ems_usb.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089
  1. /*
  2. * CAN driver for EMS Dr. Thomas Wuensche CPC-USB/ARM7
  3. *
  4. * Copyright (C) 2004-2009 EMS Dr. Thomas Wuensche
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License as published
  8. * by the Free Software Foundation; version 2 of the License.
  9. *
  10. * This program is distributed in the hope that it will be useful, but
  11. * WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License along
  16. * with this program; if not, write to the Free Software Foundation, Inc.,
  17. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  18. */
  19. #include <linux/init.h>
  20. #include <linux/signal.h>
  21. #include <linux/slab.h>
  22. #include <linux/module.h>
  23. #include <linux/netdevice.h>
  24. #include <linux/usb.h>
  25. #include <linux/can.h>
  26. #include <linux/can/dev.h>
  27. #include <linux/can/error.h>
  28. MODULE_AUTHOR("Sebastian Haas <haas@ems-wuensche.com>");
  29. MODULE_DESCRIPTION("CAN driver for EMS Dr. Thomas Wuensche CAN/USB interfaces");
  30. MODULE_LICENSE("GPL v2");
  31. /* Control-Values for CPC_Control() Command Subject Selection */
  32. #define CONTR_CAN_MESSAGE 0x04
  33. #define CONTR_CAN_STATE 0x0C
  34. #define CONTR_BUS_ERROR 0x1C
  35. /* Control Command Actions */
  36. #define CONTR_CONT_OFF 0
  37. #define CONTR_CONT_ON 1
  38. #define CONTR_ONCE 2
  39. /* Messages from CPC to PC */
  40. #define CPC_MSG_TYPE_CAN_FRAME 1 /* CAN data frame */
  41. #define CPC_MSG_TYPE_RTR_FRAME 8 /* CAN remote frame */
  42. #define CPC_MSG_TYPE_CAN_PARAMS 12 /* Actual CAN parameters */
  43. #define CPC_MSG_TYPE_CAN_STATE 14 /* CAN state message */
  44. #define CPC_MSG_TYPE_EXT_CAN_FRAME 16 /* Extended CAN data frame */
  45. #define CPC_MSG_TYPE_EXT_RTR_FRAME 17 /* Extended remote frame */
  46. #define CPC_MSG_TYPE_CONTROL 19 /* change interface behavior */
  47. #define CPC_MSG_TYPE_CONFIRM 20 /* command processed confirmation */
  48. #define CPC_MSG_TYPE_OVERRUN 21 /* overrun events */
  49. #define CPC_MSG_TYPE_CAN_FRAME_ERROR 23 /* detected bus errors */
  50. #define CPC_MSG_TYPE_ERR_COUNTER 25 /* RX/TX error counter */
  51. /* Messages from the PC to the CPC interface */
  52. #define CPC_CMD_TYPE_CAN_FRAME 1 /* CAN data frame */
  53. #define CPC_CMD_TYPE_CONTROL 3 /* control of interface behavior */
  54. #define CPC_CMD_TYPE_CAN_PARAMS 6 /* set CAN parameters */
  55. #define CPC_CMD_TYPE_RTR_FRAME 13 /* CAN remote frame */
  56. #define CPC_CMD_TYPE_CAN_STATE 14 /* CAN state message */
  57. #define CPC_CMD_TYPE_EXT_CAN_FRAME 15 /* Extended CAN data frame */
  58. #define CPC_CMD_TYPE_EXT_RTR_FRAME 16 /* Extended CAN remote frame */
  59. #define CPC_CMD_TYPE_CAN_EXIT 200 /* exit the CAN */
  60. #define CPC_CMD_TYPE_INQ_ERR_COUNTER 25 /* request the CAN error counters */
  61. #define CPC_CMD_TYPE_CLEAR_MSG_QUEUE 8 /* clear CPC_MSG queue */
  62. #define CPC_CMD_TYPE_CLEAR_CMD_QUEUE 28 /* clear CPC_CMD queue */
  63. #define CPC_CC_TYPE_SJA1000 2 /* Philips basic CAN controller */
  64. #define CPC_CAN_ECODE_ERRFRAME 0x01 /* Ecode type */
  65. /* Overrun types */
  66. #define CPC_OVR_EVENT_CAN 0x01
  67. #define CPC_OVR_EVENT_CANSTATE 0x02
  68. #define CPC_OVR_EVENT_BUSERROR 0x04
  69. /*
  70. * If the CAN controller lost a message we indicate it with the highest bit
  71. * set in the count field.
