123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554 |
- /*
- * linux/kernel/posix_timers.c
- *
- *
- * 2002-10-15 Posix Clocks & timers
- * by George Anzinger george@mvista.com
- *
- * Copyright (C) 2002 2003 by MontaVista Software.
- *
- * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
- * Copyright (C) 2004 Boris Hu
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or (at
- * your option) any later version.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * General Public License for more details.
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- *
- * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
- */
- /* These are all the functions necessary to implement
- * POSIX clocks & timers
- */
- #include <linux/mm.h>
- #include <linux/smp_lock.h>
- #include <linux/interrupt.h>
- #include <linux/slab.h>
- #include <linux/time.h>
- #include <asm/uaccess.h>
- #include <asm/semaphore.h>
- #include <linux/list.h>
- #include <linux/init.h>
- #include <linux/compiler.h>
- #include <linux/idr.h>
- #include <linux/posix-timers.h>
- #include <linux/syscalls.h>
- #include <linux/wait.h>
- #include <linux/workqueue.h>
- #include <linux/module.h>
- #ifndef div_long_long_rem
- #include <asm/div64.h>
- #define div_long_long_rem(dividend,divisor,remainder) ({ \
- u64 result = dividend; \
- *remainder = do_div(result,divisor); \
- result; })
- #endif
- #define CLOCK_REALTIME_RES TICK_NSEC /* In nano seconds. */
- static inline u64 mpy_l_X_l_ll(unsigned long mpy1,unsigned long mpy2)
- {
- return (u64)mpy1 * mpy2;
- }
- /*
- * Management arrays for POSIX timers. Timers are kept in slab memory
- * Timer ids are allocated by an external routine that keeps track of the
- * id and the timer. The external interface is:
- *
- * void *idr_find(struct idr *idp, int id); to find timer_id <id>
- * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
- * related it to <ptr>
- * void idr_remove(struct idr *idp, int id); to release <id>
- * void idr_init(struct idr *idp); to initialize <idp>
- * which we supply.
- * The idr_get_new *may* call slab for more memory so it must not be
- * called under a spin lock. Likewise idr_remore may release memory
- * (but it may be ok to do this under a lock...).
- * idr_find is just a memory look up and is quite fast. A -1 return
- * indicates that the requested id does not exist.
- */
- /*
- * Lets keep our timers in a slab cache :-)
- */
- static kmem_cache_t *posix_timers_cache;
- static struct idr posix_timers_id;
- static DEFINE_SPINLOCK(idr_lock);
- /*
- * we assume that the new SIGEV_THREAD_ID shares no bits with the other
- * SIGEV values. Here we put out an error if this assumption fails.
- */
- #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
- ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
- #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
- #endif
- /*
- * The timer ID is turned into a timer address by idr_find().
- * Verifying a valid ID consists of:
- *
- * a) checking that idr_find() returns other than -1.
- * b) checking that the timer id matches the one in the timer itself.
- * c) that the timer owner is in the callers thread group.
- */
- /*
- * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
- * to implement others. This structure defines the various
- * clocks and allows the possibility of adding others. We
- * provide an interface to add clocks to the table and expect
- * the "arch" code to add at least one clock that is high
- * resolution. Here we define the standard CLOCK_REALTIME as a
- * 1/HZ resolution clock.
- *
- * RESOLUTION: Clock resolution is used to round up timer and interval
- * times, NOT to report clock times, which are reported with as
- * much resolution as the system can muster. In some cases this
- * resolution may depend on the underlying clock hardware and
- * may not be quantifiable until run time, and only then is the
- * necessary code is written. The standard says we should say
- * something about this issue in the documentation...
- *
- * FUNCTIONS: The CLOCKs structure defines possible functions to handle
- * various clock functions. For clocks that use the standard
- * system timer code these entries should be NULL. This will
- * allow dispatch without the overhead of indirect function
- * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
- * must supply functions here, even if the function just returns
- * ENOSYS. The standard POSIX timer management code assumes the
- * following: 1.) The k_itimer struct (sched.h) is used for the
- * timer. 2.) The list, it_lock, it_clock, it_id and it_process
- * fields are not modified by timer code.
- *
- * At this time all functions EXCEPT clock_nanosleep can be
- * redirected by the CLOCKS structure. Clock_nanosleep is in
- * there, but the code ignores it.
- *
- * Permissions: It is assumed that the clock_settime() function defined
- * for each clock will take care of permission checks. Some
- * clocks may be set able by any user (i.e. local process
- * clocks) others not. Currently the only set able clock we
- * have is CLOCK_REALTIME and its high res counter part, both of
- * which we beg off on and pass to do_sys_settimeofday().
- */
- static struct k_clock posix_clocks[MAX_CLOCKS];
- /*
- * We only have one real clock that can be set so we need only one abs list,
- * even if we should want to have several clocks with differing resolutions.
- */
- static struct k_clock_abs abs_list = {.list = LIST_HEAD_INIT(abs_list.list),
- .lock = SPIN_LOCK_UNLOCKED};
- static void posix_timer_fn(unsigned long);
- static u64 do_posix_clock_monotonic_gettime_parts(
- struct timespec *tp, struct timespec *mo);
- int do_posix_clock_monotonic_gettime(struct timespec *tp);
- static int do_posix_clock_monotonic_get(clockid_t, struct timespec *tp);
- static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
- static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
- {
- spin_unlock_irqrestore(&timr->it_lock, flags);
- }
- /*
- * Call the k_clock hook function if non-null, or the default function.
- */
- #define CLOCK_DISPATCH(clock, call, arglist) \
- ((clock) < 0 ? posix_cpu_##call arglist : \
- (posix_clocks[clock].call != NULL \
- ? (*posix_clocks[clock].call) arglist : common_##call arglist))
- /*
- * Default clock hook functions when the struct k_clock passed
- * to register_posix_clock leaves a function pointer null.
- *
- * The function common_CALL is the default implementation for
- * the function pointer CALL in struct k_clock.
