irq.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435
  1. /*
  2. * Platform dependent support for SGI SN
  3. *
  4. * This file is subject to the terms and conditions of the GNU General Public
  5. * License. See the file "COPYING" in the main directory of this archive
  6. * for more details.
  7. *
  8. * Copyright (c) 2000-2004 Silicon Graphics, Inc. All Rights Reserved.
  9. */
  10. #include <linux/irq.h>
  11. #include <linux/spinlock.h>
  12. #include <asm/sn/addrs.h>
  13. #include <asm/sn/arch.h>
  14. #include <asm/sn/intr.h>
  15. #include <asm/sn/pcibr_provider.h>
  16. #include <asm/sn/pcibus_provider_defs.h>
  17. #include <asm/sn/pcidev.h>
  18. #include <asm/sn/shub_mmr.h>
  19. #include <asm/sn/sn_sal.h>
  20. static void force_interrupt(int irq);
  21. static void register_intr_pda(struct sn_irq_info *sn_irq_info);
  22. static void unregister_intr_pda(struct sn_irq_info *sn_irq_info);
  23. extern int sn_force_interrupt_flag;
  24. extern int sn_ioif_inited;
  25. static struct list_head **sn_irq_lh;
  26. static spinlock_t sn_irq_info_lock = SPIN_LOCK_UNLOCKED; /* non-IRQ lock */
  27. static inline uint64_t sn_intr_alloc(nasid_t local_nasid, int local_widget,
  28. u64 sn_irq_info,
  29. int req_irq, nasid_t req_nasid,
  30. int req_slice)
  31. {
  32. struct ia64_sal_retval ret_stuff;
  33. ret_stuff.status = 0;
  34. ret_stuff.v0 = 0;
  35. SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
  36. (u64) SAL_INTR_ALLOC, (u64) local_nasid,
  37. (u64) local_widget, (u64) sn_irq_info, (u64) req_irq,
  38. (u64) req_nasid, (u64) req_slice);
  39. return ret_stuff.status;
  40. }
  41. static inline void sn_intr_free(nasid_t local_nasid, int local_widget,
  42. struct sn_irq_info *sn_irq_info)
  43. {
  44. struct ia64_sal_retval ret_stuff;
  45. ret_stuff.status = 0;
  46. ret_stuff.v0 = 0;
  47. SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
  48. (u64) SAL_INTR_FREE, (u64) local_nasid,
  49. (u64) local_widget, (u64) sn_irq_info->irq_irq,
  50. (u64) sn_irq_info->irq_cookie, 0, 0);
  51. }
  52. static unsigned int sn_startup_irq(unsigned int irq)
  53. {
  54. return 0;
  55. }
  56. static void sn_shutdown_irq(unsigned int irq)
  57. {
  58. }
  59. static void sn_disable_irq(unsigned int irq)
  60. {
  61. }
  62. static void sn_enable_irq(unsigned int irq)
  63. {
  64. }
  65. static void sn_ack_irq(unsigned int irq)
  66. {
  67. uint64_t event_occurred, mask = 0;
  68. int nasid;
  69. irq = irq & 0xff;
  70. nasid = get_nasid();
  71. event_occurred =
  72. HUB_L((uint64_t *) GLOBAL_MMR_ADDR(nasid, SH_EVENT_OCCURRED));
  73. mask = event_occurred & SH_ALL_INT_MASK;
  74. HUB_S((uint64_t *) GLOBAL_MMR_ADDR(nasid, SH_EVENT_OCCURRED_ALIAS),
  75. mask);
  76. __set_bit(irq, (volatile void *)pda->sn_in_service_ivecs);
  77. move_irq(irq);
  78. }
  79. static void sn_end_irq(unsigned int irq)
  80. {
  81. int nasid;
  82. int ivec;
  83. uint64_t event_occurred;
  84. ivec = irq & 0xff;
  85. if (ivec == SGI_UART_VECTOR) {
  86. nasid = get_nasid();
  87. event_occurred = HUB_L((uint64_t *) GLOBAL_MMR_ADDR
  88. (nasid, SH_EVENT_OCCURRED));
  89. /* If the UART bit is set here, we may have received an
  90. * interrupt from the UART that the driver missed. To
  91. * make sure, we IPI ourselves to force us to look again.
