page_alloc.c 62 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/config.h>
  17. #include <linux/stddef.h>
  18. #include <linux/mm.h>
  19. #include <linux/swap.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/compiler.h>
  24. #include <linux/module.h>
  25. #include <linux/suspend.h>
  26. #include <linux/pagevec.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/slab.h>
  29. #include <linux/notifier.h>
  30. #include <linux/topology.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/cpu.h>
  33. #include <linux/cpuset.h>
  34. #include <linux/nodemask.h>
  35. #include <linux/vmalloc.h>
  36. #include <asm/tlbflush.h>
  37. #include "internal.h"
  38. /*
  39. * MCD - HACK: Find somewhere to initialize this EARLY, or make this
  40. * initializer cleaner
  41. */
  42. nodemask_t node_online_map = { { [0] = 1UL } };
  43. EXPORT_SYMBOL(node_online_map);
  44. nodemask_t node_possible_map = NODE_MASK_ALL;
  45. EXPORT_SYMBOL(node_possible_map);
  46. struct pglist_data *pgdat_list;
  47. unsigned long totalram_pages;
  48. unsigned long totalhigh_pages;
  49. long nr_swap_pages;
  50. /*
  51. * results with 256, 32 in the lowmem_reserve sysctl:
  52. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  53. * 1G machine -> (16M dma, 784M normal, 224M high)
  54. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  55. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  56. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  57. */
  58. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 32 };
  59. EXPORT_SYMBOL(totalram_pages);
  60. EXPORT_SYMBOL(nr_swap_pages);
  61. /*
  62. * Used by page_zone() to look up the address of the struct zone whose
  63. * id is encoded in the upper bits of page->flags
  64. */
  65. struct zone *zone_table[1 << ZONETABLE_SHIFT];
  66. EXPORT_SYMBOL(zone_table);
  67. static char *zone_names[MAX_NR_ZONES] = { "DMA", "Normal", "HighMem" };
  68. int min_free_kbytes = 1024;
  69. unsigned long __initdata nr_kernel_pages;
  70. unsigned long __initdata nr_all_pages;
  71. /*
  72. * Temporary debugging check for pages not lying within a given zone.
  73. */
  74. static int bad_range(struct zone *zone, struct page *page)
  75. {
  76. if (page_to_pfn(page) >= zone->zone_start_pfn + zone->spanned_pages)
  77. return 1;
  78. if (page_to_pfn(page) < zone->zone_start_pfn)
  79. return 1;
  80. #ifdef CONFIG_HOLES_IN_ZONE
  81. if (!pfn_valid(page_to_pfn(page)))
  82. return 1;
  83. #endif
  84. if (zone != page_zone(page))
  85. return 1;
  86. return 0;
  87. }
  88. static void bad_page(const char *function, struct page *page)
  89. {
  90. printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n",
  91. function, current->comm, page);
  92. printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
  93. (int)(2*sizeof(page_flags_t)), (unsigned long)page->flags,
  94. page->mapping, page_mapcount(page), page_count(page));
  95. printk(KERN_EMERG "Backtrace:\n");
  96. dump_stack();
  97. printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n");
  98. page->flags &= ~(1 << PG_lru |
  99. 1 << PG_private |
  100. 1 << PG_locked |
  101. 1 << PG_active |
  102. 1 << PG_dirty |
  103. 1 << PG_reclaim |
  104. 1 << PG_slab |
  105. 1 << PG_swapcache |
  106. 1 << PG_writeback);
  107. set_page_count(page, 0);
  108. reset_page_mapcount(page);
  109. page->mapping = NULL;
  110. tainted |= TAINT_BAD_PAGE;
  111. }
  112. #ifndef CONFIG_HUGETLB_PAGE
  113. #define prep_compound_page(page, order) do { } while (0)
  114. #define destroy_compound_page(page, order) do { } while (0)
  115. #else
  116. /*
  117. * Higher-order pages are called "compound pages". They are structured thusly:
  118. *
  119. * The first PAGE_SIZE page is called the "head page".
  120. *
  121. * The remaining PAGE_SIZE pages are called "tail pages".
  122. *
  123. * All pages have PG_compound set. All pages have their ->private pointing at
  124. * the head page (even the head page has this).
  125. *
  126. * The first tail page's ->mapping, if non-zero, holds the address of the
  127. * compound page's put_page() function.
  128. *
  129. * The order of the allocation is stored in the first tail page's ->index
  130. * This is only for debug at present. This usage means that zero-order pages
  131. * may not be compound.
  132. */
  133. static void prep_compound_page(struct page *page, unsigned long order)
  134. {
  135. int i;
  136. int nr_pages = 1 << order;
  137. page[1].mapping = NULL;
  138. page[1].index = order;
  139. for (i = 0; i < nr_pages; i++) {
  140. struct page *p = page + i;
  141. SetPageCompound(p);
  142. p->private = (unsigned long)page;
  143. }
  144. }
  145. static void destroy_compound_page(struct page *page, unsigned long order)
  146. {
  147. int i;
  148. int nr_pages = 1 << order;
  149. if (!PageCompound(page))
  150. return;
  151. if (page[1].index != order)
  152. bad_page(__FUNCTION__, page);
  153. for (i = 0; i < nr_pages; i++) {
  154. struct page *p = page + i;
  155. if (!PageCompound(p))
  156. bad_page(__FUNCTION__, page);
  157. if (p->private != (unsigned long)page)
  158. bad_page(__FUNCTION__, page);
  159. ClearPageCompound(p);
  160. }
  161. }
  162. #endif /* CONFIG_HUGETLB_PAGE */
  163. /*
  164. * function for dealing with page's order in buddy system.
  165. * zone->lock is already acquired when we use these.
  166. * So, we don't need atomic page->flags operations here.
  167. */
  168. static inline unsigned long page_order(struct page *page) {
  169. return page->private;
  170. }
  171. static inline void set_page_order(struct page *page, int order) {
  172. page->private = order;
  173. __SetPagePrivate(page);
  174. }
  175. static inline void rmv_page_order(struct page *page)
  176. {
  177. __ClearPagePrivate(page);
  178. page->private = 0;
  179. }
  180. /*
  181. * Locate the struct page for both the matching buddy in our
  182. * pair (buddy1) and the combined O(n+1) page they form (page).
  183. *
  184. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  185. * the following equation:
  186. * B2 = B1 ^ (1 << O)
  187. * For example, if the starting buddy (buddy2) is #8 its order
  188. * 1 buddy is #10:
  189. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  190. *
  191. * 2) Any buddy B will have an order O+1 parent P which
  192. * satisfies the following equation:
  193. * P = B & ~(1 << O)
  194. *
  195. * Assumption: *_mem_map is contigious at least up to MAX_ORDER
  196. */
  197. static inline struct page *
  198. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  199. {
  200. unsigned long buddy_idx = page_idx ^ (1 << order);
  201. return page + (buddy_idx - page_idx);
  202. }
  203. static inline unsigned long
  204. __find_combined_index(unsigned long page_idx, unsigned int order)
  205. {
  206. return (page_idx & ~(1 << order));
  207. }
  208. /*
  209. * This function checks whether a page is free && is the buddy
  210. * we can do coalesce a page and its buddy if
  211. * (a) the buddy is free &&
  212. * (b) the buddy is on the buddy system &&
  213. * (c) a page and its buddy have the same order.
  214. * for recording page's order, we use page->private and PG_private.
  215. *
  216. */
  217. static inline int page_is_buddy(struct page *page, int order)
  218. {
  219. if (PagePrivate(page) &&
  220. (page_order(page) == order) &&
  221. !PageReserved(page) &&
  222. page_count(page) == 0)
  223. return 1;
  224. return 0;
  225. }
  226. /*
  227. * Freeing function for a buddy system allocator.
  228. *
  229. * The concept of a buddy system is to maintain direct-mapped table
  230. * (containing bit values) for memory blocks of various "orders".
  231. * The bottom level table contains the map for the smallest allocatable
  232. * units of memory (here, pages), and each level above it describes
  233. * pairs of units from the levels below, hence, "buddies".
  234. * At a high level, all that happens here is marking the table entry
  235. * at the bottom level available, and propagating the changes upward
  236. * as necessary, plus some accounting needed to play nicely with other
  237. * parts of the VM system.
  238. * At each level, we keep a list of pages, which are heads of continuous
  239. * free pages of length of (1 << order) and marked with PG_Private.Page's
  240. * order is recorded in page->private field.
  241. * So when we are allocating or freeing one, we can derive the state of the
  242. * other. That is, if we allocate a small block, and both were
  243. * free, the remainder of the region must be split into blocks.
  244. * If a block is freed, and its buddy is also free, then this
  245. * triggers coalescing into a block of larger size.
  246. *
  247. * -- wli
  248. */
  249. static inline void __free_pages_bulk (struct page *page,
  250. struct zone *zone, unsigned int order)
  251. {
  252. unsigned long page_idx;
  253. int order_size = 1 << order;
  254. if (unlikely(order))
  255. destroy_compound_page(page, order);
  256. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  257. BUG_ON(page_idx & (order_size - 1));
  258. BUG_ON(bad_range(zone, page));
  259. zone->free_pages += order_size;
  260. while (order < MAX_ORDER-1) {
  261. unsigned long combined_idx;
  262. struct free_area *area;
  263. struct page *buddy;
  264. combined_idx = __find_combined_index(page_idx, order);
  265. buddy = __page_find_buddy(page, page_idx, order);
  266. if (bad_range(zone, buddy))
  267. break;
  268. if (!page_is_buddy(buddy, order))
  269. break; /* Move the buddy up one level. */
  270. list_del(&buddy->lru);
  271. area = zone->free_area + order;
  272. area->nr_free--;
  273. rmv_page_order(buddy);
  274. page = page + (combined_idx - page_idx);
  275. page_idx = combined_idx;
  276. order++;
  277. }
  278. set_page_order(page, order);
  279. list_add(&page->lru, &zone->free_area[order].free_list);
  280. zone->free_area[order].nr_free++;
  281. }
  282. static inline void free_pages_check(const char *function, struct page *page)
  283. {
  284. if ( page_mapcount(page) ||
  285. page->mapping != NULL ||
  286. page_count(page) != 0 ||
  287. (page->flags & (
  288. 1 << PG_lru |
  289. 1 << PG_private |
  290. 1 << PG_locked |
  291. 1 << PG_active |
  292. 1 << PG_reclaim |
  293. 1 << PG_slab |
  294. 1 << PG_swapcache |
  295. 1 << PG_writeback )))
  296. bad_page(function, page);
  297. if (PageDirty(page))
  298. ClearPageDirty(page);
  299. }
  300. /*
  301. * Frees a list of pages.