  72. */
  73. #define CPC_OVR_HW 0x80
  74. /* Size of the "struct ems_cpc_msg" without the union */
  75. #define CPC_MSG_HEADER_LEN 11
  76. #define CPC_CAN_MSG_MIN_SIZE 5
  77. /* Define these values to match your devices */
  78. #define USB_CPCUSB_VENDOR_ID 0x12D6
  79. #define USB_CPCUSB_ARM7_PRODUCT_ID 0x0444
  80. /* Mode register NXP LPC2119/SJA1000 CAN Controller */
  81. #define SJA1000_MOD_NORMAL 0x00
  82. #define SJA1000_MOD_RM 0x01
  83. /* ECC register NXP LPC2119/SJA1000 CAN Controller */
  84. #define SJA1000_ECC_SEG 0x1F
  85. #define SJA1000_ECC_DIR 0x20
  86. #define SJA1000_ECC_ERR 0x06
  87. #define SJA1000_ECC_BIT 0x00
  88. #define SJA1000_ECC_FORM 0x40
  89. #define SJA1000_ECC_STUFF 0x80
  90. #define SJA1000_ECC_MASK 0xc0
  91. /* Status register content */
  92. #define SJA1000_SR_BS 0x80
  93. #define SJA1000_SR_ES 0x40
  94. #define SJA1000_DEFAULT_OUTPUT_CONTROL 0xDA
  95. /*
  96. * The device actually uses a 16MHz clock to generate the CAN clock
  97. * but it expects SJA1000 bit settings based on 8MHz (is internally
  98. * converted).
  99. */
  100. #define EMS_USB_ARM7_CLOCK 8000000
  101. /*
  102. * CAN-Message representation in a CPC_MSG. Message object type is
  103. * CPC_MSG_TYPE_CAN_FRAME or CPC_MSG_TYPE_RTR_FRAME or
  104. * CPC_MSG_TYPE_EXT_CAN_FRAME or CPC_MSG_TYPE_EXT_RTR_FRAME.
  105. */
  106. struct cpc_can_msg {
  107. u32 id;
  108. u8 length;
  109. u8 msg[8];
  110. };
  111. /* Representation of the CAN parameters for the SJA1000 controller */
  112. struct cpc_sja1000_params {
  113. u8 mode;
  114. u8 acc_code0;
  115. u8 acc_code1;
  116. u8 acc_code2;
  117. u8 acc_code3;
  118. u8 acc_mask0;
  119. u8 acc_mask1;
  120. u8 acc_mask2;
  121. u8 acc_mask3;
  122. u8 btr0;
  123. u8 btr1;
  124. u8 outp_contr;
  125. };
  126. /* CAN params message representation */
  127. struct cpc_can_params {
  128. u8 cc_type;
  129. /* Will support M16C CAN controller in the future */
  130. union {
  131. struct cpc_sja1000_params sja1000;
  132. } cc_params;
  133. };
  134. /* Structure for confirmed message handling */
  135. struct cpc_confirm {
  136. u8 error; /* error code */
  137. };
  138. /* Structure for overrun conditions */
  139. struct cpc_overrun {
  140. u8 event;
  141. u8 count;
  142. };
  143. /* SJA1000 CAN errors (compatible to NXP LPC2119) */
  144. struct cpc_sja1000_can_error {
  145. u8 ecc;
  146. u8 rxerr;
  147. u8 txerr;
  148. };
  149. /* structure for CAN error conditions */
  150. struct cpc_can_error {
  151. u8 ecode;
  152. struct {
  153. u8 cc_type;
  154. /* Other controllers may also provide error code capture regs */
  155. union {
  156. struct cpc_sja1000_can_error sja1000;
  157. } regs;
  158. } cc;
  159. };
  160. /*
  161. * Structure containing RX/TX error counter. This structure is used to request
  162. * the values of the CAN controllers TX and RX error counter.
  163. */
  164. struct cpc_can_err_counter {
  165. u8 rx;
  166. u8 tx;
  167. };
  168. /* Main message type used between library and application */
  169. struct __packed ems_cpc_msg {
  170. u8 type; /* type of message */
  171. u8 length; /* length of data within union 'msg' */
  172. u8 msgid; /* confirmation handle */
  173. u32 ts_sec; /* timestamp in seconds */
  174. u32 ts_nsec; /* timestamp in nano seconds */
  175. union {
  176. u8 generic[64];
  177. struct cpc_can_msg can_msg;
  178. struct cpc_can_params can_params;
  179. struct cpc_confirm confirmation;
  180. struct cpc_overrun overrun;
  181. struct cpc_can_error error;
  182. struct cpc_can_err_counter err_counter;
  183. u8 can_state;
  184. } msg;
  185. };
  186. /*
  187. * Table of devices that work with this driver
  188. * NOTE: This driver supports only CPC-USB/ARM7 (LPC2119) yet.
