_ERROR:
  1626. case RESET_TYPE_TX_SKIP:
  1627. /* These can occasionally occur due to hardware bugs.
  1628. * We try to reset without disrupting the link.
  1629. */
  1630. return RESET_TYPE_INVISIBLE;
  1631. default:
  1632. return RESET_TYPE_ALL;
  1633. }
  1634. }
  1635. static int falcon_map_reset_flags(u32 *flags)
  1636. {
  1637. enum {
  1638. FALCON_RESET_INVISIBLE = (ETH_RESET_DMA | ETH_RESET_FILTER |
  1639. ETH_RESET_OFFLOAD | ETH_RESET_MAC),
  1640. FALCON_RESET_ALL = FALCON_RESET_INVISIBLE | ETH_RESET_PHY,
  1641. FALCON_RESET_WORLD = FALCON_RESET_ALL | ETH_RESET_IRQ,
  1642. };
  1643. if ((*flags & FALCON_RESET_WORLD) == FALCON_RESET_WORLD) {
  1644. *flags &= ~FALCON_RESET_WORLD;
  1645. return RESET_TYPE_WORLD;
  1646. }
  1647. if ((*flags & FALCON_RESET_ALL) == FALCON_RESET_ALL) {
  1648. *flags &= ~FALCON_RESET_ALL;
  1649. return RESET_TYPE_ALL;
  1650. }
  1651. if ((*flags & FALCON_RESET_INVISIBLE) == FALCON_RESET_INVISIBLE) {
  1652. *flags &= ~FALCON_RESET_INVISIBLE;
  1653. return RESET_TYPE_INVISIBLE;
  1654. }
  1655. return -EINVAL;
  1656. }
  1657. /* Resets NIC to known state. This routine must be called in process
  1658. * context and is allowed to sleep. */
  1659. static int __falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
  1660. {
  1661. struct falcon_nic_data *nic_data = efx->nic_data;
  1662. efx_oword_t glb_ctl_reg_ker;
  1663. int rc;
  1664. netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n",
  1665. RESET_TYPE(method));
  1666. /* Initiate device reset */
  1667. if (method == RESET_TYPE_WORLD) {
  1668. rc = pci_save_state(efx->pci_dev);
  1669. if (rc) {
  1670. netif_err(efx, drv, efx->net_dev,
  1671. "failed to backup PCI state of primary "
  1672. "function prior to hardware reset\n");
  1673. goto fail1;
  1674. }
  1675. if (efx_nic_is_dual_func(efx)) {
  1676. rc = pci_save_state(nic_data->pci_dev2);
  1677. if (rc) {
  1678. netif_err(efx, drv, efx->net_dev,
  1679. "failed to backup PCI state of "
  1680. "secondary function prior to "
  1681. "hardware reset\n");
  1682. goto fail2;
  1683. }
  1684. }
  1685. EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
  1686. FRF_AB_EXT_PHY_RST_DUR,
  1687. FFE_AB_EXT_PHY_RST_DUR_10240US,
  1688. FRF_AB_SWRST, 1);
  1689. } else {
  1690. EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
  1691. /* exclude PHY from "invisible" reset */
  1692. FRF_AB_EXT_PHY_RST_CTL,
  1693. method == RESET_TYPE_INVISIBLE,
  1694. /* exclude EEPROM/flash and PCIe */
  1695. FRF_AB_PCIE_CORE_RST_CTL, 1,
  1696. FRF_AB_PCIE_NSTKY_RST_CTL, 1,
  1697. FRF_AB_PCIE_SD_RST_CTL, 1,
  1698. FRF_AB_EE_RST_CTL, 1,
  1699. FRF_AB_EXT_PHY_RST_DUR,
  1700. FFE_AB_EXT_PHY_RST_DUR_10240US,
  1701. FRF_AB_SWRST, 1);
  1702. }
  1703. efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
  1704. netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n");
  1705. schedule_timeout_uninterruptible(HZ / 20);
  1706. /* Restore PCI configuration if needed */
  1707. if (method == RESET_TYPE_WORLD) {
  1708. if (efx_nic_is_dual_func(efx))
  1709. pci_restore_state(nic_data->pci_dev2);
  1710. pci_restore_state(efx->pci_dev);
  1711. netif_dbg(efx, drv, efx->net_dev,
  1712. "successfully restored PCI config\n");
  1713. }
  1714. /* Assert that reset complete */
  1715. efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
  1716. if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
  1717. rc = -ETIMEDOUT;
  1718. netif_err(efx, hw, efx->net_dev,
  1719. "timed out waiting for hardware reset\n");
  1720. goto fail3;
  1721. }
  1722. netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n");
  1723. return 0;
  1724. /* pci_save_state() and pci_restore_state() MUST be called in pairs */
  1725. fail2:
  1726. pci_restore_state(efx->pci_dev);
  1727. fail1:
  1728. fail3:
  1729. return rc;
  1730. }
  1731. static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
  1732. {
  1733. struct falcon_nic_data *nic_data = efx->nic_data;
  1734. int rc;
  1735. mutex_lock(&nic_data->spi_lock);
  1736. rc = __falcon_reset_hw(efx, method);
  1737. mutex_unlock(&nic_data->spi_lock);
  1738. return rc;
  1739. }
  1740. static void falcon_monitor(struct efx_nic *efx)
  1741. {
  1742. bool link_changed;
  1743. int rc;
  1744. BUG_ON(!mutex_is_locked(&efx->mac_lock));
  1745. rc = falcon_board(efx)->type->monitor(efx);
  1746. if (rc) {
  1747. netif_err(efx, hw, efx->net_dev,
  1748. "Board sensor %s; shutting down PHY\n",