  302. * Assumes all pages on list are in same zone, and of same order.
  303. * count is the number of pages to free, or 0 for all on the list.
  304. *
  305. * If the zone was previously in an "all pages pinned" state then look to
  306. * see if this freeing clears that state.
  307. *
  308. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  309. * pinned" detection logic.
  310. */
  311. static int
  312. free_pages_bulk(struct zone *zone, int count,
  313. struct list_head *list, unsigned int order)
  314. {
  315. unsigned long flags;
  316. struct page *page = NULL;
  317. int ret = 0;
  318. spin_lock_irqsave(&zone->lock, flags);
  319. zone->all_unreclaimable = 0;
  320. zone->pages_scanned = 0;
  321. while (!list_empty(list) && count--) {
  322. page = list_entry(list->prev, struct page, lru);
  323. /* have to delete it as __free_pages_bulk list manipulates */
  324. list_del(&page->lru);
  325. __free_pages_bulk(page, zone, order);
  326. ret++;
  327. }
  328. spin_unlock_irqrestore(&zone->lock, flags);
  329. return ret;
  330. }
  331. void __free_pages_ok(struct page *page, unsigned int order)
  332. {
  333. LIST_HEAD(list);
  334. int i;
  335. arch_free_page(page, order);
  336. mod_page_state(pgfree, 1 << order);
  337. #ifndef CONFIG_MMU
  338. if (order > 0)
  339. for (i = 1 ; i < (1 << order) ; ++i)
  340. __put_page(page + i);
  341. #endif
  342. for (i = 0 ; i < (1 << order) ; ++i)
  343. free_pages_check(__FUNCTION__, page + i);
  344. list_add(&page->lru, &list);
  345. kernel_map_pages(page, 1<<order, 0);
  346. free_pages_bulk(page_zone(page), 1, &list, order);
  347. }
  348. /*
  349. * The order of subdivision here is critical for the IO subsystem.
  350. * Please do not alter this order without good reasons and regression
  351. * testing. Specifically, as large blocks of memory are subdivided,
  352. * the order in which smaller blocks are delivered depends on the order
  353. * they're subdivided in this function. This is the primary factor
  354. * influencing the order in which pages are delivered to the IO
  355. * subsystem according to empirical testing, and this is also justified
  356. * by considering the behavior of a buddy system containing a single
  357. * large block of memory acted on by a series of small allocations.
  358. * This behavior is a critical factor in sglist merging's success.
  359. *
  360. * -- wli
  361. */
  362. static inline struct page *
  363. expand(struct zone *zone, struct page *page,
  364. int low, int high, struct free_area *area)
  365. {
  366. unsigned long size = 1 << high;
  367. while (high > low) {
  368. area--;
  369. high--;
  370. size >>= 1;
  371. BUG_ON(bad_range(zone, &page[size]));
  372. list_add(&page[size].lru, &area->free_list);
  373. area->nr_free++;
  374. set_page_order(&page[size], high);
  375. }
  376. return page;
  377. }
  378. void set_page_refs(struct page *page, int order)
  379. {
  380. #ifdef CONFIG_MMU
  381. set_page_count(page, 1);
  382. #else
  383. int i;
  384. /*
  385. * We need to reference all the pages for this order, otherwise if
  386. * anyone accesses one of the pages with (get/put) it will be freed.
  387. * - eg: access_process_vm()
  388. */
  389. for (i = 0; i < (1 << order); i++)
  390. set_page_count(page + i, 1);
  391. #endif /* CONFIG_MMU */
  392. }
  393. /*
  394. * This page is about to be returned from the page allocator
  395. */
  396. static void prep_new_page(struct page *page, int order)
  397. {
  398. if ( page_mapcount(page) ||
  399. page->mapping != NULL ||
  400. page_count(page) != 0 ||
  401. (page->flags & (
  402. 1 << PG_lru |
  403. 1 << PG_private |
  404. 1 << PG_locked |
  405. 1 << PG_active |
  406. 1 << PG_dirty |
  407. 1 << PG_reclaim |
  408. 1 << PG_slab |
  409. 1 << PG_swapcache |
  410. 1 << PG_writeback )))
  411. bad_page(__FUNCTION__, page);
  412. page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
  413. 1 << PG_referenced | 1 << PG_arch_1 |
  414. 1 << PG_checked | 1 << PG_mappedtodisk);
  415. page->private = 0;
  416. set_page_refs(page, order);
  417. kernel_map_pages(page, 1 << order, 1);
  418. }
  419. /*
  420. * Do the hard work of removing an element from the buddy allocator.
  421. * Call me with the zone->lock already held.
  422. */
  423. static struct page *__rmqueue(struct zone *zone, unsigned int order)
  424. {
  425. struct free_area * area;
  426. unsigned int current_order;
  427. struct page *page;
  428. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  429. area = zone->free_area + current_order;
  430. if (list_empty(&area->free_list))
  431. continue;
  432. page = list_entry(area->free_list.next, struct page, lru);
  433. list_del(&page->lru);
  434. rmv_page_order(page);
  435. area->nr_free--;
  436. zone->free_pages -= 1UL << order;
  437. return expand(zone, page, order, current_order, area);
  438. }
  439. return NULL;
  440. }
  441. /*
  442. * Obtain a specified number of elements from the buddy allocator, all under
  443. * a single hold of the lock, for efficiency. Add them to the supplied list.
  444. * Returns the number of new pages which were placed at *list.
  445. */
  446. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  447. unsigned long count, struct list_head *list)
  448. {
  449. unsigned long flags;
  450. int i;
  451. int allocated = 0;
  452. struct page *page;
  453. spin_lock_irqsave(&zone->lock, flags);
  454. for (i = 0; i < count; ++i) {
  455. page = __rmqueue(zone, order);
  456. if (page == NULL)
  457. break;
  458. allocated++;
  459. list_add_tail(&page->lru, list);
  460. }
  461. spin_unlock_irqrestore(&zone->lock, flags);
  462. return allocated;
  463. }
  464. #ifdef CONFIG_NUMA
  465. /* Called from the slab reaper to drain remote pagesets */
  466. void drain_remote_pages(void)
  467. {
  468. struct zone *zone;
  469. int i;
  470. unsigned long flags;
  471. local_irq_save(flags);
  472. for_each_zone(zone) {
  473. struct per_cpu_pageset *pset;
  474. /* Do not drain local pagesets */
  475. if (zone->zone_pgdat->node_id == numa_node_id())
  476. continue;
  477. pset = zone->pageset[smp_processor_id()];
  478. for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
  479. struct per_cpu_pages *pcp;
  480. pcp = &pset->pcp[i];
  481. if (pcp->count)
  482. pcp->count -= free_pages_bulk(zone, pcp->count,
  483. &pcp->list, 0);
  484. }
  485. }
  486. local_irq_restore(flags);
  487. }
  488. #endif
  489. #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
  490. static void __drain_pages(unsigned int cpu)
  491. {
  492. struct zone *zone;
  493. int i;
  494. for_each_zone(zone) {
  495. struct per_cpu_pageset *pset;
  496. pset = zone_pcp(zone, cpu);
  497. for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
  498. struct per_cpu_pages *pcp;
  499. pcp = &pset->pcp[i];
  500. pcp->count -= free_pages_bulk(zone, pcp->count,
  501. &pcp->list, 0);
  502. }
  503. }
  504. }
  505. #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
  506. #ifdef CONFIG_PM
  507. void mark_free_pages(struct zone *zone)
  508. {
  509. unsigned long zone_pfn, flags;
  510. int order;
  511. struct list_head *curr;
  512. if (!zone->spanned_pages)
  513. return;
  514. spin_lock_irqsave(&zone->lock, flags);
  515. for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
  516. ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
  517. for (order = MAX_ORDER - 1; order >= 0; --order)
  518. list_for_each(curr, &zone->free_area[order].free_list) {
  519. unsigned long start_pfn, i;
  520. start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
  521. for (i=0; i < (1<<order); i++)
  522. SetPageNosaveFree(pfn_to_page(start_pfn+i));
  523. }
  524. spin_unlock_irqrestore(&zone->lock, flags);
  525. }
  526. /*
  527. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  528. */
  529. void drain_local_pages(void)
  530. {
  531. unsigned long flags;
  532. local_irq_save(flags);
  533. __drain_pages(smp_processor_id());
  534. local_irq_restore(flags);
  535. }
  536. #endif /* CONFIG_PM */
  537. static void zone_statistics(struct zonelist *zonelist, struct zone *z)
  538. {
  539. #ifdef CONFIG_NUMA
  540. unsigned long flags;
  541. int cpu;
  542. pg_data_t *pg = z->zone_pgdat;
  543. pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
  544. struct per_cpu_pageset *p;
  545. local_irq_save(flags);
  546. cpu = smp_processor_id();
  547. p = zone_pcp(z,cpu);
  548. if (pg == orig) {
  549. p->numa_hit++;
  550. } else {
  551. p->numa_miss++;
  552. zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
  553. }
  554. if (pg == NODE_DATA(numa_node_id()))
  555. p->local_node++;
  556. else
  557. p->other_node++;
  558. local_irq_restore(flags);
  559. #endif
  560. }
  561. /*
  562. * Free a 0-order page
  563. */
  564. static void FASTCALL(free_hot_cold_page(struct page *page, int cold));
  565. static void fastcall free_hot_cold_page(struct page *page, int cold)
  566. {
  567. struct zone *zone = page_zone(page);
  568. struct per_cpu_pages *pcp;
  569. unsigned long flags;
  570. arch_free_page(page, 0);
  571. kernel_map_pages(page, 1, 0);
  572. inc_page_state(pgfree);
  573. if (PageAnon(page))
  574. page->mapping = NULL;
  575. free_pages_check(__FUNCTION__, page);
  576. pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
  577. local_irq_save(flags);
  578. list_add(&page->lru, &pcp->list);
  579. pcp->count++;
  580. if (pcp->count >= pcp->high)
  581. pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  582. local_irq_restore(flags);
  583. put_cpu();
  584. }
  585. void fastcall free_hot_page(struct page *page)
  586. {
  587. free_hot_cold_page(page, 0);
  588. }
  589. void fastcall free_cold_page(struct page *page)
  590. {
  591. free_hot_cold_page(page, 1);
  592. }
  593. static inline void prep_zero_page(struct page *page, int order, unsigned int __nocast gfp_flags)
  594. {
  595. int i;
  596. BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
  597. for(i = 0; i < (1 << order); i++)
  598. clear_highpage(page + i);
  599. }
  600. /*
  601. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  602. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  603. * or two.