  189. */
  190. static struct usb_device_id ems_usb_table[] = {
  191. {USB_DEVICE(USB_CPCUSB_VENDOR_ID, USB_CPCUSB_ARM7_PRODUCT_ID)},
  192. {} /* Terminating entry */
  193. };
  194. MODULE_DEVICE_TABLE(usb, ems_usb_table);
  195. #define RX_BUFFER_SIZE 64
  196. #define CPC_HEADER_SIZE 4
  197. #define INTR_IN_BUFFER_SIZE 4
  198. #define MAX_RX_URBS 10
  199. #define MAX_TX_URBS 10
  200. struct ems_usb;
  201. struct ems_tx_urb_context {
  202. struct ems_usb *dev;
  203. u32 echo_index;
  204. u8 dlc;
  205. };
  206. struct ems_usb {
  207. struct can_priv can; /* must be the first member */
  208. struct sk_buff *echo_skb[MAX_TX_URBS];
  209. struct usb_device *udev;
  210. struct net_device *netdev;
  211. atomic_t active_tx_urbs;
  212. struct usb_anchor tx_submitted;
  213. struct ems_tx_urb_context tx_contexts[MAX_TX_URBS];
  214. struct usb_anchor rx_submitted;
  215. struct urb *intr_urb;
  216. u8 *tx_msg_buffer;
  217. u8 *intr_in_buffer;
  218. unsigned int free_slots; /* remember number of available slots */
  219. struct ems_cpc_msg active_params; /* active controller parameters */
  220. };
  221. static void ems_usb_read_interrupt_callback(struct urb *urb)
  222. {
  223. struct ems_usb *dev = urb->context;
  224. struct net_device *netdev = dev->netdev;
  225. int err;
  226. if (!netif_device_present(netdev))
  227. return;
  228. switch (urb->status) {
  229. case 0:
  230. dev->free_slots = dev->intr_in_buffer[1];
  231. break;
  232. case -ECONNRESET: /* unlink */
  233. case -ENOENT:
  234. case -ESHUTDOWN:
  235. return;
  236. default:
  237. netdev_info(netdev, "Rx interrupt aborted %d\n", urb->status);
  238. break;
  239. }
  240. err = usb_submit_urb(urb, GFP_ATOMIC);
  241. if (err == -ENODEV)
  242. netif_device_detach(netdev);
  243. else if (err)
  244. netdev_err(netdev, "failed resubmitting intr urb: %d\n", err);
  245. }
  246. static void ems_usb_rx_can_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
  247. {
  248. struct can_frame *cf;
  249. struct sk_buff *skb;
  250. int i;
  251. struct net_device_stats *stats = &dev->netdev->stats;
  252. skb = alloc_can_skb(dev->netdev, &cf);
  253. if (skb == NULL)
  254. return;
  255. cf->can_id = le32_to_cpu(msg->msg.can_msg.id);
  256. cf->can_dlc = get_can_dlc(msg->msg.can_msg.length & 0xF);
  257. if (msg->type == CPC_MSG_TYPE_EXT_CAN_FRAME ||
  258. msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME)
  259. cf->can_id |= CAN_EFF_FLAG;
  260. if (msg->type == CPC_MSG_TYPE_RTR_FRAME ||
  261. msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME) {
  262. cf->can_id |= CAN_RTR_FLAG;
  263. } else {
  264. for (i = 0; i < cf->can_dlc; i++)
  265. cf->data[i] = msg->msg.can_msg.msg[i];
  266. }
  267. netif_rx(skb);
  268. stats->rx_packets++;
  269. stats->rx_bytes += cf->can_dlc;
  270. }
  271. static void ems_usb_rx_err(struct ems_usb *dev, struct ems_cpc_msg *msg)
  272. {
  273. struct can_frame *cf;
  274. struct sk_buff *skb;
  275. struct net_device_stats *stats = &dev->netdev->stats;
  276. skb = alloc_can_err_skb(dev->netdev, &cf);
  277. if (skb == NULL)
  278. return;
  279. if (msg->type == CPC_MSG_TYPE_CAN_STATE) {
  280. u8 state = msg->msg.can_state;
  281. if (state & SJA1000_SR_BS) {
  282. dev->can.state = CAN_STATE_BUS_OFF;
  283. cf->can_id |= CAN_ERR_BUSOFF;
  284. can_bus_off(dev->netdev);
  285. } else if (state & SJA1000_SR_ES) {
  286. dev->can.state = CAN_STATE_ERROR_WARNING;
  287. dev->can.can_stats.error_warning++;
  288. } else {
  289. dev->can.state = CAN_STATE_ERROR_ACTIVE;
  290. dev->can.can_stats.error_passive++;
  291. }
  292. } else if (msg->type == CPC_MSG_TYPE_CAN_FRAME_ERROR) {
  293. u8 ecc = msg->msg.error.cc.regs.sja1000.ecc;
  294. u8 txerr = msg->msg.error.cc.regs.sja1000.txerr;
  295. u8 rxerr = msg->msg.error.cc.regs.sja1000.rxerr;
  296. /* bus error interrupt */
  297. dev->can.can_stats.bus_error++;
  298. stats->rx_errors++;
  299. cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
  300. switch (ecc & SJA1000_ECC_MASK) {
  301. case SJA1000_ECC_BIT:
  302. cf->data[2] |= CAN_ERR_PROT_BIT;
  303. break;
  304. case SJA1000_ECC_FORM:
  305. cf->data[2] |= CAN_ERR_PROT_FORM;
  306. break;
  307. case SJA1000_ECC_STUFF:
  308. cf->data[2] |= CAN_ERR_PROT_STUFF;
  309. break;
  310. default:
  311. cf->data[2] |= CAN_ERR_PROT_UNSPEC;
  312. cf->data[3] = ecc & SJA1000_ECC_SEG;
  313. break;
  314. }
  315. /* Error occurred during transmission? */
  316. if ((ecc & SJA1000_ECC_DIR) == 0)
  317. cf->data[2] |= CAN_ERR_PROT_TX;
  318. if (dev->can.state == CAN_STATE_ERROR_WARNING ||
  319. dev->can.state == CAN_STATE_ERROR_PASSIVE) {
  320. cf->data[1] = (txerr > rxerr) ?
