rt2800lib.c 116 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620
  1. /*
  2. Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
  3. Copyright (C) 2010 Ivo van Doorn <IvDoorn@gmail.com>
  4. Copyright (C) 2009 Bartlomiej Zolnierkiewicz <bzolnier@gmail.com>
  5. Copyright (C) 2009 Gertjan van Wingerde <gwingerde@gmail.com>
  6. Based on the original rt2800pci.c and rt2800usb.c.
  7. Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
  8. Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
  9. Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
  10. Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
  11. Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
  12. Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
  13. <http://rt2x00.serialmonkey.com>
  14. This program is free software; you can redistribute it and/or modify
  15. it under the terms of the GNU General Public License as published by
  16. the Free Software Foundation; either version 2 of the License, or
  17. (at your option) any later version.
  18. This program is distributed in the hope that it will be useful,
  19. but WITHOUT ANY WARRANTY; without even the implied warranty of
  20. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  21. GNU General Public License for more details.
  22. You should have received a copy of the GNU General Public License
  23. along with this program; if not, write to the
  24. Free Software Foundation, Inc.,
  25. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  26. */
  27. /*
  28. Module: rt2800lib
  29. Abstract: rt2800 generic device routines.
  30. */
  31. #include <linux/crc-ccitt.h>
  32. #include <linux/kernel.h>
  33. #include <linux/module.h>
  34. #include <linux/slab.h>
  35. #include "rt2x00.h"
  36. #include "rt2800lib.h"
  37. #include "rt2800.h"
  38. /*
  39. * Register access.
  40. * All access to the CSR registers will go through the methods
  41. * rt2800_register_read and rt2800_register_write.
  42. * BBP and RF register require indirect register access,
  43. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  44. * These indirect registers work with busy bits,
  45. * and we will try maximal REGISTER_BUSY_COUNT times to access
  46. * the register while taking a REGISTER_BUSY_DELAY us delay
  47. * between each attampt. When the busy bit is still set at that time,
  48. * the access attempt is considered to have failed,
  49. * and we will print an error.
  50. * The _lock versions must be used if you already hold the csr_mutex
  51. */
  52. #define WAIT_FOR_BBP(__dev, __reg) \
  53. rt2800_regbusy_read((__dev), BBP_CSR_CFG, BBP_CSR_CFG_BUSY, (__reg))
  54. #define WAIT_FOR_RFCSR(__dev, __reg) \
  55. rt2800_regbusy_read((__dev), RF_CSR_CFG, RF_CSR_CFG_BUSY, (__reg))
  56. #define WAIT_FOR_RF(__dev, __reg) \
  57. rt2800_regbusy_read((__dev), RF_CSR_CFG0, RF_CSR_CFG0_BUSY, (__reg))
  58. #define WAIT_FOR_MCU(__dev, __reg) \
  59. rt2800_regbusy_read((__dev), H2M_MAILBOX_CSR, \
  60. H2M_MAILBOX_CSR_OWNER, (__reg))
  61. static inline bool rt2800_is_305x_soc(struct rt2x00_dev *rt2x00dev)
  62. {
  63. /* check for rt2872 on SoC */
  64. if (!rt2x00_is_soc(rt2x00dev) ||
  65. !rt2x00_rt(rt2x00dev, RT2872))
  66. return false;
  67. /* we know for sure that these rf chipsets are used on rt305x boards */
  68. if (rt2x00_rf(rt2x00dev, RF3020) ||
  69. rt2x00_rf(rt2x00dev, RF3021) ||
  70. rt2x00_rf(rt2x00dev, RF3022))
  71. return true;
  72. NOTICE(rt2x00dev, "Unknown RF chipset on rt305x\n");
  73. return false;
  74. }
  75. static void rt2800_bbp_write(struct rt2x00_dev *rt2x00dev,
  76. const unsigned int word, const u8 value)
  77. {
  78. u32 reg;
  79. mutex_lock(&rt2x00dev->csr_mutex);
  80. /*
  81. * Wait until the BBP becomes available, afterwards we
  82. * can safely write the new data into the register.
  83. */
  84. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  85. reg = 0;
  86. rt2x00_set_field32(&reg, BBP_CSR_CFG_VALUE, value);
  87. rt2x00_set_field32(&reg, BBP_CSR_CFG_REGNUM, word);
  88. rt2x00_set_field32(&reg, BBP_CSR_CFG_BUSY, 1);
  89. rt2x00_set_field32(&reg, BBP_CSR_CFG_READ_CONTROL, 0);
  90. rt2x00_set_field32(&reg, BBP_CSR_CFG_BBP_RW_MODE, 1);
  91. rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg);
  92. }
  93. mutex_unlock(&rt2x00dev->csr_mutex);
  94. }
  95. static void rt2800_bbp_read(struct rt2x00_dev *rt2x00dev,
  96. const unsigned int word, u8 *value)
  97. {
  98. u32 reg;
  99. mutex_lock(&rt2x00dev->csr_mutex);
  100. /*
  101. * Wait until the BBP becomes available, afterwards we
  102. * can safely write the read request into the register.
  103. * After the data has been written, we wait until hardware
  104. * returns the correct value, if at any time the register
  105. * doesn't become available in time, reg will be 0xffffffff
  106. * which means we return 0xff to the caller.
  107. */
  108. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  109. reg = 0;
  110. rt2x00_set_field32(&reg, BBP_CSR_CFG_REGNUM, word);
  111. rt2x00_set_field32(&reg, BBP_CSR_CFG_BUSY, 1);
  112. rt2x00_set_field32(&reg, BBP_CSR_CFG_READ_CONTROL, 1);
  113. rt2x00_set_field32(&reg, BBP_CSR_CFG_BBP_RW_MODE, 1);
  114. rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg);
  115. WAIT_FOR_BBP(rt2x00dev, &reg);
  116. }
  117. *value = rt2x00_get_field32(reg, BBP_CSR_CFG_VALUE);
  118. mutex_unlock(&rt2x00dev->csr_mutex);
  119. }
  120. static void rt2800_rfcsr_write(struct rt2x00_dev *rt2x00dev,
  121. const unsigned int word, const u8 value)
  122. {
  123. u32 reg;
  124. mutex_lock(&rt2x00dev->csr_mutex);
  125. /*
  126. * Wait until the RFCSR becomes available, afterwards we
  127. * can safely write the new data into the register.
  128. */
  129. if (WAIT_FOR_RFCSR(rt2x00dev, &reg)) {
  130. reg = 0;
  131. rt2x00_set_field32(&reg, RF_CSR_CFG_DATA, value);
  132. rt2x00_set_field32(&reg, RF_CSR_CFG_REGNUM, word);
  133. rt2x00_set_field32(&reg, RF_CSR_CFG_WRITE, 1);
  134. rt2x00_set_field32(&reg, RF_CSR_CFG_BUSY, 1);
  135. rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg);
  136. }
  137. mutex_unlock(&rt2x00dev->csr_mutex);
  138. }
  139. static void rt2800_rfcsr_read(struct rt2x00_dev *rt2x00dev,
  140. const unsigned int word, u8 *value)
  141. {
  142. u32 reg;
  143. mutex_lock(&rt2x00dev->csr_mutex);
  144. /*
  145. * Wait until the RFCSR becomes available, afterwards we
  146. * can safely write the read request into the register.
  147. * After the data has been written, we wait until hardware
  148. * returns the correct value, if at any time the register
  149. * doesn't become available in time, reg will be 0xffffffff
  150. * which means we return 0xff to the caller.
  151. */
  152. if (WAIT_FOR_RFCSR(rt2x00dev, &reg)) {
  153. reg = 0;
  154. rt2x00_set_field32(&reg, RF_CSR_CFG_REGNUM, word);
  155. rt2x00_set_field32(&reg, RF_CSR_CFG_WRITE, 0);
  156. rt2x00_set_field32(&reg, RF_CSR_CFG_BUSY, 1);
  157. rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg);
  158. WAIT_FOR_RFCSR(rt2x00dev, &reg);
  159. }
  160. *value = rt2x00_get_field32(reg, RF_CSR_CFG_DATA);
  161. mutex_unlock(&rt2x00dev->csr_mutex);
  162. }
  163. static void rt2800_rf_write(struct rt2x00_dev *rt2x00dev,
  164. const unsigned int word, const u32 value)
  165. {
  166. u32 reg;
  167. mutex_lock(&rt2x00dev->csr_mutex);
  168. /*
  169. * Wait until the RF becomes available, afterwards we
  170. * can safely write the new data into the register.
  171. */
  172. if (WAIT_FOR_RF(rt2x00dev, &reg)) {
  173. reg = 0;
  174. rt2x00_set_field32(&reg, RF_CSR_CFG0_REG_VALUE_BW, value);
  175. rt2x00_set_field32(&reg, RF_CSR_CFG0_STANDBYMODE, 0);
  176. rt2x00_set_field32(&reg, RF_CSR_CFG0_SEL, 0);
  177. rt2x00_set_field32(&reg, RF_CSR_CFG0_BUSY, 1);
  178. rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG0, reg);
  179. rt2x00_rf_write(rt2x00dev, word, value);
  180. }
  181. mutex_unlock(&rt2x00dev->csr_mutex);
  182. }
  183. void rt2800_mcu_request(struct rt2x00_dev *rt2x00dev,
  184. const u8 command, const u8 token,
  185. const u8 arg0, const u8 arg1)
  186. {
  187. u32 reg;
  188. /*
  189. * SOC devices don't support MCU requests.
  190. */
  191. if (rt2x00_is_soc(rt2x00dev))
  192. return;
  193. mutex_lock(&rt2x00dev->csr_mutex);
  194. /*
  195. * Wait until the MCU becomes available, afterwards we
  196. * can safely write the new data into the register.
  197. */
  198. if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
  199. rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
  200. rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
  201. rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
  202. rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
  203. rt2800_register_write_lock(rt2x00dev, H2M_MAILBOX_CSR, reg);
  204. reg = 0;
  205. rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
  206. rt2800_register_write_lock(rt2x00dev, HOST_CMD_CSR, reg);
  207. }
  208. mutex_unlock(&rt2x00dev->csr_mutex);
  209. }
  210. EXPORT_SYMBOL_GPL(rt2800_mcu_request);
  211. int rt2800_wait_csr_ready(struct rt2x00_dev *rt2x00dev)
  212. {
  213. unsigned int i = 0;
  214. u32 reg;
  215. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  216. rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
  217. if (reg && reg != ~0)
  218. return 0;
  219. msleep(1);
  220. }
  221. ERROR(rt2x00dev, "Unstable hardware.\n");
  222. return -EBUSY;
  223. }
  224. EXPORT_SYMBOL_GPL(rt2800_wait_csr_ready);
  225. int rt2800_wait_wpdma_ready(struct rt2x00_dev *rt2x00dev)
  226. {
  227. unsigned int i;
  228. u32 reg;
  229. /*
  230. * Some devices are really slow to respond here. Wait a whole second
  231. * before timing out.
  232. */
  233. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  234. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  235. if (!rt2x00_get_field32(reg, WPDMA_GLO_CFG_TX_DMA_BUSY) &&
  236. !rt2x00_get_field32(reg, WPDMA_GLO_CFG_RX_DMA_BUSY))
  237. return 0;
  238. msleep(10);
  239. }
  240. ERROR(rt2x00dev, "WPDMA TX/RX busy, aborting.\n");
  241. return -EACCES;
  242. }
  243. EXPORT_SYMBOL_GPL(rt2800_wait_wpdma_ready);
  244. static bool rt2800_check_firmware_crc(const u8 *data, const size_t len)
  245. {
  246. u16 fw_crc;
  247. u16 crc;
  248. /*
  249. * The last 2 bytes in the firmware array are the crc checksum itself,
  250. * this means that we should never pass those 2 bytes to the crc
  251. * algorithm.
  252. */
  253. fw_crc = (data[len - 2] << 8 | data[len - 1]);
  254. /*
  255. * Use the crc ccitt algorithm.
  256. * This will return the same value as the legacy driver which
  257. * used bit ordering reversion on the both the firmware bytes
  258. * before input input as well as on the final output.
  259. * Obviously using crc ccitt directly is much more efficient.
  260. */
  261. crc = crc_ccitt(~0, data, len - 2);
  262. /*
  263. * There is a small difference between the crc-itu-t + bitrev and
  264. * the crc-ccitt crc calculation. In the latter method the 2 bytes
  265. * will be swapped, use swab16 to convert the crc to the correct
  266. * value.
  267. */
  268. crc = swab16(crc);
  269. return fw_crc == crc;
  270. }
  271. int rt2800_check_firmware(struct rt2x00_dev *rt2x00dev,
  272. const u8 *data, const size_t len)
  273. {
  274. size_t offset = 0;
  275. size_t fw_len;
  276. bool multiple;
  277. /*
  278. * PCI(e) & SOC devices require firmware with a length
  279. * of 8kb. USB devices require firmware files with a length
  280. * of 4kb. Certain USB chipsets however require different firmware,
  281. * which Ralink only provides attached to the original firmware
  282. * file. Thus for USB devices, firmware files have a length
  283. * which is a multiple of 4kb.
  284. */
  285. if (rt2x00_is_usb(rt2x00dev)) {
  286. fw_len = 4096;
  287. multiple = true;
  288. } else {
  289. fw_len = 8192;
  290. multiple = true;
  291. }
  292. /*
  293. * Validate the firmware length
  294. */
  295. if (len != fw_len && (!multiple || (len % fw_len) != 0))
  296. return FW_BAD_LENGTH;
  297. /*
  298. * Check if the chipset requires one of the upper parts
  299. * of the firmware.
  300. */
  301. if (rt2x00_is_usb(rt2x00dev) &&
  302. !rt2x00_rt(rt2x00dev, RT2860) &&
  303. !rt2x00_rt(rt2x00dev, RT2872) &&
  304. !rt2x00_rt(rt2x00dev, RT3070) &&
  305. ((len / fw_len) == 1))
  306. return FW_BAD_VERSION;
  307. /*
  308. * 8kb firmware files must be checked as if it were
  309. * 2 separate firmware files.
  310. */
  311. while (offset < len) {
  312. if (!rt2800_check_firmware_crc(data + offset, fw_len))
  313. return FW_BAD_CRC;
  314. offset += fw_len;
  315. }
  316. return FW_OK;
  317. }
  318. EXPORT_SYMBOL_GPL(rt2800_check_firmware);
  319. int rt2800_load_firmware(struct rt2x00_dev *rt2x00dev,
  320. const u8 *data, const size_t len)
  321. {
  322. unsigned int i;
  323. u32 reg;
  324. /*
  325. * If driver doesn't wake up firmware here,
  326. * rt2800_load_firmware will hang forever when interface is up again.
  327. */
  328. rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000);
  329. /*
  330. * Wait for stable hardware.
  331. */
  332. if (rt2800_wait_csr_ready(rt2x00dev))
  333. return -EBUSY;
  334. if (rt2x00_is_pci(rt2x00dev))
  335. rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000002);
  336. /*
  337. * Disable DMA, will be reenabled later when enabling
  338. * the radio.
  339. */
  340. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  341. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  342. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
  343. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  344. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
  345. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  346. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  347. /*
  348. * Write firmware to the device.