  92. */
  93. if (event_occurred & SH_EVENT_OCCURRED_UART_INT_MASK) {
  94. platform_send_ipi(smp_processor_id(), SGI_UART_VECTOR,
  95. IA64_IPI_DM_INT, 0);
  96. }
  97. }
  98. __clear_bit(ivec, (volatile void *)pda->sn_in_service_ivecs);
  99. if (sn_force_interrupt_flag)
  100. force_interrupt(irq);
  101. }
  102. static void sn_irq_info_free(struct rcu_head *head);
  103. static void sn_set_affinity_irq(unsigned int irq, cpumask_t mask)
  104. {
  105. struct sn_irq_info *sn_irq_info, *sn_irq_info_safe;
  106. int cpuid, cpuphys;
  107. cpuid = first_cpu(mask);
  108. cpuphys = cpu_physical_id(cpuid);
  109. list_for_each_entry_safe(sn_irq_info, sn_irq_info_safe,
  110. sn_irq_lh[irq], list) {
  111. uint64_t bridge;
  112. int local_widget, status;
  113. nasid_t local_nasid;
  114. struct sn_irq_info *new_irq_info;
  115. new_irq_info = kmalloc(sizeof(struct sn_irq_info), GFP_ATOMIC);
  116. if (new_irq_info == NULL)
  117. break;
  118. memcpy(new_irq_info, sn_irq_info, sizeof(struct sn_irq_info));
  119. bridge = (uint64_t) new_irq_info->irq_bridge;
  120. if (!bridge) {
  121. kfree(new_irq_info);
  122. break; /* irq is not a device interrupt */
  123. }
  124. local_nasid = NASID_GET(bridge);
  125. if (local_nasid & 1)
  126. local_widget = TIO_SWIN_WIDGETNUM(bridge);
  127. else
  128. local_widget = SWIN_WIDGETNUM(bridge);
  129. /* Free the old PROM new_irq_info structure */
  130. sn_intr_free(local_nasid, local_widget, new_irq_info);
  131. /* Update kernels new_irq_info with new target info */
  132. unregister_intr_pda(new_irq_info);
  133. /* allocate a new PROM new_irq_info struct */
  134. status = sn_intr_alloc(local_nasid, local_widget,
  135. __pa(new_irq_info), irq,
  136. cpuid_to_nasid(cpuid),
  137. cpuid_to_slice(cpuid));
  138. /* SAL call failed */
  139. if (status) {
  140. kfree(new_irq_info);
  141. break;
  142. }
  143. new_irq_info->irq_cpuid = cpuid;
  144. register_intr_pda(new_irq_info);
  145. if (IS_PCI_BRIDGE_ASIC(new_irq_info->irq_bridge_type))
  146. pcibr_change_devices_irq(new_irq_info);
  147. spin_lock(&sn_irq_info_lock);
  148. list_replace_rcu(&sn_irq_info->list, &new_irq_info->list);
  149. spin_unlock(&sn_irq_info_lock);
  150. call_rcu(&sn_irq_info->rcu, sn_irq_info_free);
  151. #ifdef CONFIG_SMP
  152. set_irq_affinity_info((irq & 0xff), cpuphys, 0);
  153. #endif
  154. }
  155. }
  156. struct hw_interrupt_type irq_type_sn = {
  157. .typename = "SN hub",
  158. .startup = sn_startup_irq,
  159. .shutdown = sn_shutdown_irq,
  160. .enable = sn_enable_irq,
  161. .disable = sn_disable_irq,
  162. .ack = sn_ack_irq,
  163. .end = sn_end_irq,
  164. .set_affinity = sn_set_affinity_irq
  165. };
  166. unsigned int sn_local_vector_to_irq(u8 vector)
  167. {
  168. return (CPU_VECTOR_TO_IRQ(smp_processor_id(), vector));
  169. }
  170. void sn_irq_init(void)
  171. {
  172. int i;
  173. irq_desc_t *base_desc = irq_desc;
  174. for (i = 0; i < NR_IRQS; i++) {
  175. if (base_desc[i].handler == &no_irq_type) {
  176. base_desc[i].handler = &irq_type_sn;
  177. }
  178. }
  179. }
  180. static void register_intr_pda(struct sn_irq_info *sn_irq_info)
  181. {
  182. int irq = sn_irq_info->irq_irq;
  183. int cpu = sn_irq_info->irq_cpuid;
  184. if (pdacpu(cpu)->sn_last_irq < irq) {
  185. pdacpu(cpu)->sn_last_irq = irq;
  186. }
  187. if (pdacpu(cpu)->sn_first_irq == 0 || pdacpu(cpu)->sn_first_irq > irq) {
  188. pdacpu(cpu)->sn_first_irq = irq;
  189. }
  190. }