  1749. (rc == -ERANGE) ? "reported fault" : "failed");
  1750. efx->phy_mode |= PHY_MODE_LOW_POWER;
  1751. rc = __efx_reconfigure_port(efx);
  1752. WARN_ON(rc);
  1753. }
  1754. if (LOOPBACK_INTERNAL(efx))
  1755. link_changed = falcon_loopback_link_poll(efx);
  1756. else
  1757. link_changed = efx->phy_op->poll(efx);
  1758. if (link_changed) {
  1759. falcon_stop_nic_stats(efx);
  1760. falcon_deconfigure_mac_wrapper(efx);
  1761. falcon_reset_macs(efx);
  1762. rc = falcon_reconfigure_xmac(efx);
  1763. BUG_ON(rc);
  1764. falcon_start_nic_stats(efx);
  1765. efx_link_status_changed(efx);
  1766. }
  1767. falcon_poll_xmac(efx);
  1768. }
  1769. /* Zeroes out the SRAM contents. This routine must be called in
  1770. * process context and is allowed to sleep.
  1771. */
  1772. static int falcon_reset_sram(struct efx_nic *efx)
  1773. {
  1774. efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
  1775. int count;
  1776. /* Set the SRAM wake/sleep GPIO appropriately. */
  1777. efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
  1778. EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
  1779. EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
  1780. efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
  1781. /* Initiate SRAM reset */
  1782. EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
  1783. FRF_AZ_SRM_INIT_EN, 1,
  1784. FRF_AZ_SRM_NB_SZ, 0);
  1785. efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
  1786. /* Wait for SRAM reset to complete */
  1787. count = 0;
  1788. do {
  1789. netif_dbg(efx, hw, efx->net_dev,
  1790. "waiting for SRAM reset (attempt %d)...\n", count);
  1791. /* SRAM reset is slow; expect around 16ms */
  1792. schedule_timeout_uninterruptible(HZ / 50);
  1793. /* Check for reset complete */
  1794. efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
  1795. if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
  1796. netif_dbg(efx, hw, efx->net_dev,
  1797. "SRAM reset complete\n");
  1798. return 0;
  1799. }
  1800. } while (++count < 20); /* wait up to 0.4 sec */
  1801. netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n");
  1802. return -ETIMEDOUT;
  1803. }
  1804. static void falcon_spi_device_init(struct efx_nic *efx,
  1805. struct falcon_spi_device *spi_device,
  1806. unsigned int device_id, u32 device_type)
  1807. {
  1808. if (device_type != 0) {
  1809. spi_device->device_id = device_id;
  1810. spi_device->size =
  1811. 1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
  1812. spi_device->addr_len =
  1813. SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
  1814. spi_device->munge_address = (spi_device->size == 1 << 9 &&
  1815. spi_device->addr_len == 1);
  1816. spi_device->erase_command =
  1817. SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
  1818. spi_device->erase_size =
  1819. 1 << SPI_DEV_TYPE_FIELD(device_type,
  1820. SPI_DEV_TYPE_ERASE_SIZE);
  1821. spi_device->block_size =
  1822. 1 << SPI_DEV_TYPE_FIELD(device_type,
  1823. SPI_DEV_TYPE_BLOCK_SIZE);
  1824. } else {
  1825. spi_device->size = 0;
  1826. }
  1827. }
  1828. /* Extract non-volatile configuration */
  1829. static int falcon_probe_nvconfig(struct efx_nic *efx)
  1830. {
  1831. struct falcon_nic_data *nic_data = efx->nic_data;
  1832. struct falcon_nvconfig *nvconfig;
  1833. int rc;
  1834. nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
  1835. if (!nvconfig)
  1836. return -ENOMEM;
  1837. rc = falcon_read_nvram(efx, nvconfig);
  1838. if (rc)
  1839. goto out;
  1840. efx->phy_type = nvconfig->board_v2.port0_phy_type;
  1841. efx->mdio.prtad = nvconfig->board_v2.port0_phy_addr;
  1842. if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
  1843. falcon_spi_device_init(
  1844. efx, &nic_data->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
  1845. le32_to_cpu(nvconfig->board_v3
  1846. .spi_device_type[FFE_AB_SPI_DEVICE_FLASH]));
  1847. falcon_spi_device_init(
  1848. efx, &nic_data->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
  1849. le32_to_cpu(nvconfig->board_v3
  1850. .spi_device_type[FFE_AB_SPI_DEVICE_EEPROM]));
  1851. }
  1852. /* Read the MAC addresses */
  1853. memcpy(efx->net_dev->perm_addr, nvconfig->mac_address[0], ETH_ALEN);
  1854. netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n",
  1855. efx->phy_type, efx->mdio.prtad);
  1856. rc = falcon_probe_board(efx,
  1857. le16_to_cpu(nvconfig->board_v2.board_revision));
  1858. out:
  1859. kfree(nvconfig);
  1860. return rc;
  1861. }