  349. */
  350. rt2800_drv_write_firmware(rt2x00dev, data, len);
  351. /*
  352. * Wait for device to stabilize.
  353. */
  354. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  355. rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, &reg);
  356. if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY))
  357. break;
  358. msleep(1);
  359. }
  360. if (i == REGISTER_BUSY_COUNT) {
  361. ERROR(rt2x00dev, "PBF system register not ready.\n");
  362. return -EBUSY;
  363. }
  364. /*
  365. * Initialize firmware.
  366. */
  367. rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
  368. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
  369. msleep(1);
  370. return 0;
  371. }
  372. EXPORT_SYMBOL_GPL(rt2800_load_firmware);
  373. void rt2800_write_tx_data(struct queue_entry *entry,
  374. struct txentry_desc *txdesc)
  375. {
  376. __le32 *txwi = rt2800_drv_get_txwi(entry);
  377. u32 word;
  378. /*
  379. * Initialize TX Info descriptor
  380. */
  381. rt2x00_desc_read(txwi, 0, &word);
  382. rt2x00_set_field32(&word, TXWI_W0_FRAG,
  383. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  384. rt2x00_set_field32(&word, TXWI_W0_MIMO_PS,
  385. test_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags));
  386. rt2x00_set_field32(&word, TXWI_W0_CF_ACK, 0);
  387. rt2x00_set_field32(&word, TXWI_W0_TS,
  388. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  389. rt2x00_set_field32(&word, TXWI_W0_AMPDU,
  390. test_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags));
  391. rt2x00_set_field32(&word, TXWI_W0_MPDU_DENSITY, txdesc->mpdu_density);
  392. rt2x00_set_field32(&word, TXWI_W0_TX_OP, txdesc->txop);
  393. rt2x00_set_field32(&word, TXWI_W0_MCS, txdesc->mcs);
  394. rt2x00_set_field32(&word, TXWI_W0_BW,
  395. test_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags));
  396. rt2x00_set_field32(&word, TXWI_W0_SHORT_GI,
  397. test_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags));
  398. rt2x00_set_field32(&word, TXWI_W0_STBC, txdesc->stbc);
  399. rt2x00_set_field32(&word, TXWI_W0_PHYMODE, txdesc->rate_mode);
  400. rt2x00_desc_write(txwi, 0, word);
  401. rt2x00_desc_read(txwi, 1, &word);
  402. rt2x00_set_field32(&word, TXWI_W1_ACK,
  403. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  404. rt2x00_set_field32(&word, TXWI_W1_NSEQ,
  405. test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
  406. rt2x00_set_field32(&word, TXWI_W1_BW_WIN_SIZE, txdesc->ba_size);
  407. rt2x00_set_field32(&word, TXWI_W1_WIRELESS_CLI_ID,
  408. test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags) ?
  409. txdesc->key_idx : 0xff);
  410. rt2x00_set_field32(&word, TXWI_W1_MPDU_TOTAL_BYTE_COUNT,
  411. txdesc->length);
  412. rt2x00_set_field32(&word, TXWI_W1_PACKETID_QUEUE, entry->queue->qid);
  413. rt2x00_set_field32(&word, TXWI_W1_PACKETID_ENTRY, (entry->entry_idx % 3) + 1);
  414. rt2x00_desc_write(txwi, 1, word);
  415. /*
  416. * Always write 0 to IV/EIV fields, hardware will insert the IV
  417. * from the IVEIV register when TXD_W3_WIV is set to 0.
  418. * When TXD_W3_WIV is set to 1 it will use the IV data
  419. * from the descriptor. The TXWI_W1_WIRELESS_CLI_ID indicates which
  420. * crypto entry in the registers should be used to encrypt the frame.
  421. */
  422. _rt2x00_desc_write(txwi, 2, 0 /* skbdesc->iv[0] */);
  423. _rt2x00_desc_write(txwi, 3, 0 /* skbdesc->iv[1] */);
  424. }
  425. EXPORT_SYMBOL_GPL(rt2800_write_tx_data);
  426. static int rt2800_agc_to_rssi(struct rt2x00_dev *rt2x00dev, u32 rxwi_w2)
  427. {
  428. int rssi0 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI0);
  429. int rssi1 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI1);
  430. int rssi2 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI2);
  431. u16 eeprom;
  432. u8 offset0;
  433. u8 offset1;
  434. u8 offset2;
  435. if (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ) {
  436. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG, &eeprom);
  437. offset0 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG_OFFSET0);
  438. offset1 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG_OFFSET1);
  439. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &eeprom);
  440. offset2 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG2_OFFSET2);
  441. } else {
  442. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A, &eeprom);
  443. offset0 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A_OFFSET0);
  444. offset1 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A_OFFSET1);
  445. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &eeprom);
  446. offset2 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A2_OFFSET2);
  447. }
  448. /*
  449. * Convert the value from the descriptor into the RSSI value
  450. * If the value in the descriptor is 0, it is considered invalid
  451. * and the default (extremely low) rssi value is assumed
  452. */
  453. rssi0 = (rssi0) ? (-12 - offset0 - rt2x00dev->lna_gain - rssi0) : -128;
  454. rssi1 = (rssi1) ? (-12 - offset1 - rt2x00dev->lna_gain - rssi1) : -128;
  455. rssi2 = (rssi2) ? (-12 - offset2 - rt2x00dev->lna_gain - rssi2) : -128;
  456. /*
  457. * mac80211 only accepts a single RSSI value. Calculating the
  458. * average doesn't deliver a fair answer either since -60:-60 would
  459. * be considered equally good as -50:-70 while the second is the one
  460. * which gives less energy...
  461. */
  462. rssi0 = max(rssi0, rssi1);
  463. return max(rssi0, rssi2);
  464. }
  465. void rt2800_process_rxwi(struct queue_entry *entry,
  466. struct rxdone_entry_desc *rxdesc)
  467. {
  468. __le32 *rxwi = (__le32 *) entry->skb->data;
  469. u32 word;
  470. rt2x00_desc_read(rxwi, 0, &word);
  471. rxdesc->cipher = rt2x00_get_field32(word, RXWI_W0_UDF);
  472. rxdesc->size = rt2x00_get_field32(word, RXWI_W0_MPDU_TOTAL_BYTE_COUNT);
  473. rt2x00_desc_read(rxwi, 1, &word);
  474. if (rt2x00_get_field32(word, RXWI_W1_SHORT_GI))
  475. rxdesc->flags |= RX_FLAG_SHORT_GI;
  476. if (rt2x00_get_field32(word, RXWI_W1_BW))
  477. rxdesc->flags |= RX_FLAG_40MHZ;
  478. /*
  479. * Detect RX rate, always use MCS as signal type.
  480. */
  481. rxdesc->dev_flags |= RXDONE_SIGNAL_MCS;
  482. rxdesc->signal = rt2x00_get_field32(word, RXWI_W1_MCS);
  483. rxdesc->rate_mode = rt2x00_get_field32(word, RXWI_W1_PHYMODE);
  484. /*
  485. * Mask of 0x8 bit to remove the short preamble flag.
  486. */
  487. if (rxdesc->rate_mode == RATE_MODE_CCK)
  488. rxdesc->signal &= ~0x8;
  489. rt2x00_desc_read(rxwi, 2, &word);
  490. /*
  491. * Convert descriptor AGC value to RSSI value.
  492. */
  493. rxdesc->rssi = rt2800_agc_to_rssi(entry->queue->rt2x00dev, word);
  494. /*
  495. * Remove RXWI descriptor from start of buffer.
  496. */
  497. skb_pull(entry->skb, RXWI_DESC_SIZE);
  498. }
  499. EXPORT_SYMBOL_GPL(rt2800_process_rxwi);
  500. static bool rt2800_txdone_entry_check(struct queue_entry *entry, u32 reg)
  501. {
  502. __le32 *txwi;
  503. u32 word;
  504. int wcid, ack, pid;
  505. int tx_wcid, tx_ack, tx_pid;
  506. wcid = rt2x00_get_field32(reg, TX_STA_FIFO_WCID);
  507. ack = rt2x00_get_field32(reg, TX_STA_FIFO_TX_ACK_REQUIRED);
  508. pid = rt2x00_get_field32(reg, TX_STA_FIFO_PID_TYPE);
  509. /*
  510. * This frames has returned with an IO error,
  511. * so the status report is not intended for this
  512. * frame.
  513. */
  514. if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags)) {
  515. rt2x00lib_txdone_noinfo(entry, TXDONE_FAILURE);
  516. return false;
  517. }
  518. /*
  519. * Validate if this TX status report is intended for
  520. * this entry by comparing the WCID/ACK/PID fields.
  521. */
  522. txwi = rt2800_drv_get_txwi(entry);
  523. rt2x00_desc_read(txwi, 1, &word);
  524. tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID);
  525. tx_ack = rt2x00_get_field32(word, TXWI_W1_ACK);
  526. tx_pid = rt2x00_get_field32(word, TXWI_W1_PACKETID);
  527. if ((wcid != tx_wcid) || (ack != tx_ack) || (pid != tx_pid)) {
  528. WARNING(entry->queue->rt2x00dev,
  529. "TX status report missed for queue %d entry %d\n",
  530. entry->queue->qid, entry->entry_idx);
  531. rt2x00lib_txdone_noinfo(entry, TXDONE_UNKNOWN);
  532. return false;
  533. }
  534. return true;
  535. }
  536. void rt2800_txdone_entry(struct queue_entry *entry, u32 status)
  537. {
  538. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  539. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  540. struct txdone_entry_desc txdesc;
  541. u32 word;
  542. u16 mcs, real_mcs;
  543. int aggr, ampdu;
  544. __le32 *txwi;
  545. /*
  546. * Obtain the status about this packet.
  547. */
  548. txdesc.flags = 0;
  549. txwi = rt2800_drv_get_txwi(entry);
  550. rt2x00_desc_read(txwi, 0, &word);
  551. mcs = rt2x00_get_field32(word, TXWI_W0_MCS);
  552. ampdu = rt2x00_get_field32(word, TXWI_W0_AMPDU);
  553. real_mcs = rt2x00_get_field32(status, TX_STA_FIFO_MCS);
  554. aggr = rt2x00_get_field32(status, TX_STA_FIFO_TX_AGGRE);
  555. /*
  556. * If a frame was meant to be sent as a single non-aggregated MPDU
  557. * but ended up in an aggregate the used tx rate doesn't correlate
  558. * with the one specified in the TXWI as the whole aggregate is sent
  559. * with the same rate.
  560. *
  561. * For example: two frames are sent to rt2x00, the first one sets
  562. * AMPDU=1 and requests MCS7 whereas the second frame sets AMDPU=0
  563. * and requests MCS15. If the hw aggregates both frames into one
  564. * AMDPU the tx status for both frames will contain MCS7 although
  565. * the frame was sent successfully.
  566. *
  567. * Hence, replace the requested rate with the real tx rate to not
  568. * confuse the rate control algortihm by providing clearly wrong
  569. * data.
  570. */
  571. if (aggr == 1 && ampdu == 0 && real_mcs != mcs) {
  572. skbdesc->tx_rate_idx = real_mcs;
  573. mcs = real_mcs;
  574. }
  575. /*
  576. * Ralink has a retry mechanism using a global fallback
  577. * table. We setup this fallback table to try the immediate
  578. * lower rate for all rates. In the TX_STA_FIFO, the MCS field
  579. * always contains the MCS used for the last transmission, be
  580. * it successful or not.
  581. */
  582. if (rt2x00_get_field32(status, TX_STA_FIFO_TX_SUCCESS)) {
  583. /*
  584. * Transmission succeeded. The number of retries is
  585. * mcs - real_mcs
  586. */
  587. __set_bit(TXDONE_SUCCESS, &txdesc.flags);
  588. txdesc.retry = ((mcs > real_mcs) ? mcs - real_mcs : 0);
  589. } else {
  590. /*
  591. * Transmission failed. The number of retries is
  592. * always 7 in this case (for a total number of 8
  593. * frames sent).
  594. */
  595. __set_bit(TXDONE_FAILURE, &txdesc.flags);
  596. txdesc.retry = rt2x00dev->long_retry;
  597. }
  598. /*
  599. * the frame was retried at least once
  600. * -> hw used fallback rates
  601. */
  602. if (txdesc.retry)
  603. __set_bit(TXDONE_FALLBACK, &txdesc.flags);
  604. rt2x00lib_txdone(entry, &txdesc);
  605. }
  606. EXPORT_SYMBOL_GPL(rt2800_txdone_entry);
  607. void rt2800_txdone(struct rt2x00_dev *rt2x00dev)
  608. {
  609. struct data_queue *queue;
  610. struct queue_entry *entry;
  611. u32 reg;
  612. u8 pid;
  613. int i;
  614. /*
  615. * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
  616. * at most X times and also stop processing once the TX_STA_FIFO_VALID
  617. * flag is not set anymore.
  618. *
  619. * The legacy drivers use X=TX_RING_SIZE but state in a comment
  620. * that the TX_STA_FIFO stack has a size of 16. We stick to our
  621. * tx ring size for now.
  622. */
  623. for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
  624. rt2800_register_read(rt2x00dev, TX_STA_FIFO, &reg);
  625. if (!rt2x00_get_field32(reg, TX_STA_FIFO_VALID))
  626. break;
  627. /*
  628. * Skip this entry when it contains an invalid
  629. * queue identication number.
  630. */
  631. pid = rt2x00_get_field32(reg, TX_STA_FIFO_PID_QUEUE);
  632. if (pid >= QID_RX)
  633. continue;
  634. queue = rt2x00queue_get_queue(rt2x00dev, pid);
  635. if (unlikely(!queue))
  636. continue;
  637. /*
  638. * Inside each queue, we process each entry in a chronological
  639. * order. We first check that the queue is not empty.
  640. */
  641. entry = NULL;
  642. while (!rt2x00queue_empty(queue)) {
  643. entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  644. if (rt2800_txdone_entry_check(entry, reg))
  645. break;
  646. }
  647. if (!entry || rt2x00queue_empty(queue))
  648. break;
  649. rt2800_txdone_entry(entry, reg);
  650. }
  651. }
  652. EXPORT_SYMBOL_GPL(rt2800_txdone);
  653. void rt2800_write_beacon(struct queue_entry *entry, struct txentry_desc *txdesc)
  654. {
  655. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  656. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  657. unsigned int beacon_base;
  658. unsigned int padding_len;
  659. u32 orig_reg, reg;
  660. /*
  661. * Disable beaconing while we are reloading the beacon data,
  662. * otherwise we might be sending out invalid data.
  663. */
  664. rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
  665. orig_reg = reg;
  666. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
  667. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  668. /*
  669. * Add space for the TXWI in front of the skb.
  670. */
  671. skb_push(entry->skb, TXWI_DESC_SIZE);
  672. memset(entry->skb, 0, TXWI_DESC_SIZE);
  673. /*
  674. * Register descriptor details in skb frame descriptor.
