mcp251x.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232
  1. /*
  2. * CAN bus driver for Microchip 251x CAN Controller with SPI Interface
  3. *
  4. * MCP2510 support and bug fixes by Christian Pellegrin
  5. * <chripell@evolware.org>
  6. *
  7. * Copyright 2009 Christian Pellegrin EVOL S.r.l.
  8. *
  9. * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
  10. * Written under contract by:
  11. * Chris Elston, Katalix Systems, Ltd.
  12. *
  13. * Based on Microchip MCP251x CAN controller driver written by
  14. * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
  15. *
  16. * Based on CAN bus driver for the CCAN controller written by
  17. * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
  18. * - Simon Kallweit, intefo AG
  19. * Copyright 2007
  20. *
  21. * This program is free software; you can redistribute it and/or modify
  22. * it under the terms of the version 2 of the GNU General Public License
  23. * as published by the Free Software Foundation
  24. *
  25. * This program is distributed in the hope that it will be useful,
  26. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  27. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  28. * GNU General Public License for more details.
  29. *
  30. * You should have received a copy of the GNU General Public License
  31. * along with this program; if not, write to the Free Software
  32. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  33. *
  34. *
  35. *
  36. * Your platform definition file should specify something like:
  37. *
  38. * static struct mcp251x_platform_data mcp251x_info = {
  39. * .oscillator_frequency = 8000000,
  40. * };
  41. *
  42. * static struct spi_board_info spi_board_info[] = {
  43. * {
  44. * .modalias = "mcp2510",
  45. * // or "mcp2515" depending on your controller
  46. * .platform_data = &mcp251x_info,
  47. * .irq = IRQ_EINT13,
  48. * .max_speed_hz = 2*1000*1000,
  49. * .chip_select = 2,
  50. * },
  51. * };
  52. *
  53. * Please see mcp251x.h for a description of the fields in
  54. * struct mcp251x_platform_data.
  55. *
  56. */
  57. #include <linux/can/core.h>
  58. #include <linux/can/dev.h>
  59. #include <linux/can/led.h>
  60. #include <linux/can/platform/mcp251x.h>
  61. #include <linux/completion.h>
  62. #include <linux/delay.h>
  63. #include <linux/device.h>
  64. #include <linux/dma-mapping.h>
  65. #include <linux/freezer.h>
  66. #include <linux/interrupt.h>
  67. #include <linux/io.h>
  68. #include <linux/kernel.h>
  69. #include <linux/module.h>
  70. #include <linux/netdevice.h>
  71. #include <linux/platform_device.h>
  72. #include <linux/slab.h>
  73. #include <linux/spi/spi.h>
  74. #include <linux/uaccess.h>
  75. #include <linux/regulator/consumer.h>
  76. /* SPI interface instruction set */
  77. #define INSTRUCTION_WRITE 0x02
  78. #define INSTRUCTION_READ 0x03
  79. #define INSTRUCTION_BIT_MODIFY 0x05
  80. #define INSTRUCTION_LOAD_TXB(n) (0x40 + 2 * (n))
  81. #define INSTRUCTION_READ_RXB(n) (((n) == 0) ? 0x90 : 0x94)
  82. #define INSTRUCTION_RESET 0xC0
  83. #define RTS_TXB0 0x01
  84. #define RTS_TXB1 0x02
  85. #define RTS_TXB2 0x04
  86. #define INSTRUCTION_RTS(n) (0x80 | ((n) & 0x07))
  87. /* MPC251x registers */
  88. #define CANSTAT 0x0e
  89. #define CANCTRL 0x0f
  90. # define CANCTRL_REQOP_MASK 0xe0
  91. # define CANCTRL_REQOP_CONF 0x80
  92. # define CANCTRL_REQOP_LISTEN_ONLY 0x60
  93. # define CANCTRL_REQOP_LOOPBACK 0x40
  94. # define CANCTRL_REQOP_SLEEP 0x20
  95. # define CANCTRL_REQOP_NORMAL 0x00
  96. # define CANCTRL_OSM 0x08
  97. # define CANCTRL_ABAT 0x10
  98. #define TEC 0x1c
  99. #define REC 0x1d
  100. #define CNF1 0x2a
  101. # define CNF1_SJW_SHIFT 6
  102. #define CNF2 0x29
  103. # define CNF2_BTLMODE 0x80
  104. # define CNF2_SAM 0x40
  105. # define CNF2_PS1_SHIFT 3
  106. #define CNF3 0x28
  107. # define CNF3_SOF 0x08
  108. # define CNF3_WAKFIL 0x04
  109. # define CNF3_PHSEG2_MASK 0x07
  110. #define CANINTE 0x2b
  111. # define CANINTE_MERRE 0x80
  112. # define CANINTE_WAKIE 0x40
  113. # define CANINTE_ERRIE 0x20
  114. # define CANINTE_TX2IE 0x10
  115. # define CANINTE_TX1IE 0x08
  116. # define CANINTE_TX0IE 0x04
  117. # define CANINTE_RX1IE 0x02
  118. # define CANINTE_RX0IE 0x01
  119. #define CANINTF 0x2c
  120. # define CANINTF_MERRF 0x80
  121. # define CANINTF_WAKIF 0x40
  122. # define CANINTF_ERRIF 0x20
  123. # define CANINTF_TX2IF 0x10
  124. # define CANINTF_TX1IF 0x08
  125. # define CANINTF_TX0IF 0x04
  126. # define CANINTF_RX1IF 0x02
  127. # define CANINTF_RX0IF 0x01
  128. # define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
  129. # define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