  321. CAN_ERR_CRTL_TX_PASSIVE : CAN_ERR_CRTL_RX_PASSIVE;
  322. }
  323. } else if (msg->type == CPC_MSG_TYPE_OVERRUN) {
  324. cf->can_id |= CAN_ERR_CRTL;
  325. cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
  326. stats->rx_over_errors++;
  327. stats->rx_errors++;
  328. }
  329. netif_rx(skb);
  330. stats->rx_packets++;
  331. stats->rx_bytes += cf->can_dlc;
  332. }
  333. /*
  334. * callback for bulk IN urb
  335. */
  336. static void ems_usb_read_bulk_callback(struct urb *urb)
  337. {
  338. struct ems_usb *dev = urb->context;
  339. struct net_device *netdev;
  340. int retval;
  341. netdev = dev->netdev;
  342. if (!netif_device_present(netdev))
  343. return;
  344. switch (urb->status) {
  345. case 0: /* success */
  346. break;
  347. case -ENOENT:
  348. return;
  349. default:
  350. netdev_info(netdev, "Rx URB aborted (%d)\n", urb->status);
  351. goto resubmit_urb;
  352. }
  353. if (urb->actual_length > CPC_HEADER_SIZE) {
  354. struct ems_cpc_msg *msg;
  355. u8 *ibuf = urb->transfer_buffer;
  356. u8 msg_count, again, start;
  357. msg_count = ibuf[0] & ~0x80;
  358. again = ibuf[0] & 0x80;
  359. start = CPC_HEADER_SIZE;
  360. while (msg_count) {
  361. msg = (struct ems_cpc_msg *)&ibuf[start];
  362. switch (msg->type) {
  363. case CPC_MSG_TYPE_CAN_STATE:
  364. /* Process CAN state changes */
  365. ems_usb_rx_err(dev, msg);
  366. break;
  367. case CPC_MSG_TYPE_CAN_FRAME:
  368. case CPC_MSG_TYPE_EXT_CAN_FRAME:
  369. case CPC_MSG_TYPE_RTR_FRAME:
  370. case CPC_MSG_TYPE_EXT_RTR_FRAME:
  371. ems_usb_rx_can_msg(dev, msg);
  372. break;
  373. case CPC_MSG_TYPE_CAN_FRAME_ERROR:
  374. /* Process errorframe */
  375. ems_usb_rx_err(dev, msg);
  376. break;
  377. case CPC_MSG_TYPE_OVERRUN:
  378. /* Message lost while receiving */
  379. ems_usb_rx_err(dev, msg);
  380. break;
  381. }
  382. start += CPC_MSG_HEADER_LEN + msg->length;
  383. msg_count--;
  384. if (start > urb->transfer_buffer_length) {
  385. netdev_err(netdev, "format error\n");
  386. break;
  387. }
  388. }
  389. }
  390. resubmit_urb:
  391. usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
  392. urb->transfer_buffer, RX_BUFFER_SIZE,
  393. ems_usb_read_bulk_callback, dev);
  394. retval = usb_submit_urb(urb, GFP_ATOMIC);
  395. if (retval == -ENODEV)
  396. netif_device_detach(netdev);
  397. else if (retval)
  398. netdev_err(netdev,
  399. "failed resubmitting read bulk urb: %d\n", retval);
  400. }
  401. /*
  402. * callback for bulk IN urb
  403. */
  404. static void ems_usb_write_bulk_callback(struct urb *urb)
  405. {
  406. struct ems_tx_urb_context *context = urb->context;
  407. struct ems_usb *dev;
  408. struct net_device *netdev;
  409. BUG_ON(!context);
  410. dev = context->dev;
  411. netdev = dev->netdev;
  412. /* free up our allocated buffer */
  413. usb_free_coherent(urb->dev, urb->transfer_buffer_length,
  414. urb->transfer_buffer, urb->transfer_dma);
  415. atomic_dec(&dev->active_tx_urbs);
  416. if (!netif_device_present(netdev))
  417. return;
  418. if (urb->status)
  419. netdev_info(netdev, "Tx URB aborted (%d)\n", urb->status);
  420. netdev->trans_start = jiffies;
  421. /* transmission complete interrupt */
  422. netdev->stats.tx_packets++;
  423. netdev->stats.tx_bytes += context->dlc;
  424. can_get_echo_skb(netdev, context->echo_index);
  425. /* Release context */
  426. context->echo_index = MAX_TX_URBS;
  427. if (netif_queue_stopped(netdev))
  428. netif_wake_queue(netdev);
  429. }
  430. /*
  431. * Send the given CPC command synchronously
  432. */
  433. static int ems_usb_command_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
  434. {
  435. int actual_length;
  436. /* Copy payload */
  437. memcpy(&dev->tx_msg_buffer[CPC_HEADER_SIZE], msg,
  438. msg->length + CPC_MSG_HEADER_LEN);
  439. /* Clear header */
  440. memset(&dev->tx_msg_buffer[0], 0, CPC_HEADER_SIZE);
  441. return usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, 2),
  442. &dev->tx_msg_buffer[0],
  443. msg->length + CPC_MSG_HEADER_LEN + CPC_HEADER_SIZE,
  444. &actual_length, 1000);
  445. }
  446. /*
  447. * Change CAN controllers' mode register
  448. */
  449. static int ems_usb_write_mode(struct ems_usb *dev, u8 mode)
  450. {
  451. dev->active_params.msg.can_params.cc_params.sja1000.mode = mode;
  452. return ems_usb_command_msg(dev, &dev->active_params);
  453. }
  454. /*
  455. * Send a CPC_Control command to change behaviour when interface receives a CAN
  456. * message, bus error or CAN state changed notifications.