  191. static void unregister_intr_pda(struct sn_irq_info *sn_irq_info)
  192. {
  193. int irq = sn_irq_info->irq_irq;
  194. int cpu = sn_irq_info->irq_cpuid;
  195. struct sn_irq_info *tmp_irq_info;
  196. int i, foundmatch;
  197. rcu_read_lock();
  198. if (pdacpu(cpu)->sn_last_irq == irq) {
  199. foundmatch = 0;
  200. for (i = pdacpu(cpu)->sn_last_irq - 1;
  201. i && !foundmatch; i--) {
  202. list_for_each_entry_rcu(tmp_irq_info,
  203. sn_irq_lh[i],
  204. list) {
  205. if (tmp_irq_info->irq_cpuid == cpu) {
  206. foundmatch = 1;
  207. break;
  208. }
  209. }
  210. }
  211. pdacpu(cpu)->sn_last_irq = i;
  212. }
  213. if (pdacpu(cpu)->sn_first_irq == irq) {
  214. foundmatch = 0;
  215. for (i = pdacpu(cpu)->sn_first_irq + 1;
  216. i < NR_IRQS && !foundmatch; i++) {
  217. list_for_each_entry_rcu(tmp_irq_info,
  218. sn_irq_lh[i],
  219. list) {
  220. if (tmp_irq_info->irq_cpuid == cpu) {
  221. foundmatch = 1;
  222. break;
  223. }
  224. }
  225. }
  226. pdacpu(cpu)->sn_first_irq = ((i == NR_IRQS) ? 0 : i);
  227. }
  228. rcu_read_unlock();
  229. }
  230. static void sn_irq_info_free(struct rcu_head *head)
  231. {
  232. struct sn_irq_info *sn_irq_info;
  233. sn_irq_info = container_of(head, struct sn_irq_info, rcu);
  234. kfree(sn_irq_info);
  235. }
  236. void sn_irq_fixup(struct pci_dev *pci_dev, struct sn_irq_info *sn_irq_info)
  237. {
  238. nasid_t nasid = sn_irq_info->irq_nasid;
  239. int slice = sn_irq_info->irq_slice;
  240. int cpu = nasid_slice_to_cpuid(nasid, slice);
  241. pci_dev_get(pci_dev);
  242. sn_irq_info->irq_cpuid = cpu;
  243. sn_irq_info->irq_pciioinfo = SN_PCIDEV_INFO(pci_dev);
  244. /* link it into the sn_irq[irq] list */
  245. spin_lock(&sn_irq_info_lock);
  246. list_add_rcu(&sn_irq_info->list, sn_irq_lh[sn_irq_info->irq_irq]);
  247. spin_unlock(&sn_irq_info_lock);
  248. (void)register_intr_pda(sn_irq_info);
  249. }
  250. void sn_irq_unfixup(struct pci_dev *pci_dev)
  251. {
  252. struct sn_irq_info *sn_irq_info;
  253. /* Only cleanup IRQ stuff if this device has a host bus context */
  254. if (!SN_PCIDEV_BUSSOFT(pci_dev))
  255. return;
  256. sn_irq_info = SN_PCIDEV_INFO(pci_dev)->pdi_sn_irq_info;
  257. if (!sn_irq_info || !sn_irq_info->irq_irq) {
  258. kfree(sn_irq_info);
  259. return;
  260. }
  261. unregister_intr_pda(sn_irq_info);
  262. spin_lock(&sn_irq_info_lock);
  263. list_del_rcu(&sn_irq_info->list);
  264. spin_unlock(&sn_irq_info_lock);
  265. call_rcu(&sn_irq_info->rcu, sn_irq_info_free);
  266. pci_dev_put(pci_dev);
  267. }
  268. static void force_interrupt(int irq)
  269. {
  270. struct sn_irq_info *sn_irq_info;
  271. if (!sn_ioif_inited)
  272. return;
  273. rcu_read_lock();
  274. list_for_each_entry_rcu(sn_irq_info, sn_irq_lh[irq], list) {
  275. if (IS_PCI_BRIDGE_ASIC(sn_irq_info->irq_bridge_type) &&
  276. (sn_irq_info->irq_bridge != NULL))
  277. pcibr_force_interrupt(sn_irq_info);
  278. }
  279. rcu_read_unlock();
  280. }
  281. /*
  282. * Check for lost interrupts. If the PIC int_status reg. says that
  283. * an interrupt has been sent, but not handled, and the interrupt
  284. * is not pending in either the cpu irr regs or in the soft irr regs,
  285. * and the interrupt is not in service, then the interrupt may have
  286. * been lost. Force an interrupt on that pin. It is possible that
  287. * the interrupt is in flight, so we may generate a spurious interrupt,
  288. * but we should never miss a real lost interrupt.