  130. # define CANINTF_ERR (CANINTF_ERRIF)
  131. #define EFLG 0x2d
  132. # define EFLG_EWARN 0x01
  133. # define EFLG_RXWAR 0x02
  134. # define EFLG_TXWAR 0x04
  135. # define EFLG_RXEP 0x08
  136. # define EFLG_TXEP 0x10
  137. # define EFLG_TXBO 0x20
  138. # define EFLG_RX0OVR 0x40
  139. # define EFLG_RX1OVR 0x80
  140. #define TXBCTRL(n) (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
  141. # define TXBCTRL_ABTF 0x40
  142. # define TXBCTRL_MLOA 0x20
  143. # define TXBCTRL_TXERR 0x10
  144. # define TXBCTRL_TXREQ 0x08
  145. #define TXBSIDH(n) (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
  146. # define SIDH_SHIFT 3
  147. #define TXBSIDL(n) (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
  148. # define SIDL_SID_MASK 7
  149. # define SIDL_SID_SHIFT 5
  150. # define SIDL_EXIDE_SHIFT 3
  151. # define SIDL_EID_SHIFT 16
  152. # define SIDL_EID_MASK 3
  153. #define TXBEID8(n) (((n) * 0x10) + 0x30 + TXBEID8_OFF)
  154. #define TXBEID0(n) (((n) * 0x10) + 0x30 + TXBEID0_OFF)
  155. #define TXBDLC(n) (((n) * 0x10) + 0x30 + TXBDLC_OFF)
  156. # define DLC_RTR_SHIFT 6
  157. #define TXBCTRL_OFF 0
  158. #define TXBSIDH_OFF 1
  159. #define TXBSIDL_OFF 2
  160. #define TXBEID8_OFF 3
  161. #define TXBEID0_OFF 4
  162. #define TXBDLC_OFF 5
  163. #define TXBDAT_OFF 6
  164. #define RXBCTRL(n) (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
  165. # define RXBCTRL_BUKT 0x04
  166. # define RXBCTRL_RXM0 0x20
  167. # define RXBCTRL_RXM1 0x40
  168. #define RXBSIDH(n) (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
  169. # define RXBSIDH_SHIFT 3
  170. #define RXBSIDL(n) (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
  171. # define RXBSIDL_IDE 0x08
  172. # define RXBSIDL_SRR 0x10
  173. # define RXBSIDL_EID 3
  174. # define RXBSIDL_SHIFT 5
  175. #define RXBEID8(n) (((n) * 0x10) + 0x60 + RXBEID8_OFF)
  176. #define RXBEID0(n) (((n) * 0x10) + 0x60 + RXBEID0_OFF)
  177. #define RXBDLC(n) (((n) * 0x10) + 0x60 + RXBDLC_OFF)
  178. # define RXBDLC_LEN_MASK 0x0f
  179. # define RXBDLC_RTR 0x40
  180. #define RXBCTRL_OFF 0
  181. #define RXBSIDH_OFF 1
  182. #define RXBSIDL_OFF 2
  183. #define RXBEID8_OFF 3
  184. #define RXBEID0_OFF 4
  185. #define RXBDLC_OFF 5
  186. #define RXBDAT_OFF 6
  187. #define RXFSIDH(n) ((n) * 4)
  188. #define RXFSIDL(n) ((n) * 4 + 1)
  189. #define RXFEID8(n) ((n) * 4 + 2)
  190. #define RXFEID0(n) ((n) * 4 + 3)
  191. #define RXMSIDH(n) ((n) * 4 + 0x20)
  192. #define RXMSIDL(n) ((n) * 4 + 0x21)
  193. #define RXMEID8(n) ((n) * 4 + 0x22)
  194. #define RXMEID0(n) ((n) * 4 + 0x23)
  195. #define GET_BYTE(val, byte) \
  196. (((val) >> ((byte) * 8)) & 0xff)
  197. #define SET_BYTE(val, byte) \
  198. (((val) & 0xff) << ((byte) * 8))
  199. /*
  200. * Buffer size required for the largest SPI transfer (i.e., reading a
  201. * frame)
  202. */
  203. #define CAN_FRAME_MAX_DATA_LEN 8
  204. #define SPI_TRANSFER_BUF_LEN (6 + CAN_FRAME_MAX_DATA_LEN)
  205. #define CAN_FRAME_MAX_BITS 128
  206. #define TX_ECHO_SKB_MAX 1
  207. #define DEVICE_NAME "mcp251x"
  208. static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */
  209. module_param(mcp251x_enable_dma, int, S_IRUGO);
  210. MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)");
  211. static const struct can_bittiming_const mcp251x_bittiming_const = {
  212. .name = DEVICE_NAME,
  213. .tseg1_min = 3,
  214. .tseg1_max = 16,
  215. .tseg2_min = 2,
  216. .tseg2_max = 8,
  217. .sjw_max = 4,
  218. .brp_min = 1,
  219. .brp_max = 64,
  220. .brp_inc = 1,
  221. };
  222. enum mcp251x_model {
  223. CAN_MCP251X_MCP2510 = 0x2510,
  224. CAN_MCP251X_MCP2515 = 0x2515,
  225. };
  226. struct mcp251x_priv {
  227. struct can_priv can;
  228. struct net_device *net;
  229. struct spi_device *spi;
  230. enum mcp251x_model model;
  231. struct mutex mcp_lock; /* SPI device lock */
  232. u8 *spi_tx_buf;
  233. u8 *spi_rx_buf;
  234. dma_addr_t spi_tx_dma;
  235. dma_addr_t spi_rx_dma;
  236. struct sk_buff *tx_skb;
  237. int tx_len;
  238. struct workqueue_struct *wq;
  239. struct work_struct tx_work;
  240. struct work_struct restart_work;
  241. int force_quit;
  242. int after_suspend;
  243. #define AFTER_SUSPEND_UP 1
  244. #define AFTER_SUSPEND_DOWN 2
  245. #define AFTER_SUSPEND_POWER 4
  246. #define AFTER_SUSPEND_RESTART 8
  247. int restart_tx;
  248. struct regulator *power;
  249. struct regulator *transceiver;
  250. };
  251. #define MCP251X_IS(_model) \
  252. static inline int mcp251x_is_##_model(struct spi_device *spi) \
  253. { \
  254. struct mcp251x_priv *priv = spi_get_drvdata(spi); \
  255. return priv->model == CAN_MCP251X_MCP##_model; \
  256. }
  257. MCP251X_IS(2510);
  258. MCP251X_IS(2515);