  675. */
  676. skbdesc->flags |= SKBDESC_DESC_IN_SKB;
  677. skbdesc->desc = entry->skb->data;
  678. skbdesc->desc_len = TXWI_DESC_SIZE;
  679. /*
  680. * Add the TXWI for the beacon to the skb.
  681. */
  682. rt2800_write_tx_data(entry, txdesc);
  683. /*
  684. * Dump beacon to userspace through debugfs.
  685. */
  686. rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
  687. /*
  688. * Write entire beacon with TXWI and padding to register.
  689. */
  690. padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
  691. if (padding_len && skb_pad(entry->skb, padding_len)) {
  692. ERROR(rt2x00dev, "Failure padding beacon, aborting\n");
  693. /* skb freed by skb_pad() on failure */
  694. entry->skb = NULL;
  695. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, orig_reg);
  696. return;
  697. }
  698. beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
  699. rt2800_register_multiwrite(rt2x00dev, beacon_base, entry->skb->data,
  700. entry->skb->len + padding_len);
  701. /*
  702. * Enable beaconing again.
  703. */
  704. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
  705. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  706. /*
  707. * Clean up beacon skb.
  708. */
  709. dev_kfree_skb_any(entry->skb);
  710. entry->skb = NULL;
  711. }
  712. EXPORT_SYMBOL_GPL(rt2800_write_beacon);
  713. static inline void rt2800_clear_beacon_register(struct rt2x00_dev *rt2x00dev,
  714. unsigned int beacon_base)
  715. {
  716. int i;
  717. /*
  718. * For the Beacon base registers we only need to clear
  719. * the whole TXWI which (when set to 0) will invalidate
  720. * the entire beacon.
  721. */
  722. for (i = 0; i < TXWI_DESC_SIZE; i += sizeof(__le32))
  723. rt2800_register_write(rt2x00dev, beacon_base + i, 0);
  724. }
  725. void rt2800_clear_beacon(struct queue_entry *entry)
  726. {
  727. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  728. u32 reg;
  729. /*
  730. * Disable beaconing while we are reloading the beacon data,
  731. * otherwise we might be sending out invalid data.
  732. */
  733. rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
  734. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
  735. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  736. /*
  737. * Clear beacon.
  738. */
  739. rt2800_clear_beacon_register(rt2x00dev,
  740. HW_BEACON_OFFSET(entry->entry_idx));
  741. /*
  742. * Enabled beaconing again.
  743. */
  744. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
  745. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  746. }
  747. EXPORT_SYMBOL_GPL(rt2800_clear_beacon);
  748. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  749. const struct rt2x00debug rt2800_rt2x00debug = {
  750. .owner = THIS_MODULE,
  751. .csr = {
  752. .read = rt2800_register_read,
  753. .write = rt2800_register_write,
  754. .flags = RT2X00DEBUGFS_OFFSET,
  755. .word_base = CSR_REG_BASE,
  756. .word_size = sizeof(u32),
  757. .word_count = CSR_REG_SIZE / sizeof(u32),
  758. },
  759. .eeprom = {
  760. .read = rt2x00_eeprom_read,
  761. .write = rt2x00_eeprom_write,
  762. .word_base = EEPROM_BASE,
  763. .word_size = sizeof(u16),
  764. .word_count = EEPROM_SIZE / sizeof(u16),
  765. },
  766. .bbp = {
  767. .read = rt2800_bbp_read,
  768. .write = rt2800_bbp_write,
  769. .word_base = BBP_BASE,
  770. .word_size = sizeof(u8),
  771. .word_count = BBP_SIZE / sizeof(u8),
  772. },
  773. .rf = {
  774. .read = rt2x00_rf_read,
  775. .write = rt2800_rf_write,
  776. .word_base = RF_BASE,
  777. .word_size = sizeof(u32),
  778. .word_count = RF_SIZE / sizeof(u32),
  779. },
  780. };
  781. EXPORT_SYMBOL_GPL(rt2800_rt2x00debug);
  782. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  783. int rt2800_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  784. {
  785. u32 reg;
  786. rt2800_register_read(rt2x00dev, GPIO_CTRL_CFG, &reg);
  787. return rt2x00_get_field32(reg, GPIO_CTRL_CFG_BIT2);
  788. }
  789. EXPORT_SYMBOL_GPL(rt2800_rfkill_poll);
  790. #ifdef CONFIG_RT2X00_LIB_LEDS
  791. static void rt2800_brightness_set(struct led_classdev *led_cdev,
  792. enum led_brightness brightness)
  793. {
  794. struct rt2x00_led *led =
  795. container_of(led_cdev, struct rt2x00_led, led_dev);
  796. unsigned int enabled = brightness != LED_OFF;
  797. unsigned int bg_mode =
  798. (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
  799. unsigned int polarity =
  800. rt2x00_get_field16(led->rt2x00dev->led_mcu_reg,
  801. EEPROM_FREQ_LED_POLARITY);
  802. unsigned int ledmode =
  803. rt2x00_get_field16(led->rt2x00dev->led_mcu_reg,
  804. EEPROM_FREQ_LED_MODE);
  805. if (led->type == LED_TYPE_RADIO) {
  806. rt2800_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode,
  807. enabled ? 0x20 : 0);
  808. } else if (led->type == LED_TYPE_ASSOC) {
  809. rt2800_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode,
  810. enabled ? (bg_mode ? 0x60 : 0xa0) : 0x20);
  811. } else if (led->type == LED_TYPE_QUALITY) {
  812. /*
  813. * The brightness is divided into 6 levels (0 - 5),
  814. * The specs tell us the following levels:
  815. * 0, 1 ,3, 7, 15, 31
  816. * to determine the level in a simple way we can simply
  817. * work with bitshifting:
  818. * (1 << level) - 1
  819. */
  820. rt2800_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
  821. (1 << brightness / (LED_FULL / 6)) - 1,
  822. polarity);
  823. }
  824. }
  825. static int rt2800_blink_set(struct led_classdev *led_cdev,
  826. unsigned long *delay_on, unsigned long *delay_off)
  827. {
  828. struct rt2x00_led *led =
  829. container_of(led_cdev, struct rt2x00_led, led_dev);
  830. u32 reg;
  831. rt2800_register_read(led->rt2x00dev, LED_CFG, &reg);
  832. rt2x00_set_field32(&reg, LED_CFG_ON_PERIOD, *delay_on);
  833. rt2x00_set_field32(&reg, LED_CFG_OFF_PERIOD, *delay_off);
  834. rt2800_register_write(led->rt2x00dev, LED_CFG, reg);
  835. return 0;
  836. }
  837. static void rt2800_init_led(struct rt2x00_dev *rt2x00dev,
  838. struct rt2x00_led *led, enum led_type type)
  839. {
  840. led->rt2x00dev = rt2x00dev;
  841. led->type = type;
  842. led->led_dev.brightness_set = rt2800_brightness_set;
  843. led->led_dev.blink_set = rt2800_blink_set;
  844. led->flags = LED_INITIALIZED;
  845. }
  846. #endif /* CONFIG_RT2X00_LIB_LEDS */
  847. /*
  848. * Configuration handlers.
  849. */
  850. static void rt2800_config_wcid_attr(struct rt2x00_dev *rt2x00dev,
  851. struct rt2x00lib_crypto *crypto,
  852. struct ieee80211_key_conf *key)
  853. {
  854. struct mac_wcid_entry wcid_entry;
  855. struct mac_iveiv_entry iveiv_entry;
  856. u32 offset;
  857. u32 reg;
  858. offset = MAC_WCID_ATTR_ENTRY(key->hw_key_idx);
  859. if (crypto->cmd == SET_KEY) {
  860. rt2800_register_read(rt2x00dev, offset, &reg);
  861. rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_KEYTAB,
  862. !!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE));
  863. /*
  864. * Both the cipher as the BSS Idx numbers are split in a main
  865. * value of 3 bits, and a extended field for adding one additional
  866. * bit to the value.
  867. */
  868. rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_CIPHER,
  869. (crypto->cipher & 0x7));
  870. rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_CIPHER_EXT,
  871. (crypto->cipher & 0x8) >> 3);
  872. rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_BSS_IDX,
  873. (crypto->bssidx & 0x7));
  874. rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_BSS_IDX_EXT,
  875. (crypto->bssidx & 0x8) >> 3);
  876. rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_RX_WIUDF, crypto->cipher);
  877. rt2800_register_write(rt2x00dev, offset, reg);
  878. } else {
  879. rt2800_register_write(rt2x00dev, offset, 0);
  880. }
  881. offset = MAC_IVEIV_ENTRY(key->hw_key_idx);
  882. memset(&iveiv_entry, 0, sizeof(iveiv_entry));
  883. if ((crypto->cipher == CIPHER_TKIP) ||
  884. (crypto->cipher == CIPHER_TKIP_NO_MIC) ||
  885. (crypto->cipher == CIPHER_AES))
  886. iveiv_entry.iv[3] |= 0x20;
  887. iveiv_entry.iv[3] |= key->keyidx << 6;
  888. rt2800_register_multiwrite(rt2x00dev, offset,
  889. &iveiv_entry, sizeof(iveiv_entry));
  890. offset = MAC_WCID_ENTRY(key->hw_key_idx);
  891. memset(&wcid_entry, 0, sizeof(wcid_entry));
  892. if (crypto->cmd == SET_KEY)
  893. memcpy(wcid_entry.mac, crypto->address, ETH_ALEN);
  894. rt2800_register_multiwrite(rt2x00dev, offset,
  895. &wcid_entry, sizeof(wcid_entry));
  896. }
  897. int rt2800_config_shared_key(struct rt2x00_dev *rt2x00dev,
  898. struct rt2x00lib_crypto *crypto,
  899. struct ieee80211_key_conf *key)
  900. {
  901. struct hw_key_entry key_entry;
  902. struct rt2x00_field32 field;
  903. u32 offset;
  904. u32 reg;
  905. if (crypto->cmd == SET_KEY) {
  906. key->hw_key_idx = (4 * crypto->bssidx) + key->keyidx;
  907. memcpy(key_entry.key, crypto->key,
  908. sizeof(key_entry.key));
  909. memcpy(key_entry.tx_mic, crypto->tx_mic,
  910. sizeof(key_entry.tx_mic));
  911. memcpy(key_entry.rx_mic, crypto->rx_mic,
  912. sizeof(key_entry.rx_mic));
  913. offset = SHARED_KEY_ENTRY(key->hw_key_idx);
  914. rt2800_register_multiwrite(rt2x00dev, offset,
  915. &key_entry, sizeof(key_entry));
  916. }
  917. /*
  918. * The cipher types are stored over multiple registers
  919. * starting with SHARED_KEY_MODE_BASE each word will have
  920. * 32 bits and contains the cipher types for 2 bssidx each.
  921. * Using the correct defines correctly will cause overhead,
  922. * so just calculate the correct offset.
  923. */
  924. field.bit_offset = 4 * (key->hw_key_idx % 8);
  925. field.bit_mask = 0x7 << field.bit_offset;
  926. offset = SHARED_KEY_MODE_ENTRY(key->hw_key_idx / 8);
  927. rt2800_register_read(rt2x00dev, offset, &reg);
  928. rt2x00_set_field32(&reg, field,
  929. (crypto->cmd == SET_KEY) * crypto->cipher);
  930. rt2800_register_write(rt2x00dev, offset, reg);
  931. /*
  932. * Update WCID information
  933. */
  934. rt2800_config_wcid_attr(rt2x00dev, crypto, key);
  935. return 0;
  936. }
  937. EXPORT_SYMBOL_GPL(rt2800_config_shared_key);
  938. int rt2800_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
  939. struct rt2x00lib_crypto *crypto,
  940. struct ieee80211_key_conf *key)
  941. {
  942. struct hw_key_entry key_entry;
  943. u32 offset;
  944. if (crypto->cmd == SET_KEY) {
  945. /*
  946. * 1 pairwise key is possible per AID, this means that the AID
  947. * equals our hw_key_idx. Make sure the WCID starts _after_ the
  948. * last possible shared key entry.
  949. *
  950. * Since parts of the pairwise key table might be shared with
  951. * the beacon frame buffers 6 & 7 we should only write into the
  952. * first 222 entries.
  953. */
  954. if (crypto->aid > (222 - 32))
  955. return -ENOSPC;
  956. key->hw_key_idx = 32 + crypto->aid;
  957. memcpy(key_entry.key, crypto->key,
  958. sizeof(key_entry.key));
  959. memcpy(key_entry.tx_mic, crypto->tx_mic,
  960. sizeof(key_entry.tx_mic));
  961. memcpy(key_entry.rx_mic, crypto->rx_mic,
  962. sizeof(key_entry.rx_mic));
  963. offset = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
  964. rt2800_register_multiwrite(rt2x00dev, offset,
  965. &key_entry, sizeof(key_entry));
  966. }
  967. /*
  968. * Update WCID information
  969. */
  970. rt2800_config_wcid_attr(rt2x00dev, crypto, key);
  971. return 0;
  972. }
  973. EXPORT_SYMBOL_GPL(rt2800_config_pairwise_key);
  974. void rt2800_config_filter(struct rt2x00_dev *rt2x00dev,
  975. const unsigned int filter_flags)
  976. {
  977. u32 reg;
  978. /*
  979. * Start configuration steps.
  980. * Note that the version error will always be dropped
  981. * and broadcast frames will always be accepted since
  982. * there is no filter for it at this time.
  983. */
  984. rt2800_register_read(rt2x00dev, RX_FILTER_CFG, &reg);
  985. rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CRC_ERROR,
  986. !(filter_flags & FIF_FCSFAIL));
  987. rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_PHY_ERROR,
  988. !(filter_flags & FIF_PLCPFAIL));
  989. rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_NOT_TO_ME,
  990. !(filter_flags & FIF_PROMISC_IN_BSS));
  991. rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_NOT_MY_BSSD, 0);
  992. rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_VER_ERROR, 1);
  993. rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_MULTICAST,
  994. !(filter_flags & FIF_ALLMULTI));
  995. rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BROADCAST, 0);
  996. rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_DUPLICATE, 1);
  997. rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CF_END_ACK,
  998. !(filter_flags & FIF_CONTROL));
  999. rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CF_END,
  1000. !(filter_flags & FIF_CONTROL));
  1001. rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_ACK,
  1002. !(filter_flags & FIF_CONTROL));
  1003. rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CTS,
  1004. !(filter_flags & FIF_CONTROL));
  1005. rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_RTS,
  1006. !(filter_flags & FIF_CONTROL));
  1007. rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_PSPOLL,
  1008. !(filter_flags & FIF_PSPOLL));
  1009. rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BA, 1);
  1010. rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BAR, 0);
  1011. rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CNTL,
  1012. !(filter_flags & FIF_CONTROL));
  1013. rt2800_register_write(rt2x00dev, RX_FILTER_CFG, reg);
  1014. }
  1015. EXPORT_SYMBOL_GPL(rt2800_config_filter);
  1016. void rt2800_config_intf(struct rt2x00_dev *rt2x00dev, struct rt2x00_intf *intf,
  1017. struct rt2x00intf_conf *conf, const unsigned int flags)
  1018. {
  1019. u32 reg;
  1020. bool update_bssid = false;
  1021. if (flags & CONFIG_UPDATE_TYPE) {
  1022. /*
  1023. * Enable synchronisation.