- */
- static inline int common_clock_getres(clockid_t which_clock,
- struct timespec *tp)
- {
- tp->tv_sec = 0;
- tp->tv_nsec = posix_clocks[which_clock].res;
- return 0;
- }
- static inline int common_clock_get(clockid_t which_clock, struct timespec *tp)
- {
- getnstimeofday(tp);
- return 0;
- }
- static inline int common_clock_set(clockid_t which_clock, struct timespec *tp)
- {
- return do_sys_settimeofday(tp, NULL);
- }
- static inline int common_timer_create(struct k_itimer *new_timer)
- {
- INIT_LIST_HEAD(&new_timer->it.real.abs_timer_entry);
- init_timer(&new_timer->it.real.timer);
- new_timer->it.real.timer.data = (unsigned long) new_timer;
- new_timer->it.real.timer.function = posix_timer_fn;
- return 0;
- }
- /*
- * These ones are defined below.
- */
- static int common_nsleep(clockid_t, int flags, struct timespec *t);
- static void common_timer_get(struct k_itimer *, struct itimerspec *);
- static int common_timer_set(struct k_itimer *, int,
- struct itimerspec *, struct itimerspec *);
- static int common_timer_del(struct k_itimer *timer);
- /*
- * Return nonzero iff we know a priori this clockid_t value is bogus.
- */
- static inline int invalid_clockid(clockid_t which_clock)
- {
- if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */
- return 0;
- if ((unsigned) which_clock >= MAX_CLOCKS)
- return 1;
- if (posix_clocks[which_clock].clock_getres != NULL)
- return 0;
- #ifndef CLOCK_DISPATCH_DIRECT
- if (posix_clocks[which_clock].res != 0)
- return 0;
- #endif
- return 1;
- }
- /*
- * Initialize everything, well, just everything in Posix clocks/timers ;)
- */
- static __init int init_posix_timers(void)
- {
- struct k_clock clock_realtime = {.res = CLOCK_REALTIME_RES,
- .abs_struct = &abs_list
- };
- struct k_clock clock_monotonic = {.res = CLOCK_REALTIME_RES,
- .abs_struct = NULL,
- .clock_get = do_posix_clock_monotonic_get,
- .clock_set = do_posix_clock_nosettime
- };
- register_posix_clock(CLOCK_REALTIME, &clock_realtime);
- register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
- posix_timers_cache = kmem_cache_create("posix_timers_cache",
- sizeof (struct k_itimer), 0, 0, NULL, NULL);
- idr_init(&posix_timers_id);
- return 0;
- }
- __initcall(init_posix_timers);
- static void tstojiffie(struct timespec *tp, int res, u64 *jiff)
- {
- long sec = tp->tv_sec;
- long nsec = tp->tv_nsec + res - 1;
- if (nsec > NSEC_PER_SEC) {
- sec++;
- nsec -= NSEC_PER_SEC;
- }
- /*
- * The scaling constants are defined in <linux/time.h>
- * The difference between there and here is that we do the
- * res rounding and compute a 64-bit result (well so does that
- * but it then throws away the high bits).
- */
- *jiff = (mpy_l_X_l_ll(sec, SEC_CONVERSION) +
- (mpy_l_X_l_ll(nsec, NSEC_CONVERSION) >>
- (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
- }
- /*
- * This function adjusts the timer as needed as a result of the clock
- * being set. It should only be called for absolute timers, and then
- * under the abs_list lock. It computes the time difference and sets
- * the new jiffies value in the timer. It also updates the timers
- * reference wall_to_monotonic value. It is complicated by the fact
- * that tstojiffies() only handles positive times and it needs to work
- * with both positive and negative times. Also, for negative offsets,
- * we need to defeat the res round up.
- *
- * Return is true if there is a new time, else false.
- */
- static long add_clockset_delta(struct k_itimer *timr,
- struct timespec *new_wall_to)
- {
- struct timespec delta;
- int sign = 0;
- u64 exp;
- set_normalized_timespec(&delta,
- new_wall_to->tv_sec -
- timr->it.real.wall_to_prev.tv_sec,
- new_wall_to->tv_nsec -
- timr->it.real.wall_to_prev.tv_nsec);
- if (likely(!(delta.tv_sec | delta.tv_nsec)))
- return 0;
- if (delta.tv_sec < 0) {
- set_normalized_timespec(&delta,
- -delta.tv_sec,
- 1 - delta.tv_nsec -
- posix_clocks[timr->it_clock].res);
- sign++;
- }
- tstojiffie(&delta, posix_clocks[timr->it_clock].res, &exp);
- timr->it.real.wall_to_prev = *new_wall_to;
- timr->it.real.timer.expires += (sign ? -exp : exp);
- return 1;
- }
- static void remove_from_abslist(struct k_itimer *timr)
- {
- if (!list_empty(&timr->it.real.abs_timer_entry)) {
- spin_lock(&abs_list.lock);
- list_del_init(&timr->it.real.abs_timer_entry);
- spin_unlock(&abs_list.lock);
- }
- }
- static void schedule_next_timer(struct k_itimer *timr)
- {
- struct timespec new_wall_to;
- struct now_struct now;
- unsigned long seq;
- /*
- * Set up the timer for the next interval (if there is one).
- * Note: this code uses the abs_timer_lock to protect
- * it.real.wall_to_prev and must hold it until exp is set, not exactly
- * obvious...
- * This function is used for CLOCK_REALTIME* and
- * CLOCK_MONOTONIC* timers. If we ever want to handle other
- * CLOCKs, the calling code (do_schedule_next_timer) would need
- * to pull the "clock" info from the timer and dispatch the
- * "other" CLOCKs "next timer" code (which, I suppose should
- * also be added to the k_clock structure).