  604. */
  605. static struct page *
  606. buffered_rmqueue(struct zone *zone, int order, unsigned int __nocast gfp_flags)
  607. {
  608. unsigned long flags;
  609. struct page *page = NULL;
  610. int cold = !!(gfp_flags & __GFP_COLD);
  611. if (order == 0) {
  612. struct per_cpu_pages *pcp;
  613. pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
  614. local_irq_save(flags);
  615. if (pcp->count <= pcp->low)
  616. pcp->count += rmqueue_bulk(zone, 0,
  617. pcp->batch, &pcp->list);
  618. if (pcp->count) {
  619. page = list_entry(pcp->list.next, struct page, lru);
  620. list_del(&page->lru);
  621. pcp->count--;
  622. }
  623. local_irq_restore(flags);
  624. put_cpu();
  625. }
  626. if (page == NULL) {
  627. spin_lock_irqsave(&zone->lock, flags);
  628. page = __rmqueue(zone, order);
  629. spin_unlock_irqrestore(&zone->lock, flags);
  630. }
  631. if (page != NULL) {
  632. BUG_ON(bad_range(zone, page));
  633. mod_page_state_zone(zone, pgalloc, 1 << order);
  634. prep_new_page(page, order);
  635. if (gfp_flags & __GFP_ZERO)
  636. prep_zero_page(page, order, gfp_flags);
  637. if (order && (gfp_flags & __GFP_COMP))
  638. prep_compound_page(page, order);
  639. }
  640. return page;
  641. }
  642. /*
  643. * Return 1 if free pages are above 'mark'. This takes into account the order
  644. * of the allocation.
  645. */
  646. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  647. int classzone_idx, int can_try_harder, int gfp_high)
  648. {
  649. /* free_pages my go negative - that's OK */
  650. long min = mark, free_pages = z->free_pages - (1 << order) + 1;
  651. int o;
  652. if (gfp_high)
  653. min -= min / 2;
  654. if (can_try_harder)
  655. min -= min / 4;
  656. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  657. return 0;
  658. for (o = 0; o < order; o++) {
  659. /* At the next order, this order's pages become unavailable */
  660. free_pages -= z->free_area[o].nr_free << o;
  661. /* Require fewer higher order pages to be free */
  662. min >>= 1;
  663. if (free_pages <= min)
  664. return 0;
  665. }
  666. return 1;
  667. }
  668. static inline int
  669. should_reclaim_zone(struct zone *z, unsigned int gfp_mask)
  670. {
  671. if (!z->reclaim_pages)
  672. return 0;
  673. if (gfp_mask & __GFP_NORECLAIM)
  674. return 0;
  675. return 1;
  676. }
  677. /*
  678. * This is the 'heart' of the zoned buddy allocator.
  679. */
  680. struct page * fastcall
  681. __alloc_pages(unsigned int __nocast gfp_mask, unsigned int order,
  682. struct zonelist *zonelist)
  683. {
  684. const int wait = gfp_mask & __GFP_WAIT;
  685. struct zone **zones, *z;
  686. struct page *page;
  687. struct reclaim_state reclaim_state;
  688. struct task_struct *p = current;
  689. int i;
  690. int classzone_idx;
  691. int do_retry;
  692. int can_try_harder;
  693. int did_some_progress;
  694. might_sleep_if(wait);
  695. /*
  696. * The caller may dip into page reserves a bit more if the caller
  697. * cannot run direct reclaim, or is the caller has realtime scheduling
  698. * policy
  699. */
  700. can_try_harder = (unlikely(rt_task(p)) && !in_interrupt()) || !wait;
  701. zones = zonelist->zones; /* the list of zones suitable for gfp_mask */
  702. if (unlikely(zones[0] == NULL)) {
  703. /* Should this ever happen?? */
  704. return NULL;
  705. }
  706. classzone_idx = zone_idx(zones[0]);
  707. restart:
  708. /* Go through the zonelist once, looking for a zone with enough free */
  709. for (i = 0; (z = zones[i]) != NULL; i++) {
  710. int do_reclaim = should_reclaim_zone(z, gfp_mask);
  711. if (!cpuset_zone_allowed(z))
  712. continue;
  713. /*
  714. * If the zone is to attempt early page reclaim then this loop
  715. * will try to reclaim pages and check the watermark a second
  716. * time before giving up and falling back to the next zone.
  717. */
  718. zone_reclaim_retry:
  719. if (!zone_watermark_ok(z, order, z->pages_low,
  720. classzone_idx, 0, 0)) {
  721. if (!do_reclaim)
  722. continue;
  723. else {
  724. zone_reclaim(z, gfp_mask, order);
  725. /* Only try reclaim once */
  726. do_reclaim = 0;
  727. goto zone_reclaim_retry;
  728. }
  729. }
  730. page = buffered_rmqueue(z, order, gfp_mask);
  731. if (page)
  732. goto got_pg;
  733. }
  734. for (i = 0; (z = zones[i]) != NULL; i++)
  735. wakeup_kswapd(z, order);
  736. /*
  737. * Go through the zonelist again. Let __GFP_HIGH and allocations
  738. * coming from realtime tasks to go deeper into reserves
  739. *
  740. * This is the last chance, in general, before the goto nopage.
  741. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  742. */
  743. for (i = 0; (z = zones[i]) != NULL; i++) {
  744. if (!zone_watermark_ok(z, order, z->pages_min,
  745. classzone_idx, can_try_harder,
  746. gfp_mask & __GFP_HIGH))
  747. continue;
  748. if (wait && !cpuset_zone_allowed(z))
  749. continue;
  750. page = buffered_rmqueue(z, order, gfp_mask);
  751. if (page)
  752. goto got_pg;
  753. }
  754. /* This allocation should allow future memory freeing. */
  755. if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
  756. && !in_interrupt()) {
  757. if (!(gfp_mask & __GFP_NOMEMALLOC)) {
  758. /* go through the zonelist yet again, ignoring mins */
  759. for (i = 0; (z = zones[i]) != NULL; i++) {
  760. if (!cpuset_zone_allowed(z))
  761. continue;
  762. page = buffered_rmqueue(z, order, gfp_mask);
  763. if (page)
  764. goto got_pg;
  765. }
  766. }
  767. goto nopage;
  768. }
  769. /* Atomic allocations - we can't balance anything */
  770. if (!wait)
  771. goto nopage;
  772. rebalance:
  773. cond_resched();
  774. /* We now go into synchronous reclaim */
  775. p->flags |= PF_MEMALLOC;
  776. reclaim_state.reclaimed_slab = 0;
  777. p->reclaim_state = &reclaim_state;
  778. did_some_progress = try_to_free_pages(zones, gfp_mask);
  779. p->reclaim_state = NULL;
  780. p->flags &= ~PF_MEMALLOC;
  781. cond_resched();
  782. if (likely(did_some_progress)) {
  783. for (i = 0; (z = zones[i]) != NULL; i++) {
  784. if (!zone_watermark_ok(z, order, z->pages_min,
  785. classzone_idx, can_try_harder,
  786. gfp_mask & __GFP_HIGH))
  787. continue;
  788. if (!cpuset_zone_allowed(z))
  789. continue;
  790. page = buffered_rmqueue(z, order, gfp_mask);
  791. if (page)
  792. goto got_pg;
  793. }
  794. } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  795. /*
  796. * Go through the zonelist yet one more time, keep
  797. * very high watermark here, this is only to catch
  798. * a parallel oom killing, we must fail if we're still
  799. * under heavy pressure.
  800. */
  801. for (i = 0; (z = zones[i]) != NULL; i++) {
  802. if (!zone_watermark_ok(z, order, z->pages_high,
  803. classzone_idx, 0, 0))
  804. continue;
  805. if (!cpuset_zone_allowed(z))
  806. continue;
  807. page = buffered_rmqueue(z, order, gfp_mask);
  808. if (page)
  809. goto got_pg;
  810. }
  811. out_of_memory(gfp_mask, order);
  812. goto restart;
  813. }
  814. /*
  815. * Don't let big-order allocations loop unless the caller explicitly
  816. * requests that. Wait for some write requests to complete then retry.
  817. *
  818. * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
  819. * <= 3, but that may not be true in other implementations.
  820. */
  821. do_retry = 0;
  822. if (!(gfp_mask & __GFP_NORETRY)) {
  823. if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
  824. do_retry = 1;
  825. if (gfp_mask & __GFP_NOFAIL)
  826. do_retry = 1;
  827. }
  828. if (do_retry) {
  829. blk_congestion_wait(WRITE, HZ/50);
  830. goto rebalance;
  831. }
  832. nopage:
  833. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  834. printk(KERN_WARNING "%s: page allocation failure."
  835. " order:%d, mode:0x%x\n",
  836. p->comm, order, gfp_mask);
  837. dump_stack();
  838. show_mem();
  839. }
  840. return NULL;
  841. got_pg:
  842. zone_statistics(zonelist, z);
  843. return page;
  844. }
  845. EXPORT_SYMBOL(__alloc_pages);
  846. /*
  847. * Common helper functions.
