keyspan_remote.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633
  1. /*
  2. * keyspan_remote: USB driver for the Keyspan DMR
  3. *
  4. * Copyright (C) 2005 Zymeta Corporation - Michael Downey (downey@zymeta.com)
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License as
  8. * published by the Free Software Foundation, version 2.
  9. *
  10. * This driver has been put together with the support of Innosys, Inc.
  11. * and Keyspan, Inc the manufacturers of the Keyspan USB DMR product.
  12. */
  13. #include <linux/config.h>
  14. #include <linux/kernel.h>
  15. #include <linux/errno.h>
  16. #include <linux/init.h>
  17. #include <linux/slab.h>
  18. #include <linux/module.h>
  19. #include <linux/moduleparam.h>
  20. #include <linux/input.h>
  21. #include <linux/usb.h>
  22. #define DRIVER_VERSION "v0.1"
  23. #define DRIVER_AUTHOR "Michael Downey <downey@zymeta.com>"
  24. #define DRIVER_DESC "Driver for the USB Keyspan remote control."
  25. #define DRIVER_LICENSE "GPL"
  26. /* Parameters that can be passed to the driver. */
  27. static int debug;
  28. module_param(debug, int, 0444);
  29. MODULE_PARM_DESC(debug, "Enable extra debug messages and information");
  30. /* Vendor and product ids */
  31. #define USB_KEYSPAN_VENDOR_ID 0x06CD
  32. #define USB_KEYSPAN_PRODUCT_UIA11 0x0202
  33. /* Defines for converting the data from the remote. */
  34. #define ZERO 0x18
  35. #define ZERO_MASK 0x1F /* 5 bits for a 0 */
  36. #define ONE 0x3C
  37. #define ONE_MASK 0x3F /* 6 bits for a 1 */
  38. #define SYNC 0x3F80
  39. #define SYNC_MASK 0x3FFF /* 14 bits for a SYNC sequence */
  40. #define STOP 0x00
  41. #define STOP_MASK 0x1F /* 5 bits for the STOP sequence */
  42. #define GAP 0xFF
  43. #define RECV_SIZE 8 /* The UIA-11 type have a 8 byte limit. */
  44. /* table of devices that work with this driver */
  45. static struct usb_device_id keyspan_table[] = {
  46. { USB_DEVICE(USB_KEYSPAN_VENDOR_ID, USB_KEYSPAN_PRODUCT_UIA11) },
  47. { } /* Terminating entry */
  48. };
  49. /* Structure to store all the real stuff that a remote sends to us. */
  50. struct keyspan_message {
  51. u16 system;
  52. u8 button;
  53. u8 toggle;
  54. };
  55. /* Structure used for all the bit testing magic needed to be done. */
  56. struct bit_tester {
  57. u32 tester;
  58. int len;
  59. int pos;
  60. int bits_left;
  61. u8 buffer[32];
  62. };
  63. /* Structure to hold all of our driver specific stuff */
  64. struct usb_keyspan {
  65. char name[128];
  66. char phys[64];
  67. struct usb_device* udev;
  68. struct input_dev input;
  69. struct usb_interface* interface;
  70. struct usb_endpoint_descriptor* in_endpoint;
  71. struct urb* irq_urb;
  72. int open;
  73. dma_addr_t in_dma;
  74. unsigned char* in_buffer;
  75. /* variables used to parse messages from remote. */
  76. struct bit_tester data;
  77. int stage;
  78. int toggle;
  79. };
  80. /*
  81. * Table that maps the 31 possible keycodes to input keys.
  82. * Currently there are 15 and 17 button models so RESERVED codes
  83. * are blank areas in the mapping.
  84. */
  85. static int keyspan_key_table[] = {
  86. KEY_RESERVED, /* 0 is just a place holder. */
  87. KEY_RESERVED,
  88. KEY_STOP,
  89. KEY_PLAYCD,
  90. KEY_RESERVED,
  91. KEY_PREVIOUSSONG,
  92. KEY_REWIND,
  93. KEY_FORWARD,
  94. KEY_NEXTSONG,
  95. KEY_RESERVED,
  96. KEY_RESERVED,
  97. KEY_RESERVED,
  98. KEY_PAUSE,
  99. KEY_VOLUMEUP,
  100. KEY_RESERVED,
  101. KEY_RESERVED,
  102. KEY_RESERVED,
  103. KEY_VOLUMEDOWN,
  104. KEY_RESERVED,
  105. KEY_UP,
  106. KEY_RESERVED,
  107. KEY_MUTE,
  108. KEY_LEFT,
  109. KEY_ENTER,
  110. KEY_RIGHT,
  111. KEY_RESERVED,
  112. KEY_RESERVED,
  113. KEY_DOWN,
  114. KEY_RESERVED,
  115. KEY_KPASTERISK,
  116. KEY_RESERVED,
  117. KEY_MENU
  118. };
  119. static struct usb_driver keyspan_driver;
  120. /*
  121. * Debug routine that prints out what we've received from the remote.