- */
- if (!timr->it.real.incr)
- return;
- do {
- seq = read_seqbegin(&xtime_lock);
- new_wall_to = wall_to_monotonic;
- posix_get_now(&now);
- } while (read_seqretry(&xtime_lock, seq));
- if (!list_empty(&timr->it.real.abs_timer_entry)) {
- spin_lock(&abs_list.lock);
- add_clockset_delta(timr, &new_wall_to);
- posix_bump_timer(timr, now);
- spin_unlock(&abs_list.lock);
- } else {
- posix_bump_timer(timr, now);
- }
- timr->it_overrun_last = timr->it_overrun;
- timr->it_overrun = -1;
- ++timr->it_requeue_pending;
- add_timer(&timr->it.real.timer);
- }
- /*
- * This function is exported for use by the signal deliver code. It is
- * called just prior to the info block being released and passes that
- * block to us. It's function is to update the overrun entry AND to
- * restart the timer. It should only be called if the timer is to be
- * restarted (i.e. we have flagged this in the sys_private entry of the
- * info block).
- *
- * To protect aginst the timer going away while the interrupt is queued,
- * we require that the it_requeue_pending flag be set.
- */
- void do_schedule_next_timer(struct siginfo *info)
- {
- struct k_itimer *timr;
- unsigned long flags;
- timr = lock_timer(info->si_tid, &flags);
- if (!timr || timr->it_requeue_pending != info->si_sys_private)
- goto exit;
- if (timr->it_clock < 0) /* CPU clock */
- posix_cpu_timer_schedule(timr);
- else
- schedule_next_timer(timr);
- info->si_overrun = timr->it_overrun_last;
- exit:
- if (timr)
- unlock_timer(timr, flags);
- }
- int posix_timer_event(struct k_itimer *timr,int si_private)
- {
- memset(&timr->sigq->info, 0, sizeof(siginfo_t));
- timr->sigq->info.si_sys_private = si_private;
- /*
- * Send signal to the process that owns this timer.
- * This code assumes that all the possible abs_lists share the
- * same lock (there is only one list at this time). If this is
- * not the case, the CLOCK info would need to be used to find
- * the proper abs list lock.
- */
- timr->sigq->info.si_signo = timr->it_sigev_signo;
- timr->sigq->info.si_errno = 0;
- timr->sigq->info.si_code = SI_TIMER;
- timr->sigq->info.si_tid = timr->it_id;
- timr->sigq->info.si_value = timr->it_sigev_value;
- if (timr->it_sigev_notify & SIGEV_THREAD_ID) {
- if (unlikely(timr->it_process->flags & PF_EXITING)) {
- timr->it_sigev_notify = SIGEV_SIGNAL;
- put_task_struct(timr->it_process);
- timr->it_process = timr->it_process->group_leader;
- goto group;
- }
- return send_sigqueue(timr->it_sigev_signo, timr->sigq,
- timr->it_process);
- }
- else {
- group:
- return send_group_sigqueue(timr->it_sigev_signo, timr->sigq,
- timr->it_process);
- }
- }
- EXPORT_SYMBOL_GPL(posix_timer_event);
- /*
- * This function gets called when a POSIX.1b interval timer expires. It
- * is used as a callback from the kernel internal timer. The
- * run_timer_list code ALWAYS calls with interrupts on.
- * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
- */
- static void posix_timer_fn(unsigned long __data)
- {
- struct k_itimer *timr = (struct k_itimer *) __data;
- unsigned long flags;
- unsigned long seq;
- struct timespec delta, new_wall_to;
- u64 exp = 0;
- int do_notify = 1;
- spin_lock_irqsave(&timr->it_lock, flags);
- if (!list_empty(&timr->it.real.abs_timer_entry)) {
- spin_lock(&abs_list.lock);
- do {
- seq = read_seqbegin(&xtime_lock);
- new_wall_to = wall_to_monotonic;
- } while (read_seqretry(&xtime_lock, seq));
- set_normalized_timespec(&delta,
- new_wall_to.tv_sec -
- timr->it.real.wall_to_prev.tv_sec,
- new_wall_to.tv_nsec -
- timr->it.real.wall_to_prev.tv_nsec);
- if (likely((delta.tv_sec | delta.tv_nsec ) == 0)) {
- /* do nothing, timer is on time */
- } else if (delta.tv_sec < 0) {
- /* do nothing, timer is already late */
- } else {
- /* timer is early due to a clock set */
- tstojiffie(&delta,
- posix_clocks[timr->it_clock].res,
- &exp);
- timr->it.real.wall_to_prev = new_wall_to;
- timr->it.real.timer.expires += exp;
- add_timer(&timr->it.real.timer);
- do_notify = 0;
- }
- spin_unlock(&abs_list.lock);
- }
- if (do_notify) {
- int si_private=0;
- if (timr->it.real.incr)
- si_private = ++timr->it_requeue_pending;
- else {
- remove_from_abslist(timr);
- }
- if (posix_timer_event(timr, si_private))
- /*
- * signal was not sent because of sig_ignor
- * we will not get a call back to restart it AND
- * it should be restarted.