  1862. static int falcon_dimension_resources(struct efx_nic *efx)
  1863. {
  1864. efx->rx_dc_base = 0x20000;
  1865. efx->tx_dc_base = 0x26000;
  1866. return 0;
  1867. }
  1868. /* Probe all SPI devices on the NIC */
  1869. static void falcon_probe_spi_devices(struct efx_nic *efx)
  1870. {
  1871. struct falcon_nic_data *nic_data = efx->nic_data;
  1872. efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
  1873. int boot_dev;
  1874. efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
  1875. efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
  1876. efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
  1877. if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
  1878. boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
  1879. FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
  1880. netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n",
  1881. boot_dev == FFE_AB_SPI_DEVICE_FLASH ?
  1882. "flash" : "EEPROM");
  1883. } else {
  1884. /* Disable VPD and set clock dividers to safe
  1885. * values for initial programming. */
  1886. boot_dev = -1;
  1887. netif_dbg(efx, probe, efx->net_dev,
  1888. "Booted from internal ASIC settings;"
  1889. " setting SPI config\n");
  1890. EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
  1891. /* 125 MHz / 7 ~= 20 MHz */
  1892. FRF_AB_EE_SF_CLOCK_DIV, 7,
  1893. /* 125 MHz / 63 ~= 2 MHz */
  1894. FRF_AB_EE_EE_CLOCK_DIV, 63);
  1895. efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
  1896. }
  1897. mutex_init(&nic_data->spi_lock);
  1898. if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
  1899. falcon_spi_device_init(efx, &nic_data->spi_flash,
  1900. FFE_AB_SPI_DEVICE_FLASH,
  1901. default_flash_type);
  1902. if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
  1903. falcon_spi_device_init(efx, &nic_data->spi_eeprom,
  1904. FFE_AB_SPI_DEVICE_EEPROM,
  1905. large_eeprom_type);
  1906. }
  1907. static unsigned int falcon_a1_mem_map_size(struct efx_nic *efx)
  1908. {
  1909. return 0x20000;
  1910. }
  1911. static unsigned int falcon_b0_mem_map_size(struct efx_nic *efx)
  1912. {
  1913. /* Map everything up to and including the RSS indirection table.
  1914. * The PCI core takes care of mapping the MSI-X tables.
  1915. */
  1916. return FR_BZ_RX_INDIRECTION_TBL +
  1917. FR_BZ_RX_INDIRECTION_TBL_STEP * FR_BZ_RX_INDIRECTION_TBL_ROWS;
  1918. }
  1919. static int falcon_probe_nic(struct efx_nic *efx)
  1920. {
  1921. struct falcon_nic_data *nic_data;
  1922. struct falcon_board *board;
  1923. int rc;
  1924. /* Allocate storage for hardware specific data */
  1925. nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
  1926. if (!nic_data)
  1927. return -ENOMEM;
  1928. efx->nic_data = nic_data;
  1929. rc = -ENODEV;
  1930. if (efx_farch_fpga_ver(efx) != 0) {
  1931. netif_err(efx, probe, efx->net_dev,
  1932. "Falcon FPGA not supported\n");
  1933. goto fail1;
  1934. }
  1935. if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
  1936. efx_oword_t nic_stat;
  1937. struct pci_dev *dev;
  1938. u8 pci_rev = efx->pci_dev->revision;
  1939. if ((pci_rev == 0xff) || (pci_rev == 0)) {
  1940. netif_err(efx, probe, efx->net_dev,
  1941. "Falcon rev A0 not supported\n");
  1942. goto fail1;
  1943. }
  1944. efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
  1945. if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
  1946. netif_err(efx, probe, efx->net_dev,
  1947. "Falcon rev A1 1G not supported\n");
  1948. goto fail1;
  1949. }
  1950. if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
  1951. netif_err(efx, probe, efx->net_dev,
  1952. "Falcon rev A1 PCI-X not supported\n");
  1953. goto fail1;
  1954. }
  1955. dev = pci_dev_get(efx->pci_dev);
  1956. while ((dev = pci_get_device(PCI_VENDOR_ID_SOLARFLARE,
  1957. PCI_DEVICE_ID_SOLARFLARE_SFC4000A_1,
  1958. dev))) {
  1959. if (dev->bus == efx->pci_dev->bus &&
  1960. dev->devfn == efx->pci_dev->devfn + 1) {
  1961. nic_data->pci_dev2 = dev;
  1962. break;
  1963. }
  1964. }
  1965. if (!nic_data->pci_dev2) {
  1966. netif_err(efx, probe, efx->net_dev,
  1967. "failed to find secondary function\n");
  1968. rc = -ENODEV;
  1969. goto fail2;
  1970. }
  1971. }
  1972. /* Now we can reset the NIC */
  1973. rc = __falcon_reset_hw(efx, RESET_TYPE_ALL);
  1974. if (rc) {
  1975. netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
  1976. goto fail3;
  1977. }
  1978. /* Allocate memory for INT_KER */
  1979. rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t),