  848. */
  849. fastcall unsigned long __get_free_pages(unsigned int __nocast gfp_mask, unsigned int order)
  850. {
  851. struct page * page;
  852. page = alloc_pages(gfp_mask, order);
  853. if (!page)
  854. return 0;
  855. return (unsigned long) page_address(page);
  856. }
  857. EXPORT_SYMBOL(__get_free_pages);
  858. fastcall unsigned long get_zeroed_page(unsigned int __nocast gfp_mask)
  859. {
  860. struct page * page;
  861. /*
  862. * get_zeroed_page() returns a 32-bit address, which cannot represent
  863. * a highmem page
  864. */
  865. BUG_ON(gfp_mask & __GFP_HIGHMEM);
  866. page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
  867. if (page)
  868. return (unsigned long) page_address(page);
  869. return 0;
  870. }
  871. EXPORT_SYMBOL(get_zeroed_page);
  872. void __pagevec_free(struct pagevec *pvec)
  873. {
  874. int i = pagevec_count(pvec);
  875. while (--i >= 0)
  876. free_hot_cold_page(pvec->pages[i], pvec->cold);
  877. }
  878. fastcall void __free_pages(struct page *page, unsigned int order)
  879. {
  880. if (!PageReserved(page) && put_page_testzero(page)) {
  881. if (order == 0)
  882. free_hot_page(page);
  883. else
  884. __free_pages_ok(page, order);
  885. }
  886. }
  887. EXPORT_SYMBOL(__free_pages);
  888. fastcall void free_pages(unsigned long addr, unsigned int order)
  889. {
  890. if (addr != 0) {
  891. BUG_ON(!virt_addr_valid((void *)addr));
  892. __free_pages(virt_to_page((void *)addr), order);
  893. }
  894. }
  895. EXPORT_SYMBOL(free_pages);
  896. /*
  897. * Total amount of free (allocatable) RAM:
  898. */
  899. unsigned int nr_free_pages(void)
  900. {
  901. unsigned int sum = 0;
  902. struct zone *zone;
  903. for_each_zone(zone)
  904. sum += zone->free_pages;
  905. return sum;
  906. }
  907. EXPORT_SYMBOL(nr_free_pages);
  908. #ifdef CONFIG_NUMA
  909. unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
  910. {
  911. unsigned int i, sum = 0;
  912. for (i = 0; i < MAX_NR_ZONES; i++)
  913. sum += pgdat->node_zones[i].free_pages;
  914. return sum;
  915. }
  916. #endif
  917. static unsigned int nr_free_zone_pages(int offset)
  918. {
  919. pg_data_t *pgdat;
  920. unsigned int sum = 0;
  921. for_each_pgdat(pgdat) {
  922. struct zonelist *zonelist = pgdat->node_zonelists + offset;
  923. struct zone **zonep = zonelist->zones;
  924. struct zone *zone;
  925. for (zone = *zonep++; zone; zone = *zonep++) {
  926. unsigned long size = zone->present_pages;
  927. unsigned long high = zone->pages_high;
  928. if (size > high)
  929. sum += size - high;
  930. }
  931. }
  932. return sum;
  933. }
  934. /*
  935. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  936. */
  937. unsigned int nr_free_buffer_pages(void)
  938. {
  939. return nr_free_zone_pages(GFP_USER & GFP_ZONEMASK);
  940. }
  941. /*
  942. * Amount of free RAM allocatable within all zones
  943. */
  944. unsigned int nr_free_pagecache_pages(void)
  945. {
  946. return nr_free_zone_pages(GFP_HIGHUSER & GFP_ZONEMASK);
  947. }
  948. #ifdef CONFIG_HIGHMEM
  949. unsigned int nr_free_highpages (void)
  950. {
  951. pg_data_t *pgdat;
  952. unsigned int pages = 0;
  953. for_each_pgdat(pgdat)
  954. pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
  955. return pages;
  956. }
  957. #endif
  958. #ifdef CONFIG_NUMA
  959. static void show_node(struct zone *zone)
  960. {
  961. printk("Node %d ", zone->zone_pgdat->node_id);
  962. }
  963. #else
  964. #define show_node(zone) do { } while (0)
  965. #endif
  966. /*
  967. * Accumulate the page_state information across all CPUs.
  968. * The result is unavoidably approximate - it can change
  969. * during and after execution of this function.
  970. */
  971. static DEFINE_PER_CPU(struct page_state, page_states) = {0};
  972. atomic_t nr_pagecache = ATOMIC_INIT(0);
  973. EXPORT_SYMBOL(nr_pagecache);
  974. #ifdef CONFIG_SMP
  975. DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
  976. #endif
  977. void __get_page_state(struct page_state *ret, int nr)
  978. {
  979. int cpu = 0;
  980. memset(ret, 0, sizeof(*ret));
  981. cpu = first_cpu(cpu_online_map);
  982. while (cpu < NR_CPUS) {
  983. unsigned long *in, *out, off;
  984. in = (unsigned long *)&per_cpu(page_states, cpu);
  985. cpu = next_cpu(cpu, cpu_online_map);
  986. if (cpu < NR_CPUS)
  987. prefetch(&per_cpu(page_states, cpu));
  988. out = (unsigned long *)ret;
  989. for (off = 0; off < nr; off++)
  990. *out++ += *in++;
  991. }
  992. }
  993. void get_page_state(struct page_state *ret)
  994. {
  995. int nr;
  996. nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
  997. nr /= sizeof(unsigned long);
  998. __get_page_state(ret, nr + 1);
  999. }
  1000. void get_full_page_state(struct page_state *ret)
  1001. {
  1002. __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long));
  1003. }
  1004. unsigned long __read_page_state(unsigned long offset)
  1005. {
  1006. unsigned long ret = 0;
  1007. int cpu;
  1008. for_each_online_cpu(cpu) {
  1009. unsigned long in;
  1010. in = (unsigned long)&per_cpu(page_states, cpu) + offset;
  1011. ret += *((unsigned long *)in);
  1012. }
  1013. return ret;
  1014. }
  1015. void __mod_page_state(unsigned long offset, unsigned long delta)
  1016. {
  1017. unsigned long flags;
  1018. void* ptr;
  1019. local_irq_save(flags);
  1020. ptr = &__get_cpu_var(page_states);
  1021. *(unsigned long*)(ptr + offset) += delta;
  1022. local_irq_restore(flags);
  1023. }
  1024. EXPORT_SYMBOL(__mod_page_state);
  1025. void __get_zone_counts(unsigned long *active, unsigned long *inactive,
  1026. unsigned long *free, struct pglist_data *pgdat)
  1027. {
  1028. struct zone *zones = pgdat->node_zones;
  1029. int i;
  1030. *active = 0;
  1031. *inactive = 0;
  1032. *free = 0;
  1033. for (i = 0; i < MAX_NR_ZONES; i++) {
  1034. *active += zones[i].nr_active;
  1035. *inactive += zones[i].nr_inactive;
  1036. *free += zones[i].free_pages;
  1037. }
  1038. }
  1039. void get_zone_counts(unsigned long *active,
  1040. unsigned long *inactive, unsigned long *free)
  1041. {
  1042. struct pglist_data *pgdat;
  1043. *active = 0;
  1044. *inactive = 0;
  1045. *free = 0;
  1046. for_each_pgdat(pgdat) {
  1047. unsigned long l, m, n;
  1048. __get_zone_counts(&l, &m, &n, pgdat);
  1049. *active += l;
  1050. *inactive += m;
  1051. *free += n;
  1052. }
  1053. }
  1054. void si_meminfo(struct sysinfo *val)
  1055. {
  1056. val->totalram = totalram_pages;
  1057. val->sharedram = 0;
  1058. val->freeram = nr_free_pages();
  1059. val->bufferram = nr_blockdev_pages();
  1060. #ifdef CONFIG_HIGHMEM
  1061. val->totalhigh = totalhigh_pages;
  1062. val->freehigh = nr_free_highpages();
  1063. #else
  1064. val->totalhigh = 0;
  1065. val->freehigh = 0;
  1066. #endif
  1067. val->mem_unit = PAGE_SIZE;
  1068. }
  1069. EXPORT_SYMBOL(si_meminfo);
  1070. #ifdef CONFIG_NUMA
  1071. void si_meminfo_node(struct sysinfo *val, int nid)
  1072. {
  1073. pg_data_t *pgdat = NODE_DATA(nid);
  1074. val->totalram = pgdat->node_present_pages;
  1075. val->freeram = nr_free_pages_pgdat(pgdat);
  1076. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1077. val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
  1078. val->mem_unit = PAGE_SIZE;
  1079. }
  1080. #endif
  1081. #define K(x) ((x) << (PAGE_SHIFT-10))
  1082. /*
  1083. * Show free area list (used inside shift_scroll-lock stuff)
  1084. * We also calculate the percentage fragmentation. We do this by counting the
  1085. * memory on each free list with the exception of the first item on the list.