  259. static void mcp251x_clean(struct net_device *net)
  260. {
  261. struct mcp251x_priv *priv = netdev_priv(net);
  262. if (priv->tx_skb || priv->tx_len)
  263. net->stats.tx_errors++;
  264. if (priv->tx_skb)
  265. dev_kfree_skb(priv->tx_skb);
  266. if (priv->tx_len)
  267. can_free_echo_skb(priv->net, 0);
  268. priv->tx_skb = NULL;
  269. priv->tx_len = 0;
  270. }
  271. /*
  272. * Note about handling of error return of mcp251x_spi_trans: accessing
  273. * registers via SPI is not really different conceptually than using
  274. * normal I/O assembler instructions, although it's much more
  275. * complicated from a practical POV. So it's not advisable to always
  276. * check the return value of this function. Imagine that every
  277. * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
  278. * error();", it would be a great mess (well there are some situation
  279. * when exception handling C++ like could be useful after all). So we
  280. * just check that transfers are OK at the beginning of our
  281. * conversation with the chip and to avoid doing really nasty things
  282. * (like injecting bogus packets in the network stack).
  283. */
  284. static int mcp251x_spi_trans(struct spi_device *spi, int len)
  285. {
  286. struct mcp251x_priv *priv = spi_get_drvdata(spi);
  287. struct spi_transfer t = {
  288. .tx_buf = priv->spi_tx_buf,
  289. .rx_buf = priv->spi_rx_buf,
  290. .len = len,
  291. .cs_change = 0,
  292. };
  293. struct spi_message m;
  294. int ret;
  295. spi_message_init(&m);
  296. if (mcp251x_enable_dma) {
  297. t.tx_dma = priv->spi_tx_dma;
  298. t.rx_dma = priv->spi_rx_dma;
  299. m.is_dma_mapped = 1;
  300. }
  301. spi_message_add_tail(&t, &m);
  302. ret = spi_sync(spi, &m);
  303. if (ret)
  304. dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
  305. return ret;
  306. }
  307. static u8 mcp251x_read_reg(struct spi_device *spi, uint8_t reg)
  308. {
  309. struct mcp251x_priv *priv = spi_get_drvdata(spi);
  310. u8 val = 0;
  311. priv->spi_tx_buf[0] = INSTRUCTION_READ;
  312. priv->spi_tx_buf[1] = reg;
  313. mcp251x_spi_trans(spi, 3);
  314. val = priv->spi_rx_buf[2];
  315. return val;
  316. }
  317. static void mcp251x_read_2regs(struct spi_device *spi, uint8_t reg,
  318. uint8_t *v1, uint8_t *v2)
  319. {
  320. struct mcp251x_priv *priv = spi_get_drvdata(spi);
  321. priv->spi_tx_buf[0] = INSTRUCTION_READ;
  322. priv->spi_tx_buf[1] = reg;
  323. mcp251x_spi_trans(spi, 4);
  324. *v1 = priv->spi_rx_buf[2];
  325. *v2 = priv->spi_rx_buf[3];
  326. }
  327. static void mcp251x_write_reg(struct spi_device *spi, u8 reg, uint8_t val)
  328. {
  329. struct mcp251x_priv *priv = spi_get_drvdata(spi);
  330. priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
  331. priv->spi_tx_buf[1] = reg;
  332. priv->spi_tx_buf[2] = val;
  333. mcp251x_spi_trans(spi, 3);
  334. }
  335. static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
  336. u8 mask, uint8_t val)
  337. {
  338. struct mcp251x_priv *priv = spi_get_drvdata(spi);
  339. priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
  340. priv->spi_tx_buf[1] = reg;
  341. priv->spi_tx_buf[2] = mask;
  342. priv->spi_tx_buf[3] = val;
  343. mcp251x_spi_trans(spi, 4);
  344. }
  345. static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
  346. int len, int tx_buf_idx)
  347. {
  348. struct mcp251x_priv *priv = spi_get_drvdata(spi);
  349. if (mcp251x_is_2510(spi)) {
  350. int i;
  351. for (i = 1; i < TXBDAT_OFF + len; i++)
  352. mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
  353. buf[i]);
  354. } else {
  355. memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
  356. mcp251x_spi_trans(spi, TXBDAT_OFF + len);
  357. }
  358. }
  359. static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
  360. int tx_buf_idx)
  361. {
  362. struct mcp251x_priv *priv = spi_get_drvdata(spi);
  363. u32 sid, eid, exide, rtr;
  364. u8 buf[SPI_TRANSFER_BUF_LEN];
  365. exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
  366. if (exide)
  367. sid = (frame->can_id & CAN_EFF_MASK) >> 18;
  368. else
  369. sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
  370. eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
  371. rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
  372. buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
  373. buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
  374. buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
  375. (exide << SIDL_EXIDE_SHIFT) |
  376. ((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
  377. buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
  378. buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
  379. buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