  1024. */
  1025. rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
  1026. rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_SYNC, conf->sync);
  1027. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  1028. }
  1029. if (flags & CONFIG_UPDATE_MAC) {
  1030. if (flags & CONFIG_UPDATE_TYPE &&
  1031. conf->sync == TSF_SYNC_AP_NONE) {
  1032. /*
  1033. * The BSSID register has to be set to our own mac
  1034. * address in AP mode.
  1035. */
  1036. memcpy(conf->bssid, conf->mac, sizeof(conf->mac));
  1037. update_bssid = true;
  1038. }
  1039. if (!is_zero_ether_addr((const u8 *)conf->mac)) {
  1040. reg = le32_to_cpu(conf->mac[1]);
  1041. rt2x00_set_field32(&reg, MAC_ADDR_DW1_UNICAST_TO_ME_MASK, 0xff);
  1042. conf->mac[1] = cpu_to_le32(reg);
  1043. }
  1044. rt2800_register_multiwrite(rt2x00dev, MAC_ADDR_DW0,
  1045. conf->mac, sizeof(conf->mac));
  1046. }
  1047. if ((flags & CONFIG_UPDATE_BSSID) || update_bssid) {
  1048. if (!is_zero_ether_addr((const u8 *)conf->bssid)) {
  1049. reg = le32_to_cpu(conf->bssid[1]);
  1050. rt2x00_set_field32(&reg, MAC_BSSID_DW1_BSS_ID_MASK, 3);
  1051. rt2x00_set_field32(&reg, MAC_BSSID_DW1_BSS_BCN_NUM, 7);
  1052. conf->bssid[1] = cpu_to_le32(reg);
  1053. }
  1054. rt2800_register_multiwrite(rt2x00dev, MAC_BSSID_DW0,
  1055. conf->bssid, sizeof(conf->bssid));
  1056. }
  1057. }
  1058. EXPORT_SYMBOL_GPL(rt2800_config_intf);
  1059. static void rt2800_config_ht_opmode(struct rt2x00_dev *rt2x00dev,
  1060. struct rt2x00lib_erp *erp)
  1061. {
  1062. bool any_sta_nongf = !!(erp->ht_opmode &
  1063. IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT);
  1064. u8 protection = erp->ht_opmode & IEEE80211_HT_OP_MODE_PROTECTION;
  1065. u8 mm20_mode, mm40_mode, gf20_mode, gf40_mode;
  1066. u16 mm20_rate, mm40_rate, gf20_rate, gf40_rate;
  1067. u32 reg;
  1068. /* default protection rate for HT20: OFDM 24M */
  1069. mm20_rate = gf20_rate = 0x4004;
  1070. /* default protection rate for HT40: duplicate OFDM 24M */
  1071. mm40_rate = gf40_rate = 0x4084;
  1072. switch (protection) {
  1073. case IEEE80211_HT_OP_MODE_PROTECTION_NONE:
  1074. /*
  1075. * All STAs in this BSS are HT20/40 but there might be
  1076. * STAs not supporting greenfield mode.
  1077. * => Disable protection for HT transmissions.
  1078. */
  1079. mm20_mode = mm40_mode = gf20_mode = gf40_mode = 0;
  1080. break;
  1081. case IEEE80211_HT_OP_MODE_PROTECTION_20MHZ:
  1082. /*
  1083. * All STAs in this BSS are HT20 or HT20/40 but there
  1084. * might be STAs not supporting greenfield mode.
  1085. * => Protect all HT40 transmissions.
  1086. */
  1087. mm20_mode = gf20_mode = 0;
  1088. mm40_mode = gf40_mode = 2;
  1089. break;
  1090. case IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER:
  1091. /*
  1092. * Nonmember protection:
  1093. * According to 802.11n we _should_ protect all
  1094. * HT transmissions (but we don't have to).
  1095. *
  1096. * But if cts_protection is enabled we _shall_ protect
  1097. * all HT transmissions using a CCK rate.
  1098. *
  1099. * And if any station is non GF we _shall_ protect
  1100. * GF transmissions.
  1101. *
  1102. * We decide to protect everything
  1103. * -> fall through to mixed mode.
  1104. */
  1105. case IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED:
  1106. /*
  1107. * Legacy STAs are present
  1108. * => Protect all HT transmissions.
  1109. */
  1110. mm20_mode = mm40_mode = gf20_mode = gf40_mode = 2;
  1111. /*
  1112. * If erp protection is needed we have to protect HT
  1113. * transmissions with CCK 11M long preamble.
  1114. */
  1115. if (erp->cts_protection) {
  1116. /* don't duplicate RTS/CTS in CCK mode */
  1117. mm20_rate = mm40_rate = 0x0003;
  1118. gf20_rate = gf40_rate = 0x0003;
  1119. }
  1120. break;
  1121. };
  1122. /* check for STAs not supporting greenfield mode */
  1123. if (any_sta_nongf)
  1124. gf20_mode = gf40_mode = 2;
  1125. /* Update HT protection config */
  1126. rt2800_register_read(rt2x00dev, MM20_PROT_CFG, &reg);
  1127. rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_RATE, mm20_rate);
  1128. rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_CTRL, mm20_mode);
  1129. rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);
  1130. rt2800_register_read(rt2x00dev, MM40_PROT_CFG, &reg);
  1131. rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_RATE, mm40_rate);
  1132. rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_CTRL, mm40_mode);
  1133. rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);
  1134. rt2800_register_read(rt2x00dev, GF20_PROT_CFG, &reg);
  1135. rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_RATE, gf20_rate);
  1136. rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_CTRL, gf20_mode);
  1137. rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);
  1138. rt2800_register_read(rt2x00dev, GF40_PROT_CFG, &reg);
  1139. rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_RATE, gf40_rate);
  1140. rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_CTRL, gf40_mode);
  1141. rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);
  1142. }
  1143. void rt2800_config_erp(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_erp *erp,
  1144. u32 changed)
  1145. {
  1146. u32 reg;
  1147. if (changed & BSS_CHANGED_ERP_PREAMBLE) {
  1148. rt2800_register_read(rt2x00dev, AUTO_RSP_CFG, &reg);
  1149. rt2x00_set_field32(&reg, AUTO_RSP_CFG_BAC_ACK_POLICY,
  1150. !!erp->short_preamble);
  1151. rt2x00_set_field32(&reg, AUTO_RSP_CFG_AR_PREAMBLE,
  1152. !!erp->short_preamble);
  1153. rt2800_register_write(rt2x00dev, AUTO_RSP_CFG, reg);
  1154. }
  1155. if (changed & BSS_CHANGED_ERP_CTS_PROT) {
  1156. rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, &reg);
  1157. rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_CTRL,
  1158. erp->cts_protection ? 2 : 0);
  1159. rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
  1160. }
  1161. if (changed & BSS_CHANGED_BASIC_RATES) {
  1162. rt2800_register_write(rt2x00dev, LEGACY_BASIC_RATE,
  1163. erp->basic_rates);
  1164. rt2800_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003);
  1165. }
  1166. if (changed & BSS_CHANGED_ERP_SLOT) {
  1167. rt2800_register_read(rt2x00dev, BKOFF_SLOT_CFG, &reg);
  1168. rt2x00_set_field32(&reg, BKOFF_SLOT_CFG_SLOT_TIME,
  1169. erp->slot_time);
  1170. rt2800_register_write(rt2x00dev, BKOFF_SLOT_CFG, reg);
  1171. rt2800_register_read(rt2x00dev, XIFS_TIME_CFG, &reg);
  1172. rt2x00_set_field32(&reg, XIFS_TIME_CFG_EIFS, erp->eifs);
  1173. rt2800_register_write(rt2x00dev, XIFS_TIME_CFG, reg);
  1174. }
  1175. if (changed & BSS_CHANGED_BEACON_INT) {
  1176. rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
  1177. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
  1178. erp->beacon_int * 16);
  1179. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  1180. }
  1181. if (changed & BSS_CHANGED_HT)
  1182. rt2800_config_ht_opmode(rt2x00dev, erp);
  1183. }
  1184. EXPORT_SYMBOL_GPL(rt2800_config_erp);
  1185. void rt2800_config_ant(struct rt2x00_dev *rt2x00dev, struct antenna_setup *ant)
  1186. {
  1187. u8 r1;
  1188. u8 r3;
  1189. rt2800_bbp_read(rt2x00dev, 1, &r1);
  1190. rt2800_bbp_read(rt2x00dev, 3, &r3);
  1191. /*
  1192. * Configure the TX antenna.
  1193. */
  1194. switch ((int)ant->tx) {
  1195. case 1:
  1196. rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 0);
  1197. break;
  1198. case 2:
  1199. rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 2);
  1200. break;
  1201. case 3:
  1202. rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 0);
  1203. break;
  1204. }
  1205. /*
  1206. * Configure the RX antenna.
  1207. */
  1208. switch ((int)ant->rx) {
  1209. case 1:
  1210. rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 0);
  1211. break;
  1212. case 2:
  1213. rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 1);
  1214. break;
  1215. case 3:
  1216. rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 2);
  1217. break;
  1218. }
  1219. rt2800_bbp_write(rt2x00dev, 3, r3);
  1220. rt2800_bbp_write(rt2x00dev, 1, r1);
  1221. }
  1222. EXPORT_SYMBOL_GPL(rt2800_config_ant);
  1223. static void rt2800_config_lna_gain(struct rt2x00_dev *rt2x00dev,
  1224. struct rt2x00lib_conf *libconf)
  1225. {
  1226. u16 eeprom;
  1227. short lna_gain;
  1228. if (libconf->rf.channel <= 14) {
  1229. rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &eeprom);
  1230. lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_BG);
  1231. } else if (libconf->rf.channel <= 64) {
  1232. rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &eeprom);
  1233. lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_A0);
  1234. } else if (libconf->rf.channel <= 128) {
  1235. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &eeprom);
  1236. lna_gain = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG2_LNA_A1);
  1237. } else {
  1238. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &eeprom);
  1239. lna_gain = rt2x00_get_field16(eeprom, EEPROM_RSSI_A2_LNA_A2);
  1240. }
  1241. rt2x00dev->lna_gain = lna_gain;
  1242. }
  1243. static void rt2800_config_channel_rf2xxx(struct rt2x00_dev *rt2x00dev,
  1244. struct ieee80211_conf *conf,
  1245. struct rf_channel *rf,
  1246. struct channel_info *info)
  1247. {
  1248. rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
  1249. if (rt2x00dev->default_ant.tx == 1)
  1250. rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_TX1, 1);
  1251. if (rt2x00dev->default_ant.rx == 1) {
  1252. rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX1, 1);
  1253. rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1);
  1254. } else if (rt2x00dev->default_ant.rx == 2)
  1255. rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1);
  1256. if (rf->channel > 14) {
  1257. /*
  1258. * When TX power is below 0, we should increase it by 7 to
  1259. * make it a positive value (Minumum value is -7).
  1260. * However this means that values between 0 and 7 have
  1261. * double meaning, and we should set a 7DBm boost flag.