- */
- schedule_next_timer(timr);
- }
- unlock_timer(timr, flags); /* hold thru abs lock to keep irq off */
- }
- static inline struct task_struct * good_sigevent(sigevent_t * event)
- {
- struct task_struct *rtn = current->group_leader;
- if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
- (!(rtn = find_task_by_pid(event->sigev_notify_thread_id)) ||
- rtn->tgid != current->tgid ||
- (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
- return NULL;
- if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
- ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
- return NULL;
- return rtn;
- }
- void register_posix_clock(clockid_t clock_id, struct k_clock *new_clock)
- {
- if ((unsigned) clock_id >= MAX_CLOCKS) {
- printk("POSIX clock register failed for clock_id %d\n",
- clock_id);
- return;
- }
- posix_clocks[clock_id] = *new_clock;
- }
- EXPORT_SYMBOL_GPL(register_posix_clock);
- static struct k_itimer * alloc_posix_timer(void)
- {
- struct k_itimer *tmr;
- tmr = kmem_cache_alloc(posix_timers_cache, GFP_KERNEL);
- if (!tmr)
- return tmr;
- memset(tmr, 0, sizeof (struct k_itimer));
- if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
- kmem_cache_free(posix_timers_cache, tmr);
- tmr = NULL;
- }
- return tmr;
- }
- #define IT_ID_SET 1
- #define IT_ID_NOT_SET 0
- static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
- {
- if (it_id_set) {
- unsigned long flags;
- spin_lock_irqsave(&idr_lock, flags);
- idr_remove(&posix_timers_id, tmr->it_id);
- spin_unlock_irqrestore(&idr_lock, flags);
- }
- sigqueue_free(tmr->sigq);
- if (unlikely(tmr->it_process) &&
- tmr->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
- put_task_struct(tmr->it_process);
- kmem_cache_free(posix_timers_cache, tmr);
- }
- /* Create a POSIX.1b interval timer. */
- asmlinkage long
- sys_timer_create(clockid_t which_clock,
- struct sigevent __user *timer_event_spec,
- timer_t __user * created_timer_id)
- {
- int error = 0;
- struct k_itimer *new_timer = NULL;
- int new_timer_id;
- struct task_struct *process = NULL;
- unsigned long flags;
- sigevent_t event;
- int it_id_set = IT_ID_NOT_SET;
- if (invalid_clockid(which_clock))
- return -EINVAL;
- new_timer = alloc_posix_timer();
- if (unlikely(!new_timer))
- return -EAGAIN;
- spin_lock_init(&new_timer->it_lock);
- retry:
- if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
- error = -EAGAIN;
- goto out;
- }
- spin_lock_irq(&idr_lock);
- error = idr_get_new(&posix_timers_id,
- (void *) new_timer,
- &new_timer_id);
- spin_unlock_irq(&idr_lock);
- if (error == -EAGAIN)
- goto retry;
- else if (error) {
- /*
- * Wierd looking, but we return EAGAIN if the IDR is
- * full (proper POSIX return value for this)
- */
- error = -EAGAIN;
- goto out;
- }
- it_id_set = IT_ID_SET;
- new_timer->it_id = (timer_t) new_timer_id;
- new_timer->it_clock = which_clock;
- new_timer->it_overrun = -1;
- error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
- if (error)
- goto out;
- /*
- * return the timer_id now. The next step is hard to
- * back out if there is an error.
- */
- if (copy_to_user(created_timer_id,
- &new_timer_id, sizeof (new_timer_id))) {
- error = -EFAULT;
- goto out;
- }
- if (timer_event_spec) {
- if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
- error = -EFAULT;
- goto out;
- }
- new_timer->it_sigev_notify = event.sigev_notify;
- new_timer->it_sigev_signo = event.sigev_signo;
- new_timer->it_sigev_value = event.sigev_value;
- read_lock(&tasklist_lock);
- if ((process = good_sigevent(&event))) {
- /*
- * We may be setting up this process for another
- * thread. It may be exiting. To catch this
- * case the we check the PF_EXITING flag. If
- * the flag is not set, the siglock will catch
- * him before it is too late (in exit_itimers).
- *
- * The exec case is a bit more invloved but easy
- * to code. If the process is in our thread
- * group (and it must be or we would not allow
- * it here) and is doing an exec, it will cause
- * us to be killed. In this case it will wait
- * for us to die which means we can finish this
- * linkage with our last gasp. I.e. no code :)
- */
- spin_lock_irqsave(&process->sighand->siglock, flags);
- if (!(process->flags & PF_EXITING)) {
- new_timer->it_process = process;
- list_add(&new_timer->list,
- &process->signal->posix_timers);
- spin_unlock_irqrestore(&process->sighand->siglock, flags);
- if (new_timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
- get_task_struct(process);
- } else {
- spin_unlock_irqrestore(&process->sighand->siglock, flags);
- process = NULL;
- }
- }
- read_unlock(&tasklist_lock);
- if (!process) {
- error = -EINVAL;
- goto out;
- }
- } else {
- new_timer->it_sigev_notify = SIGEV_SIGNAL;
- new_timer->it_sigev_signo = SIGALRM;
- new_timer->it_sigev_value.sival_int = new_timer->it_id;
- process = current->group_leader;
- spin_lock_irqsave(&process->sighand->siglock, flags);
- new_timer->it_process = process;
- list_add(&new_timer->list, &process->signal->posix_timers);
- spin_unlock_irqrestore(&process->sighand->siglock, flags);
- }
- /*
- * In the case of the timer belonging to another task, after
- * the task is unlocked, the timer is owned by the other task
- * and may cease to exist at any time. Don't use or modify
- * new_timer after the unlock call.
- */
- out:
- if (error)
- release_posix_timer(new_timer, it_id_set);
- return error;
- }
- /*
- * good_timespec
- *
- * This function checks the elements of a timespec structure.
- *
- * Arguments:
- * ts : Pointer to the timespec structure to check
- *
- * Return value:
- * If a NULL pointer was passed in, or the tv_nsec field was less than 0
- * or greater than NSEC_PER_SEC, or the tv_sec field was less than 0,
- * this function returns 0. Otherwise it returns 1.
- */
- static int good_timespec(const struct timespec *ts)
- {
- if ((!ts) || (ts->tv_sec < 0) ||
- ((unsigned) ts->tv_nsec >= NSEC_PER_SEC))
- return 0;
- return 1;
- }
- /*
- * Locking issues: We need to protect the result of the id look up until
- * we get the timer locked down so it is not deleted under us. The
- * removal is done under the idr spinlock so we use that here to bridge
- * the find to the timer lock. To avoid a dead lock, the timer id MUST
- * be release with out holding the timer lock.
- */
- static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags)
- {
- struct k_itimer *timr;
- /*
- * Watch out here. We do a irqsave on the idr_lock and pass the
- * flags part over to the timer lock. Must not let interrupts in
- * while we are moving the lock.
- */
- spin_lock_irqsave(&idr_lock, *flags);
- timr = (struct k_itimer *) idr_find(&posix_timers_id, (int) timer_id);
- if (timr) {
- spin_lock(&timr->it_lock);
- spin_unlock(&idr_lock);
- if ((timr->it_id != timer_id) || !(timr->it_process) ||
- timr->it_process->tgid != current->tgid) {
- unlock_timer(timr, *flags);
- timr = NULL;
- }
- } else
- spin_unlock_irqrestore(&idr_lock, *flags);
- return timr;
- }
- /*
- * Get the time remaining on a POSIX.1b interval timer. This function
- * is ALWAYS called with spin_lock_irq on the timer, thus it must not
- * mess with irq.