  380. memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
  381. mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
  382. /* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
  383. priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
  384. mcp251x_spi_trans(priv->spi, 1);
  385. }
  386. static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
  387. int buf_idx)
  388. {
  389. struct mcp251x_priv *priv = spi_get_drvdata(spi);
  390. if (mcp251x_is_2510(spi)) {
  391. int i, len;
  392. for (i = 1; i < RXBDAT_OFF; i++)
  393. buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
  394. len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
  395. for (; i < (RXBDAT_OFF + len); i++)
  396. buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
  397. } else {
  398. priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
  399. mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
  400. memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
  401. }
  402. }
  403. static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
  404. {
  405. struct mcp251x_priv *priv = spi_get_drvdata(spi);
  406. struct sk_buff *skb;
  407. struct can_frame *frame;
  408. u8 buf[SPI_TRANSFER_BUF_LEN];
  409. skb = alloc_can_skb(priv->net, &frame);
  410. if (!skb) {
  411. dev_err(&spi->dev, "cannot allocate RX skb\n");
  412. priv->net->stats.rx_dropped++;
  413. return;
  414. }
  415. mcp251x_hw_rx_frame(spi, buf, buf_idx);
  416. if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
  417. /* Extended ID format */
  418. frame->can_id = CAN_EFF_FLAG;
  419. frame->can_id |=
  420. /* Extended ID part */
  421. SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
  422. SET_BYTE(buf[RXBEID8_OFF], 1) |
  423. SET_BYTE(buf[RXBEID0_OFF], 0) |
  424. /* Standard ID part */
  425. (((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
  426. (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
  427. /* Remote transmission request */
  428. if (buf[RXBDLC_OFF] & RXBDLC_RTR)
  429. frame->can_id |= CAN_RTR_FLAG;
  430. } else {
  431. /* Standard ID format */
  432. frame->can_id =
  433. (buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
  434. (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
  435. if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
  436. frame->can_id |= CAN_RTR_FLAG;
  437. }
  438. /* Data length */
  439. frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
  440. memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);
  441. priv->net->stats.rx_packets++;
  442. priv->net->stats.rx_bytes += frame->can_dlc;
  443. can_led_event(priv->net, CAN_LED_EVENT_RX);
  444. netif_rx_ni(skb);
  445. }
  446. static void mcp251x_hw_sleep(struct spi_device *spi)
  447. {
  448. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
  449. }
  450. static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
  451. struct net_device *net)
  452. {
  453. struct mcp251x_priv *priv = netdev_priv(net);
  454. struct spi_device *spi = priv->spi;
  455. if (priv->tx_skb || priv->tx_len) {
  456. dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
  457. return NETDEV_TX_BUSY;
  458. }
  459. if (can_dropped_invalid_skb(net, skb))
  460. return NETDEV_TX_OK;
  461. netif_stop_queue(net);
  462. priv->tx_skb = skb;
  463. queue_work(priv->wq, &priv->tx_work);
  464. return NETDEV_TX_OK;
  465. }
  466. static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
  467. {
  468. struct mcp251x_priv *priv = netdev_priv(net);
  469. switch (mode) {
  470. case CAN_MODE_START:
  471. mcp251x_clean(net);
  472. /* We have to delay work since SPI I/O may sleep */
  473. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  474. priv->restart_tx = 1;
  475. if (priv->can.restart_ms == 0)
  476. priv->after_suspend = AFTER_SUSPEND_RESTART;
  477. queue_work(priv->wq, &priv->restart_work);
  478. break;
  479. default:
  480. return -EOPNOTSUPP;
  481. }
  482. return 0;
  483. }
  484. static int mcp251x_set_normal_mode(struct spi_device *spi)
  485. {
  486. struct mcp251x_priv *priv = spi_get_drvdata(spi);
  487. unsigned long timeout;
  488. /* Enable interrupts */
  489. mcp251x_write_reg(spi, CANINTE,
  490. CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
  491. CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
  492. if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
  493. /* Put device into loopback mode */
  494. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
  495. } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
  496. /* Put device into listen-only mode */
  497. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
  498. } else {