  457. */
  458. static int ems_usb_control_cmd(struct ems_usb *dev, u8 val)
  459. {
  460. struct ems_cpc_msg cmd;
  461. cmd.type = CPC_CMD_TYPE_CONTROL;
  462. cmd.length = CPC_MSG_HEADER_LEN + 1;
  463. cmd.msgid = 0;
  464. cmd.msg.generic[0] = val;
  465. return ems_usb_command_msg(dev, &cmd);
  466. }
  467. /*
  468. * Start interface
  469. */
  470. static int ems_usb_start(struct ems_usb *dev)
  471. {
  472. struct net_device *netdev = dev->netdev;
  473. int err, i;
  474. dev->intr_in_buffer[0] = 0;
  475. dev->free_slots = 15; /* initial size */
  476. for (i = 0; i < MAX_RX_URBS; i++) {
  477. struct urb *urb = NULL;
  478. u8 *buf = NULL;
  479. /* create a URB, and a buffer for it */
  480. urb = usb_alloc_urb(0, GFP_KERNEL);
  481. if (!urb) {
  482. netdev_err(netdev, "No memory left for URBs\n");
  483. err = -ENOMEM;
  484. break;
  485. }
  486. buf = usb_alloc_coherent(dev->udev, RX_BUFFER_SIZE, GFP_KERNEL,
  487. &urb->transfer_dma);
  488. if (!buf) {
  489. netdev_err(netdev, "No memory left for USB buffer\n");
  490. usb_free_urb(urb);
  491. err = -ENOMEM;
  492. break;
  493. }
  494. usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
  495. buf, RX_BUFFER_SIZE,
  496. ems_usb_read_bulk_callback, dev);
  497. urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
  498. usb_anchor_urb(urb, &dev->rx_submitted);
  499. err = usb_submit_urb(urb, GFP_KERNEL);
  500. if (err) {
  501. usb_unanchor_urb(urb);
  502. usb_free_coherent(dev->udev, RX_BUFFER_SIZE, buf,
  503. urb->transfer_dma);
  504. break;
  505. }
  506. /* Drop reference, USB core will take care of freeing it */
  507. usb_free_urb(urb);
  508. }
  509. /* Did we submit any URBs */
  510. if (i == 0) {
  511. netdev_warn(netdev, "couldn't setup read URBs\n");
  512. return err;
  513. }
  514. /* Warn if we've couldn't transmit all the URBs */
  515. if (i < MAX_RX_URBS)
  516. netdev_warn(netdev, "rx performance may be slow\n");
  517. /* Setup and start interrupt URB */
  518. usb_fill_int_urb(dev->intr_urb, dev->udev,
  519. usb_rcvintpipe(dev->udev, 1),
  520. dev->intr_in_buffer,
  521. INTR_IN_BUFFER_SIZE,
  522. ems_usb_read_interrupt_callback, dev, 1);
  523. err = usb_submit_urb(dev->intr_urb, GFP_KERNEL);
  524. if (err) {
  525. netdev_warn(netdev, "intr URB submit failed: %d\n", err);
  526. return err;
  527. }
  528. /* CPC-USB will transfer received message to host */
  529. err = ems_usb_control_cmd(dev, CONTR_CAN_MESSAGE | CONTR_CONT_ON);
  530. if (err)
  531. goto failed;
  532. /* CPC-USB will transfer CAN state changes to host */
  533. err = ems_usb_control_cmd(dev, CONTR_CAN_STATE | CONTR_CONT_ON);
  534. if (err)
  535. goto failed;
  536. /* CPC-USB will transfer bus errors to host */
  537. err = ems_usb_control_cmd(dev, CONTR_BUS_ERROR | CONTR_CONT_ON);
  538. if (err)
  539. goto failed;
  540. err = ems_usb_write_mode(dev, SJA1000_MOD_NORMAL);
  541. if (err)
  542. goto failed;
  543. dev->can.state = CAN_STATE_ERROR_ACTIVE;
  544. return 0;
  545. failed:
  546. netdev_warn(netdev, "couldn't submit control: %d\n", err);