  122. */
  123. static void keyspan_print(struct usb_keyspan* dev) /*unsigned char* data)*/
  124. {
  125. char codes[4*RECV_SIZE];
  126. int i;
  127. for (i = 0; i < RECV_SIZE; i++) {
  128. snprintf(codes+i*3, 4, "%02x ", dev->in_buffer[i]);
  129. }
  130. dev_info(&dev->udev->dev, "%s\n", codes);
  131. }
  132. /*
  133. * Routine that manages the bit_tester structure. It makes sure that there are
  134. * at least bits_needed bits loaded into the tester.
  135. */
  136. static int keyspan_load_tester(struct usb_keyspan* dev, int bits_needed)
  137. {
  138. if (dev->data.bits_left >= bits_needed)
  139. return(0);
  140. /*
  141. * Somehow we've missed the last message. The message will be repeated
  142. * though so it's not too big a deal
  143. */
  144. if (dev->data.pos >= dev->data.len) {
  145. dev_dbg(&dev->udev, "%s - Error ran out of data. pos: %d, len: %d\n",
  146. __FUNCTION__, dev->data.pos, dev->data.len);
  147. return(-1);
  148. }
  149. /* Load as much as we can into the tester. */
  150. while ((dev->data.bits_left + 7 < (sizeof(dev->data.tester) * 8)) &&
  151. (dev->data.pos < dev->data.len)) {
  152. dev->data.tester += (dev->data.buffer[dev->data.pos++] << dev->data.bits_left);
  153. dev->data.bits_left += 8;
  154. }
  155. return(0);
  156. }
  157. /*
  158. * Routine that handles all the logic needed to parse out the message from the remote.
  159. */
  160. static void keyspan_check_data(struct usb_keyspan *remote, struct pt_regs *regs)
  161. {
  162. int i;
  163. int found = 0;
  164. struct keyspan_message message;
  165. switch(remote->stage) {
  166. case 0:
  167. /*
  168. * In stage 0 we want to find the start of a message. The remote sends a 0xFF as filler.
  169. * So the first byte that isn't a FF should be the start of a new message.
  170. */
  171. for (i = 0; i < RECV_SIZE && remote->in_buffer[i] == GAP; ++i);
  172. if (i < RECV_SIZE) {
  173. memcpy(remote->data.buffer, remote->in_buffer, RECV_SIZE);
  174. remote->data.len = RECV_SIZE;
  175. remote->data.pos = 0;
  176. remote->data.tester = 0;
  177. remote->data.bits_left = 0;
  178. remote->stage = 1;
  179. }
  180. break;
  181. case 1:
  182. /*
  183. * Stage 1 we should have 16 bytes and should be able to detect a
  184. * SYNC. The SYNC is 14 bits, 7 0's and then 7 1's.
  185. */
  186. memcpy(remote->data.buffer + remote->data.len, remote->in_buffer, RECV_SIZE);
  187. remote->data.len += RECV_SIZE;
  188. found = 0;
  189. while ((remote->data.bits_left >= 14 || remote->data.pos < remote->data.len) && !found) {
  190. for (i = 0; i < 8; ++i) {
  191. if (keyspan_load_tester(remote, 14) != 0) {
  192. remote->stage = 0;
  193. return;
  194. }
  195. if ((remote->data.tester & SYNC_MASK) == SYNC) {
  196. remote->data.tester = remote->data.tester >> 14;
  197. remote->data.bits_left -= 14;
  198. found = 1;
  199. break;
  200. } else {
  201. remote->data.tester = remote->data.tester >> 1;
  202. --remote->data.bits_left;
  203. }
  204. }
  205. }
  206. if (!found) {
  207. remote->stage = 0;
  208. remote->data.len = 0;
  209. } else {
  210. remote->stage = 2;
  211. }
  212. break;
  213. case 2:
  214. /*
  215. * Stage 2 we should have 24 bytes which will be enough for a full
  216. * message. We need to parse out the system code, button code,
  217. * toggle code, and stop.