  499. /* Put device into normal mode */
  500. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
  501. /* Wait for the device to enter normal mode */
  502. timeout = jiffies + HZ;
  503. while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
  504. schedule();
  505. if (time_after(jiffies, timeout)) {
  506. dev_err(&spi->dev, "MCP251x didn't"
  507. " enter in normal mode\n");
  508. return -EBUSY;
  509. }
  510. }
  511. }
  512. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  513. return 0;
  514. }
  515. static int mcp251x_do_set_bittiming(struct net_device *net)
  516. {
  517. struct mcp251x_priv *priv = netdev_priv(net);
  518. struct can_bittiming *bt = &priv->can.bittiming;
  519. struct spi_device *spi = priv->spi;
  520. mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
  521. (bt->brp - 1));
  522. mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
  523. (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
  524. CNF2_SAM : 0) |
  525. ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
  526. (bt->prop_seg - 1));
  527. mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
  528. (bt->phase_seg2 - 1));
  529. dev_info(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
  530. mcp251x_read_reg(spi, CNF1),
  531. mcp251x_read_reg(spi, CNF2),
  532. mcp251x_read_reg(spi, CNF3));
  533. return 0;
  534. }
  535. static int mcp251x_setup(struct net_device *net, struct mcp251x_priv *priv,
  536. struct spi_device *spi)
  537. {
  538. mcp251x_do_set_bittiming(net);
  539. mcp251x_write_reg(spi, RXBCTRL(0),
  540. RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
  541. mcp251x_write_reg(spi, RXBCTRL(1),
  542. RXBCTRL_RXM0 | RXBCTRL_RXM1);
  543. return 0;
  544. }
  545. static int mcp251x_hw_reset(struct spi_device *spi)
  546. {
  547. struct mcp251x_priv *priv = spi_get_drvdata(spi);
  548. int ret;
  549. unsigned long timeout;
  550. priv->spi_tx_buf[0] = INSTRUCTION_RESET;
  551. ret = spi_write(spi, priv->spi_tx_buf, 1);
  552. if (ret) {
  553. dev_err(&spi->dev, "reset failed: ret = %d\n", ret);
  554. return -EIO;
  555. }
  556. /* Wait for reset to finish */
  557. timeout = jiffies + HZ;
  558. mdelay(10);
  559. while ((mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK)
  560. != CANCTRL_REQOP_CONF) {
  561. schedule();
  562. if (time_after(jiffies, timeout)) {
  563. dev_err(&spi->dev, "MCP251x didn't"
  564. " enter in conf mode after reset\n");
  565. return -EBUSY;
  566. }
  567. }
  568. return 0;
  569. }
  570. static int mcp251x_hw_probe(struct spi_device *spi)
  571. {
  572. int st1, st2;
  573. mcp251x_hw_reset(spi);
  574. /*
  575. * Please note that these are "magic values" based on after
  576. * reset defaults taken from data sheet which allows us to see
  577. * if we really have a chip on the bus (we avoid common all
  578. * zeroes or all ones situations)
  579. */
  580. st1 = mcp251x_read_reg(spi, CANSTAT) & 0xEE;
  581. st2 = mcp251x_read_reg(spi, CANCTRL) & 0x17;
  582. dev_dbg(&spi->dev, "CANSTAT 0x%02x CANCTRL 0x%02x\n", st1, st2);
  583. /* Check for power up default values */
  584. return (st1 == 0x80 && st2 == 0x07) ? 1 : 0;
  585. }
  586. static int mcp251x_power_enable(struct regulator *reg, int enable)
  587. {
  588. if (IS_ERR(reg))
  589. return 0;
  590. if (enable)
  591. return regulator_enable(reg);
  592. else
  593. return regulator_disable(reg);
  594. }
  595. static void mcp251x_open_clean(struct net_device *net)
  596. {
  597. struct mcp251x_priv *priv = netdev_priv(net);
  598. struct spi_device *spi = priv->spi;
  599. free_irq(spi->irq, priv);
  600. mcp251x_hw_sleep(spi);
  601. mcp251x_power_enable(priv->transceiver, 0);
  602. close_candev(net);
  603. }
  604. static int mcp251x_stop(struct net_device *net)
  605. {
  606. struct mcp251x_priv *priv = netdev_priv(net);
  607. struct spi_device *spi = priv->spi;
  608. close_candev(net);
  609. priv->force_quit = 1;
  610. free_irq(spi->irq, priv);
  611. destroy_workqueue(priv->wq);
  612. priv->wq = NULL;
  613. mutex_lock(&priv->mcp_lock);
  614. /* Disable and clear pending interrupts */
  615. mcp251x_write_reg(spi, CANINTE, 0x00);
  616. mcp251x_write_reg(spi, CANINTF, 0x00);
  617. mcp251x_write_reg(spi, TXBCTRL(0), 0);
  618. mcp251x_clean(net);
  619. mcp251x_hw_sleep(spi);
  620. mcp251x_power_enable(priv->transceiver, 0);
  621. priv->can.state = CAN_STATE_STOPPED;
  622. mutex_unlock(&priv->mcp_lock);
  623. can_led_event(net, CAN_LED_EVENT_STOP);
  624. return 0;
  625. }
  626. static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
  627. {
  628. struct sk_buff *skb;
  629. struct can_frame *frame;
  630. skb = alloc_can_err_skb(net, &frame);
  631. if (skb) {