  1086. */
  1087. void show_free_areas(void)
  1088. {
  1089. struct page_state ps;
  1090. int cpu, temperature;
  1091. unsigned long active;
  1092. unsigned long inactive;
  1093. unsigned long free;
  1094. struct zone *zone;
  1095. for_each_zone(zone) {
  1096. show_node(zone);
  1097. printk("%s per-cpu:", zone->name);
  1098. if (!zone->present_pages) {
  1099. printk(" empty\n");
  1100. continue;
  1101. } else
  1102. printk("\n");
  1103. for (cpu = 0; cpu < NR_CPUS; ++cpu) {
  1104. struct per_cpu_pageset *pageset;
  1105. if (!cpu_possible(cpu))
  1106. continue;
  1107. pageset = zone_pcp(zone, cpu);
  1108. for (temperature = 0; temperature < 2; temperature++)
  1109. printk("cpu %d %s: low %d, high %d, batch %d used:%d\n",
  1110. cpu,
  1111. temperature ? "cold" : "hot",
  1112. pageset->pcp[temperature].low,
  1113. pageset->pcp[temperature].high,
  1114. pageset->pcp[temperature].batch,
  1115. pageset->pcp[temperature].count);
  1116. }
  1117. }
  1118. get_page_state(&ps);
  1119. get_zone_counts(&active, &inactive, &free);
  1120. printk("Free pages: %11ukB (%ukB HighMem)\n",
  1121. K(nr_free_pages()),
  1122. K(nr_free_highpages()));
  1123. printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
  1124. "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
  1125. active,
  1126. inactive,
  1127. ps.nr_dirty,
  1128. ps.nr_writeback,
  1129. ps.nr_unstable,
  1130. nr_free_pages(),
  1131. ps.nr_slab,
  1132. ps.nr_mapped,
  1133. ps.nr_page_table_pages);
  1134. for_each_zone(zone) {
  1135. int i;
  1136. show_node(zone);
  1137. printk("%s"
  1138. " free:%lukB"
  1139. " min:%lukB"
  1140. " low:%lukB"
  1141. " high:%lukB"
  1142. " active:%lukB"
  1143. " inactive:%lukB"
  1144. " present:%lukB"
  1145. " pages_scanned:%lu"
  1146. " all_unreclaimable? %s"
  1147. "\n",
  1148. zone->name,
  1149. K(zone->free_pages),
  1150. K(zone->pages_min),
  1151. K(zone->pages_low),
  1152. K(zone->pages_high),
  1153. K(zone->nr_active),
  1154. K(zone->nr_inactive),
  1155. K(zone->present_pages),
  1156. zone->pages_scanned,
  1157. (zone->all_unreclaimable ? "yes" : "no")
  1158. );
  1159. printk("lowmem_reserve[]:");
  1160. for (i = 0; i < MAX_NR_ZONES; i++)
  1161. printk(" %lu", zone->lowmem_reserve[i]);
  1162. printk("\n");
  1163. }
  1164. for_each_zone(zone) {
  1165. unsigned long nr, flags, order, total = 0;
  1166. show_node(zone);
  1167. printk("%s: ", zone->name);
  1168. if (!zone->present_pages) {
  1169. printk("empty\n");
  1170. continue;
  1171. }
  1172. spin_lock_irqsave(&zone->lock, flags);
  1173. for (order = 0; order < MAX_ORDER; order++) {
  1174. nr = zone->free_area[order].nr_free;
  1175. total += nr << order;
  1176. printk("%lu*%lukB ", nr, K(1UL) << order);
  1177. }
  1178. spin_unlock_irqrestore(&zone->lock, flags);
  1179. printk("= %lukB\n", K(total));
  1180. }
  1181. show_swap_cache_info();
  1182. }
  1183. /*
  1184. * Builds allocation fallback zone lists.
  1185. */
  1186. static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k)
  1187. {
  1188. switch (k) {
  1189. struct zone *zone;
  1190. default:
  1191. BUG();
  1192. case ZONE_HIGHMEM:
  1193. zone = pgdat->node_zones + ZONE_HIGHMEM;
  1194. if (zone->present_pages) {
  1195. #ifndef CONFIG_HIGHMEM
  1196. BUG();
  1197. #endif
  1198. zonelist->zones[j++] = zone;
  1199. }
  1200. case ZONE_NORMAL:
  1201. zone = pgdat->node_zones + ZONE_NORMAL;
  1202. if (zone->present_pages)
  1203. zonelist->zones[j++] = zone;
  1204. case ZONE_DMA:
  1205. zone = pgdat->node_zones + ZONE_DMA;
  1206. if (zone->present_pages)
  1207. zonelist->zones[j++] = zone;
  1208. }
  1209. return j;
  1210. }
  1211. #ifdef CONFIG_NUMA
  1212. #define MAX_NODE_LOAD (num_online_nodes())
  1213. static int __initdata node_load[MAX_NUMNODES];
  1214. /**
  1215. * find_next_best_node - find the next node that should appear in a given node's fallback list
  1216. * @node: node whose fallback list we're appending
  1217. * @used_node_mask: nodemask_t of already used nodes
  1218. *
  1219. * We use a number of factors to determine which is the next node that should
  1220. * appear on a given node's fallback list. The node should not have appeared
  1221. * already in @node's fallback list, and it should be the next closest node
  1222. * according to the distance array (which contains arbitrary distance values
  1223. * from each node to each node in the system), and should also prefer nodes
  1224. * with no CPUs, since presumably they'll have very little allocation pressure
  1225. * on them otherwise.
  1226. * It returns -1 if no node is found.
  1227. */
  1228. static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
  1229. {
  1230. int i, n, val;
  1231. int min_val = INT_MAX;
  1232. int best_node = -1;
  1233. for_each_online_node(i) {
  1234. cpumask_t tmp;
  1235. /* Start from local node */
  1236. n = (node+i) % num_online_nodes();
  1237. /* Don't want a node to appear more than once */
  1238. if (node_isset(n, *used_node_mask))
  1239. continue;
  1240. /* Use the local node if we haven't already */
  1241. if (!node_isset(node, *used_node_mask)) {
  1242. best_node = node;
  1243. break;
  1244. }
  1245. /* Use the distance array to find the distance */
  1246. val = node_distance(node, n);
  1247. /* Give preference to headless and unused nodes */
  1248. tmp = node_to_cpumask(n);
  1249. if (!cpus_empty(tmp))
  1250. val += PENALTY_FOR_NODE_WITH_CPUS;
  1251. /* Slight preference for less loaded node */
  1252. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  1253. val += node_load[n];
  1254. if (val < min_val) {
  1255. min_val = val;
  1256. best_node = n;
  1257. }
  1258. }
  1259. if (best_node >= 0)
  1260. node_set(best_node, *used_node_mask);
  1261. return best_node;
  1262. }
  1263. static void __init build_zonelists(pg_data_t *pgdat)
  1264. {
  1265. int i, j, k, node, local_node;
  1266. int prev_node, load;
  1267. struct zonelist *zonelist;
  1268. nodemask_t used_mask;
  1269. /* initialize zonelists */
  1270. for (i = 0; i < GFP_ZONETYPES; i++) {
  1271. zonelist = pgdat->node_zonelists + i;
  1272. zonelist->zones[0] = NULL;
  1273. }
  1274. /* NUMA-aware ordering of nodes */
  1275. local_node = pgdat->node_id;
  1276. load = num_online_nodes();
  1277. prev_node = local_node;
  1278. nodes_clear(used_mask);
  1279. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  1280. /*
  1281. * We don't want to pressure a particular node.
  1282. * So adding penalty to the first node in same
  1283. * distance group to make it round-robin.
  1284. */
  1285. if (node_distance(local_node, node) !=
  1286. node_distance(local_node, prev_node))
  1287. node_load[node] += load;
  1288. prev_node = node;
  1289. load--;
  1290. for (i = 0; i < GFP_ZONETYPES; i++) {
  1291. zonelist = pgdat->node_zonelists + i;
  1292. for (j = 0; zonelist->zones[j] != NULL; j++);
  1293. k = ZONE_NORMAL;
  1294. if (i & __GFP_HIGHMEM)
  1295. k = ZONE_HIGHMEM;
  1296. if (i & __GFP_DMA)
  1297. k = ZONE_DMA;
  1298. j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
  1299. zonelist->zones[j] = NULL;
  1300. }
  1301. }
  1302. }
  1303. #else /* CONFIG_NUMA */
  1304. static void __init build_zonelists(pg_data_t *pgdat)
  1305. {
  1306. int i, j, k, node, local_node;
  1307. local_node = pgdat->node_id;
  1308. for (i = 0; i < GFP_ZONETYPES; i++) {
  1309. struct zonelist *zonelist;
  1310. zonelist = pgdat->node_zonelists + i;
  1311. j = 0;
  1312. k = ZONE_NORMAL;
  1313. if (i & __GFP_HIGHMEM)
  1314. k = ZONE_HIGHMEM;
  1315. if (i & __GFP_DMA)
  1316. k = ZONE_DMA;
  1317. j = build_zonelists_node(pgdat, zonelist, j, k);
  1318. /*
  1319. * Now we build the zonelist so that it contains the zones
  1320. * of all the other nodes.
  1321. * We don't want to pressure a particular node, so when
  1322. * building the zones for node N, we make sure that the
  1323. * zones coming right after the local ones are those from
  1324. * node N+1 (modulo N)
  1325. */
  1326. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  1327. if (!node_online(node))
  1328. continue;
  1329. j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
  1330. }
  1331. for (node = 0; node < local_node; node++) {
  1332. if (!node_online(node))
  1333. continue;
  1334. j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
  1335. }
  1336. zonelist->zones[j] = NULL;
  1337. }
  1338. }
  1339. #endif /* CONFIG_NUMA */
  1340. void __init build_all_zonelists(void)
  1341. {
  1342. int i;
  1343. for_each_online_node(i)
  1344. build_zonelists(NODE_DATA(i));
  1345. printk("Built %i zonelists\n", num_online_nodes());
  1346. cpuset_init_current_mems_allowed();
  1347. }
  1348. /*
  1349. * Helper functions to size the waitqueue hash table.
  1350. * Essentially these want to choose hash table sizes sufficiently
  1351. * large so that collisions trying to wait on pages are rare.
  1352. * But in fact, the number of active page waitqueues on typical
  1353. * systems is ridiculously low, less than 200. So this is even
  1354. * conservative, even though it seems large.
  1355. *
  1356. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  1357. * waitqueues, i.e. the size of the waitq table given the number of pages.
  1358. */
  1359. #define PAGES_PER_WAITQUEUE 256
  1360. static inline unsigned long wait_table_size(unsigned long pages)
  1361. {
  1362. unsigned long size = 1;
  1363. pages /= PAGES_PER_WAITQUEUE;
  1364. while (size < pages)
  1365. size <<= 1;
  1366. /*
  1367. * Once we have dozens or even hundreds of threads sleeping
  1368. * on IO we've got bigger problems than wait queue collision.
  1369. * Limit the size of the wait table to a reasonable size.
  1370. */
  1371. size = min(size, 4096UL);
  1372. return max(size, 4UL);
  1373. }
  1374. /*
  1375. * This is an integer logarithm so that shifts can be used later
  1376. * to extract the more random high bits from the multiplicative
  1377. * hash function before the remainder is taken.
  1378. */
  1379. static inline unsigned long wait_table_bits(unsigned long size)
  1380. {
  1381. return ffz(~size);
  1382. }
  1383. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  1384. static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
  1385. unsigned long *zones_size, unsigned long *zholes_size)
  1386. {
  1387. unsigned long realtotalpages, totalpages = 0;
  1388. int i;
  1389. for (i = 0; i < MAX_NR_ZONES; i++)
  1390. totalpages += zones_size[i];
  1391. pgdat->node_spanned_pages = totalpages;
  1392. realtotalpages = totalpages;
  1393. if (zholes_size)
  1394. for (i = 0; i < MAX_NR_ZONES; i++)
  1395. realtotalpages -= zholes_size[i];
  1396. pgdat->node_present_pages = realtotalpages;
  1397. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
  1398. }
  1399. /*
  1400. * Initially all pages are reserved - free ones are freed
  1401. * up by free_all_bootmem() once the early boot process is
  1402. * done. Non-atomic initialization, single-pass.