  1980. GFP_KERNEL);
  1981. if (rc)
  1982. goto fail4;
  1983. BUG_ON(efx->irq_status.dma_addr & 0x0f);
  1984. netif_dbg(efx, probe, efx->net_dev,
  1985. "INT_KER at %llx (virt %p phys %llx)\n",
  1986. (u64)efx->irq_status.dma_addr,
  1987. efx->irq_status.addr,
  1988. (u64)virt_to_phys(efx->irq_status.addr));
  1989. falcon_probe_spi_devices(efx);
  1990. /* Read in the non-volatile configuration */
  1991. rc = falcon_probe_nvconfig(efx);
  1992. if (rc) {
  1993. if (rc == -EINVAL)
  1994. netif_err(efx, probe, efx->net_dev, "NVRAM is invalid\n");
  1995. goto fail5;
  1996. }
  1997. efx->max_channels = (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ? 4 :
  1998. EFX_MAX_CHANNELS);
  1999. efx->timer_quantum_ns = 4968; /* 621 cycles */
  2000. /* Initialise I2C adapter */
  2001. board = falcon_board(efx);
  2002. board->i2c_adap.owner = THIS_MODULE;
  2003. board->i2c_data = falcon_i2c_bit_operations;
  2004. board->i2c_data.data = efx;
  2005. board->i2c_adap.algo_data = &board->i2c_data;
  2006. board->i2c_adap.dev.parent = &efx->pci_dev->dev;
  2007. strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
  2008. sizeof(board->i2c_adap.name));
  2009. rc = i2c_bit_add_bus(&board->i2c_adap);
  2010. if (rc)
  2011. goto fail5;
  2012. rc = falcon_board(efx)->type->init(efx);
  2013. if (rc) {
  2014. netif_err(efx, probe, efx->net_dev,
  2015. "failed to initialise board\n");
  2016. goto fail6;
  2017. }
  2018. nic_data->stats_disable_count = 1;
  2019. setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
  2020. (unsigned long)efx);
  2021. return 0;
  2022. fail6:
  2023. i2c_del_adapter(&board->i2c_adap);
  2024. memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
  2025. fail5:
  2026. efx_nic_free_buffer(efx, &efx->irq_status);
  2027. fail4:
  2028. fail3:
  2029. if (nic_data->pci_dev2) {
  2030. pci_dev_put(nic_data->pci_dev2);
  2031. nic_data->pci_dev2 = NULL;
  2032. }
  2033. fail2:
  2034. fail1:
  2035. kfree(efx->nic_data);
  2036. return rc;
  2037. }
  2038. static void falcon_init_rx_cfg(struct efx_nic *efx)
  2039. {
  2040. /* RX control FIFO thresholds (32 entries) */
  2041. const unsigned ctrl_xon_thr = 20;
  2042. const unsigned ctrl_xoff_thr = 25;
  2043. efx_oword_t reg;
  2044. efx_reado(efx, &reg, FR_AZ_RX_CFG);
  2045. if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
  2046. /* Data FIFO size is 5.5K. The RX DMA engine only
  2047. * supports scattering for user-mode queues, but will
  2048. * split DMA writes at intervals of RX_USR_BUF_SIZE
  2049. * (32-byte units) even for kernel-mode queues. We
  2050. * set it to be so large that that never happens.
  2051. */
  2052. EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
  2053. EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
  2054. (3 * 4096) >> 5);
  2055. EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, 512 >> 8);
  2056. EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, 2048 >> 8);
  2057. EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
  2058. EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
  2059. } else {
  2060. /* Data FIFO size is 80K; register fields moved */
  2061. EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
  2062. EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
  2063. EFX_RX_USR_BUF_SIZE >> 5);
  2064. /* Send XON and XOFF at ~3 * max MTU away from empty/full */
  2065. EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, 27648 >> 8);
  2066. EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, 54272 >> 8);
  2067. EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
  2068. EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
  2069. EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
  2070. /* Enable hash insertion. This is broken for the
  2071. * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
  2072. * IPv4 hashes. */
  2073. EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1);
  2074. EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1);
  2075. EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1);
  2076. }
  2077. /* Always enable XOFF signal from RX FIFO. We enable
  2078. * or disable transmission of pause frames at the MAC. */
  2079. EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
  2080. efx_writeo(efx, &reg, FR_AZ_RX_CFG);
  2081. }
  2082. /* This call performs hardware-specific global initialisation, such as
  2083. * defining the descriptor cache sizes and number of RSS channels.