  632. frame->can_id |= can_id;
  633. frame->data[1] = data1;
  634. netif_rx_ni(skb);
  635. } else {
  636. netdev_err(net, "cannot allocate error skb\n");
  637. }
  638. }
  639. static void mcp251x_tx_work_handler(struct work_struct *ws)
  640. {
  641. struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
  642. tx_work);
  643. struct spi_device *spi = priv->spi;
  644. struct net_device *net = priv->net;
  645. struct can_frame *frame;
  646. mutex_lock(&priv->mcp_lock);
  647. if (priv->tx_skb) {
  648. if (priv->can.state == CAN_STATE_BUS_OFF) {
  649. mcp251x_clean(net);
  650. } else {
  651. frame = (struct can_frame *)priv->tx_skb->data;
  652. if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
  653. frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
  654. mcp251x_hw_tx(spi, frame, 0);
  655. priv->tx_len = 1 + frame->can_dlc;
  656. can_put_echo_skb(priv->tx_skb, net, 0);
  657. priv->tx_skb = NULL;
  658. }
  659. }
  660. mutex_unlock(&priv->mcp_lock);
  661. }
  662. static void mcp251x_restart_work_handler(struct work_struct *ws)
  663. {
  664. struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
  665. restart_work);
  666. struct spi_device *spi = priv->spi;
  667. struct net_device *net = priv->net;
  668. mutex_lock(&priv->mcp_lock);
  669. if (priv->after_suspend) {
  670. mdelay(10);
  671. mcp251x_hw_reset(spi);
  672. mcp251x_setup(net, priv, spi);
  673. if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
  674. mcp251x_set_normal_mode(spi);
  675. } else if (priv->after_suspend & AFTER_SUSPEND_UP) {
  676. netif_device_attach(net);
  677. mcp251x_clean(net);
  678. mcp251x_set_normal_mode(spi);
  679. netif_wake_queue(net);
  680. } else {
  681. mcp251x_hw_sleep(spi);
  682. }
  683. priv->after_suspend = 0;
  684. priv->force_quit = 0;
  685. }
  686. if (priv->restart_tx) {
  687. priv->restart_tx = 0;
  688. mcp251x_write_reg(spi, TXBCTRL(0), 0);
  689. mcp251x_clean(net);
  690. netif_wake_queue(net);
  691. mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
  692. }
  693. mutex_unlock(&priv->mcp_lock);
  694. }
  695. static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
  696. {
  697. struct mcp251x_priv *priv = dev_id;
  698. struct spi_device *spi = priv->spi;
  699. struct net_device *net = priv->net;
  700. mutex_lock(&priv->mcp_lock);
  701. while (!priv->force_quit) {
  702. enum can_state new_state;
  703. u8 intf, eflag;
  704. u8 clear_intf = 0;
  705. int can_id = 0, data1 = 0;
  706. mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
  707. /* mask out flags we don't care about */
  708. intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;
  709. /* receive buffer 0 */
  710. if (intf & CANINTF_RX0IF) {
  711. mcp251x_hw_rx(spi, 0);
  712. /*
  713. * Free one buffer ASAP
  714. * (The MCP2515 does this automatically.)
  715. */
  716. if (mcp251x_is_2510(spi))
  717. mcp251x_write_bits(spi, CANINTF, CANINTF_RX0IF, 0x00);
  718. }
  719. /* receive buffer 1 */
  720. if (intf & CANINTF_RX1IF) {
  721. mcp251x_hw_rx(spi, 1);
  722. /* the MCP2515 does this automatically */
  723. if (mcp251x_is_2510(spi))
  724. clear_intf |= CANINTF_RX1IF;
  725. }
  726. /* any error or tx interrupt we need to clear? */
  727. if (intf & (CANINTF_ERR | CANINTF_TX))
  728. clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
  729. if (clear_intf)
  730. mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
  731. if (eflag)
  732. mcp251x_write_bits(spi, EFLG, eflag, 0x00);
  733. /* Update can state */
  734. if (eflag & EFLG_TXBO) {
  735. new_state = CAN_STATE_BUS_OFF;
  736. can_id |= CAN_ERR_BUSOFF;
  737. } else if (eflag & EFLG_TXEP) {
  738. new_state = CAN_STATE_ERROR_PASSIVE;
  739. can_id |= CAN_ERR_CRTL;
  740. data1 |= CAN_ERR_CRTL_TX_PASSIVE;
  741. } else if (eflag & EFLG_RXEP) {
  742. new_state = CAN_STATE_ERROR_PASSIVE;
  743. can_id |= CAN_ERR_CRTL;
  744. data1 |= CAN_ERR_CRTL_RX_PASSIVE;
  745. } else if (eflag & EFLG_TXWAR) {
  746. new_state = CAN_STATE_ERROR_WARNING;
  747. can_id |= CAN_ERR_CRTL;
  748. data1 |= CAN_ERR_CRTL_TX_WARNING;
  749. } else if (eflag & EFLG_RXWAR) {
  750. new_state = CAN_STATE_ERROR_WARNING;
  751. can_id |= CAN_ERR_CRTL;
  752. data1 |= CAN_ERR_CRTL_RX_WARNING;
  753. } else {
  754. new_state = CAN_STATE_ERROR_ACTIVE;
  755. }
  756. /* Update can state statistics */
  757. switch (priv->can.state) {
  758. case CAN_STATE_ERROR_ACTIVE:
  759. if (new_state >= CAN_STATE_ERROR_WARNING &&
  760. new_state <= CAN_STATE_BUS_OFF)
  761. priv->can.can_stats.error_warning++;
  762. case CAN_STATE_ERROR_WARNING: /* fallthrough */
  763. if (new_state >= CAN_STATE_ERROR_PASSIVE &&
  764. new_state <= CAN_STATE_BUS_OFF)