  289. */
  290. static void sn_check_intr(int irq, struct sn_irq_info *sn_irq_info)
  291. {
  292. uint64_t regval;
  293. int irr_reg_num;
  294. int irr_bit;
  295. uint64_t irr_reg;
  296. struct pcidev_info *pcidev_info;
  297. struct pcibus_info *pcibus_info;
  298. pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
  299. if (!pcidev_info)
  300. return;
  301. pcibus_info =
  302. (struct pcibus_info *)pcidev_info->pdi_host_pcidev_info->
  303. pdi_pcibus_info;
  304. regval = pcireg_intr_status_get(pcibus_info);
  305. irr_reg_num = irq_to_vector(irq) / 64;
  306. irr_bit = irq_to_vector(irq) % 64;
  307. switch (irr_reg_num) {
  308. case 0:
  309. irr_reg = ia64_getreg(_IA64_REG_CR_IRR0);
  310. break;
  311. case 1:
  312. irr_reg = ia64_getreg(_IA64_REG_CR_IRR1);
  313. break;
  314. case 2:
  315. irr_reg = ia64_getreg(_IA64_REG_CR_IRR2);
  316. break;
  317. case 3:
  318. irr_reg = ia64_getreg(_IA64_REG_CR_IRR3);
  319. break;
  320. }
  321. if (!test_bit(irr_bit, &irr_reg)) {
  322. if (!test_bit(irq, pda->sn_soft_irr)) {
  323. if (!test_bit(irq, pda->sn_in_service_ivecs)) {
  324. regval &= 0xff;
  325. if (sn_irq_info->irq_int_bit & regval &
  326. sn_irq_info->irq_last_intr) {
  327. regval &=
  328. ~(sn_irq_info->
  329. irq_int_bit & regval);
  330. pcibr_force_interrupt(sn_irq_info);
  331. }
  332. }
  333. }
  334. }
  335. sn_irq_info->irq_last_intr = regval;
  336. }
  337. void sn_lb_int_war_check(void)
  338. {
  339. struct sn_irq_info *sn_irq_info;
  340. int i;
  341. if (!sn_ioif_inited || pda->sn_first_irq == 0)
  342. return;
  343. rcu_read_lock();
  344. for (i = pda->sn_first_irq; i <= pda->sn_last_irq; i++) {
  345. list_for_each_entry_rcu(sn_irq_info, sn_irq_lh[i], list) {
  346. /*
  347. * Only call for PCI bridges that are fully
  348. * initialized.
  349. */
  350. if (IS_PCI_BRIDGE_ASIC(sn_irq_info->irq_bridge_type) &&
  351. (sn_irq_info->irq_bridge != NULL))
  352. sn_check_intr(i, sn_irq_info);
  353. }
  354. }
  355. rcu_read_unlock();
  356. }
  357. void sn_irq_lh_init(void)
  358. {
  359. int i;
  360. sn_irq_lh = kmalloc(sizeof(struct list_head *) * NR_IRQS, GFP_KERNEL);
  361. if (!sn_irq_lh)
  362. panic("SN PCI INIT: Failed to allocate memory for PCI init\n");
  363. for (i = 0; i < NR_IRQS; i++) {
  364. sn_irq_lh[i] = kmalloc(sizeof(struct list_head), GFP_KERNEL);
  365. if (!sn_irq_lh[i])
  366. panic("SN PCI INIT: Failed IRQ memory allocation\n");
  367. INIT_LIST_HEAD(sn_irq_lh[i]);
  368. }
  369. }