  2084. * It does not set up any buffers, descriptor rings or event queues.
  2085. */
  2086. static int falcon_init_nic(struct efx_nic *efx)
  2087. {
  2088. efx_oword_t temp;
  2089. int rc;
  2090. /* Use on-chip SRAM */
  2091. efx_reado(efx, &temp, FR_AB_NIC_STAT);
  2092. EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
  2093. efx_writeo(efx, &temp, FR_AB_NIC_STAT);
  2094. rc = falcon_reset_sram(efx);
  2095. if (rc)
  2096. return rc;
  2097. /* Clear the parity enables on the TX data fifos as
  2098. * they produce false parity errors because of timing issues
  2099. */
  2100. if (EFX_WORKAROUND_5129(efx)) {
  2101. efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
  2102. EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
  2103. efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
  2104. }
  2105. if (EFX_WORKAROUND_7244(efx)) {
  2106. efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
  2107. EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
  2108. EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
  2109. EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
  2110. EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
  2111. efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
  2112. }
  2113. /* XXX This is documented only for Falcon A0/A1 */
  2114. /* Setup RX. Wait for descriptor is broken and must
  2115. * be disabled. RXDP recovery shouldn't be needed, but is.
  2116. */
  2117. efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
  2118. EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
  2119. EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
  2120. if (EFX_WORKAROUND_5583(efx))
  2121. EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
  2122. efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
  2123. /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
  2124. * descriptors (which is bad).
  2125. */
  2126. efx_reado(efx, &temp, FR_AZ_TX_CFG);
  2127. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
  2128. efx_writeo(efx, &temp, FR_AZ_TX_CFG);
  2129. falcon_init_rx_cfg(efx);
  2130. if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
  2131. /* Set hash key for IPv4 */
  2132. memcpy(&temp, efx->rx_hash_key, sizeof(temp));
  2133. efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
  2134. /* Set destination of both TX and RX Flush events */
  2135. EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
  2136. efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
  2137. }
  2138. efx_farch_init_common(efx);
  2139. return 0;
  2140. }
  2141. static void falcon_remove_nic(struct efx_nic *efx)
  2142. {
  2143. struct falcon_nic_data *nic_data = efx->nic_data;
  2144. struct falcon_board *board = falcon_board(efx);
  2145. board->type->fini(efx);
  2146. /* Remove I2C adapter and clear it in preparation for a retry */
  2147. i2c_del_adapter(&board->i2c_adap);
  2148. memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
  2149. efx_nic_free_buffer(efx, &efx->irq_status);
  2150. __falcon_reset_hw(efx, RESET_TYPE_ALL);
  2151. /* Release the second function after the reset */
  2152. if (nic_data->pci_dev2) {
  2153. pci_dev_put(nic_data->pci_dev2);
  2154. nic_data->pci_dev2 = NULL;
  2155. }
  2156. /* Tear down the private nic state */
  2157. kfree(efx->nic_data);
  2158. efx->nic_data = NULL;
  2159. }
  2160. static size_t falcon_describe_nic_stats(struct efx_nic *efx, u8 *names)
  2161. {
  2162. return efx_nic_describe_stats(falcon_stat_desc, FALCON_STAT_COUNT,
  2163. falcon_stat_mask, names);
  2164. }
  2165. static size_t falcon_update_nic_stats(struct efx_nic *efx, u64 *full_stats,
  2166. struct rtnl_link_stats64 *core_stats)
  2167. {
  2168. struct falcon_nic_data *nic_data = efx->nic_data;
  2169. u64 *stats = nic_data->stats;
  2170. efx_oword_t cnt;
  2171. if (!nic_data->stats_disable_count) {
  2172. efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
  2173. stats[FALCON_STAT_rx_nodesc_drop_cnt] +=
  2174. EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
  2175. if (nic_data->stats_pending &&