  218. */
  219. memcpy(remote->data.buffer + remote->data.len, remote->in_buffer, RECV_SIZE);
  220. remote->data.len += RECV_SIZE;
  221. message.system = 0;
  222. for (i = 0; i < 9; i++) {
  223. keyspan_load_tester(remote, 6);
  224. if ((remote->data.tester & ZERO_MASK) == ZERO) {
  225. message.system = message.system << 1;
  226. remote->data.tester = remote->data.tester >> 5;
  227. remote->data.bits_left -= 5;
  228. } else if ((remote->data.tester & ONE_MASK) == ONE) {
  229. message.system = (message.system << 1) + 1;
  230. remote->data.tester = remote->data.tester >> 6;
  231. remote->data.bits_left -= 6;
  232. } else {
  233. err("%s - Unknown sequence found in system data.\n", __FUNCTION__);
  234. remote->stage = 0;
  235. return;
  236. }
  237. }
  238. message.button = 0;
  239. for (i = 0; i < 5; i++) {
  240. keyspan_load_tester(remote, 6);
  241. if ((remote->data.tester & ZERO_MASK) == ZERO) {
  242. message.button = message.button << 1;
  243. remote->data.tester = remote->data.tester >> 5;
  244. remote->data.bits_left -= 5;
  245. } else if ((remote->data.tester & ONE_MASK) == ONE) {
  246. message.button = (message.button << 1) + 1;
  247. remote->data.tester = remote->data.tester >> 6;
  248. remote->data.bits_left -= 6;
  249. } else {
  250. err("%s - Unknown sequence found in button data.\n", __FUNCTION__);
  251. remote->stage = 0;
  252. return;
  253. }
  254. }
  255. keyspan_load_tester(remote, 6);
  256. if ((remote->data.tester & ZERO_MASK) == ZERO) {
  257. message.toggle = 0;
  258. remote->data.tester = remote->data.tester >> 5;
  259. remote->data.bits_left -= 5;
  260. } else if ((remote->data.tester & ONE_MASK) == ONE) {
  261. message.toggle = 1;
  262. remote->data.tester = remote->data.tester >> 6;
  263. remote->data.bits_left -= 6;
  264. } else {
  265. err("%s - Error in message, invalid toggle.\n", __FUNCTION__);
  266. }
  267. keyspan_load_tester(remote, 5);
  268. if ((remote->data.tester & STOP_MASK) == STOP) {
  269. remote->data.tester = remote->data.tester >> 5;
  270. remote->data.bits_left -= 5;
  271. } else {
  272. err("Bad message recieved, no stop bit found.\n");
  273. }
  274. dev_dbg(&remote->udev,
  275. "%s found valid message: system: %d, button: %d, toggle: %d\n",
  276. __FUNCTION__, message.system, message.button, message.toggle);
  277. if (message.toggle != remote->toggle) {
  278. input_regs(&remote->input, regs);
  279. input_report_key(&remote->input, keyspan_key_table[message.button], 1);
  280. input_report_key(&remote->input, keyspan_key_table[message.button], 0);
  281. input_sync(&remote->input);
  282. remote->toggle = message.toggle;
  283. }
  284. remote->stage = 0;
  285. break;
  286. }
  287. }
  288. /*
  289. * Routine for sending all the initialization messages to the remote.
  290. */
  291. static int keyspan_setup(struct usb_device* dev)
  292. {
  293. int retval = 0;
  294. retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
  295. 0x11, 0x40, 0x5601, 0x0, NULL, 0, 0);
  296. if (retval) {
  297. dev_dbg(&dev->dev, "%s - failed to set bit rate due to error: %d\n",
  298. __FUNCTION__, retval);
  299. return(retval);
  300. }
  301. retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
  302. 0x44, 0x40, 0x0, 0x0, NULL, 0, 0);
  303. if (retval) {
  304. dev_dbg(&dev->dev, "%s - failed to set resume sensitivity due to error: %d\n",
  305. __FUNCTION__, retval);
  306. return(retval);
  307. }
  308. retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
  309. 0x22, 0x40, 0x0, 0x0, NULL, 0, 0);
  310. if (retval) {
  311. dev_dbg(&dev->dev, "%s - failed to turn receive on due to error: %d\n",
  312. __FUNCTION__, retval);
  313. return(retval);
  314. }
  315. dev_dbg(&dev->dev, "%s - Setup complete.\n", __FUNCTION__);
  316. return(retval);
  317. }
  318. /*
  319. * Routine used to handle a new message that has come in.