  1403. */
  1404. void __init memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  1405. unsigned long start_pfn)
  1406. {
  1407. struct page *page;
  1408. unsigned long end_pfn = start_pfn + size;
  1409. unsigned long pfn;
  1410. for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) {
  1411. if (!early_pfn_valid(pfn))
  1412. continue;
  1413. if (!early_pfn_in_nid(pfn, nid))
  1414. continue;
  1415. page = pfn_to_page(pfn);
  1416. set_page_links(page, zone, nid, pfn);
  1417. set_page_count(page, 0);
  1418. reset_page_mapcount(page);
  1419. SetPageReserved(page);
  1420. INIT_LIST_HEAD(&page->lru);
  1421. #ifdef WANT_PAGE_VIRTUAL
  1422. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  1423. if (!is_highmem_idx(zone))
  1424. set_page_address(page, __va(pfn << PAGE_SHIFT));
  1425. #endif
  1426. }
  1427. }
  1428. void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
  1429. unsigned long size)
  1430. {
  1431. int order;
  1432. for (order = 0; order < MAX_ORDER ; order++) {
  1433. INIT_LIST_HEAD(&zone->free_area[order].free_list);
  1434. zone->free_area[order].nr_free = 0;
  1435. }
  1436. }
  1437. #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
  1438. void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
  1439. unsigned long size)
  1440. {
  1441. unsigned long snum = pfn_to_section_nr(pfn);
  1442. unsigned long end = pfn_to_section_nr(pfn + size);
  1443. if (FLAGS_HAS_NODE)
  1444. zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
  1445. else
  1446. for (; snum <= end; snum++)
  1447. zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
  1448. }
  1449. #ifndef __HAVE_ARCH_MEMMAP_INIT
  1450. #define memmap_init(size, nid, zone, start_pfn) \
  1451. memmap_init_zone((size), (nid), (zone), (start_pfn))
  1452. #endif
  1453. static int __devinit zone_batchsize(struct zone *zone)
  1454. {
  1455. int batch;
  1456. /*
  1457. * The per-cpu-pages pools are set to around 1000th of the
  1458. * size of the zone. But no more than 1/4 of a meg - there's
  1459. * no point in going beyond the size of L2 cache.
  1460. *
  1461. * OK, so we don't know how big the cache is. So guess.
  1462. */
  1463. batch = zone->present_pages / 1024;
  1464. if (batch * PAGE_SIZE > 256 * 1024)
  1465. batch = (256 * 1024) / PAGE_SIZE;
  1466. batch /= 4; /* We effectively *= 4 below */
  1467. if (batch < 1)
  1468. batch = 1;
  1469. /*
  1470. * Clamp the batch to a 2^n - 1 value. Having a power
  1471. * of 2 value was found to be more likely to have
  1472. * suboptimal cache aliasing properties in some cases.
  1473. *
  1474. * For example if 2 tasks are alternately allocating
  1475. * batches of pages, one task can end up with a lot
  1476. * of pages of one half of the possible page colors
  1477. * and the other with pages of the other colors.
  1478. */
  1479. batch = (1 << fls(batch + batch/2)) - 1;
  1480. return batch;
  1481. }
  1482. inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  1483. {
  1484. struct per_cpu_pages *pcp;
  1485. pcp = &p->pcp[0]; /* hot */
  1486. pcp->count = 0;
  1487. pcp->low = 2 * batch;
  1488. pcp->high = 6 * batch;
  1489. pcp->batch = max(1UL, 1 * batch);
  1490. INIT_LIST_HEAD(&pcp->list);
  1491. pcp = &p->pcp[1]; /* cold*/
  1492. pcp->count = 0;
  1493. pcp->low = 0;
  1494. pcp->high = 2 * batch;
  1495. pcp->batch = max(1UL, 1 * batch);
  1496. INIT_LIST_HEAD(&pcp->list);
  1497. }
  1498. #ifdef CONFIG_NUMA
  1499. /*
  1500. * Boot pageset table. One per cpu which is going to be used for all
  1501. * zones and all nodes. The parameters will be set in such a way
  1502. * that an item put on a list will immediately be handed over to
  1503. * the buddy list. This is safe since pageset manipulation is done
  1504. * with interrupts disabled.
  1505. *
  1506. * Some NUMA counter updates may also be caught by the boot pagesets.
  1507. *
  1508. * The boot_pagesets must be kept even after bootup is complete for
  1509. * unused processors and/or zones. They do play a role for bootstrapping
  1510. * hotplugged processors.
  1511. *
  1512. * zoneinfo_show() and maybe other functions do
  1513. * not check if the processor is online before following the pageset pointer.
  1514. * Other parts of the kernel may not check if the zone is available.
  1515. */
  1516. static struct per_cpu_pageset
  1517. boot_pageset[NR_CPUS];
  1518. /*
  1519. * Dynamically allocate memory for the
  1520. * per cpu pageset array in struct zone.
  1521. */
  1522. static int __devinit process_zones(int cpu)
  1523. {
  1524. struct zone *zone, *dzone;
  1525. for_each_zone(zone) {
  1526. zone->pageset[cpu] = kmalloc_node(sizeof(struct per_cpu_pageset),
  1527. GFP_KERNEL, cpu_to_node(cpu));
  1528. if (!zone->pageset[cpu])
  1529. goto bad;
  1530. setup_pageset(zone->pageset[cpu], zone_batchsize(zone));
  1531. }
  1532. return 0;
  1533. bad:
  1534. for_each_zone(dzone) {
  1535. if (dzone == zone)
  1536. break;
  1537. kfree(dzone->pageset[cpu]);
  1538. dzone->pageset[cpu] = NULL;
  1539. }
  1540. return -ENOMEM;
  1541. }
  1542. static inline void free_zone_pagesets(int cpu)
  1543. {
  1544. #ifdef CONFIG_NUMA
  1545. struct zone *zone;
  1546. for_each_zone(zone) {
  1547. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  1548. zone_pcp(zone, cpu) = NULL;
  1549. kfree(pset);
  1550. }
  1551. #endif
  1552. }
  1553. static int __devinit pageset_cpuup_callback(struct notifier_block *nfb,
  1554. unsigned long action,
  1555. void *hcpu)
  1556. {
  1557. int cpu = (long)hcpu;
  1558. int ret = NOTIFY_OK;
  1559. switch (action) {
  1560. case CPU_UP_PREPARE:
  1561. if (process_zones(cpu))
  1562. ret = NOTIFY_BAD;
  1563. break;
  1564. #ifdef CONFIG_HOTPLUG_CPU
  1565. case CPU_DEAD:
  1566. free_zone_pagesets(cpu);
  1567. break;
  1568. #endif
  1569. default:
  1570. break;
  1571. }
  1572. return ret;
  1573. }
  1574. static struct notifier_block pageset_notifier =
  1575. { &pageset_cpuup_callback, NULL, 0 };
  1576. void __init setup_per_cpu_pageset()
  1577. {
  1578. int err;
  1579. /* Initialize per_cpu_pageset for cpu 0.
  1580. * A cpuup callback will do this for every cpu
  1581. * as it comes online
  1582. */
  1583. err = process_zones(smp_processor_id());
  1584. BUG_ON(err);
  1585. register_cpu_notifier(&pageset_notifier);
  1586. }
  1587. #endif
  1588. /*
  1589. * Set up the zone data structures:
  1590. * - mark all pages reserved
  1591. * - mark all memory queues empty
  1592. * - clear the memory bitmaps
  1593. */
  1594. static void __init free_area_init_core(struct pglist_data *pgdat,
  1595. unsigned long *zones_size, unsigned long *zholes_size)
  1596. {
  1597. unsigned long i, j;
  1598. int cpu, nid = pgdat->node_id;
  1599. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  1600. pgdat->nr_zones = 0;
  1601. init_waitqueue_head(&pgdat->kswapd_wait);
  1602. pgdat->kswapd_max_order = 0;
  1603. for (j = 0; j < MAX_NR_ZONES; j++) {
  1604. struct zone *zone = pgdat->node_zones + j;
  1605. unsigned long size, realsize;
  1606. unsigned long batch;
  1607. realsize = size = zones_size[j];
  1608. if (zholes_size)
  1609. realsize -= zholes_size[j];
  1610. if (j == ZONE_DMA || j == ZONE_NORMAL)
  1611. nr_kernel_pages += realsize;
  1612. nr_all_pages += realsize;
  1613. zone->spanned_pages = size;
  1614. zone->present_pages = realsize;
  1615. zone->name = zone_names[j];
  1616. spin_lock_init(&zone->lock);
  1617. spin_lock_init(&zone->lru_lock);
  1618. zone->zone_pgdat = pgdat;
  1619. zone->free_pages = 0;
  1620. zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
  1621. batch = zone_batchsize(zone);
  1622. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  1623. #ifdef CONFIG_NUMA
  1624. /* Early boot. Slab allocator not functional yet */
  1625. zone->pageset[cpu] = &boot_pageset[cpu];
  1626. setup_pageset(&boot_pageset[cpu],0);
  1627. #else
  1628. setup_pageset(zone_pcp(zone,cpu), batch);
  1629. #endif
  1630. }
  1631. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  1632. zone_names[j], realsize, batch);
  1633. INIT_LIST_HEAD(&zone->active_list);
  1634. INIT_LIST_HEAD(&zone->inactive_list);
  1635. zone->nr_scan_active = 0;
  1636. zone->nr_scan_inactive = 0;
  1637. zone->nr_active = 0;
  1638. zone->nr_inactive = 0;
  1639. atomic_set(&zone->reclaim_in_progress, -1);
  1640. if (!size)
  1641. continue;
  1642. /*
  1643. * The per-page waitqueue mechanism uses hashed waitqueues
  1644. * per zone.