  2176. FALCON_XMAC_STATS_DMA_FLAG(efx)) {
  2177. nic_data->stats_pending = false;
  2178. rmb(); /* read the done flag before the stats */
  2179. efx_nic_update_stats(
  2180. falcon_stat_desc, FALCON_STAT_COUNT,
  2181. falcon_stat_mask,
  2182. stats, efx->stats_buffer.addr, true);
  2183. }
  2184. /* Update derived statistic */
  2185. efx_update_diff_stat(&stats[FALCON_STAT_rx_bad_bytes],
  2186. stats[FALCON_STAT_rx_bytes] -
  2187. stats[FALCON_STAT_rx_good_bytes] -
  2188. stats[FALCON_STAT_rx_control] * 64);
  2189. }
  2190. if (full_stats)
  2191. memcpy(full_stats, stats, sizeof(u64) * FALCON_STAT_COUNT);
  2192. if (core_stats) {
  2193. core_stats->rx_packets = stats[FALCON_STAT_rx_packets];
  2194. core_stats->tx_packets = stats[FALCON_STAT_tx_packets];
  2195. core_stats->rx_bytes = stats[FALCON_STAT_rx_bytes];
  2196. core_stats->tx_bytes = stats[FALCON_STAT_tx_bytes];
  2197. core_stats->rx_dropped = stats[FALCON_STAT_rx_nodesc_drop_cnt];
  2198. core_stats->multicast = stats[FALCON_STAT_rx_multicast];
  2199. core_stats->rx_length_errors =
  2200. stats[FALCON_STAT_rx_gtjumbo] +
  2201. stats[FALCON_STAT_rx_length_error];
  2202. core_stats->rx_crc_errors = stats[FALCON_STAT_rx_bad];
  2203. core_stats->rx_frame_errors = stats[FALCON_STAT_rx_align_error];
  2204. core_stats->rx_fifo_errors = stats[FALCON_STAT_rx_overflow];
  2205. core_stats->rx_errors = (core_stats->rx_length_errors +
  2206. core_stats->rx_crc_errors +
  2207. core_stats->rx_frame_errors +
  2208. stats[FALCON_STAT_rx_symbol_error]);
  2209. }
  2210. return FALCON_STAT_COUNT;
  2211. }
  2212. void falcon_start_nic_stats(struct efx_nic *efx)
  2213. {
  2214. struct falcon_nic_data *nic_data = efx->nic_data;
  2215. spin_lock_bh(&efx->stats_lock);
  2216. if (--nic_data->stats_disable_count == 0)
  2217. falcon_stats_request(efx);
  2218. spin_unlock_bh(&efx->stats_lock);
  2219. }
  2220. void falcon_stop_nic_stats(struct efx_nic *efx)
  2221. {
  2222. struct falcon_nic_data *nic_data = efx->nic_data;
  2223. int i;
  2224. might_sleep();
  2225. spin_lock_bh(&efx->stats_lock);
  2226. ++nic_data->stats_disable_count;
  2227. spin_unlock_bh(&efx->stats_lock);
  2228. del_timer_sync(&nic_data->stats_timer);
  2229. /* Wait enough time for the most recent transfer to
  2230. * complete. */
  2231. for (i = 0; i < 4 && nic_data->stats_pending; i++) {
  2232. if (FALCON_XMAC_STATS_DMA_FLAG(efx))
  2233. break;
  2234. msleep(1);
  2235. }
  2236. spin_lock_bh(&efx->stats_lock);
  2237. falcon_stats_complete(efx);
  2238. spin_unlock_bh(&efx->stats_lock);
  2239. }
  2240. static void falcon_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
  2241. {
  2242. falcon_board(efx)->type->set_id_led(efx, mode);
  2243. }
  2244. /**************************************************************************
  2245. *
  2246. * Wake on LAN
  2247. *
  2248. **************************************************************************
  2249. */
  2250. static void falcon_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
  2251. {
  2252. wol->supported = 0;
  2253. wol->wolopts = 0;
  2254. memset(&wol->sopass, 0, sizeof(wol->sopass));
  2255. }
  2256. static int falcon_set_wol(struct efx_nic *efx, u32 type)
  2257. {
  2258. if (type != 0)
  2259. return -EINVAL;
  2260. return 0;
  2261. }
  2262. /**************************************************************************
  2263. *
  2264. * Revision-dependent attributes used by efx.c and nic.c
  2265. *
  2266. **************************************************************************
  2267. */
  2268. const struct efx_nic_type falcon_a1_nic_type = {
  2269. .mem_map_size = falcon_a1_mem_map_size,
  2270. .probe = falcon_probe_nic,
  2271. .remove = falcon_remove_nic,
  2272. .init = falcon_init_nic,
  2273. .dimension_resources = falcon_dimension_resources,
  2274. .fini = falcon_irq_ack_a1,
  2275. .monitor = falcon_monitor,
  2276. .map_reset_reason = falcon_map_reset_reason,
  2277. .map_reset_flags = falcon_map_reset_flags,
  2278. .reset = falcon_reset_hw,