  765. priv->can.can_stats.error_passive++;
  766. break;
  767. default:
  768. break;
  769. }
  770. priv->can.state = new_state;
  771. if (intf & CANINTF_ERRIF) {
  772. /* Handle overflow counters */
  773. if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
  774. if (eflag & EFLG_RX0OVR) {
  775. net->stats.rx_over_errors++;
  776. net->stats.rx_errors++;
  777. }
  778. if (eflag & EFLG_RX1OVR) {
  779. net->stats.rx_over_errors++;
  780. net->stats.rx_errors++;
  781. }
  782. can_id |= CAN_ERR_CRTL;
  783. data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
  784. }
  785. mcp251x_error_skb(net, can_id, data1);
  786. }
  787. if (priv->can.state == CAN_STATE_BUS_OFF) {
  788. if (priv->can.restart_ms == 0) {
  789. priv->force_quit = 1;
  790. can_bus_off(net);
  791. mcp251x_hw_sleep(spi);
  792. break;
  793. }
  794. }
  795. if (intf == 0)
  796. break;
  797. if (intf & CANINTF_TX) {
  798. net->stats.tx_packets++;
  799. net->stats.tx_bytes += priv->tx_len - 1;
  800. can_led_event(net, CAN_LED_EVENT_TX);
  801. if (priv->tx_len) {
  802. can_get_echo_skb(net, 0);
  803. priv->tx_len = 0;
  804. }
  805. netif_wake_queue(net);
  806. }
  807. }
  808. mutex_unlock(&priv->mcp_lock);
  809. return IRQ_HANDLED;
  810. }
  811. static int mcp251x_open(struct net_device *net)
  812. {
  813. struct mcp251x_priv *priv = netdev_priv(net);
  814. struct spi_device *spi = priv->spi;
  815. unsigned long flags = IRQF_ONESHOT | IRQF_TRIGGER_FALLING;
  816. int ret;
  817. ret = open_candev(net);
  818. if (ret) {
  819. dev_err(&spi->dev, "unable to set initial baudrate!\n");
  820. return ret;
  821. }
  822. mutex_lock(&priv->mcp_lock);
  823. mcp251x_power_enable(priv->transceiver, 1);
  824. priv->force_quit = 0;
  825. priv->tx_skb = NULL;
  826. priv->tx_len = 0;
  827. ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
  828. flags, DEVICE_NAME, priv);
  829. if (ret) {
  830. dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
  831. mcp251x_power_enable(priv->transceiver, 0);
  832. close_candev(net);
  833. goto open_unlock;
  834. }
  835. priv->wq = create_freezable_workqueue("mcp251x_wq");
  836. INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
  837. INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
  838. ret = mcp251x_hw_reset(spi);
  839. if (ret) {
  840. mcp251x_open_clean(net);
  841. goto open_unlock;
  842. }
  843. ret = mcp251x_setup(net, priv, spi);
  844. if (ret) {
  845. mcp251x_open_clean(net);
  846. goto open_unlock;
  847. }
  848. ret = mcp251x_set_normal_mode(spi);
  849. if (ret) {
  850. mcp251x_open_clean(net);
  851. goto open_unlock;
  852. }
  853. can_led_event(net, CAN_LED_EVENT_OPEN);
  854. netif_wake_queue(net);
  855. open_unlock:
  856. mutex_unlock(&priv->mcp_lock);
  857. return ret;
  858. }
  859. static const struct net_device_ops mcp251x_netdev_ops = {
  860. .ndo_open = mcp251x_open,
  861. .ndo_stop = mcp251x_stop,
  862. .ndo_start_xmit = mcp251x_hard_start_xmit,
  863. };
  864. static int mcp251x_can_probe(struct spi_device *spi)
  865. {
  866. struct net_device *net;
  867. struct mcp251x_priv *priv;
  868. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  869. int ret = -ENODEV;
  870. if (!pdata)
  871. /* Platform data is required for osc freq */
  872. goto error_out;
  873. /* Allocate can/net device */
  874. net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
  875. if (!net) {
  876. ret = -ENOMEM;
  877. goto error_alloc;
  878. }
  879. net->netdev_ops = &mcp251x_netdev_ops;
  880. net->flags |= IFF_ECHO;
  881. priv = netdev_priv(net);
  882. priv->can.bittiming_const = &mcp251x_bittiming_const;
  883. priv->can.do_set_mode = mcp251x_do_set_mode;
  884. priv->can.clock.freq = pdata->oscillator_frequency / 2;
  885. priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
  886. CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
  887. priv->model = spi_get_device_id(spi)->driver_data;
  888. priv->net = net;
  889. priv->power = devm_regulator_get(&spi->dev, "vdd");
  890. priv->transceiver = devm_regulator_get(&spi->dev, "xceiver");
  891. if ((PTR_ERR(priv->power) == -EPROBE_DEFER) ||
  892. (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) {
  893. ret = -EPROBE_DEFER;
  894. goto error_power;
  895. }
  896. ret = mcp251x_power_enable(priv->power, 1);
  897. if (ret)
  898. goto error_power;
  899. spi_set_drvdata(spi, priv);
  900. priv->spi = spi;
  901. mutex_init(&priv->mcp_lock);
  902. /* If requested, allocate DMA buffers */
  903. if (mcp251x_enable_dma) {
  904. spi->dev.coherent_dma_mask = ~0;
  905. /*
  906. * Minimum coherent DMA allocation is PAGE_SIZE, so allocate
  907. * that much and share it between Tx and Rx DMA buffers.