  1262. */
  1263. rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A_7DBM_BOOST,
  1264. (info->default_power1 >= 0));
  1265. if (info->default_power1 < 0)
  1266. info->default_power1 += 7;
  1267. rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A, info->default_power1);
  1268. rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A_7DBM_BOOST,
  1269. (info->default_power2 >= 0));
  1270. if (info->default_power2 < 0)
  1271. info->default_power2 += 7;
  1272. rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A, info->default_power2);
  1273. } else {
  1274. rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_G, info->default_power1);
  1275. rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_G, info->default_power2);
  1276. }
  1277. rt2x00_set_field32(&rf->rf4, RF4_HT40, conf_is_ht40(conf));
  1278. rt2800_rf_write(rt2x00dev, 1, rf->rf1);
  1279. rt2800_rf_write(rt2x00dev, 2, rf->rf2);
  1280. rt2800_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
  1281. rt2800_rf_write(rt2x00dev, 4, rf->rf4);
  1282. udelay(200);
  1283. rt2800_rf_write(rt2x00dev, 1, rf->rf1);
  1284. rt2800_rf_write(rt2x00dev, 2, rf->rf2);
  1285. rt2800_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
  1286. rt2800_rf_write(rt2x00dev, 4, rf->rf4);
  1287. udelay(200);
  1288. rt2800_rf_write(rt2x00dev, 1, rf->rf1);
  1289. rt2800_rf_write(rt2x00dev, 2, rf->rf2);
  1290. rt2800_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
  1291. rt2800_rf_write(rt2x00dev, 4, rf->rf4);
  1292. }
  1293. static void rt2800_config_channel_rf3xxx(struct rt2x00_dev *rt2x00dev,
  1294. struct ieee80211_conf *conf,
  1295. struct rf_channel *rf,
  1296. struct channel_info *info)
  1297. {
  1298. u8 rfcsr;
  1299. rt2800_rfcsr_write(rt2x00dev, 2, rf->rf1);
  1300. rt2800_rfcsr_write(rt2x00dev, 3, rf->rf3);
  1301. rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr);
  1302. rt2x00_set_field8(&rfcsr, RFCSR6_R1, rf->rf2);
  1303. rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);
  1304. rt2800_rfcsr_read(rt2x00dev, 12, &rfcsr);
  1305. rt2x00_set_field8(&rfcsr, RFCSR12_TX_POWER, info->default_power1);
  1306. rt2800_rfcsr_write(rt2x00dev, 12, rfcsr);
  1307. rt2800_rfcsr_read(rt2x00dev, 13, &rfcsr);
  1308. rt2x00_set_field8(&rfcsr, RFCSR13_TX_POWER, info->default_power2);
  1309. rt2800_rfcsr_write(rt2x00dev, 13, rfcsr);
  1310. rt2800_rfcsr_read(rt2x00dev, 23, &rfcsr);
  1311. rt2x00_set_field8(&rfcsr, RFCSR23_FREQ_OFFSET, rt2x00dev->freq_offset);
  1312. rt2800_rfcsr_write(rt2x00dev, 23, rfcsr);
  1313. rt2800_rfcsr_write(rt2x00dev, 24,
  1314. rt2x00dev->calibration[conf_is_ht40(conf)]);
  1315. rt2800_rfcsr_read(rt2x00dev, 7, &rfcsr);
  1316. rt2x00_set_field8(&rfcsr, RFCSR7_RF_TUNING, 1);
  1317. rt2800_rfcsr_write(rt2x00dev, 7, rfcsr);
  1318. }
  1319. static void rt2800_config_channel(struct rt2x00_dev *rt2x00dev,
  1320. struct ieee80211_conf *conf,
  1321. struct rf_channel *rf,
  1322. struct channel_info *info)
  1323. {
  1324. u32 reg;
  1325. unsigned int tx_pin;
  1326. u8 bbp;
  1327. if (rf->channel <= 14) {
  1328. info->default_power1 = TXPOWER_G_TO_DEV(info->default_power1);
  1329. info->default_power2 = TXPOWER_G_TO_DEV(info->default_power2);
  1330. } else {
  1331. info->default_power1 = TXPOWER_A_TO_DEV(info->default_power1);
  1332. info->default_power2 = TXPOWER_A_TO_DEV(info->default_power2);
  1333. }
  1334. if (rt2x00_rf(rt2x00dev, RF2020) ||
  1335. rt2x00_rf(rt2x00dev, RF3020) ||
  1336. rt2x00_rf(rt2x00dev, RF3021) ||
  1337. rt2x00_rf(rt2x00dev, RF3022) ||
  1338. rt2x00_rf(rt2x00dev, RF3052) ||
  1339. rt2x00_rf(rt2x00dev, RF3320))
  1340. rt2800_config_channel_rf3xxx(rt2x00dev, conf, rf, info);
  1341. else
  1342. rt2800_config_channel_rf2xxx(rt2x00dev, conf, rf, info);
  1343. /*
  1344. * Change BBP settings
  1345. */
  1346. rt2800_bbp_write(rt2x00dev, 62, 0x37 - rt2x00dev->lna_gain);
  1347. rt2800_bbp_write(rt2x00dev, 63, 0x37 - rt2x00dev->lna_gain);
  1348. rt2800_bbp_write(rt2x00dev, 64, 0x37 - rt2x00dev->lna_gain);
  1349. rt2800_bbp_write(rt2x00dev, 86, 0);
  1350. if (rf->channel <= 14) {
  1351. if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
  1352. rt2800_bbp_write(rt2x00dev, 82, 0x62);
  1353. rt2800_bbp_write(rt2x00dev, 75, 0x46);
  1354. } else {
  1355. rt2800_bbp_write(rt2x00dev, 82, 0x84);
  1356. rt2800_bbp_write(rt2x00dev, 75, 0x50);
  1357. }
  1358. } else {
  1359. rt2800_bbp_write(rt2x00dev, 82, 0xf2);
  1360. if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
  1361. rt2800_bbp_write(rt2x00dev, 75, 0x46);
  1362. else
  1363. rt2800_bbp_write(rt2x00dev, 75, 0x50);
  1364. }
  1365. rt2800_register_read(rt2x00dev, TX_BAND_CFG, &reg);
  1366. rt2x00_set_field32(&reg, TX_BAND_CFG_HT40_MINUS, conf_is_ht40_minus(conf));
  1367. rt2x00_set_field32(&reg, TX_BAND_CFG_A, rf->channel > 14);
  1368. rt2x00_set_field32(&reg, TX_BAND_CFG_BG, rf->channel <= 14);
  1369. rt2800_register_write(rt2x00dev, TX_BAND_CFG, reg);
  1370. tx_pin = 0;
  1371. /* Turn on unused PA or LNA when not using 1T or 1R */
  1372. if (rt2x00dev->default_ant.tx != 1) {
  1373. rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A1_EN, 1);
  1374. rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G1_EN, 1);
  1375. }
  1376. /* Turn on unused PA or LNA when not using 1T or 1R */
  1377. if (rt2x00dev->default_ant.rx != 1) {
  1378. rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A1_EN, 1);
  1379. rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G1_EN, 1);
  1380. }
  1381. rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A0_EN, 1);
  1382. rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G0_EN, 1);
  1383. rt2x00_set_field32(&tx_pin, TX_PIN_CFG_RFTR_EN, 1);
  1384. rt2x00_set_field32(&tx_pin, TX_PIN_CFG_TRSW_EN, 1);
  1385. rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G0_EN, rf->channel <= 14);
  1386. rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A0_EN, rf->channel > 14);
  1387. rt2800_register_write(rt2x00dev, TX_PIN_CFG, tx_pin);
  1388. rt2800_bbp_read(rt2x00dev, 4, &bbp);
  1389. rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * conf_is_ht40(conf));
  1390. rt2800_bbp_write(rt2x00dev, 4, bbp);
  1391. rt2800_bbp_read(rt2x00dev, 3, &bbp);
  1392. rt2x00_set_field8(&bbp, BBP3_HT40_MINUS, conf_is_ht40_minus(conf));
  1393. rt2800_bbp_write(rt2x00dev, 3, bbp);
  1394. if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C)) {
  1395. if (conf_is_ht40(conf)) {
  1396. rt2800_bbp_write(rt2x00dev, 69, 0x1a);
  1397. rt2800_bbp_write(rt2x00dev, 70, 0x0a);
  1398. rt2800_bbp_write(rt2x00dev, 73, 0x16);
  1399. } else {
  1400. rt2800_bbp_write(rt2x00dev, 69, 0x16);
  1401. rt2800_bbp_write(rt2x00dev, 70, 0x08);
  1402. rt2800_bbp_write(rt2x00dev, 73, 0x11);
  1403. }
  1404. }
  1405. msleep(1);
  1406. /*
  1407. * Clear channel statistic counters
  1408. */
  1409. rt2800_register_read(rt2x00dev, CH_IDLE_STA, &reg);
  1410. rt2800_register_read(rt2x00dev, CH_BUSY_STA, &reg);
  1411. rt2800_register_read(rt2x00dev, CH_BUSY_STA_SEC, &reg);
  1412. }
  1413. static void rt2800_config_txpower(struct rt2x00_dev *rt2x00dev,
  1414. const int max_txpower)
  1415. {
  1416. u8 txpower;
  1417. u8 max_value = (u8)max_txpower;
  1418. u16 eeprom;
  1419. int i;
  1420. u32 reg;
  1421. u8 r1;
  1422. u32 offset;
  1423. /*
  1424. * set to normal tx power mode: +/- 0dBm
  1425. */
  1426. rt2800_bbp_read(rt2x00dev, 1, &r1);
  1427. rt2x00_set_field8(&r1, BBP1_TX_POWER, 0);
  1428. rt2800_bbp_write(rt2x00dev, 1, r1);
  1429. /*
  1430. * The eeprom contains the tx power values for each rate. These
  1431. * values map to 100% tx power. Each 16bit word contains four tx
  1432. * power values and the order is the same as used in the TX_PWR_CFG
  1433. * registers.
  1434. */
  1435. offset = TX_PWR_CFG_0;
  1436. for (i = 0; i < EEPROM_TXPOWER_BYRATE_SIZE; i += 2) {
  1437. /* just to be safe */
  1438. if (offset > TX_PWR_CFG_4)
  1439. break;
  1440. rt2800_register_read(rt2x00dev, offset, &reg);
  1441. /* read the next four txpower values */
  1442. rt2x00_eeprom_read(rt2x00dev, EEPROM_TXPOWER_BYRATE + i,
  1443. &eeprom);
  1444. /* TX_PWR_CFG_0: 1MBS, TX_PWR_CFG_1: 24MBS,
  1445. * TX_PWR_CFG_2: MCS4, TX_PWR_CFG_3: MCS12,
  1446. * TX_PWR_CFG_4: unknown */
  1447. txpower = rt2x00_get_field16(eeprom,
  1448. EEPROM_TXPOWER_BYRATE_RATE0);
  1449. rt2x00_set_field32(&reg, TX_PWR_CFG_RATE0,
  1450. min(txpower, max_value));
  1451. /* TX_PWR_CFG_0: 2MBS, TX_PWR_CFG_1: 36MBS,
  1452. * TX_PWR_CFG_2: MCS5, TX_PWR_CFG_3: MCS13,
  1453. * TX_PWR_CFG_4: unknown */
  1454. txpower = rt2x00_get_field16(eeprom,
  1455. EEPROM_TXPOWER_BYRATE_RATE1);
  1456. rt2x00_set_field32(&reg, TX_PWR_CFG_RATE1,
  1457. min(txpower, max_value));
  1458. /* TX_PWR_CFG_0: 55MBS, TX_PWR_CFG_1: 48MBS,
  1459. * TX_PWR_CFG_2: MCS6, TX_PWR_CFG_3: MCS14,
  1460. * TX_PWR_CFG_4: unknown */
  1461. txpower = rt2x00_get_field16(eeprom,
  1462. EEPROM_TXPOWER_BYRATE_RATE2);
  1463. rt2x00_set_field32(&reg, TX_PWR_CFG_RATE2,
  1464. min(txpower, max_value));
  1465. /* TX_PWR_CFG_0: 11MBS, TX_PWR_CFG_1: 54MBS,
  1466. * TX_PWR_CFG_2: MCS7, TX_PWR_CFG_3: MCS15,
  1467. * TX_PWR_CFG_4: unknown */
  1468. txpower = rt2x00_get_field16(eeprom,
  1469. EEPROM_TXPOWER_BYRATE_RATE3);
  1470. rt2x00_set_field32(&reg, TX_PWR_CFG_RATE3,
  1471. min(txpower, max_value));
  1472. /* read the next four txpower values */
  1473. rt2x00_eeprom_read(rt2x00dev, EEPROM_TXPOWER_BYRATE + i + 1,
  1474. &eeprom);
  1475. /* TX_PWR_CFG_0: 6MBS, TX_PWR_CFG_1: MCS0,
  1476. * TX_PWR_CFG_2: MCS8, TX_PWR_CFG_3: unknown,
  1477. * TX_PWR_CFG_4: unknown */
  1478. txpower = rt2x00_get_field16(eeprom,
  1479. EEPROM_TXPOWER_BYRATE_RATE0);
  1480. rt2x00_set_field32(&reg, TX_PWR_CFG_RATE4,
  1481. min(txpower, max_value));
  1482. /* TX_PWR_CFG_0: 9MBS, TX_PWR_CFG_1: MCS1,
  1483. * TX_PWR_CFG_2: MCS9, TX_PWR_CFG_3: unknown,
  1484. * TX_PWR_CFG_4: unknown */
  1485. txpower = rt2x00_get_field16(eeprom,
  1486. EEPROM_TXPOWER_BYRATE_RATE1);
  1487. rt2x00_set_field32(&reg, TX_PWR_CFG_RATE5,
  1488. min(txpower, max_value));
  1489. /* TX_PWR_CFG_0: 12MBS, TX_PWR_CFG_1: MCS2,
  1490. * TX_PWR_CFG_2: MCS10, TX_PWR_CFG_3: unknown,
  1491. * TX_PWR_CFG_4: unknown */
  1492. txpower = rt2x00_get_field16(eeprom,
  1493. EEPROM_TXPOWER_BYRATE_RATE2);
  1494. rt2x00_set_field32(&reg, TX_PWR_CFG_RATE6,
  1495. min(txpower, max_value));
  1496. /* TX_PWR_CFG_0: 18MBS, TX_PWR_CFG_1: MCS3,
  1497. * TX_PWR_CFG_2: MCS11, TX_PWR_CFG_3: unknown,
  1498. * TX_PWR_CFG_4: unknown */
  1499. txpower = rt2x00_get_field16(eeprom,
  1500. EEPROM_TXPOWER_BYRATE_RATE3);
  1501. rt2x00_set_field32(&reg, TX_PWR_CFG_RATE7,
  1502. min(txpower, max_value));
  1503. rt2800_register_write(rt2x00dev, offset, reg);
  1504. /* next TX_PWR_CFG register */
  1505. offset += 4;
  1506. }
  1507. }
  1508. static void rt2800_config_retry_limit(struct rt2x00_dev *rt2x00dev,
  1509. struct rt2x00lib_conf *libconf)
  1510. {
  1511. u32 reg;
  1512. rt2800_register_read(rt2x00dev, TX_RTY_CFG, &reg);
  1513. rt2x00_set_field32(&reg, TX_RTY_CFG_SHORT_RTY_LIMIT,
  1514. libconf->conf->short_frame_max_tx_count);
  1515. rt2x00_set_field32(&reg, TX_RTY_CFG_LONG_RTY_LIMIT,
  1516. libconf->conf->long_frame_max_tx_count);
  1517. rt2800_register_write(rt2x00dev, TX_RTY_CFG, reg);
  1518. }
  1519. static void rt2800_config_ps(struct rt2x00_dev *rt2x00dev,
  1520. struct rt2x00lib_conf *libconf)
  1521. {
  1522. enum dev_state state =
  1523. (libconf->conf->flags & IEEE80211_CONF_PS) ?
  1524. STATE_SLEEP : STATE_AWAKE;
  1525. u32 reg;
  1526. if (state == STATE_SLEEP) {
  1527. rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0);
  1528. rt2800_register_read(rt2x00dev, AUTOWAKEUP_CFG, &reg);
  1529. rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTO_LEAD_TIME, 5);
  1530. rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE,
  1531. libconf->conf->listen_interval - 1);
  1532. rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTOWAKE, 1);
  1533. rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, reg);
  1534. rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
  1535. } else {
  1536. rt2800_register_read(rt2x00dev, AUTOWAKEUP_CFG, &reg);
  1537. rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTO_LEAD_TIME, 0);
  1538. rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE, 0);
  1539. rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTOWAKE, 0);
  1540. rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, reg);
  1541. rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
  1542. }
  1543. }
  1544. void rt2800_config(struct rt2x00_dev *rt2x00dev,
  1545. struct rt2x00lib_conf *libconf,
  1546. const unsigned int flags)
  1547. {
  1548. /* Always recalculate LNA gain before changing configuration */
  1549. rt2800_config_lna_gain(rt2x00dev, libconf);
  1550. if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
  1551. rt2800_config_channel(rt2x00dev, libconf->conf,
  1552. &libconf->rf, &libconf->channel);
  1553. if (flags & IEEE80211_CONF_CHANGE_POWER)
  1554. rt2800_config_txpower(rt2x00dev, libconf->conf->power_level);
  1555. if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
  1556. rt2800_config_retry_limit(rt2x00dev, libconf);
  1557. if (flags & IEEE80211_CONF_CHANGE_PS)
  1558. rt2800_config_ps(rt2x00dev, libconf);
  1559. }
  1560. EXPORT_SYMBOL_GPL(rt2800_config);
  1561. /*
  1562. * Link tuning
  1563. */
  1564. void rt2800_link_stats(struct rt2x00_dev *rt2x00dev, struct link_qual *qual)
  1565. {
  1566. u32 reg;
  1567. /*
  1568. * Update FCS error count from register.