- *
- * We have a couple of messes to clean up here. First there is the case
- * of a timer that has a requeue pending. These timers should appear to
- * be in the timer list with an expiry as if we were to requeue them
- * now.
- *
- * The second issue is the SIGEV_NONE timer which may be active but is
- * not really ever put in the timer list (to save system resources).
- * This timer may be expired, and if so, we will do it here. Otherwise
- * it is the same as a requeue pending timer WRT to what we should
- * report.
- */
- static void
- common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
- {
- unsigned long expires;
- struct now_struct now;
- do
- expires = timr->it.real.timer.expires;
- while ((volatile long) (timr->it.real.timer.expires) != expires);
- posix_get_now(&now);
- if (expires &&
- ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) &&
- !timr->it.real.incr &&
- posix_time_before(&timr->it.real.timer, &now))
- timr->it.real.timer.expires = expires = 0;
- if (expires) {
- if (timr->it_requeue_pending & REQUEUE_PENDING ||
- (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
- posix_bump_timer(timr, now);
- expires = timr->it.real.timer.expires;
- }
- else
- if (!timer_pending(&timr->it.real.timer))
- expires = 0;
- if (expires)
- expires -= now.jiffies;
- }
- jiffies_to_timespec(expires, &cur_setting->it_value);
- jiffies_to_timespec(timr->it.real.incr, &cur_setting->it_interval);
- if (cur_setting->it_value.tv_sec < 0) {
- cur_setting->it_value.tv_nsec = 1;
- cur_setting->it_value.tv_sec = 0;
- }
- }
- /* Get the time remaining on a POSIX.1b interval timer. */
- asmlinkage long
- sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting)
- {
- struct k_itimer *timr;
- struct itimerspec cur_setting;
- unsigned long flags;
- timr = lock_timer(timer_id, &flags);
- if (!timr)
- return -EINVAL;
- CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
- unlock_timer(timr, flags);
- if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
- return -EFAULT;
- return 0;
- }
- /*
- * Get the number of overruns of a POSIX.1b interval timer. This is to
- * be the overrun of the timer last delivered. At the same time we are
- * accumulating overruns on the next timer. The overrun is frozen when
- * the signal is delivered, either at the notify time (if the info block
- * is not queued) or at the actual delivery time (as we are informed by
- * the call back to do_schedule_next_timer(). So all we need to do is
- * to pick up the frozen overrun.
- */
- asmlinkage long
- sys_timer_getoverrun(timer_t timer_id)
- {
- struct k_itimer *timr;
- int overrun;
- long flags;
- timr = lock_timer(timer_id, &flags);
- if (!timr)
- return -EINVAL;
- overrun = timr->it_overrun_last;
- unlock_timer(timr, flags);
- return overrun;
- }
- /*
- * Adjust for absolute time
- *
- * If absolute time is given and it is not CLOCK_MONOTONIC, we need to
- * adjust for the offset between the timer clock (CLOCK_MONOTONIC) and
- * what ever clock he is using.
- *
- * If it is relative time, we need to add the current (CLOCK_MONOTONIC)
- * time to it to get the proper time for the timer.
- */
- static int adjust_abs_time(struct k_clock *clock, struct timespec *tp,
- int abs, u64 *exp, struct timespec *wall_to)
- {
- struct timespec now;
- struct timespec oc = *tp;
- u64 jiffies_64_f;
- int rtn =0;
- if (abs) {
- /*
- * The mask pick up the 4 basic clocks
- */
- if (!((clock - &posix_clocks[0]) & ~CLOCKS_MASK)) {
- jiffies_64_f = do_posix_clock_monotonic_gettime_parts(
- &now, wall_to);
- /*
- * If we are doing a MONOTONIC clock
- */
- if((clock - &posix_clocks[0]) & CLOCKS_MONO){
- now.tv_sec += wall_to->tv_sec;
- now.tv_nsec += wall_to->tv_nsec;
- }
- } else {
- /*
- * Not one of the basic clocks
- */
- clock->clock_get(clock - posix_clocks, &now);
- jiffies_64_f = get_jiffies_64();
- }
- /*
- * Take away now to get delta and normalize
- */
- set_normalized_timespec(&oc, oc.tv_sec - now.tv_sec,
- oc.tv_nsec - now.tv_nsec);
- }else{
- jiffies_64_f = get_jiffies_64();
- }
- /*
- * Check if the requested time is prior to now (if so set now)
- */
- if (oc.tv_sec < 0)
- oc.tv_sec = oc.tv_nsec = 0;
- if (oc.tv_sec | oc.tv_nsec)
- set_normalized_timespec(&oc, oc.tv_sec,
- oc.tv_nsec + clock->res);
- tstojiffie(&oc, clock->res, exp);
- /*
- * Check if the requested time is more than the timer code
- * can handle (if so we error out but return the value too).
- */
- if (*exp > ((u64)MAX_JIFFY_OFFSET))
- /*
- * This is a considered response, not exactly in
- * line with the standard (in fact it is silent on
- * possible overflows). We assume such a large
- * value is ALMOST always a programming error and
- * try not to compound it by setting a really dumb
- * value.
- */
- rtn = -EINVAL;
- /*
- * return the actual jiffies expire time, full 64 bits
- */
- *exp += jiffies_64_f;
- return rtn;
- }
- /* Set a POSIX.1b interval timer. */
- /* timr->it_lock is taken. */
- static inline int
- common_timer_set(struct k_itimer *timr, int flags,
- struct itimerspec *new_setting, struct itimerspec *old_setting)
- {
- struct k_clock *clock = &posix_clocks[timr->it_clock];
- u64 expire_64;
- if (old_setting)
- common_timer_get(timr, old_setting);
- /* disable the timer */
- timr->it.real.incr = 0;
- /*
- * careful here. If smp we could be in the "fire" routine which will
- * be spinning as we hold the lock. But this is ONLY an SMP issue.