  908. */
  909. priv->spi_tx_buf = dma_alloc_coherent(&spi->dev,
  910. PAGE_SIZE,
  911. &priv->spi_tx_dma,
  912. GFP_DMA);
  913. if (priv->spi_tx_buf) {
  914. priv->spi_rx_buf = (priv->spi_tx_buf + (PAGE_SIZE / 2));
  915. priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma +
  916. (PAGE_SIZE / 2));
  917. } else {
  918. /* Fall back to non-DMA */
  919. mcp251x_enable_dma = 0;
  920. }
  921. }
  922. /* Allocate non-DMA buffers */
  923. if (!mcp251x_enable_dma) {
  924. priv->spi_tx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
  925. if (!priv->spi_tx_buf) {
  926. ret = -ENOMEM;
  927. goto error_tx_buf;
  928. }
  929. priv->spi_rx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
  930. if (!priv->spi_rx_buf) {
  931. ret = -ENOMEM;
  932. goto error_rx_buf;
  933. }
  934. }
  935. SET_NETDEV_DEV(net, &spi->dev);
  936. /* Configure the SPI bus */
  937. spi->mode = spi->mode ? : SPI_MODE_0;
  938. if (mcp251x_is_2510(spi))
  939. spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000;
  940. else
  941. spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000;
  942. spi->bits_per_word = 8;
  943. spi_setup(spi);
  944. /* Here is OK to not lock the MCP, no one knows about it yet */
  945. if (!mcp251x_hw_probe(spi)) {
  946. ret = -ENODEV;
  947. goto error_probe;
  948. }
  949. mcp251x_hw_sleep(spi);
  950. ret = register_candev(net);
  951. if (ret)
  952. goto error_probe;
  953. devm_can_led_init(net);
  954. dev_info(&spi->dev, "probed\n");
  955. return ret;
  956. error_probe:
  957. if (!mcp251x_enable_dma)
  958. kfree(priv->spi_rx_buf);
  959. error_rx_buf:
  960. if (!mcp251x_enable_dma)
  961. kfree(priv->spi_tx_buf);
  962. error_tx_buf:
  963. if (mcp251x_enable_dma)
  964. dma_free_coherent(&spi->dev, PAGE_SIZE,
  965. priv->spi_tx_buf, priv->spi_tx_dma);
  966. mcp251x_power_enable(priv->power, 0);
  967. error_power:
  968. free_candev(net);
  969. error_alloc:
  970. dev_err(&spi->dev, "probe failed\n");
  971. error_out:
  972. return ret;
  973. }
  974. static int mcp251x_can_remove(struct spi_device *spi)
  975. {
  976. struct mcp251x_priv *priv = spi_get_drvdata(spi);
  977. struct net_device *net = priv->net;
  978. unregister_candev(net);
  979. if (mcp251x_enable_dma) {
  980. dma_free_coherent(&spi->dev, PAGE_SIZE,
  981. priv->spi_tx_buf, priv->spi_tx_dma);
  982. } else {
  983. kfree(priv->spi_tx_buf);
  984. kfree(priv->spi_rx_buf);
  985. }
  986. mcp251x_power_enable(priv->power, 0);
  987. free_candev(net);
  988. return 0;
  989. }
  990. #ifdef CONFIG_PM_SLEEP
  991. static int mcp251x_can_suspend(struct device *dev)
  992. {
  993. struct spi_device *spi = to_spi_device(dev);
  994. struct mcp251x_priv *priv = spi_get_drvdata(spi);
  995. struct net_device *net = priv->net;
  996. priv->force_quit = 1;
  997. disable_irq(spi->irq);
  998. /*
  999. * Note: at this point neither IST nor workqueues are running.
  1000. * open/stop cannot be called anyway so locking is not needed
  1001. */
  1002. if (netif_running(net)) {
  1003. netif_device_detach(net);
  1004. mcp251x_hw_sleep(spi);
  1005. mcp251x_power_enable(priv->transceiver, 0);
  1006. priv->after_suspend = AFTER_SUSPEND_UP;
  1007. } else {
  1008. priv->after_suspend = AFTER_SUSPEND_DOWN;
  1009. }
  1010. if (!IS_ERR(priv->power)) {
  1011. regulator_disable(priv->power);
  1012. priv->after_suspend |= AFTER_SUSPEND_POWER;
  1013. }
  1014. return 0;
  1015. }
  1016. static int mcp251x_can_resume(struct device *dev)
  1017. {
  1018. struct spi_device *spi = to_spi_device(dev);
  1019. struct mcp251x_priv *priv = spi_get_drvdata(spi);
  1020. if (priv->after_suspend & AFTER_SUSPEND_POWER) {
  1021. mcp251x_power_enable(priv->power, 1);
  1022. queue_work(priv->wq, &priv->restart_work);
  1023. } else {
  1024. if (priv->after_suspend & AFTER_SUSPEND_UP) {
  1025. mcp251x_power_enable(priv->transceiver, 1);
  1026. queue_work(priv->wq, &priv->restart_work);
  1027. } else {
  1028. priv->after_suspend = 0;
  1029. }
  1030. }
  1031. priv->force_quit = 0;
  1032. enable_irq(spi->irq);
  1033. return 0;
  1034. }
  1035. #endif
  1036. static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend,
  1037. mcp251x_can_resume);
  1038. static const struct spi_device_id mcp251x_id_table[] = {
  1039. { "mcp2510", CAN_MCP251X_MCP2510 },
  1040. { "mcp2515", CAN_MCP251X_MCP2515 },
  1041. { },
  1042. };
  1043. MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
  1044. static struct spi_driver mcp251x_can_driver = {
  1045. .driver = {
  1046. .name = DEVICE_NAME,
  1047. .owner = THIS_MODULE,
  1048. .pm = &mcp251x_can_pm_ops,
  1049. },
  1050. .id_table = mcp251x_id_table,
  1051. .probe = mcp251x_can_probe,
  1052. .remove = mcp251x_can_remove,
  1053. };
  1054. module_spi_driver(mcp251x_can_driver);
  1055. MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
  1056. "Christian Pellegrin <chripell@evolware.org>");
  1057. MODULE_DESCRIPTION("Microchip 251x CAN driver");
  1058. MODULE_LICENSE("GPL v2");