  320. */
  321. static void keyspan_irq_recv(struct urb *urb, struct pt_regs *regs)
  322. {
  323. struct usb_keyspan *dev = urb->context;
  324. int retval;
  325. /* Check our status in case we need to bail out early. */
  326. switch (urb->status) {
  327. case 0:
  328. break;
  329. /* Device went away so don't keep trying to read from it. */
  330. case -ECONNRESET:
  331. case -ENOENT:
  332. case -ESHUTDOWN:
  333. return;
  334. default:
  335. goto resubmit;
  336. break;
  337. }
  338. if (debug)
  339. keyspan_print(dev);
  340. keyspan_check_data(dev, regs);
  341. resubmit:
  342. retval = usb_submit_urb(urb, GFP_ATOMIC);
  343. if (retval)
  344. err ("%s - usb_submit_urb failed with result: %d", __FUNCTION__, retval);
  345. }
  346. static int keyspan_open(struct input_dev *dev)
  347. {
  348. struct usb_keyspan *remote = dev->private;
  349. if (remote->open++)
  350. return 0;
  351. remote->irq_urb->dev = remote->udev;
  352. if (usb_submit_urb(remote->irq_urb, GFP_KERNEL)) {
  353. remote->open--;
  354. return -EIO;
  355. }
  356. return 0;
  357. }
  358. static void keyspan_close(struct input_dev *dev)
  359. {
  360. struct usb_keyspan *remote = dev->private;
  361. if (!--remote->open)
  362. usb_kill_urb(remote->irq_urb);
  363. }
  364. /*
  365. * Routine that sets up the driver to handle a specific USB device detected on the bus.
  366. */
  367. static int keyspan_probe(struct usb_interface *interface, const struct usb_device_id *id)
  368. {
  369. int i;
  370. int retval = -ENOMEM;
  371. char path[64];
  372. char *buf;
  373. struct usb_keyspan *remote = NULL;
  374. struct usb_host_interface *iface_desc;
  375. struct usb_endpoint_descriptor *endpoint;
  376. struct usb_device *udev = usb_get_dev(interface_to_usbdev(interface));
  377. /* See if the offered device matches what we can accept */
  378. if ((udev->descriptor.idVendor != USB_KEYSPAN_VENDOR_ID) ||
  379. (udev->descriptor.idProduct != USB_KEYSPAN_PRODUCT_UIA11) )
  380. return -ENODEV;
  381. /* allocate memory for our device state and initialize it */
  382. remote = kmalloc(sizeof(*remote), GFP_KERNEL);
  383. if (remote == NULL) {
  384. err("Out of memory\n");
  385. goto error;
  386. }
  387. memset(remote, 0x00, sizeof(*remote));
  388. remote->udev = udev;
  389. remote->interface = interface;
  390. remote->toggle = -1; /* Set to -1 so we will always not match the toggle from the first remote message. */
  391. /* set up the endpoint information */
  392. /* use only the first in interrupt endpoint */
  393. iface_desc = interface->cur_altsetting;
  394. for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
  395. endpoint = &iface_desc->endpoint[i].desc;
  396. if (!remote->in_endpoint &&
  397. (endpoint->bEndpointAddress & USB_DIR_IN) &&
  398. ((endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT)) {
  399. /* we found our interrupt in endpoint */
  400. remote->in_endpoint = endpoint;
  401. remote->in_buffer = usb_buffer_alloc(remote->udev, RECV_SIZE, SLAB_ATOMIC, &remote->in_dma);
  402. if (!remote->in_buffer) {
  403. retval = -ENOMEM;
  404. goto error;
  405. }
  406. }
  407. }
  408. if (!remote->in_endpoint) {
  409. err("Could not find interrupt input endpoint.\n");
  410. retval = -ENODEV;
  411. goto error;
  412. }
  413. remote->irq_urb = usb_alloc_urb(0, GFP_KERNEL);
  414. if (!remote->irq_urb) {
  415. err("Failed to allocate urb.\n");
  416. retval = -ENOMEM;
  417. goto error;
  418. }
  419. retval = keyspan_setup(remote->udev);
  420. if (retval) {
  421. err("Failed to setup device.\n");
  422. retval = -ENODEV;
  423. goto error;
  424. }
  425. /*
  426. * Setup the input system with the bits we are going to be reporting
  427. */
  428. remote->input.evbit[0] = BIT(EV_KEY); /* We will only report KEY events. */
  429. for (i = 0; i < 32; ++i) {
  430. if (keyspan_key_table[i] != KEY_RESERVED) {
  431. set_bit(keyspan_key_table[i], remote->input.keybit);
  432. }
  433. }
  434. remote->input.private = remote;
  435. remote->input.open = keyspan_open;
  436. remote->input.close = keyspan_close;
  437. usb_make_path(remote->udev, path, 64);