  1645. */
  1646. zone->wait_table_size = wait_table_size(size);
  1647. zone->wait_table_bits =
  1648. wait_table_bits(zone->wait_table_size);
  1649. zone->wait_table = (wait_queue_head_t *)
  1650. alloc_bootmem_node(pgdat, zone->wait_table_size
  1651. * sizeof(wait_queue_head_t));
  1652. for(i = 0; i < zone->wait_table_size; ++i)
  1653. init_waitqueue_head(zone->wait_table + i);
  1654. pgdat->nr_zones = j+1;
  1655. zone->zone_mem_map = pfn_to_page(zone_start_pfn);
  1656. zone->zone_start_pfn = zone_start_pfn;
  1657. memmap_init(size, nid, j, zone_start_pfn);
  1658. zonetable_add(zone, nid, j, zone_start_pfn, size);
  1659. zone_start_pfn += size;
  1660. zone_init_free_lists(pgdat, zone, zone->spanned_pages);
  1661. }
  1662. }
  1663. static void __init alloc_node_mem_map(struct pglist_data *pgdat)
  1664. {
  1665. /* Skip empty nodes */
  1666. if (!pgdat->node_spanned_pages)
  1667. return;
  1668. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  1669. /* ia64 gets its own node_mem_map, before this, without bootmem */
  1670. if (!pgdat->node_mem_map) {
  1671. unsigned long size;
  1672. struct page *map;
  1673. size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
  1674. map = alloc_remap(pgdat->node_id, size);
  1675. if (!map)
  1676. map = alloc_bootmem_node(pgdat, size);
  1677. pgdat->node_mem_map = map;
  1678. }
  1679. #ifdef CONFIG_FLATMEM
  1680. /*
  1681. * With no DISCONTIG, the global mem_map is just set as node 0's
  1682. */
  1683. if (pgdat == NODE_DATA(0))
  1684. mem_map = NODE_DATA(0)->node_mem_map;
  1685. #endif
  1686. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  1687. }
  1688. void __init free_area_init_node(int nid, struct pglist_data *pgdat,
  1689. unsigned long *zones_size, unsigned long node_start_pfn,
  1690. unsigned long *zholes_size)
  1691. {
  1692. pgdat->node_id = nid;
  1693. pgdat->node_start_pfn = node_start_pfn;
  1694. calculate_zone_totalpages(pgdat, zones_size, zholes_size);
  1695. alloc_node_mem_map(pgdat);
  1696. free_area_init_core(pgdat, zones_size, zholes_size);
  1697. }
  1698. #ifndef CONFIG_NEED_MULTIPLE_NODES
  1699. static bootmem_data_t contig_bootmem_data;
  1700. struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
  1701. EXPORT_SYMBOL(contig_page_data);
  1702. #endif
  1703. void __init free_area_init(unsigned long *zones_size)
  1704. {
  1705. free_area_init_node(0, NODE_DATA(0), zones_size,
  1706. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  1707. }
  1708. #ifdef CONFIG_PROC_FS
  1709. #include <linux/seq_file.h>
  1710. static void *frag_start(struct seq_file *m, loff_t *pos)
  1711. {
  1712. pg_data_t *pgdat;
  1713. loff_t node = *pos;
  1714. for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
  1715. --node;
  1716. return pgdat;
  1717. }
  1718. static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
  1719. {
  1720. pg_data_t *pgdat = (pg_data_t *)arg;
  1721. (*pos)++;
  1722. return pgdat->pgdat_next;
  1723. }
  1724. static void frag_stop(struct seq_file *m, void *arg)
  1725. {
  1726. }
  1727. /*
  1728. * This walks the free areas for each zone.
  1729. */
  1730. static int frag_show(struct seq_file *m, void *arg)
  1731. {
  1732. pg_data_t *pgdat = (pg_data_t *)arg;
  1733. struct zone *zone;
  1734. struct zone *node_zones = pgdat->node_zones;
  1735. unsigned long flags;
  1736. int order;
  1737. for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
  1738. if (!zone->present_pages)
  1739. continue;
  1740. spin_lock_irqsave(&zone->lock, flags);
  1741. seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
  1742. for (order = 0; order < MAX_ORDER; ++order)
  1743. seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
  1744. spin_unlock_irqrestore(&zone->lock, flags);
  1745. seq_putc(m, '\n');
  1746. }
  1747. return 0;
  1748. }
  1749. struct seq_operations fragmentation_op = {
  1750. .start = frag_start,
  1751. .next = frag_next,
  1752. .stop = frag_stop,
  1753. .show = frag_show,
  1754. };
  1755. /*
  1756. * Output information about zones in @pgdat.
  1757. */
  1758. static int zoneinfo_show(struct seq_file *m, void *arg)
  1759. {
  1760. pg_data_t *pgdat = arg;
  1761. struct zone *zone;
  1762. struct zone *node_zones = pgdat->node_zones;
  1763. unsigned long flags;
  1764. for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
  1765. int i;
  1766. if (!zone->present_pages)
  1767. continue;
  1768. spin_lock_irqsave(&zone->lock, flags);
  1769. seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
  1770. seq_printf(m,
  1771. "\n pages free %lu"
  1772. "\n min %lu"
  1773. "\n low %lu"
  1774. "\n high %lu"
  1775. "\n active %lu"
  1776. "\n inactive %lu"
  1777. "\n scanned %lu (a: %lu i: %lu)"
  1778. "\n spanned %lu"
  1779. "\n present %lu",
  1780. zone->free_pages,
  1781. zone->pages_min,
  1782. zone->pages_low,
  1783. zone->pages_high,
  1784. zone->nr_active,
  1785. zone->nr_inactive,
  1786. zone->pages_scanned,
  1787. zone->nr_scan_active, zone->nr_scan_inactive,
  1788. zone->spanned_pages,
  1789. zone->present_pages);
  1790. seq_printf(m,
  1791. "\n protection: (%lu",
  1792. zone->lowmem_reserve[0]);
  1793. for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
  1794. seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
  1795. seq_printf(m,
  1796. ")"
  1797. "\n pagesets");
  1798. for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) {
  1799. struct per_cpu_pageset *pageset;
  1800. int j;
  1801. pageset = zone_pcp(zone, i);
  1802. for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
  1803. if (pageset->pcp[j].count)
  1804. break;
  1805. }
  1806. if (j == ARRAY_SIZE(pageset->pcp))
  1807. continue;
  1808. for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
  1809. seq_printf(m,
  1810. "\n cpu: %i pcp: %i"
  1811. "\n count: %i"
  1812. "\n low: %i"
  1813. "\n high: %i"
  1814. "\n batch: %i",
  1815. i, j,
  1816. pageset->pcp[j].count,
  1817. pageset->pcp[j].low,
  1818. pageset->pcp[j].high,
  1819. pageset->pcp[j].batch);
  1820. }
  1821. #ifdef CONFIG_NUMA
  1822. seq_printf(m,
  1823. "\n numa_hit: %lu"
  1824. "\n numa_miss: %lu"
  1825. "\n numa_foreign: %lu"
  1826. "\n interleave_hit: %lu"
  1827. "\n local_node: %lu"
  1828. "\n other_node: %lu",
  1829. pageset->numa_hit,
  1830. pageset->numa_miss,
  1831. pageset->numa_foreign,
  1832. pageset->interleave_hit,
  1833. pageset->local_node,
  1834. pageset->other_node);
  1835. #endif
  1836. }
  1837. seq_printf(m,
  1838. "\n all_unreclaimable: %u"
  1839. "\n prev_priority: %i"
  1840. "\n temp_priority: %i"
  1841. "\n start_pfn: %lu",
  1842. zone->all_unreclaimable,
  1843. zone->prev_priority,
  1844. zone->temp_priority,
  1845. zone->zone_start_pfn);
  1846. spin_unlock_irqrestore(&zone->lock, flags);
  1847. seq_putc(m, '\n');
  1848. }
  1849. return 0;
  1850. }
  1851. struct seq_operations zoneinfo_op = {
  1852. .start = frag_start, /* iterate over all zones. The same as in
  1853. * fragmentation. */
  1854. .next = frag_next,
  1855. .stop = frag_stop,
  1856. .show = zoneinfo_show,
  1857. };
  1858. static char *vmstat_text[] = {
  1859. "nr_dirty",
  1860. "nr_writeback",
  1861. "nr_unstable",
  1862. "nr_page_table_pages",
  1863. "nr_mapped",
  1864. "nr_slab",
  1865. "pgpgin",
  1866. "pgpgout",
  1867. "pswpin",
  1868. "pswpout",
  1869. "pgalloc_high",
  1870. "pgalloc_normal",
  1871. "pgalloc_dma",
  1872. "pgfree",
  1873. "pgactivate",
  1874. "pgdeactivate",
  1875. "pgfault",
  1876. "pgmajfault",
  1877. "pgrefill_high",
  1878. "pgrefill_normal",
  1879. "pgrefill_dma",
  1880. "pgsteal_high",
  1881. "pgsteal_normal",
  1882. "pgsteal_dma",
  1883. "pgscan_kswapd_high",
  1884. "pgscan_kswapd_normal",
  1885. "pgscan_kswapd_dma",
  1886. "pgscan_direct_high",
  1887. "pgscan_direct_normal",
  1888. "pgscan_direct_dma",
  1889. "pginodesteal",
  1890. "slabs_scanned",
  1891. "kswapd_steal",
  1892. "kswapd_inodesteal",
  1893. "pageoutrun",
  1894. "allocstall",
  1895. "pgrotated",
  1896. "nr_bounce",
  1897. };
  1898. static void *vmstat_start(struct seq_file *m, loff_t *pos)
  1899. {
  1900. struct page_state *ps;
  1901. if (*pos >= ARRAY_SIZE(vmstat_text))
  1902. return NULL;
  1903. ps = kmalloc(sizeof(*ps), GFP_KERNEL);
  1904. m->private = ps;
  1905. if (!ps)
  1906. return ERR_PTR(-ENOMEM);
  1907. get_full_page_state(ps);
  1908. ps->pgpgin /= 2; /* sectors -> kbytes */
  1909. ps->pgpgout /= 2;
  1910. return (unsigned long *)ps + *pos;
  1911. }
  1912. static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
  1913. {
  1914. (*pos)++;
  1915. if (*pos >= ARRAY_SIZE(vmstat_text))
  1916. return NULL;
  1917. return (unsigned long *)m->private + *pos;
  1918. }
  1919. static int vmstat_show(struct seq_file *m, void *arg)
  1920. {
  1921. unsigned long *l = arg;
  1922. unsigned long off = l - (unsigned long *)m->private;
  1923. seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
  1924. return 0;
  1925. }
  1926. static void vmstat_stop(struct seq_file *m, void *arg)
  1927. {
  1928. kfree(m->private);
  1929. m->private = NULL;
  1930. }
  1931. struct seq_operations vmstat_op = {
  1932. .start = vmstat_start,
  1933. .next = vmstat_next,
  1934. .stop = vmstat_stop,
  1935. .show = vmstat_show,
  1936. };
  1937. #endif /* CONFIG_PROC_FS */
  1938. #ifdef CONFIG_HOTPLUG_CPU
  1939. static int page_alloc_cpu_notify(struct notifier_block *self,
  1940. unsigned long action, void *hcpu)
  1941. {
  1942. int cpu = (unsigned long)hcpu;
  1943. long *count;
  1944. unsigned long *src, *dest;
  1945. if (action == CPU_DEAD) {
  1946. int i;
  1947. /* Drain local pagecache count. */
  1948. count = &per_cpu(nr_pagecache_local, cpu);
  1949. atomic_add(*count, &nr_pagecache);
  1950. *count = 0;
  1951. local_irq_disable();
  1952. __drain_pages(cpu);
  1953. /* Add dead cpu's page_states to our own. */
  1954. dest = (unsigned long *)&__get_cpu_var(page_states);
  1955. src = (unsigned long *)&per_cpu(page_states, cpu);
  1956. for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
  1957. i++) {
  1958. dest[i] += src[i];
  1959. src[i] = 0;
  1960. }
  1961. local_irq_enable();
  1962. }
  1963. return NOTIFY_OK;
  1964. }
  1965. #endif /* CONFIG_HOTPLUG_CPU */
  1966. void __init page_alloc_init(void)
  1967. {
  1968. hotcpu_notifier(page_alloc_cpu_notify, 0);
  1969. }
  1970. /*
  1971. * setup_per_zone_lowmem_reserve - called whenever
  1972. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  1973. * has a correct pages reserved value, so an adequate number of
  1974. * pages are left in the zone after a successful __alloc_pages().