- */
- if (try_to_del_timer_sync(&timr->it.real.timer) < 0) {
- #ifdef CONFIG_SMP
- /*
- * It can only be active if on an other cpu. Since
- * we have cleared the interval stuff above, it should
- * clear once we release the spin lock. Of course once
- * we do that anything could happen, including the
- * complete melt down of the timer. So return with
- * a "retry" exit status.
- */
- return TIMER_RETRY;
- #endif
- }
- remove_from_abslist(timr);
- timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
- ~REQUEUE_PENDING;
- timr->it_overrun_last = 0;
- timr->it_overrun = -1;
- /*
- *switch off the timer when it_value is zero
- */
- if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) {
- timr->it.real.timer.expires = 0;
- return 0;
- }
- if (adjust_abs_time(clock,
- &new_setting->it_value, flags & TIMER_ABSTIME,
- &expire_64, &(timr->it.real.wall_to_prev))) {
- return -EINVAL;
- }
- timr->it.real.timer.expires = (unsigned long)expire_64;
- tstojiffie(&new_setting->it_interval, clock->res, &expire_64);
- timr->it.real.incr = (unsigned long)expire_64;
- /*
- * We do not even queue SIGEV_NONE timers! But we do put them
- * in the abs list so we can do that right.
- */
- if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE))
- add_timer(&timr->it.real.timer);
- if (flags & TIMER_ABSTIME && clock->abs_struct) {
- spin_lock(&clock->abs_struct->lock);
- list_add_tail(&(timr->it.real.abs_timer_entry),
- &(clock->abs_struct->list));
- spin_unlock(&clock->abs_struct->lock);
- }
- return 0;
- }
- /* Set a POSIX.1b interval timer */
- asmlinkage long
- sys_timer_settime(timer_t timer_id, int flags,
- const struct itimerspec __user *new_setting,
- struct itimerspec __user *old_setting)
- {
- struct k_itimer *timr;
- struct itimerspec new_spec, old_spec;
- int error = 0;
- long flag;
- struct itimerspec *rtn = old_setting ? &old_spec : NULL;
- if (!new_setting)
- return -EINVAL;
- if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
- return -EFAULT;
- if ((!good_timespec(&new_spec.it_interval)) ||
- (!good_timespec(&new_spec.it_value)))
- return -EINVAL;
- retry:
- timr = lock_timer(timer_id, &flag);
- if (!timr)
- return -EINVAL;
- error = CLOCK_DISPATCH(timr->it_clock, timer_set,
- (timr, flags, &new_spec, rtn));
- unlock_timer(timr, flag);
- if (error == TIMER_RETRY) {
- rtn = NULL; // We already got the old time...
- goto retry;
- }
- if (old_setting && !error && copy_to_user(old_setting,
- &old_spec, sizeof (old_spec)))
- error = -EFAULT;
- return error;
- }
- static inline int common_timer_del(struct k_itimer *timer)
- {
- timer->it.real.incr = 0;
- if (try_to_del_timer_sync(&timer->it.real.timer) < 0) {
- #ifdef CONFIG_SMP
- /*
- * It can only be active if on an other cpu. Since
- * we have cleared the interval stuff above, it should
- * clear once we release the spin lock. Of course once
- * we do that anything could happen, including the
- * complete melt down of the timer. So return with
- * a "retry" exit status.
- */
- return TIMER_RETRY;
- #endif
- }
- remove_from_abslist(timer);
- return 0;
- }
- static inline int timer_delete_hook(struct k_itimer *timer)
- {
- return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
- }
- /* Delete a POSIX.1b interval timer. */
- asmlinkage long
- sys_timer_delete(timer_t timer_id)
- {
- struct k_itimer *timer;
- long flags;
- #ifdef CONFIG_SMP
- int error;
- retry_delete:
- #endif
- timer = lock_timer(timer_id, &flags);
- if (!timer)
- return -EINVAL;
- #ifdef CONFIG_SMP
- error = timer_delete_hook(timer);
- if (error == TIMER_RETRY) {
- unlock_timer(timer, flags);
- goto retry_delete;
- }
- #else
- timer_delete_hook(timer);
- #endif
- spin_lock(¤t->sighand->siglock);
- list_del(&timer->list);
- spin_unlock(¤t->sighand->siglock);
- /*
- * This keeps any tasks waiting on the spin lock from thinking
- * they got something (see the lock code above).
- */
- if (timer->it_process) {
- if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
- put_task_struct(timer->it_process);
- timer->it_process = NULL;
- }
- unlock_timer(timer, flags);
- release_posix_timer(timer, IT_ID_SET);
- return 0;
- }
- /*
- * return timer owned by the process, used by exit_itimers
- */
- static inline void itimer_delete(struct k_itimer *timer)
- {
- unsigned long flags;
- #ifdef CONFIG_SMP
- int error;
- retry_delete:
- #endif
- spin_lock_irqsave(&timer->it_lock, flags);
- #ifdef CONFIG_SMP
- error = timer_delete_hook(timer);
- if (error == TIMER_RETRY) {
- unlock_timer(timer, flags);
- goto retry_delete;
- }
- #else
- timer_delete_hook(timer);
- #endif
- list_del(&timer->list);
- /*
- * This keeps any tasks waiting on the spin lock from thinking
- * they got something (see the lock code above).
- */
- if (timer->it_process) {
- if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
- put_task_struct(timer->it_process);
- timer->it_process = NULL;
- }
- unlock_timer(timer, flags);
- release_posix_timer(timer, IT_ID_SET);
- }
- /*
- * This is called by __exit_signal, only when there are no more
- * references to the shared signal_struct.
- */
- void exit_itimers(struct signal_struct *sig)
- {
- struct k_itimer *tmr;
- while (!list_empty(&sig->posix_timers)) {
- tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
- itimer_delete(tmr);
- }
- del_timer_sync(&sig->real_timer);
- }
- /*
- * And now for the "clock" calls
- *
- * These functions are called both from timer functions (with the timer
- * spin_lock_irq() held and from clock calls with no locking. They must
- * use the save flags versions of locks.