  438. sprintf(remote->phys, "%s/input0", path);
  439. remote->input.name = remote->name;
  440. remote->input.phys = remote->phys;
  441. remote->input.id.bustype = BUS_USB;
  442. remote->input.id.vendor = le16_to_cpu(remote->udev->descriptor.idVendor);
  443. remote->input.id.product = le16_to_cpu(remote->udev->descriptor.idProduct);
  444. remote->input.id.version = le16_to_cpu(remote->udev->descriptor.bcdDevice);
  445. if (!(buf = kmalloc(63, GFP_KERNEL))) {
  446. usb_buffer_free(remote->udev, RECV_SIZE, remote->in_buffer, remote->in_dma);
  447. kfree(remote);
  448. return -ENOMEM;
  449. }
  450. if (remote->udev->descriptor.iManufacturer &&
  451. usb_string(remote->udev, remote->udev->descriptor.iManufacturer, buf, 63) > 0)
  452. strcat(remote->name, buf);
  453. if (remote->udev->descriptor.iProduct &&
  454. usb_string(remote->udev, remote->udev->descriptor.iProduct, buf, 63) > 0)
  455. sprintf(remote->name, "%s %s", remote->name, buf);
  456. if (!strlen(remote->name))
  457. sprintf(remote->name, "USB Keyspan Remote %04x:%04x",
  458. remote->input.id.vendor, remote->input.id.product);
  459. kfree(buf);
  460. /*
  461. * Initialize the URB to access the device. The urb gets sent to the device in keyspan_open()
  462. */
  463. usb_fill_int_urb(remote->irq_urb,
  464. remote->udev, usb_rcvintpipe(remote->udev, remote->in_endpoint->bEndpointAddress),
  465. remote->in_buffer, RECV_SIZE, keyspan_irq_recv, remote,
  466. remote->in_endpoint->bInterval);
  467. remote->irq_urb->transfer_dma = remote->in_dma;
  468. remote->irq_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
  469. /* we can register the device now, as it is ready */
  470. input_register_device(&remote->input);
  471. /* save our data pointer in this interface device */
  472. usb_set_intfdata(interface, remote);
  473. /* let the user know what node this device is now attached to */
  474. info("connected: %s on %s", remote->name, path);
  475. return 0;
  476. error:
  477. /*
  478. * In case of error we need to clean up any allocated buffers
  479. */
  480. if (remote->irq_urb)
  481. usb_free_urb(remote->irq_urb);
  482. if (remote->in_buffer)
  483. usb_buffer_free(remote->udev, RECV_SIZE, remote->in_buffer, remote->in_dma);
  484. if (remote)
  485. kfree(remote);
  486. return retval;
  487. }
  488. /*
  489. * Routine called when a device is disconnected from the USB.
  490. */
  491. static void keyspan_disconnect(struct usb_interface *interface)
  492. {
  493. struct usb_keyspan *remote;
  494. /* prevent keyspan_open() from racing keyspan_disconnect() */
  495. lock_kernel();
  496. remote = usb_get_intfdata(interface);
  497. usb_set_intfdata(interface, NULL);
  498. if (remote) { /* We have a valid driver structure so clean up everything we allocated. */
  499. input_unregister_device(&remote->input);
  500. usb_kill_urb(remote->irq_urb);
  501. usb_free_urb(remote->irq_urb);
  502. usb_buffer_free(interface_to_usbdev(interface), RECV_SIZE, remote->in_buffer, remote->in_dma);
  503. kfree(remote);
  504. }
  505. unlock_kernel();
  506. info("USB Keyspan now disconnected");
  507. }
  508. /*
  509. * Standard driver set up sections
  510. */
  511. static struct usb_driver keyspan_driver =
  512. {
  513. .owner = THIS_MODULE,
  514. .name = "keyspan_remote",
  515. .probe = keyspan_probe,
  516. .disconnect = keyspan_disconnect,
  517. .id_table = keyspan_table
  518. };
  519. static int __init usb_keyspan_init(void)
  520. {
  521. int result;
  522. /* register this driver with the USB subsystem */
  523. result = usb_register(&keyspan_driver);
  524. if (result)
  525. err("usb_register failed. Error number %d\n", result);
  526. return result;
  527. }
  528. static void __exit usb_keyspan_exit(void)
  529. {
  530. /* deregister this driver with the USB subsystem */
  531. usb_deregister(&keyspan_driver);
  532. }
  533. module_init(usb_keyspan_init);
  534. module_exit(usb_keyspan_exit);
  535. MODULE_DEVICE_TABLE(usb, keyspan_table);
  536. MODULE_AUTHOR(DRIVER_AUTHOR);
  537. MODULE_DESCRIPTION(DRIVER_DESC);
  538. MODULE_LICENSE(DRIVER_LICENSE);