  2279. .probe_port = falcon_probe_port,
  2280. .remove_port = falcon_remove_port,
  2281. .handle_global_event = falcon_handle_global_event,
  2282. .fini_dmaq = efx_farch_fini_dmaq,
  2283. .prepare_flush = falcon_prepare_flush,
  2284. .finish_flush = efx_port_dummy_op_void,
  2285. .describe_stats = falcon_describe_nic_stats,
  2286. .update_stats = falcon_update_nic_stats,
  2287. .start_stats = falcon_start_nic_stats,
  2288. .stop_stats = falcon_stop_nic_stats,
  2289. .set_id_led = falcon_set_id_led,
  2290. .push_irq_moderation = falcon_push_irq_moderation,
  2291. .reconfigure_port = falcon_reconfigure_port,
  2292. .prepare_enable_fc_tx = falcon_a1_prepare_enable_fc_tx,
  2293. .reconfigure_mac = falcon_reconfigure_xmac,
  2294. .check_mac_fault = falcon_xmac_check_fault,
  2295. .get_wol = falcon_get_wol,
  2296. .set_wol = falcon_set_wol,
  2297. .resume_wol = efx_port_dummy_op_void,
  2298. .test_nvram = falcon_test_nvram,
  2299. .irq_enable_master = efx_farch_irq_enable_master,
  2300. .irq_test_generate = efx_farch_irq_test_generate,
  2301. .irq_disable_non_ev = efx_farch_irq_disable_master,
  2302. .irq_handle_msi = efx_farch_msi_interrupt,
  2303. .irq_handle_legacy = falcon_legacy_interrupt_a1,
  2304. .tx_probe = efx_farch_tx_probe,
  2305. .tx_init = efx_farch_tx_init,
  2306. .tx_remove = efx_farch_tx_remove,
  2307. .tx_write = efx_farch_tx_write,
  2308. .rx_push_indir_table = efx_farch_rx_push_indir_table,
  2309. .rx_probe = efx_farch_rx_probe,
  2310. .rx_init = efx_farch_rx_init,
  2311. .rx_remove = efx_farch_rx_remove,
  2312. .rx_write = efx_farch_rx_write,
  2313. .rx_defer_refill = efx_farch_rx_defer_refill,
  2314. .ev_probe = efx_farch_ev_probe,
  2315. .ev_init = efx_farch_ev_init,
  2316. .ev_fini = efx_farch_ev_fini,
  2317. .ev_remove = efx_farch_ev_remove,
  2318. .ev_process = efx_farch_ev_process,
  2319. .ev_read_ack = efx_farch_ev_read_ack,
  2320. .ev_test_generate = efx_farch_ev_test_generate,
  2321. /* We don't expose the filter table on Falcon A1 as it is not
  2322. * mapped into function 0, but these implementations still
  2323. * work with a degenerate case of all tables set to size 0.
  2324. */
  2325. .filter_table_probe = efx_farch_filter_table_probe,
  2326. .filter_table_restore = efx_farch_filter_table_restore,
  2327. .filter_table_remove = efx_farch_filter_table_remove,
  2328. .filter_insert = efx_farch_filter_insert,
  2329. .filter_remove_safe = efx_farch_filter_remove_safe,
  2330. .filter_get_safe = efx_farch_filter_get_safe,
  2331. .filter_clear_rx = efx_farch_filter_clear_rx,
  2332. .filter_count_rx_used = efx_farch_filter_count_rx_used,
  2333. .filter_get_rx_id_limit = efx_farch_filter_get_rx_id_limit,
  2334. .filter_get_rx_ids = efx_farch_filter_get_rx_ids,
  2335. #ifdef CONFIG_SFC_MTD
  2336. .mtd_probe = falcon_mtd_probe,
  2337. .mtd_rename = falcon_mtd_rename,
  2338. .mtd_read = falcon_mtd_read,
  2339. .mtd_erase = falcon_mtd_erase,
  2340. .mtd_write = falcon_mtd_write,
  2341. .mtd_sync = falcon_mtd_sync,
  2342. #endif
  2343. .revision = EFX_REV_FALCON_A1,
  2344. .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
  2345. .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
  2346. .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
  2347. .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
  2348. .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
  2349. .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
  2350. .rx_buffer_padding = 0x24,
  2351. .can_rx_scatter = false,
  2352. .max_interrupt_mode = EFX_INT_MODE_MSI,
  2353. .timer_period_max = 1 << FRF_AB_TC_TIMER_VAL_WIDTH,
  2354. .offload_features = NETIF_F_IP_CSUM,
  2355. .mcdi_max_ver = -1,
  2356. };
  2357. const struct efx_nic_type falcon_b0_nic_type = {
  2358. .mem_map_size = falcon_b0_mem_map_size,
  2359. .probe = falcon_probe_nic,
  2360. .remove = falcon_remove_nic,
  2361. .init = falcon_init_nic,
  2362. .dimension_resources = falcon_dimension_resources,
  2363. .fini = efx_port_dummy_op_void,
  2364. .monitor = falcon_monitor,