  1569. */
  1570. rt2800_register_read(rt2x00dev, RX_STA_CNT0, &reg);
  1571. qual->rx_failed = rt2x00_get_field32(reg, RX_STA_CNT0_CRC_ERR);
  1572. }
  1573. EXPORT_SYMBOL_GPL(rt2800_link_stats);
  1574. static u8 rt2800_get_default_vgc(struct rt2x00_dev *rt2x00dev)
  1575. {
  1576. if (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ) {
  1577. if (rt2x00_rt(rt2x00dev, RT3070) ||
  1578. rt2x00_rt(rt2x00dev, RT3071) ||
  1579. rt2x00_rt(rt2x00dev, RT3090) ||
  1580. rt2x00_rt(rt2x00dev, RT3390))
  1581. return 0x1c + (2 * rt2x00dev->lna_gain);
  1582. else
  1583. return 0x2e + rt2x00dev->lna_gain;
  1584. }
  1585. if (!test_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags))
  1586. return 0x32 + (rt2x00dev->lna_gain * 5) / 3;
  1587. else
  1588. return 0x3a + (rt2x00dev->lna_gain * 5) / 3;
  1589. }
  1590. static inline void rt2800_set_vgc(struct rt2x00_dev *rt2x00dev,
  1591. struct link_qual *qual, u8 vgc_level)
  1592. {
  1593. if (qual->vgc_level != vgc_level) {
  1594. rt2800_bbp_write(rt2x00dev, 66, vgc_level);
  1595. qual->vgc_level = vgc_level;
  1596. qual->vgc_level_reg = vgc_level;
  1597. }
  1598. }
  1599. void rt2800_reset_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual)
  1600. {
  1601. rt2800_set_vgc(rt2x00dev, qual, rt2800_get_default_vgc(rt2x00dev));
  1602. }
  1603. EXPORT_SYMBOL_GPL(rt2800_reset_tuner);
  1604. void rt2800_link_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual,
  1605. const u32 count)
  1606. {
  1607. if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C))
  1608. return;
  1609. /*
  1610. * When RSSI is better then -80 increase VGC level with 0x10
  1611. */
  1612. rt2800_set_vgc(rt2x00dev, qual,
  1613. rt2800_get_default_vgc(rt2x00dev) +
  1614. ((qual->rssi > -80) * 0x10));
  1615. }
  1616. EXPORT_SYMBOL_GPL(rt2800_link_tuner);
  1617. /*
  1618. * Initialization functions.
  1619. */
  1620. static int rt2800_init_registers(struct rt2x00_dev *rt2x00dev)
  1621. {
  1622. u32 reg;
  1623. u16 eeprom;
  1624. unsigned int i;
  1625. int ret;
  1626. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  1627. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  1628. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
  1629. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  1630. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
  1631. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  1632. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  1633. ret = rt2800_drv_init_registers(rt2x00dev);
  1634. if (ret)
  1635. return ret;
  1636. rt2800_register_read(rt2x00dev, BCN_OFFSET0, &reg);
  1637. rt2x00_set_field32(&reg, BCN_OFFSET0_BCN0, 0xe0); /* 0x3800 */
  1638. rt2x00_set_field32(&reg, BCN_OFFSET0_BCN1, 0xe8); /* 0x3a00 */
  1639. rt2x00_set_field32(&reg, BCN_OFFSET0_BCN2, 0xf0); /* 0x3c00 */
  1640. rt2x00_set_field32(&reg, BCN_OFFSET0_BCN3, 0xf8); /* 0x3e00 */
  1641. rt2800_register_write(rt2x00dev, BCN_OFFSET0, reg);
  1642. rt2800_register_read(rt2x00dev, BCN_OFFSET1, &reg);
  1643. rt2x00_set_field32(&reg, BCN_OFFSET1_BCN4, 0xc8); /* 0x3200 */
  1644. rt2x00_set_field32(&reg, BCN_OFFSET1_BCN5, 0xd0); /* 0x3400 */
  1645. rt2x00_set_field32(&reg, BCN_OFFSET1_BCN6, 0x77); /* 0x1dc0 */
  1646. rt2x00_set_field32(&reg, BCN_OFFSET1_BCN7, 0x6f); /* 0x1bc0 */
  1647. rt2800_register_write(rt2x00dev, BCN_OFFSET1, reg);
  1648. rt2800_register_write(rt2x00dev, LEGACY_BASIC_RATE, 0x0000013f);
  1649. rt2800_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003);
  1650. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
  1651. rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
  1652. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL, 1600);
  1653. rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
  1654. rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_SYNC, 0);
  1655. rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
  1656. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
  1657. rt2x00_set_field32(&reg, BCN_TIME_CFG_TX_TIME_COMPENSATE, 0);
  1658. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  1659. rt2800_config_filter(rt2x00dev, FIF_ALLMULTI);
  1660. rt2800_register_read(rt2x00dev, BKOFF_SLOT_CFG, &reg);
  1661. rt2x00_set_field32(&reg, BKOFF_SLOT_CFG_SLOT_TIME, 9);
  1662. rt2x00_set_field32(&reg, BKOFF_SLOT_CFG_CC_DELAY_TIME, 2);
  1663. rt2800_register_write(rt2x00dev, BKOFF_SLOT_CFG, reg);
  1664. if (rt2x00_rt(rt2x00dev, RT3071) ||
  1665. rt2x00_rt(rt2x00dev, RT3090) ||
  1666. rt2x00_rt(rt2x00dev, RT3390)) {
  1667. rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400);
  1668. rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000);
  1669. if (rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
  1670. rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E) ||
  1671. rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E)) {
  1672. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &eeprom);
  1673. if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_DAC_TEST))
  1674. rt2800_register_write(rt2x00dev, TX_SW_CFG2,
  1675. 0x0000002c);
  1676. else
  1677. rt2800_register_write(rt2x00dev, TX_SW_CFG2,
  1678. 0x0000000f);
  1679. } else {
  1680. rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000);
  1681. }
  1682. } else if (rt2x00_rt(rt2x00dev, RT3070)) {
  1683. rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400);
  1684. if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F)) {
  1685. rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000);
  1686. rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x0000002c);
  1687. } else {
  1688. rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
  1689. rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000);
  1690. }
  1691. } else if (rt2800_is_305x_soc(rt2x00dev)) {
  1692. rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400);
  1693. rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000);
  1694. rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x0000001f);
  1695. } else {
  1696. rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000000);
  1697. rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
  1698. }
  1699. rt2800_register_read(rt2x00dev, TX_LINK_CFG, &reg);
  1700. rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_MFB_LIFETIME, 32);
  1701. rt2x00_set_field32(&reg, TX_LINK_CFG_MFB_ENABLE, 0);
  1702. rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_UMFS_ENABLE, 0);
  1703. rt2x00_set_field32(&reg, TX_LINK_CFG_TX_MRQ_EN, 0);
  1704. rt2x00_set_field32(&reg, TX_LINK_CFG_TX_RDG_EN, 0);
  1705. rt2x00_set_field32(&reg, TX_LINK_CFG_TX_CF_ACK_EN, 1);
  1706. rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_MFB, 0);
  1707. rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_MFS, 0);
  1708. rt2800_register_write(rt2x00dev, TX_LINK_CFG, reg);
  1709. rt2800_register_read(rt2x00dev, TX_TIMEOUT_CFG, &reg);
  1710. rt2x00_set_field32(&reg, TX_TIMEOUT_CFG_MPDU_LIFETIME, 9);
  1711. rt2x00_set_field32(&reg, TX_TIMEOUT_CFG_RX_ACK_TIMEOUT, 32);
  1712. rt2x00_set_field32(&reg, TX_TIMEOUT_CFG_TX_OP_TIMEOUT, 10);
  1713. rt2800_register_write(rt2x00dev, TX_TIMEOUT_CFG, reg);
  1714. rt2800_register_read(rt2x00dev, MAX_LEN_CFG, &reg);
  1715. rt2x00_set_field32(&reg, MAX_LEN_CFG_MAX_MPDU, AGGREGATION_SIZE);
  1716. if (rt2x00_rt_rev_gte(rt2x00dev, RT2872, REV_RT2872E) ||
  1717. rt2x00_rt(rt2x00dev, RT2883) ||
  1718. rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070E))
  1719. rt2x00_set_field32(&reg, MAX_LEN_CFG_MAX_PSDU, 2);
  1720. else
  1721. rt2x00_set_field32(&reg, MAX_LEN_CFG_MAX_PSDU, 1);
  1722. rt2x00_set_field32(&reg, MAX_LEN_CFG_MIN_PSDU, 0);
  1723. rt2x00_set_field32(&reg, MAX_LEN_CFG_MIN_MPDU, 0);
  1724. rt2800_register_write(rt2x00dev, MAX_LEN_CFG, reg);
  1725. rt2800_register_read(rt2x00dev, LED_CFG, &reg);
  1726. rt2x00_set_field32(&reg, LED_CFG_ON_PERIOD, 70);
  1727. rt2x00_set_field32(&reg, LED_CFG_OFF_PERIOD, 30);
  1728. rt2x00_set_field32(&reg, LED_CFG_SLOW_BLINK_PERIOD, 3);
  1729. rt2x00_set_field32(&reg, LED_CFG_R_LED_MODE, 3);
  1730. rt2x00_set_field32(&reg, LED_CFG_G_LED_MODE, 3);
  1731. rt2x00_set_field32(&reg, LED_CFG_Y_LED_MODE, 3);
  1732. rt2x00_set_field32(&reg, LED_CFG_LED_POLAR, 1);
  1733. rt2800_register_write(rt2x00dev, LED_CFG, reg);
  1734. rt2800_register_write(rt2x00dev, PBF_MAX_PCNT, 0x1f3fbf9f);
  1735. rt2800_register_read(rt2x00dev, TX_RTY_CFG, &reg);
  1736. rt2x00_set_field32(&reg, TX_RTY_CFG_SHORT_RTY_LIMIT, 15);
  1737. rt2x00_set_field32(&reg, TX_RTY_CFG_LONG_RTY_LIMIT, 31);
  1738. rt2x00_set_field32(&reg, TX_RTY_CFG_LONG_RTY_THRE, 2000);
  1739. rt2x00_set_field32(&reg, TX_RTY_CFG_NON_AGG_RTY_MODE, 0);
  1740. rt2x00_set_field32(&reg, TX_RTY_CFG_AGG_RTY_MODE, 0);
  1741. rt2x00_set_field32(&reg, TX_RTY_CFG_TX_AUTO_FB_ENABLE, 1);
  1742. rt2800_register_write(rt2x00dev, TX_RTY_CFG, reg);
  1743. rt2800_register_read(rt2x00dev, AUTO_RSP_CFG, &reg);
  1744. rt2x00_set_field32(&reg, AUTO_RSP_CFG_AUTORESPONDER, 1);
  1745. rt2x00_set_field32(&reg, AUTO_RSP_CFG_BAC_ACK_POLICY, 1);
  1746. rt2x00_set_field32(&reg, AUTO_RSP_CFG_CTS_40_MMODE, 0);
  1747. rt2x00_set_field32(&reg, AUTO_RSP_CFG_CTS_40_MREF, 0);
  1748. rt2x00_set_field32(&reg, AUTO_RSP_CFG_AR_PREAMBLE, 1);
  1749. rt2x00_set_field32(&reg, AUTO_RSP_CFG_DUAL_CTS_EN, 0);
  1750. rt2x00_set_field32(&reg, AUTO_RSP_CFG_ACK_CTS_PSM_BIT, 0);
  1751. rt2800_register_write(rt2x00dev, AUTO_RSP_CFG, reg);
  1752. rt2800_register_read(rt2x00dev, CCK_PROT_CFG, &reg);
  1753. rt2x00_set_field32(&reg, CCK_PROT_CFG_PROTECT_RATE, 3);
  1754. rt2x00_set_field32(&reg, CCK_PROT_CFG_PROTECT_CTRL, 0);
  1755. rt2x00_set_field32(&reg, CCK_PROT_CFG_PROTECT_NAV, 1);
  1756. rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_CCK, 1);
  1757. rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
  1758. rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_MM20, 1);
  1759. rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_MM40, 0);
  1760. rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_GF20, 1);
  1761. rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_GF40, 0);
  1762. rt2x00_set_field32(&reg, CCK_PROT_CFG_RTS_TH_EN, 1);
  1763. rt2800_register_write(rt2x00dev, CCK_PROT_CFG, reg);
  1764. rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, &reg);
  1765. rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_RATE, 3);
  1766. rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_CTRL, 0);
  1767. rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_NAV, 1);
  1768. rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_CCK, 1);
  1769. rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
  1770. rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_MM20, 1);
  1771. rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_MM40, 0);
  1772. rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_GF20, 1);
  1773. rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_GF40, 0);
  1774. rt2x00_set_field32(&reg, OFDM_PROT_CFG_RTS_TH_EN, 1);
  1775. rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
  1776. rt2800_register_read(rt2x00dev, MM20_PROT_CFG, &reg);
  1777. rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_RATE, 0x4004);
  1778. rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_CTRL, 0);
  1779. rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_NAV, 1);
  1780. rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_CCK, 1);
  1781. rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
  1782. rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_MM20, 1);
  1783. rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_MM40, 0);
  1784. rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_GF20, 1);
  1785. rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_GF40, 0);
  1786. rt2x00_set_field32(&reg, MM20_PROT_CFG_RTS_TH_EN, 0);
  1787. rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);
  1788. rt2800_register_read(rt2x00dev, MM40_PROT_CFG, &reg);
  1789. rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_RATE, 0x4084);
  1790. rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_CTRL, 0);
  1791. rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_NAV, 1);
  1792. rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_CCK, 1);
  1793. rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
  1794. rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_MM20, 1);
  1795. rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_MM40, 1);
  1796. rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_GF20, 1);
  1797. rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_GF40, 1);
  1798. rt2x00_set_field32(&reg, MM40_PROT_CFG_RTS_TH_EN, 0);
  1799. rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);
  1800. rt2800_register_read(rt2x00dev, GF20_PROT_CFG, &reg);
  1801. rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_RATE, 0x4004);
  1802. rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_CTRL, 0);
  1803. rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_NAV, 1);
  1804. rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_CCK, 1);
  1805. rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
  1806. rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_MM20, 1);
  1807. rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_MM40, 0);
  1808. rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_GF20, 1);
  1809. rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_GF40, 0);
  1810. rt2x00_set_field32(&reg, GF20_PROT_CFG_RTS_TH_EN, 0);
  1811. rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);
  1812. rt2800_register_read(rt2x00dev, GF40_PROT_CFG, &reg);
  1813. rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_RATE, 0x4084);
  1814. rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_CTRL, 0);
  1815. rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_NAV, 1);
  1816. rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_CCK, 1);
  1817. rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
  1818. rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_MM20, 1);
  1819. rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_MM40, 1);
  1820. rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_GF20, 1);
  1821. rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_GF40, 1);
  1822. rt2x00_set_field32(&reg, GF40_PROT_CFG_RTS_TH_EN, 0);
  1823. rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);
  1824. if (rt2x00_is_usb(rt2x00dev)) {
  1825. rt2800_register_write(rt2x00dev, PBF_CFG, 0xf40006);
  1826. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  1827. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  1828. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
  1829. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  1830. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
  1831. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 3);
  1832. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 0);
  1833. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_BIG_ENDIAN, 0);
  1834. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_HDR_SCATTER, 0);
  1835. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_HDR_SEG_LEN, 0);
  1836. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  1837. }
  1838. /*
  1839. * The legacy driver also sets TXOP_CTRL_CFG_RESERVED_TRUN_EN to 1
  1840. * although it is reserved.