  1975. */
  1976. static void setup_per_zone_lowmem_reserve(void)
  1977. {
  1978. struct pglist_data *pgdat;
  1979. int j, idx;
  1980. for_each_pgdat(pgdat) {
  1981. for (j = 0; j < MAX_NR_ZONES; j++) {
  1982. struct zone *zone = pgdat->node_zones + j;
  1983. unsigned long present_pages = zone->present_pages;
  1984. zone->lowmem_reserve[j] = 0;
  1985. for (idx = j-1; idx >= 0; idx--) {
  1986. struct zone *lower_zone;
  1987. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  1988. sysctl_lowmem_reserve_ratio[idx] = 1;
  1989. lower_zone = pgdat->node_zones + idx;
  1990. lower_zone->lowmem_reserve[j] = present_pages /
  1991. sysctl_lowmem_reserve_ratio[idx];
  1992. present_pages += lower_zone->present_pages;
  1993. }
  1994. }
  1995. }
  1996. }
  1997. /*
  1998. * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
  1999. * that the pages_{min,low,high} values for each zone are set correctly
  2000. * with respect to min_free_kbytes.
  2001. */
  2002. static void setup_per_zone_pages_min(void)
  2003. {
  2004. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  2005. unsigned long lowmem_pages = 0;
  2006. struct zone *zone;
  2007. unsigned long flags;
  2008. /* Calculate total number of !ZONE_HIGHMEM pages */
  2009. for_each_zone(zone) {
  2010. if (!is_highmem(zone))
  2011. lowmem_pages += zone->present_pages;
  2012. }
  2013. for_each_zone(zone) {
  2014. spin_lock_irqsave(&zone->lru_lock, flags);
  2015. if (is_highmem(zone)) {
  2016. /*
  2017. * Often, highmem doesn't need to reserve any pages.
  2018. * But the pages_min/low/high values are also used for
  2019. * batching up page reclaim activity so we need a
  2020. * decent value here.
  2021. */
  2022. int min_pages;
  2023. min_pages = zone->present_pages / 1024;
  2024. if (min_pages < SWAP_CLUSTER_MAX)
  2025. min_pages = SWAP_CLUSTER_MAX;
  2026. if (min_pages > 128)
  2027. min_pages = 128;
  2028. zone->pages_min = min_pages;
  2029. } else {
  2030. /* if it's a lowmem zone, reserve a number of pages
  2031. * proportionate to the zone's size.
  2032. */
  2033. zone->pages_min = (pages_min * zone->present_pages) /
  2034. lowmem_pages;
  2035. }
  2036. /*
  2037. * When interpreting these watermarks, just keep in mind that:
  2038. * zone->pages_min == (zone->pages_min * 4) / 4;
  2039. */
  2040. zone->pages_low = (zone->pages_min * 5) / 4;
  2041. zone->pages_high = (zone->pages_min * 6) / 4;
  2042. spin_unlock_irqrestore(&zone->lru_lock, flags);
  2043. }
  2044. }
  2045. /*
  2046. * Initialise min_free_kbytes.
  2047. *
  2048. * For small machines we want it small (128k min). For large machines
  2049. * we want it large (64MB max). But it is not linear, because network
  2050. * bandwidth does not increase linearly with machine size. We use
  2051. *
  2052. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  2053. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  2054. *
  2055. * which yields
  2056. *
  2057. * 16MB: 512k
  2058. * 32MB: 724k
  2059. * 64MB: 1024k
  2060. * 128MB: 1448k
  2061. * 256MB: 2048k
  2062. * 512MB: 2896k
  2063. * 1024MB: 4096k
  2064. * 2048MB: 5792k
  2065. * 4096MB: 8192k
  2066. * 8192MB: 11584k
  2067. * 16384MB: 16384k
  2068. */
  2069. static int __init init_per_zone_pages_min(void)
  2070. {
  2071. unsigned long lowmem_kbytes;
  2072. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  2073. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  2074. if (min_free_kbytes < 128)
  2075. min_free_kbytes = 128;
  2076. if (min_free_kbytes > 65536)
  2077. min_free_kbytes = 65536;
  2078. setup_per_zone_pages_min();
  2079. setup_per_zone_lowmem_reserve();
  2080. return 0;
  2081. }
  2082. module_init(init_per_zone_pages_min)
  2083. /*
  2084. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  2085. * that we can call two helper functions whenever min_free_kbytes
  2086. * changes.
  2087. */
  2088. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  2089. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  2090. {
  2091. proc_dointvec(table, write, file, buffer, length, ppos);
  2092. setup_per_zone_pages_min();
  2093. return 0;
  2094. }
  2095. /*
  2096. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  2097. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  2098. * whenever sysctl_lowmem_reserve_ratio changes.
  2099. *
  2100. * The reserve ratio obviously has absolutely no relation with the
  2101. * pages_min watermarks. The lowmem reserve ratio can only make sense
  2102. * if in function of the boot time zone sizes.
  2103. */
  2104. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  2105. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  2106. {
  2107. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  2108. setup_per_zone_lowmem_reserve();
  2109. return 0;
  2110. }
  2111. __initdata int hashdist = HASHDIST_DEFAULT;
  2112. #ifdef CONFIG_NUMA
  2113. static int __init set_hashdist(char *str)
  2114. {
  2115. if (!str)
  2116. return 0;
  2117. hashdist = simple_strtoul(str, &str, 0);
  2118. return 1;
  2119. }
  2120. __setup("hashdist=", set_hashdist);
  2121. #endif
  2122. /*
  2123. * allocate a large system hash table from bootmem
  2124. * - it is assumed that the hash table must contain an exact power-of-2
  2125. * quantity of entries
  2126. * - limit is the number of hash buckets, not the total allocation size
  2127. */
  2128. void *__init alloc_large_system_hash(const char *tablename,
  2129. unsigned long bucketsize,
  2130. unsigned long numentries,
  2131. int scale,
  2132. int flags,
  2133. unsigned int *_hash_shift,
  2134. unsigned int *_hash_mask,
  2135. unsigned long limit)
  2136. {
  2137. unsigned long long max = limit;
  2138. unsigned long log2qty, size;
  2139. void *table = NULL;
  2140. /* allow the kernel cmdline to have a say */
  2141. if (!numentries) {
  2142. /* round applicable memory size up to nearest megabyte */
  2143. numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
  2144. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  2145. numentries >>= 20 - PAGE_SHIFT;
  2146. numentries <<= 20 - PAGE_SHIFT;
  2147. /* limit to 1 bucket per 2^scale bytes of low memory */
  2148. if (scale > PAGE_SHIFT)
  2149. numentries >>= (scale - PAGE_SHIFT);
  2150. else
  2151. numentries <<= (PAGE_SHIFT - scale);
  2152. }
  2153. /* rounded up to nearest power of 2 in size */
  2154. numentries = 1UL << (long_log2(numentries) + 1);
  2155. /* limit allocation size to 1/16 total memory by default */
  2156. if (max == 0) {
  2157. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  2158. do_div(max, bucketsize);
  2159. }
  2160. if (numentries > max)
  2161. numentries = max;
  2162. log2qty = long_log2(numentries);
  2163. do {
  2164. size = bucketsize << log2qty;
  2165. if (flags & HASH_EARLY)
  2166. table = alloc_bootmem(size);
  2167. else if (hashdist)
  2168. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  2169. else {
  2170. unsigned long order;
  2171. for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
  2172. ;
  2173. table = (void*) __get_free_pages(GFP_ATOMIC, order);
  2174. }
  2175. } while (!table && size > PAGE_SIZE && --log2qty);
  2176. if (!table)
  2177. panic("Failed to allocate %s hash table\n", tablename);
  2178. printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
  2179. tablename,
  2180. (1U << log2qty),
  2181. long_log2(size) - PAGE_SHIFT,
  2182. size);
  2183. if (_hash_shift)
  2184. *_hash_shift = log2qty;
  2185. if (_hash_mask)
  2186. *_hash_mask = (1 << log2qty) - 1;
  2187. return table;
  2188. }