  2365. .map_reset_reason = falcon_map_reset_reason,
  2366. .map_reset_flags = falcon_map_reset_flags,
  2367. .reset = falcon_reset_hw,
  2368. .probe_port = falcon_probe_port,
  2369. .remove_port = falcon_remove_port,
  2370. .handle_global_event = falcon_handle_global_event,
  2371. .fini_dmaq = efx_farch_fini_dmaq,
  2372. .prepare_flush = falcon_prepare_flush,
  2373. .finish_flush = efx_port_dummy_op_void,
  2374. .describe_stats = falcon_describe_nic_stats,
  2375. .update_stats = falcon_update_nic_stats,
  2376. .start_stats = falcon_start_nic_stats,
  2377. .stop_stats = falcon_stop_nic_stats,
  2378. .set_id_led = falcon_set_id_led,
  2379. .push_irq_moderation = falcon_push_irq_moderation,
  2380. .reconfigure_port = falcon_reconfigure_port,
  2381. .prepare_enable_fc_tx = falcon_b0_prepare_enable_fc_tx,
  2382. .reconfigure_mac = falcon_reconfigure_xmac,
  2383. .check_mac_fault = falcon_xmac_check_fault,
  2384. .get_wol = falcon_get_wol,
  2385. .set_wol = falcon_set_wol,
  2386. .resume_wol = efx_port_dummy_op_void,
  2387. .test_chip = falcon_b0_test_chip,
  2388. .test_nvram = falcon_test_nvram,
  2389. .irq_enable_master = efx_farch_irq_enable_master,
  2390. .irq_test_generate = efx_farch_irq_test_generate,
  2391. .irq_disable_non_ev = efx_farch_irq_disable_master,
  2392. .irq_handle_msi = efx_farch_msi_interrupt,
  2393. .irq_handle_legacy = efx_farch_legacy_interrupt,
  2394. .tx_probe = efx_farch_tx_probe,
  2395. .tx_init = efx_farch_tx_init,
  2396. .tx_remove = efx_farch_tx_remove,
  2397. .tx_write = efx_farch_tx_write,
  2398. .rx_push_indir_table = efx_farch_rx_push_indir_table,
  2399. .rx_probe = efx_farch_rx_probe,
  2400. .rx_init = efx_farch_rx_init,
  2401. .rx_remove = efx_farch_rx_remove,
  2402. .rx_write = efx_farch_rx_write,
  2403. .rx_defer_refill = efx_farch_rx_defer_refill,
  2404. .ev_probe = efx_farch_ev_probe,
  2405. .ev_init = efx_farch_ev_init,
  2406. .ev_fini = efx_farch_ev_fini,
  2407. .ev_remove = efx_farch_ev_remove,
  2408. .ev_process = efx_farch_ev_process,
  2409. .ev_read_ack = efx_farch_ev_read_ack,
  2410. .ev_test_generate = efx_farch_ev_test_generate,
  2411. .filter_table_probe = efx_farch_filter_table_probe,
  2412. .filter_table_restore = efx_farch_filter_table_restore,
  2413. .filter_table_remove = efx_farch_filter_table_remove,
  2414. .filter_update_rx_scatter = efx_farch_filter_update_rx_scatter,
  2415. .filter_insert = efx_farch_filter_insert,
  2416. .filter_remove_safe = efx_farch_filter_remove_safe,
  2417. .filter_get_safe = efx_farch_filter_get_safe,
  2418. .filter_clear_rx = efx_farch_filter_clear_rx,
  2419. .filter_count_rx_used = efx_farch_filter_count_rx_used,
  2420. .filter_get_rx_id_limit = efx_farch_filter_get_rx_id_limit,
  2421. .filter_get_rx_ids = efx_farch_filter_get_rx_ids,
  2422. #ifdef CONFIG_RFS_ACCEL
  2423. .filter_rfs_insert = efx_farch_filter_rfs_insert,
  2424. .filter_rfs_expire_one = efx_farch_filter_rfs_expire_one,
  2425. #endif
  2426. #ifdef CONFIG_SFC_MTD
  2427. .mtd_probe = falcon_mtd_probe,
  2428. .mtd_rename = falcon_mtd_rename,
  2429. .mtd_read = falcon_mtd_read,
  2430. .mtd_erase = falcon_mtd_erase,
  2431. .mtd_write = falcon_mtd_write,
  2432. .mtd_sync = falcon_mtd_sync,
  2433. #endif
  2434. .revision = EFX_REV_FALCON_B0,
  2435. .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
  2436. .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
  2437. .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
  2438. .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
  2439. .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
  2440. .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
  2441. .rx_prefix_size = FS_BZ_RX_PREFIX_SIZE,
  2442. .rx_hash_offset = FS_BZ_RX_PREFIX_HASH_OFST,
  2443. .rx_buffer_padding = 0,
  2444. .can_rx_scatter = true,
  2445. .max_interrupt_mode = EFX_INT_MODE_MSIX,
  2446. .timer_period_max = 1 << FRF_AB_TC_TIMER_VAL_WIDTH,
  2447. .offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE,
  2448. .mcdi_max_ver = -1,
  2449. .max_rx_ip_filters = FR_BZ_RX_FILTER_TBL0_ROWS,
  2450. };