  547. return err;
  548. }
  549. static void unlink_all_urbs(struct ems_usb *dev)
  550. {
  551. int i;
  552. usb_unlink_urb(dev->intr_urb);
  553. usb_kill_anchored_urbs(&dev->rx_submitted);
  554. usb_kill_anchored_urbs(&dev->tx_submitted);
  555. atomic_set(&dev->active_tx_urbs, 0);
  556. for (i = 0; i < MAX_TX_URBS; i++)
  557. dev->tx_contexts[i].echo_index = MAX_TX_URBS;
  558. }
  559. static int ems_usb_open(struct net_device *netdev)
  560. {
  561. struct ems_usb *dev = netdev_priv(netdev);
  562. int err;
  563. err = ems_usb_write_mode(dev, SJA1000_MOD_RM);
  564. if (err)
  565. return err;
  566. /* common open */
  567. err = open_candev(netdev);
  568. if (err)
  569. return err;
  570. /* finally start device */
  571. err = ems_usb_start(dev);
  572. if (err) {
  573. if (err == -ENODEV)
  574. netif_device_detach(dev->netdev);
  575. netdev_warn(netdev, "couldn't start device: %d\n", err);
  576. close_candev(netdev);
  577. return err;
  578. }
  579. netif_start_queue(netdev);
  580. return 0;
  581. }
  582. static netdev_tx_t ems_usb_start_xmit(struct sk_buff *skb, struct net_device *netdev)
  583. {
  584. struct ems_usb *dev = netdev_priv(netdev);
  585. struct ems_tx_urb_context *context = NULL;
  586. struct net_device_stats *stats = &netdev->stats;
  587. struct can_frame *cf = (struct can_frame *)skb->data;
  588. struct ems_cpc_msg *msg;
  589. struct urb *urb;
  590. u8 *buf;
  591. int i, err;
  592. size_t size = CPC_HEADER_SIZE + CPC_MSG_HEADER_LEN
  593. + sizeof(struct cpc_can_msg);
  594. if (can_dropped_invalid_skb(netdev, skb))
  595. return NETDEV_TX_OK;
  596. /* create a URB, and a buffer for it, and copy the data to the URB */
  597. urb = usb_alloc_urb(0, GFP_ATOMIC);
  598. if (!urb) {
  599. netdev_err(netdev, "No memory left for URBs\n");
  600. goto nomem;
  601. }
  602. buf = usb_alloc_coherent(dev->udev, size, GFP_ATOMIC, &urb->transfer_dma);
  603. if (!buf) {
  604. netdev_err(netdev, "No memory left for USB buffer\n");
  605. usb_free_urb(urb);
  606. goto nomem;
  607. }
  608. msg = (struct ems_cpc_msg *)&buf[CPC_HEADER_SIZE];
  609. msg->msg.can_msg.id = cf->can_id & CAN_ERR_MASK;
  610. msg->msg.can_msg.length = cf->can_dlc;
  611. if (cf->can_id & CAN_RTR_FLAG) {
  612. msg->type = cf->can_id & CAN_EFF_FLAG ?
  613. CPC_CMD_TYPE_EXT_RTR_FRAME : CPC_CMD_TYPE_RTR_FRAME;
  614. msg->length = CPC_CAN_MSG_MIN_SIZE;
  615. } else {
  616. msg->type = cf->can_id & CAN_EFF_FLAG ?
  617. CPC_CMD_TYPE_EXT_CAN_FRAME : CPC_CMD_TYPE_CAN_FRAME;
  618. for (i = 0; i < cf->can_dlc; i++)
  619. msg->msg.can_msg.msg[i] = cf->data[i];
  620. msg->length = CPC_CAN_MSG_MIN_SIZE + cf->can_dlc;
  621. }
  622. /* Respect byte order */
  623. msg->msg.can_msg.id = cpu_to_le32(msg->msg.can_msg.id);
  624. for (i = 0; i < MAX_TX_URBS; i++) {
  625. if (dev->tx_contexts[i].echo_index == MAX_TX_URBS) {
  626. context = &dev->tx_contexts[i];
  627. break;
  628. }
  629. }
  630. /*
  631. * May never happen! When this happens we'd more URBs in flight as
  632. * allowed (MAX_TX_URBS).