  1841. */
  1842. rt2800_register_read(rt2x00dev, TXOP_CTRL_CFG, &reg);
  1843. rt2x00_set_field32(&reg, TXOP_CTRL_CFG_TIMEOUT_TRUN_EN, 1);
  1844. rt2x00_set_field32(&reg, TXOP_CTRL_CFG_AC_TRUN_EN, 1);
  1845. rt2x00_set_field32(&reg, TXOP_CTRL_CFG_TXRATEGRP_TRUN_EN, 1);
  1846. rt2x00_set_field32(&reg, TXOP_CTRL_CFG_USER_MODE_TRUN_EN, 1);
  1847. rt2x00_set_field32(&reg, TXOP_CTRL_CFG_MIMO_PS_TRUN_EN, 1);
  1848. rt2x00_set_field32(&reg, TXOP_CTRL_CFG_RESERVED_TRUN_EN, 1);
  1849. rt2x00_set_field32(&reg, TXOP_CTRL_CFG_LSIG_TXOP_EN, 0);
  1850. rt2x00_set_field32(&reg, TXOP_CTRL_CFG_EXT_CCA_EN, 0);
  1851. rt2x00_set_field32(&reg, TXOP_CTRL_CFG_EXT_CCA_DLY, 88);
  1852. rt2x00_set_field32(&reg, TXOP_CTRL_CFG_EXT_CWMIN, 0);
  1853. rt2800_register_write(rt2x00dev, TXOP_CTRL_CFG, reg);
  1854. rt2800_register_write(rt2x00dev, TXOP_HLDR_ET, 0x00000002);
  1855. rt2800_register_read(rt2x00dev, TX_RTS_CFG, &reg);
  1856. rt2x00_set_field32(&reg, TX_RTS_CFG_AUTO_RTS_RETRY_LIMIT, 32);
  1857. rt2x00_set_field32(&reg, TX_RTS_CFG_RTS_THRES,
  1858. IEEE80211_MAX_RTS_THRESHOLD);
  1859. rt2x00_set_field32(&reg, TX_RTS_CFG_RTS_FBK_EN, 0);
  1860. rt2800_register_write(rt2x00dev, TX_RTS_CFG, reg);
  1861. rt2800_register_write(rt2x00dev, EXP_ACK_TIME, 0x002400ca);
  1862. /*
  1863. * Usually the CCK SIFS time should be set to 10 and the OFDM SIFS
  1864. * time should be set to 16. However, the original Ralink driver uses
  1865. * 16 for both and indeed using a value of 10 for CCK SIFS results in
  1866. * connection problems with 11g + CTS protection. Hence, use the same
  1867. * defaults as the Ralink driver: 16 for both, CCK and OFDM SIFS.
  1868. */
  1869. rt2800_register_read(rt2x00dev, XIFS_TIME_CFG, &reg);
  1870. rt2x00_set_field32(&reg, XIFS_TIME_CFG_CCKM_SIFS_TIME, 16);
  1871. rt2x00_set_field32(&reg, XIFS_TIME_CFG_OFDM_SIFS_TIME, 16);
  1872. rt2x00_set_field32(&reg, XIFS_TIME_CFG_OFDM_XIFS_TIME, 4);
  1873. rt2x00_set_field32(&reg, XIFS_TIME_CFG_EIFS, 314);
  1874. rt2x00_set_field32(&reg, XIFS_TIME_CFG_BB_RXEND_ENABLE, 1);
  1875. rt2800_register_write(rt2x00dev, XIFS_TIME_CFG, reg);
  1876. rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
  1877. /*
  1878. * ASIC will keep garbage value after boot, clear encryption keys.
  1879. */
  1880. for (i = 0; i < 4; i++)
  1881. rt2800_register_write(rt2x00dev,
  1882. SHARED_KEY_MODE_ENTRY(i), 0);
  1883. for (i = 0; i < 256; i++) {
  1884. static const u32 wcid[2] = { 0xffffffff, 0x00ffffff };
  1885. rt2800_register_multiwrite(rt2x00dev, MAC_WCID_ENTRY(i),
  1886. wcid, sizeof(wcid));
  1887. rt2800_register_write(rt2x00dev, MAC_WCID_ATTR_ENTRY(i), 1);
  1888. rt2800_register_write(rt2x00dev, MAC_IVEIV_ENTRY(i), 0);
  1889. }
  1890. /*
  1891. * Clear all beacons
  1892. */
  1893. rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE0);
  1894. rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE1);
  1895. rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE2);
  1896. rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE3);
  1897. rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE4);
  1898. rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE5);
  1899. rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE6);
  1900. rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE7);
  1901. if (rt2x00_is_usb(rt2x00dev)) {
  1902. rt2800_register_read(rt2x00dev, US_CYC_CNT, &reg);
  1903. rt2x00_set_field32(&reg, US_CYC_CNT_CLOCK_CYCLE, 30);
  1904. rt2800_register_write(rt2x00dev, US_CYC_CNT, reg);
  1905. } else if (rt2x00_is_pcie(rt2x00dev)) {
  1906. rt2800_register_read(rt2x00dev, US_CYC_CNT, &reg);
  1907. rt2x00_set_field32(&reg, US_CYC_CNT_CLOCK_CYCLE, 125);
  1908. rt2800_register_write(rt2x00dev, US_CYC_CNT, reg);
  1909. }
  1910. rt2800_register_read(rt2x00dev, HT_FBK_CFG0, &reg);
  1911. rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS0FBK, 0);
  1912. rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS1FBK, 0);
  1913. rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS2FBK, 1);
  1914. rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS3FBK, 2);
  1915. rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS4FBK, 3);
  1916. rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS5FBK, 4);
  1917. rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS6FBK, 5);
  1918. rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS7FBK, 6);
  1919. rt2800_register_write(rt2x00dev, HT_FBK_CFG0, reg);
  1920. rt2800_register_read(rt2x00dev, HT_FBK_CFG1, &reg);
  1921. rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS8FBK, 8);
  1922. rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS9FBK, 8);
  1923. rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS10FBK, 9);
  1924. rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS11FBK, 10);
  1925. rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS12FBK, 11);
  1926. rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS13FBK, 12);
  1927. rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS14FBK, 13);
  1928. rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS15FBK, 14);
  1929. rt2800_register_write(rt2x00dev, HT_FBK_CFG1, reg);
  1930. rt2800_register_read(rt2x00dev, LG_FBK_CFG0, &reg);
  1931. rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS0FBK, 8);
  1932. rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS1FBK, 8);
  1933. rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS2FBK, 9);
  1934. rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS3FBK, 10);
  1935. rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS4FBK, 11);
  1936. rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS5FBK, 12);
  1937. rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS6FBK, 13);
  1938. rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS7FBK, 14);
  1939. rt2800_register_write(rt2x00dev, LG_FBK_CFG0, reg);
  1940. rt2800_register_read(rt2x00dev, LG_FBK_CFG1, &reg);
  1941. rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS0FBK, 0);
  1942. rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS1FBK, 0);
  1943. rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS2FBK, 1);
  1944. rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS3FBK, 2);
  1945. rt2800_register_write(rt2x00dev, LG_FBK_CFG1, reg);
  1946. /*
  1947. * Do not force the BA window size, we use the TXWI to set it
  1948. */
  1949. rt2800_register_read(rt2x00dev, AMPDU_BA_WINSIZE, &reg);
  1950. rt2x00_set_field32(&reg, AMPDU_BA_WINSIZE_FORCE_WINSIZE_ENABLE, 0);
  1951. rt2x00_set_field32(&reg, AMPDU_BA_WINSIZE_FORCE_WINSIZE, 0);
  1952. rt2800_register_write(rt2x00dev, AMPDU_BA_WINSIZE, reg);
  1953. /*
  1954. * We must clear the error counters.
  1955. * These registers are cleared on read,
  1956. * so we may pass a useless variable to store the value.
  1957. */
  1958. rt2800_register_read(rt2x00dev, RX_STA_CNT0, &reg);
  1959. rt2800_register_read(rt2x00dev, RX_STA_CNT1, &reg);
  1960. rt2800_register_read(rt2x00dev, RX_STA_CNT2, &reg);
  1961. rt2800_register_read(rt2x00dev, TX_STA_CNT0, &reg);
  1962. rt2800_register_read(rt2x00dev, TX_STA_CNT1, &reg);
  1963. rt2800_register_read(rt2x00dev, TX_STA_CNT2, &reg);
  1964. /*
  1965. * Setup leadtime for pre tbtt interrupt to 6ms
  1966. */
  1967. rt2800_register_read(rt2x00dev, INT_TIMER_CFG, &reg);
  1968. rt2x00_set_field32(&reg, INT_TIMER_CFG_PRE_TBTT_TIMER, 6 << 4);
  1969. rt2800_register_write(rt2x00dev, INT_TIMER_CFG, reg);
  1970. /*
  1971. * Set up channel statistics timer
  1972. */
  1973. rt2800_register_read(rt2x00dev, CH_TIME_CFG, &reg);
  1974. rt2x00_set_field32(&reg, CH_TIME_CFG_EIFS_BUSY, 1);
  1975. rt2x00_set_field32(&reg, CH_TIME_CFG_NAV_BUSY, 1);
  1976. rt2x00_set_field32(&reg, CH_TIME_CFG_RX_BUSY, 1);
  1977. rt2x00_set_field32(&reg, CH_TIME_CFG_TX_BUSY, 1);
  1978. rt2x00_set_field32(&reg, CH_TIME_CFG_TMR_EN, 1);
  1979. rt2800_register_write(rt2x00dev, CH_TIME_CFG, reg);
  1980. return 0;
  1981. }
  1982. static int rt2800_wait_bbp_rf_ready(struct rt2x00_dev *rt2x00dev)
  1983. {
  1984. unsigned int i;
  1985. u32 reg;
  1986. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  1987. rt2800_register_read(rt2x00dev, MAC_STATUS_CFG, &reg);
  1988. if (!rt2x00_get_field32(reg, MAC_STATUS_CFG_BBP_RF_BUSY))
  1989. return 0;
  1990. udelay(REGISTER_BUSY_DELAY);
  1991. }
  1992. ERROR(rt2x00dev, "BBP/RF register access failed, aborting.\n");
  1993. return -EACCES;
  1994. }
  1995. static int rt2800_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
  1996. {
  1997. unsigned int i;
  1998. u8 value;
  1999. /*
  2000. * BBP was enabled after firmware was loaded,
  2001. * but we need to reactivate it now.
  2002. */
  2003. rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
  2004. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
  2005. msleep(1);
  2006. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  2007. rt2800_bbp_read(rt2x00dev, 0, &value);
  2008. if ((value != 0xff) && (value != 0x00))
  2009. return 0;
  2010. udelay(REGISTER_BUSY_DELAY);
  2011. }
  2012. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  2013. return -EACCES;
  2014. }
  2015. static int rt2800_init_bbp(struct rt2x00_dev *rt2x00dev)
  2016. {
  2017. unsigned int i;
  2018. u16 eeprom;
  2019. u8 reg_id;
  2020. u8 value;
  2021. if (unlikely(rt2800_wait_bbp_rf_ready(rt2x00dev) ||
  2022. rt2800_wait_bbp_ready(rt2x00dev)))
  2023. return -EACCES;
  2024. if (rt2800_is_305x_soc(rt2x00dev))
  2025. rt2800_bbp_write(rt2x00dev, 31, 0x08);
  2026. rt2800_bbp_write(rt2x00dev, 65, 0x2c);
  2027. rt2800_bbp_write(rt2x00dev, 66, 0x38);
  2028. if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C)) {
  2029. rt2800_bbp_write(rt2x00dev, 69, 0x16);
  2030. rt2800_bbp_write(rt2x00dev, 73, 0x12);
  2031. } else {
  2032. rt2800_bbp_write(rt2x00dev, 69, 0x12);
  2033. rt2800_bbp_write(rt2x00dev, 73, 0x10);
  2034. }
  2035. rt2800_bbp_write(rt2x00dev, 70, 0x0a);
  2036. if (rt2x00_rt(rt2x00dev, RT3070) ||
  2037. rt2x00_rt(rt2x00dev, RT3071) ||
  2038. rt2x00_rt(rt2x00dev, RT3090) ||
  2039. rt2x00_rt(rt2x00dev, RT3390)) {
  2040. rt2800_bbp_write(rt2x00dev, 79, 0x13);
  2041. rt2800_bbp_write(rt2x00dev, 80, 0x05);
  2042. rt2800_bbp_write(rt2x00dev, 81, 0x33);
  2043. } else if (rt2800_is_305x_soc(rt2x00dev)) {
  2044. rt2800_bbp_write(rt2x00dev, 78, 0x0e);
  2045. rt2800_bbp_write(rt2x00dev, 80, 0x08);
  2046. } else {
  2047. rt2800_bbp_write(rt2x00dev, 81, 0x37);
  2048. }
  2049. rt2800_bbp_write(rt2x00dev, 82, 0x62);
  2050. rt2800_bbp_write(rt2x00dev, 83, 0x6a);
  2051. if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860D))
  2052. rt2800_bbp_write(rt2x00dev, 84, 0x19);
  2053. else
  2054. rt2800_bbp_write(rt2x00dev, 84, 0x99);
  2055. rt2800_bbp_write(rt2x00dev, 86, 0x00);
  2056. rt2800_bbp_write(rt2x00dev, 91, 0x04);
  2057. rt2800_bbp_write(rt2x00dev, 92, 0x00);
  2058. if (rt2x00_rt_rev_gte(rt2x00dev, RT3070, REV_RT3070F) ||
  2059. rt2x00_rt_rev_gte(rt2x00dev, RT3071, REV_RT3071E) ||
  2060. rt2x00_rt_rev_gte(rt2x00dev, RT3090, REV_RT3090E) ||
  2061. rt2x00_rt_rev_gte(rt2x00dev, RT3390, REV_RT3390E) ||
  2062. rt2800_is_305x_soc(rt2x00dev))
  2063. rt2800_bbp_write(rt2x00dev, 103, 0xc0);
  2064. else
  2065. rt2800_bbp_write(rt2x00dev, 103, 0x00);
  2066. if (rt2800_is_305x_soc(rt2x00dev))
  2067. rt2800_bbp_write(rt2x00dev, 105, 0x01);
  2068. else
  2069. rt2800_bbp_write(rt2x00dev, 105, 0x05);
  2070. rt2800_bbp_write(rt2x00dev, 106, 0x35);
  2071. if (rt2x00_rt(rt2x00dev, RT3071) ||
  2072. rt2x00_rt(rt2x00dev, RT3090) ||
  2073. rt2x00_rt(rt2x00dev, RT3390)) {
  2074. rt2800_bbp_read(rt2x00dev, 138, &value);
  2075. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &eeprom);
  2076. if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH) == 1)
  2077. value |= 0x20;
  2078. if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH) == 1)
  2079. value &= ~0x02;
  2080. rt2800_bbp_write(rt2x00dev, 138, value);
  2081. }
  2082. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  2083. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  2084. if (eeprom != 0xffff && eeprom != 0x0000) {
  2085. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  2086. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  2087. rt2800_bbp_write(rt2x00dev, reg_id, value);
  2088. }
  2089. }
  2090. return 0;
  2091. }
  2092. static u8 rt2800_init_rx_filter(struct rt2x00_dev *rt2x00dev,
  2093. bool bw40, u8 rfcsr24, u8 filter_target)
  2094. {
  2095. unsigned int i;
  2096. u8 bbp;
  2097. u8 rfcsr;
  2098. u8 passband;
  2099. u8 stopband;
  2100. u8 overtuned = 0;
  2101. rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
  2102. rt2800_bbp_read(rt2x00dev, 4, &bbp);
  2103. rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * bw40);
  2104. rt2800_bbp_write(rt2x00dev, 4, bbp);
  2105. rt2800_rfcsr_read(rt2x00dev, 31, &rfcsr);
  2106. rt2x00_set_field8(&rfcsr, RFCSR31_RX_H20M, bw40);
  2107. rt2800_rfcsr_write(rt2x00dev, 31, rfcsr);
  2108. rt2800_rfcsr_read(rt2x00dev, 22, &rfcsr);
  2109. rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 1);
  2110. rt2800_rfcsr_write(rt2x00dev, 22, rfcsr);
  2111. /*
  2112. * Set power & frequency of passband test tone
  2113. */
  2114. rt2800_bbp_write(rt2x00dev, 24, 0);
  2115. for (i = 0; i < 100; i++) {
  2116. rt2800_bbp_write(rt2x00dev, 25, 0x90);
  2117. msleep(1);
  2118. rt2800_bbp_read(rt2x00dev, 55, &passband);
  2119. if (passband)
  2120. break;
  2121. }
  2122. /*
  2123. * Set power & frequency of stopband test tone
  2124. */
  2125. rt2800_bbp_write(rt2x00dev, 24, 0x06);
  2126. for (i = 0; i < 100; i++) {
  2127. rt2800_bbp_write(rt2x00dev, 25, 0x90);
  2128. msleep(1);
  2129. rt2800_bbp_read(rt2x00dev, 55, &stopband);
  2130. if ((passband - stopband) <= filter_target) {
  2131. rfcsr24++;
  2132. overtuned += ((passband - stopband) == filter_target);
  2133. } else
  2134. break;
  2135. rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
  2136. }
  2137. rfcsr24 -= !!overtuned;
  2138. rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
  2139. return rfcsr24;
  2140. }
  2141. static int rt2800_init_rfcsr(struct rt2x00_dev *rt2x00dev)
  2142. {
  2143. u8 rfcsr;
  2144. u8 bbp;
  2145. u32 reg;
  2146. u16 eeprom;
  2147. if (!rt2x00_rt(rt2x00dev, RT3070) &&
  2148. !rt2x00_rt(rt2x00dev, RT3071) &&
  2149. !rt2x00_rt(rt2x00dev, RT3090) &&
  2150. !rt2x00_rt(rt2x00dev, RT3390) &&
  2151. !rt2800_is_305x_soc(rt2x00dev))
  2152. return 0;
  2153. /*
  2154. * Init RF calibration.