- */
- /*
- * We do ticks here to avoid the irq lock ( they take sooo long).
- * The seqlock is great here. Since we a reader, we don't really care
- * if we are interrupted since we don't take lock that will stall us or
- * any other cpu. Voila, no irq lock is needed.
- *
- */
- static u64 do_posix_clock_monotonic_gettime_parts(
- struct timespec *tp, struct timespec *mo)
- {
- u64 jiff;
- unsigned int seq;
- do {
- seq = read_seqbegin(&xtime_lock);
- getnstimeofday(tp);
- *mo = wall_to_monotonic;
- jiff = jiffies_64;
- } while(read_seqretry(&xtime_lock, seq));
- return jiff;
- }
- static int do_posix_clock_monotonic_get(clockid_t clock, struct timespec *tp)
- {
- struct timespec wall_to_mono;
- do_posix_clock_monotonic_gettime_parts(tp, &wall_to_mono);
- tp->tv_sec += wall_to_mono.tv_sec;
- tp->tv_nsec += wall_to_mono.tv_nsec;
- if ((tp->tv_nsec - NSEC_PER_SEC) > 0) {
- tp->tv_nsec -= NSEC_PER_SEC;
- tp->tv_sec++;
- }
- return 0;
- }
- int do_posix_clock_monotonic_gettime(struct timespec *tp)
- {
- return do_posix_clock_monotonic_get(CLOCK_MONOTONIC, tp);
- }
- int do_posix_clock_nosettime(clockid_t clockid, struct timespec *tp)
- {
- return -EINVAL;
- }
- EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
- int do_posix_clock_notimer_create(struct k_itimer *timer)
- {
- return -EINVAL;
- }
- EXPORT_SYMBOL_GPL(do_posix_clock_notimer_create);
- int do_posix_clock_nonanosleep(clockid_t clock, int flags, struct timespec *t)
- {
- #ifndef ENOTSUP
- return -EOPNOTSUPP; /* aka ENOTSUP in userland for POSIX */
- #else /* parisc does define it separately. */
- return -ENOTSUP;
- #endif
- }
- EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
- asmlinkage long
- sys_clock_settime(clockid_t which_clock, const struct timespec __user *tp)
- {
- struct timespec new_tp;
- if (invalid_clockid(which_clock))
- return -EINVAL;
- if (copy_from_user(&new_tp, tp, sizeof (*tp)))
- return -EFAULT;
- return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
- }
- asmlinkage long
- sys_clock_gettime(clockid_t which_clock, struct timespec __user *tp)
- {
- struct timespec kernel_tp;
- int error;
- if (invalid_clockid(which_clock))
- return -EINVAL;
- error = CLOCK_DISPATCH(which_clock, clock_get,
- (which_clock, &kernel_tp));
- if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
- error = -EFAULT;
- return error;
- }
- asmlinkage long
- sys_clock_getres(clockid_t which_clock, struct timespec __user *tp)
- {
- struct timespec rtn_tp;
- int error;
- if (invalid_clockid(which_clock))
- return -EINVAL;
- error = CLOCK_DISPATCH(which_clock, clock_getres,
- (which_clock, &rtn_tp));
- if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
- error = -EFAULT;
- }
- return error;
- }
- static void nanosleep_wake_up(unsigned long __data)
- {
- struct task_struct *p = (struct task_struct *) __data;
- wake_up_process(p);
- }
- /*
- * The standard says that an absolute nanosleep call MUST wake up at
- * the requested time in spite of clock settings. Here is what we do:
- * For each nanosleep call that needs it (only absolute and not on
- * CLOCK_MONOTONIC* (as it can not be set)) we thread a little structure
- * into the "nanosleep_abs_list". All we need is the task_struct pointer.
- * When ever the clock is set we just wake up all those tasks. The rest
- * is done by the while loop in clock_nanosleep().
- *
- * On locking, clock_was_set() is called from update_wall_clock which
- * holds (or has held for it) a write_lock_irq( xtime_lock) and is
- * called from the timer bh code. Thus we need the irq save locks.
- *
- * Also, on the call from update_wall_clock, that is done as part of a
- * softirq thing. We don't want to delay the system that much (possibly
- * long list of timers to fix), so we defer that work to keventd.
- */
- static DECLARE_WAIT_QUEUE_HEAD(nanosleep_abs_wqueue);
- static DECLARE_WORK(clock_was_set_work, (void(*)(void*))clock_was_set, NULL);
- static DECLARE_MUTEX(clock_was_set_lock);
- void clock_was_set(void)
- {
- struct k_itimer *timr;
- struct timespec new_wall_to;
- LIST_HEAD(cws_list);
- unsigned long seq;
- if (unlikely(in_interrupt())) {
- schedule_work(&clock_was_set_work);
- return;
- }
- wake_up_all(&nanosleep_abs_wqueue);
- /*
- * Check if there exist TIMER_ABSTIME timers to correct.
- *
- * Notes on locking: This code is run in task context with irq
- * on. We CAN be interrupted! All other usage of the abs list
- * lock is under the timer lock which holds the irq lock as
- * well. We REALLY don't want to scan the whole list with the
- * interrupt system off, AND we would like a sequence lock on
- * this code as well. Since we assume that the clock will not
- * be set often, it seems ok to take and release the irq lock
- * for each timer. In fact add_timer will do this, so this is
- * not an issue. So we know when we are done, we will move the
- * whole list to a new location. Then as we process each entry,
- * we will move it to the actual list again. This way, when our
- * copy is empty, we are done. We are not all that concerned
- * about preemption so we will use a semaphore lock to protect
- * aginst reentry. This way we will not stall another
- * processor. It is possible that this may delay some timers
- * that should have expired, given the new clock, but even this
- * will be minimal as we will always update to the current time,
- * even if it was set by a task that is waiting for entry to
- * this code. Timers that expire too early will be caught by
- * the expire code and restarted.