  633. */
  634. if (!context) {
  635. usb_unanchor_urb(urb);
  636. usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
  637. netdev_warn(netdev, "couldn't find free context\n");
  638. return NETDEV_TX_BUSY;
  639. }
  640. context->dev = dev;
  641. context->echo_index = i;
  642. context->dlc = cf->can_dlc;
  643. usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, 2), buf,
  644. size, ems_usb_write_bulk_callback, context);
  645. urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
  646. usb_anchor_urb(urb, &dev->tx_submitted);
  647. can_put_echo_skb(skb, netdev, context->echo_index);
  648. atomic_inc(&dev->active_tx_urbs);
  649. err = usb_submit_urb(urb, GFP_ATOMIC);
  650. if (unlikely(err)) {
  651. can_free_echo_skb(netdev, context->echo_index);
  652. usb_unanchor_urb(urb);
  653. usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
  654. dev_kfree_skb(skb);
  655. atomic_dec(&dev->active_tx_urbs);
  656. if (err == -ENODEV) {
  657. netif_device_detach(netdev);
  658. } else {
  659. netdev_warn(netdev, "failed tx_urb %d\n", err);
  660. stats->tx_dropped++;
  661. }
  662. } else {
  663. netdev->trans_start = jiffies;
  664. /* Slow down tx path */
  665. if (atomic_read(&dev->active_tx_urbs) >= MAX_TX_URBS ||
  666. dev->free_slots < 5) {
  667. netif_stop_queue(netdev);
  668. }
  669. }
  670. /*
  671. * Release our reference to this URB, the USB core will eventually free
  672. * it entirely.
  673. */
  674. usb_free_urb(urb);
  675. return NETDEV_TX_OK;
  676. nomem:
  677. dev_kfree_skb(skb);
  678. stats->tx_dropped++;
  679. return NETDEV_TX_OK;
  680. }
  681. static int ems_usb_close(struct net_device *netdev)
  682. {
  683. struct ems_usb *dev = netdev_priv(netdev);
  684. /* Stop polling */
  685. unlink_all_urbs(dev);
  686. netif_stop_queue(netdev);
  687. /* Set CAN controller to reset mode */
  688. if (ems_usb_write_mode(dev, SJA1000_MOD_RM))
  689. netdev_warn(netdev, "couldn't stop device");
  690. close_candev(netdev);
  691. return 0;
  692. }
  693. static const struct net_device_ops ems_usb_netdev_ops = {
  694. .ndo_open = ems_usb_open,
  695. .ndo_stop = ems_usb_close,
  696. .ndo_start_xmit = ems_usb_start_xmit,
  697. };
  698. static const struct can_bittiming_const ems_usb_bittiming_const = {
  699. .name = "ems_usb",
  700. .tseg1_min = 1,
  701. .tseg1_max = 16,
  702. .tseg2_min = 1,
  703. .tseg2_max = 8,
  704. .sjw_max = 4,
  705. .brp_min = 1,
  706. .brp_max = 64,
  707. .brp_inc = 1,
  708. };
  709. static int ems_usb_set_mode(struct net_device *netdev, enum can_mode mode)
  710. {
  711. struct ems_usb *dev = netdev_priv(netdev);
  712. switch (mode) {
  713. case CAN_MODE_START:
  714. if (ems_usb_write_mode(dev, SJA1000_MOD_NORMAL))
  715. netdev_warn(netdev, "couldn't start device");
  716. if (netif_queue_stopped(netdev))
  717. netif_wake_queue(netdev);
  718. break;
  719. default:
  720. return -EOPNOTSUPP;
  721. }
  722. return 0;
  723. }
  724. static int ems_usb_set_bittiming(struct net_device *netdev)
  725. {
  726. struct ems_usb *dev = netdev_priv(netdev);
  727. struct can_bittiming *bt = &dev->can.bittiming;
  728. u8 btr0, btr1;
  729. btr0 = ((bt->brp - 1) & 0x3f) | (((bt->sjw - 1) & 0x3) << 6);
  730. btr1 = ((bt->prop_seg + bt->phase_seg1 - 1) & 0xf) |
  731. (((bt->phase_seg2 - 1) & 0x7) << 4);
  732. if (dev->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
  733. btr1 |= 0x80;
  734. netdev_info(netdev, "setting BTR0=0x%02x BTR1=0x%02x\n", btr0, btr1);
  735. dev->active_params.msg.can_params.cc_params.sja1000.btr0 = btr0;
  736. dev->active_params.msg.can_params.cc_params.sja1000.btr1 = btr1;
  737. return ems_usb_command_msg(dev, &dev->active_params);
  738. }
  739. static void init_params_sja1000(struct ems_cpc_msg *msg)
  740. {
  741. struct cpc_sja1000_params *sja1000 =
  742. &msg->msg.can_params.cc_params.sja1000;
  743. msg->type = CPC_CMD_TYPE_CAN_PARAMS;