- * Absolute timers that repeat are left in the abs list while
- * waiting for the task to pick up the signal. This means we
- * may find timers that are not in the "add_timer" list, but are
- * in the abs list. We do the same thing for these, save
- * putting them back in the "add_timer" list. (Note, these are
- * left in the abs list mainly to indicate that they are
- * ABSOLUTE timers, a fact that is used by the re-arm code, and
- * for which we have no other flag.)
- */
- down(&clock_was_set_lock);
- spin_lock_irq(&abs_list.lock);
- list_splice_init(&abs_list.list, &cws_list);
- spin_unlock_irq(&abs_list.lock);
- do {
- do {
- seq = read_seqbegin(&xtime_lock);
- new_wall_to = wall_to_monotonic;
- } while (read_seqretry(&xtime_lock, seq));
- spin_lock_irq(&abs_list.lock);
- if (list_empty(&cws_list)) {
- spin_unlock_irq(&abs_list.lock);
- break;
- }
- timr = list_entry(cws_list.next, struct k_itimer,
- it.real.abs_timer_entry);
- list_del_init(&timr->it.real.abs_timer_entry);
- if (add_clockset_delta(timr, &new_wall_to) &&
- del_timer(&timr->it.real.timer)) /* timer run yet? */
- add_timer(&timr->it.real.timer);
- list_add(&timr->it.real.abs_timer_entry, &abs_list.list);
- spin_unlock_irq(&abs_list.lock);
- } while (1);
- up(&clock_was_set_lock);
- }
- long clock_nanosleep_restart(struct restart_block *restart_block);
- asmlinkage long
- sys_clock_nanosleep(clockid_t which_clock, int flags,
- const struct timespec __user *rqtp,
- struct timespec __user *rmtp)
- {
- struct timespec t;
- struct restart_block *restart_block =
- &(current_thread_info()->restart_block);
- int ret;
- if (invalid_clockid(which_clock))
- return -EINVAL;
- if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
- return -EFAULT;
- if ((unsigned) t.tv_nsec >= NSEC_PER_SEC || t.tv_sec < 0)
- return -EINVAL;
- /*
- * Do this here as nsleep function does not have the real address.
- */
- restart_block->arg1 = (unsigned long)rmtp;
- ret = CLOCK_DISPATCH(which_clock, nsleep, (which_clock, flags, &t));
- if ((ret == -ERESTART_RESTARTBLOCK) && rmtp &&
- copy_to_user(rmtp, &t, sizeof (t)))
- return -EFAULT;
- return ret;
- }
- static int common_nsleep(clockid_t which_clock,
- int flags, struct timespec *tsave)
- {
- struct timespec t, dum;
- struct timer_list new_timer;
- DECLARE_WAITQUEUE(abs_wqueue, current);
- u64 rq_time = (u64)0;
- s64 left;
- int abs;
- struct restart_block *restart_block =
- ¤t_thread_info()->restart_block;
- abs_wqueue.flags = 0;
- init_timer(&new_timer);
- new_timer.expires = 0;
- new_timer.data = (unsigned long) current;
- new_timer.function = nanosleep_wake_up;
- abs = flags & TIMER_ABSTIME;
- if (restart_block->fn == clock_nanosleep_restart) {
- /*
- * Interrupted by a non-delivered signal, pick up remaining
- * time and continue. Remaining time is in arg2 & 3.
- */
- restart_block->fn = do_no_restart_syscall;
- rq_time = restart_block->arg3;
- rq_time = (rq_time << 32) + restart_block->arg2;
- if (!rq_time)
- return -EINTR;
- left = rq_time - get_jiffies_64();
- if (left <= (s64)0)
- return 0; /* Already passed */
- }
- if (abs && (posix_clocks[which_clock].clock_get !=
- posix_clocks[CLOCK_MONOTONIC].clock_get))
- add_wait_queue(&nanosleep_abs_wqueue, &abs_wqueue);
- do {
- t = *tsave;
- if (abs || !rq_time) {
- adjust_abs_time(&posix_clocks[which_clock], &t, abs,
- &rq_time, &dum);
- }
- left = rq_time - get_jiffies_64();
- if (left >= (s64)MAX_JIFFY_OFFSET)
- left = (s64)MAX_JIFFY_OFFSET;
- if (left < (s64)0)
- break;
- new_timer.expires = jiffies + left;
- __set_current_state(TASK_INTERRUPTIBLE);
- add_timer(&new_timer);
- schedule();
- del_timer_sync(&new_timer);
- left = rq_time - get_jiffies_64();
- } while (left > (s64)0 && !test_thread_flag(TIF_SIGPENDING));
- if (abs_wqueue.task_list.next)
- finish_wait(&nanosleep_abs_wqueue, &abs_wqueue);
- if (left > (s64)0) {
- /*
- * Always restart abs calls from scratch to pick up any
- * clock shifting that happened while we are away.
- */
- if (abs)
- return -ERESTARTNOHAND;
- left *= TICK_NSEC;
- tsave->tv_sec = div_long_long_rem(left,
- NSEC_PER_SEC,
- &tsave->tv_nsec);
- /*
- * Restart works by saving the time remaing in
- * arg2 & 3 (it is 64-bits of jiffies). The other
- * info we need is the clock_id (saved in arg0).
- * The sys_call interface needs the users
- * timespec return address which _it_ saves in arg1.
- * Since we have cast the nanosleep call to a clock_nanosleep
- * both can be restarted with the same code.
- */
- restart_block->fn = clock_nanosleep_restart;
- restart_block->arg0 = which_clock;
- /*
- * Caller sets arg1
- */
- restart_block->arg2 = rq_time & 0xffffffffLL;
- restart_block->arg3 = rq_time >> 32;
- return -ERESTART_RESTARTBLOCK;
- }
- return 0;
- }
- /*
- * This will restart clock_nanosleep.
- */
- long
- clock_nanosleep_restart(struct restart_block *restart_block)
- {
- struct timespec t;
- int ret = common_nsleep(restart_block->arg0, 0, &t);
- if ((ret == -ERESTART_RESTARTBLOCK) && restart_block->arg1 &&
- copy_to_user((struct timespec __user *)(restart_block->arg1), &t,
- sizeof (t)))
- return -EFAULT;
- return ret;
- }
|