  744. msg->length = sizeof(struct cpc_can_params);
  745. msg->msgid = 0;
  746. msg->msg.can_params.cc_type = CPC_CC_TYPE_SJA1000;
  747. /* Acceptance filter open */
  748. sja1000->acc_code0 = 0x00;
  749. sja1000->acc_code1 = 0x00;
  750. sja1000->acc_code2 = 0x00;
  751. sja1000->acc_code3 = 0x00;
  752. /* Acceptance filter open */
  753. sja1000->acc_mask0 = 0xFF;
  754. sja1000->acc_mask1 = 0xFF;
  755. sja1000->acc_mask2 = 0xFF;
  756. sja1000->acc_mask3 = 0xFF;
  757. sja1000->btr0 = 0;
  758. sja1000->btr1 = 0;
  759. sja1000->outp_contr = SJA1000_DEFAULT_OUTPUT_CONTROL;
  760. sja1000->mode = SJA1000_MOD_RM;
  761. }
  762. /*
  763. * probe function for new CPC-USB devices
  764. */
  765. static int ems_usb_probe(struct usb_interface *intf,
  766. const struct usb_device_id *id)
  767. {
  768. struct net_device *netdev;
  769. struct ems_usb *dev;
  770. int i, err = -ENOMEM;
  771. netdev = alloc_candev(sizeof(struct ems_usb), MAX_TX_URBS);
  772. if (!netdev) {
  773. dev_err(&intf->dev, "ems_usb: Couldn't alloc candev\n");
  774. return -ENOMEM;
  775. }
  776. dev = netdev_priv(netdev);
  777. dev->udev = interface_to_usbdev(intf);
  778. dev->netdev = netdev;
  779. dev->can.state = CAN_STATE_STOPPED;
  780. dev->can.clock.freq = EMS_USB_ARM7_CLOCK;
  781. dev->can.bittiming_const = &ems_usb_bittiming_const;
  782. dev->can.do_set_bittiming = ems_usb_set_bittiming;
  783. dev->can.do_set_mode = ems_usb_set_mode;
  784. dev->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES;
  785. netdev->netdev_ops = &ems_usb_netdev_ops;
  786. netdev->flags |= IFF_ECHO; /* we support local echo */
  787. init_usb_anchor(&dev->rx_submitted);
  788. init_usb_anchor(&dev->tx_submitted);
  789. atomic_set(&dev->active_tx_urbs, 0);
  790. for (i = 0; i < MAX_TX_URBS; i++)
  791. dev->tx_contexts[i].echo_index = MAX_TX_URBS;
  792. dev->intr_urb = usb_alloc_urb(0, GFP_KERNEL);
  793. if (!dev->intr_urb) {
  794. dev_err(&intf->dev, "Couldn't alloc intr URB\n");
  795. goto cleanup_candev;
  796. }
  797. dev->intr_in_buffer = kzalloc(INTR_IN_BUFFER_SIZE, GFP_KERNEL);
  798. if (!dev->intr_in_buffer)
  799. goto cleanup_intr_urb;
  800. dev->tx_msg_buffer = kzalloc(CPC_HEADER_SIZE +
  801. sizeof(struct ems_cpc_msg), GFP_KERNEL);
  802. if (!dev->tx_msg_buffer)
  803. goto cleanup_intr_in_buffer;
  804. usb_set_intfdata(intf, dev);
  805. SET_NETDEV_DEV(netdev, &intf->dev);
  806. init_params_sja1000(&dev->active_params);
  807. err = ems_usb_command_msg(dev, &dev->active_params);
  808. if (err) {
  809. netdev_err(netdev, "couldn't initialize controller: %d\n", err);
  810. goto cleanup_tx_msg_buffer;
  811. }
  812. err = register_candev(netdev);
  813. if (err) {
  814. netdev_err(netdev, "couldn't register CAN device: %d\n", err);
  815. goto cleanup_tx_msg_buffer;
  816. }
  817. return 0;
  818. cleanup_tx_msg_buffer:
  819. kfree(dev->tx_msg_buffer);
  820. cleanup_intr_in_buffer:
  821. kfree(dev->intr_in_buffer);
  822. cleanup_intr_urb:
  823. usb_free_urb(dev->intr_urb);
  824. cleanup_candev:
  825. free_candev(netdev);
  826. return err;
  827. }
  828. /*
  829. * called by the usb core when the device is removed from the system
  830. */
  831. static void ems_usb_disconnect(struct usb_interface *intf)
  832. {
  833. struct ems_usb *dev = usb_get_intfdata(intf);
  834. usb_set_intfdata(intf, NULL);
  835. if (dev) {
  836. unregister_netdev(dev->netdev);
  837. free_candev(dev->netdev);
  838. unlink_all_urbs(dev);
  839. usb_free_urb(dev->intr_urb);
  840. kfree(dev->intr_in_buffer);
  841. }
  842. }
  843. /* usb specific object needed to register this driver with the usb subsystem */
  844. static struct usb_driver ems_usb_driver = {
  845. .name = "ems_usb",
  846. .probe = ems_usb_probe,
  847. .disconnect = ems_usb_disconnect,
  848. .id_table = ems_usb_table,
  849. };
  850. module_usb_driver(ems_usb_driver);