  2155. */
  2156. rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr);
  2157. rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 1);
  2158. rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
  2159. msleep(1);
  2160. rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 0);
  2161. rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
  2162. if (rt2x00_rt(rt2x00dev, RT3070) ||
  2163. rt2x00_rt(rt2x00dev, RT3071) ||
  2164. rt2x00_rt(rt2x00dev, RT3090)) {
  2165. rt2800_rfcsr_write(rt2x00dev, 4, 0x40);
  2166. rt2800_rfcsr_write(rt2x00dev, 5, 0x03);
  2167. rt2800_rfcsr_write(rt2x00dev, 6, 0x02);
  2168. rt2800_rfcsr_write(rt2x00dev, 7, 0x60);
  2169. rt2800_rfcsr_write(rt2x00dev, 9, 0x0f);
  2170. rt2800_rfcsr_write(rt2x00dev, 10, 0x41);
  2171. rt2800_rfcsr_write(rt2x00dev, 11, 0x21);
  2172. rt2800_rfcsr_write(rt2x00dev, 12, 0x7b);
  2173. rt2800_rfcsr_write(rt2x00dev, 14, 0x90);
  2174. rt2800_rfcsr_write(rt2x00dev, 15, 0x58);
  2175. rt2800_rfcsr_write(rt2x00dev, 16, 0xb3);
  2176. rt2800_rfcsr_write(rt2x00dev, 17, 0x92);
  2177. rt2800_rfcsr_write(rt2x00dev, 18, 0x2c);
  2178. rt2800_rfcsr_write(rt2x00dev, 19, 0x02);
  2179. rt2800_rfcsr_write(rt2x00dev, 20, 0xba);
  2180. rt2800_rfcsr_write(rt2x00dev, 21, 0xdb);
  2181. rt2800_rfcsr_write(rt2x00dev, 24, 0x16);
  2182. rt2800_rfcsr_write(rt2x00dev, 25, 0x01);
  2183. rt2800_rfcsr_write(rt2x00dev, 29, 0x1f);
  2184. } else if (rt2x00_rt(rt2x00dev, RT3390)) {
  2185. rt2800_rfcsr_write(rt2x00dev, 0, 0xa0);
  2186. rt2800_rfcsr_write(rt2x00dev, 1, 0xe1);
  2187. rt2800_rfcsr_write(rt2x00dev, 2, 0xf1);
  2188. rt2800_rfcsr_write(rt2x00dev, 3, 0x62);
  2189. rt2800_rfcsr_write(rt2x00dev, 4, 0x40);
  2190. rt2800_rfcsr_write(rt2x00dev, 5, 0x8b);
  2191. rt2800_rfcsr_write(rt2x00dev, 6, 0x42);
  2192. rt2800_rfcsr_write(rt2x00dev, 7, 0x34);
  2193. rt2800_rfcsr_write(rt2x00dev, 8, 0x00);
  2194. rt2800_rfcsr_write(rt2x00dev, 9, 0xc0);
  2195. rt2800_rfcsr_write(rt2x00dev, 10, 0x61);
  2196. rt2800_rfcsr_write(rt2x00dev, 11, 0x21);
  2197. rt2800_rfcsr_write(rt2x00dev, 12, 0x3b);
  2198. rt2800_rfcsr_write(rt2x00dev, 13, 0xe0);
  2199. rt2800_rfcsr_write(rt2x00dev, 14, 0x90);
  2200. rt2800_rfcsr_write(rt2x00dev, 15, 0x53);
  2201. rt2800_rfcsr_write(rt2x00dev, 16, 0xe0);
  2202. rt2800_rfcsr_write(rt2x00dev, 17, 0x94);
  2203. rt2800_rfcsr_write(rt2x00dev, 18, 0x5c);
  2204. rt2800_rfcsr_write(rt2x00dev, 19, 0x4a);
  2205. rt2800_rfcsr_write(rt2x00dev, 20, 0xb2);
  2206. rt2800_rfcsr_write(rt2x00dev, 21, 0xf6);
  2207. rt2800_rfcsr_write(rt2x00dev, 22, 0x00);
  2208. rt2800_rfcsr_write(rt2x00dev, 23, 0x14);
  2209. rt2800_rfcsr_write(rt2x00dev, 24, 0x08);
  2210. rt2800_rfcsr_write(rt2x00dev, 25, 0x3d);
  2211. rt2800_rfcsr_write(rt2x00dev, 26, 0x85);
  2212. rt2800_rfcsr_write(rt2x00dev, 27, 0x00);
  2213. rt2800_rfcsr_write(rt2x00dev, 28, 0x41);
  2214. rt2800_rfcsr_write(rt2x00dev, 29, 0x8f);
  2215. rt2800_rfcsr_write(rt2x00dev, 30, 0x20);
  2216. rt2800_rfcsr_write(rt2x00dev, 31, 0x0f);
  2217. } else if (rt2800_is_305x_soc(rt2x00dev)) {
  2218. rt2800_rfcsr_write(rt2x00dev, 0, 0x50);
  2219. rt2800_rfcsr_write(rt2x00dev, 1, 0x01);
  2220. rt2800_rfcsr_write(rt2x00dev, 2, 0xf7);
  2221. rt2800_rfcsr_write(rt2x00dev, 3, 0x75);
  2222. rt2800_rfcsr_write(rt2x00dev, 4, 0x40);
  2223. rt2800_rfcsr_write(rt2x00dev, 5, 0x03);
  2224. rt2800_rfcsr_write(rt2x00dev, 6, 0x02);
  2225. rt2800_rfcsr_write(rt2x00dev, 7, 0x50);
  2226. rt2800_rfcsr_write(rt2x00dev, 8, 0x39);
  2227. rt2800_rfcsr_write(rt2x00dev, 9, 0x0f);
  2228. rt2800_rfcsr_write(rt2x00dev, 10, 0x60);
  2229. rt2800_rfcsr_write(rt2x00dev, 11, 0x21);
  2230. rt2800_rfcsr_write(rt2x00dev, 12, 0x75);
  2231. rt2800_rfcsr_write(rt2x00dev, 13, 0x75);
  2232. rt2800_rfcsr_write(rt2x00dev, 14, 0x90);
  2233. rt2800_rfcsr_write(rt2x00dev, 15, 0x58);
  2234. rt2800_rfcsr_write(rt2x00dev, 16, 0xb3);
  2235. rt2800_rfcsr_write(rt2x00dev, 17, 0x92);
  2236. rt2800_rfcsr_write(rt2x00dev, 18, 0x2c);
  2237. rt2800_rfcsr_write(rt2x00dev, 19, 0x02);
  2238. rt2800_rfcsr_write(rt2x00dev, 20, 0xba);
  2239. rt2800_rfcsr_write(rt2x00dev, 21, 0xdb);
  2240. rt2800_rfcsr_write(rt2x00dev, 22, 0x00);
  2241. rt2800_rfcsr_write(rt2x00dev, 23, 0x31);
  2242. rt2800_rfcsr_write(rt2x00dev, 24, 0x08);
  2243. rt2800_rfcsr_write(rt2x00dev, 25, 0x01);
  2244. rt2800_rfcsr_write(rt2x00dev, 26, 0x25);
  2245. rt2800_rfcsr_write(rt2x00dev, 27, 0x23);
  2246. rt2800_rfcsr_write(rt2x00dev, 28, 0x13);
  2247. rt2800_rfcsr_write(rt2x00dev, 29, 0x83);
  2248. rt2800_rfcsr_write(rt2x00dev, 30, 0x00);
  2249. rt2800_rfcsr_write(rt2x00dev, 31, 0x00);
  2250. return 0;
  2251. }
  2252. if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F)) {
  2253. rt2800_register_read(rt2x00dev, LDO_CFG0, &reg);
  2254. rt2x00_set_field32(&reg, LDO_CFG0_BGSEL, 1);
  2255. rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL, 3);
  2256. rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
  2257. } else if (rt2x00_rt(rt2x00dev, RT3071) ||
  2258. rt2x00_rt(rt2x00dev, RT3090)) {
  2259. rt2800_rfcsr_write(rt2x00dev, 31, 0x14);
  2260. rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr);
  2261. rt2x00_set_field8(&rfcsr, RFCSR6_R2, 1);
  2262. rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);
  2263. rt2800_register_read(rt2x00dev, LDO_CFG0, &reg);
  2264. rt2x00_set_field32(&reg, LDO_CFG0_BGSEL, 1);
  2265. if (rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
  2266. rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E)) {
  2267. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &eeprom);
  2268. if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_DAC_TEST))
  2269. rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL, 3);
  2270. else
  2271. rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL, 0);
  2272. }
  2273. rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
  2274. rt2800_register_read(rt2x00dev, GPIO_SWITCH, &reg);
  2275. rt2x00_set_field32(&reg, GPIO_SWITCH_5, 0);
  2276. rt2800_register_write(rt2x00dev, GPIO_SWITCH, reg);
  2277. } else if (rt2x00_rt(rt2x00dev, RT3390)) {
  2278. rt2800_register_read(rt2x00dev, GPIO_SWITCH, &reg);
  2279. rt2x00_set_field32(&reg, GPIO_SWITCH_5, 0);
  2280. rt2800_register_write(rt2x00dev, GPIO_SWITCH, reg);
  2281. }
  2282. /*
  2283. * Set RX Filter calibration for 20MHz and 40MHz
  2284. */
  2285. if (rt2x00_rt(rt2x00dev, RT3070)) {
  2286. rt2x00dev->calibration[0] =
  2287. rt2800_init_rx_filter(rt2x00dev, false, 0x07, 0x16);
  2288. rt2x00dev->calibration[1] =
  2289. rt2800_init_rx_filter(rt2x00dev, true, 0x27, 0x19);
  2290. } else if (rt2x00_rt(rt2x00dev, RT3071) ||
  2291. rt2x00_rt(rt2x00dev, RT3090) ||
  2292. rt2x00_rt(rt2x00dev, RT3390)) {
  2293. rt2x00dev->calibration[0] =
  2294. rt2800_init_rx_filter(rt2x00dev, false, 0x07, 0x13);
  2295. rt2x00dev->calibration[1] =
  2296. rt2800_init_rx_filter(rt2x00dev, true, 0x27, 0x15);
  2297. }
  2298. /*
  2299. * Set back to initial state
  2300. */
  2301. rt2800_bbp_write(rt2x00dev, 24, 0);
  2302. rt2800_rfcsr_read(rt2x00dev, 22, &rfcsr);
  2303. rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 0);
  2304. rt2800_rfcsr_write(rt2x00dev, 22, rfcsr);
  2305. /*
  2306. * set BBP back to BW20
  2307. */
  2308. rt2800_bbp_read(rt2x00dev, 4, &bbp);
  2309. rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 0);
  2310. rt2800_bbp_write(rt2x00dev, 4, bbp);
  2311. if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F) ||
  2312. rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
  2313. rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E) ||
  2314. rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E))
  2315. rt2800_rfcsr_write(rt2x00dev, 27, 0x03);
  2316. rt2800_register_read(rt2x00dev, OPT_14_CSR, &reg);
  2317. rt2x00_set_field32(&reg, OPT_14_CSR_BIT0, 1);
  2318. rt2800_register_write(rt2x00dev, OPT_14_CSR, reg);
  2319. rt2800_rfcsr_read(rt2x00dev, 17, &rfcsr);
  2320. rt2x00_set_field8(&rfcsr, RFCSR17_TX_LO1_EN, 0);
  2321. if (rt2x00_rt(rt2x00dev, RT3070) ||
  2322. rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
  2323. rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E) ||
  2324. rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E)) {
  2325. if (!test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
  2326. rt2x00_set_field8(&rfcsr, RFCSR17_R, 1);
  2327. }
  2328. rt2x00_eeprom_read(rt2x00dev, EEPROM_TXMIXER_GAIN_BG, &eeprom);
  2329. if (rt2x00_get_field16(eeprom, EEPROM_TXMIXER_GAIN_BG_VAL) >= 1)
  2330. rt2x00_set_field8(&rfcsr, RFCSR17_TXMIXER_GAIN,
  2331. rt2x00_get_field16(eeprom,
  2332. EEPROM_TXMIXER_GAIN_BG_VAL));
  2333. rt2800_rfcsr_write(rt2x00dev, 17, rfcsr);
  2334. if (rt2x00_rt(rt2x00dev, RT3090)) {
  2335. rt2800_bbp_read(rt2x00dev, 138, &bbp);
  2336. /* Turn off unused DAC1 and ADC1 to reduce power consumption */
  2337. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &eeprom);
  2338. if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH) == 1)
  2339. rt2x00_set_field8(&bbp, BBP138_RX_ADC1, 0);
  2340. if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH) == 1)
  2341. rt2x00_set_field8(&bbp, BBP138_TX_DAC1, 1);
  2342. rt2800_bbp_write(rt2x00dev, 138, bbp);
  2343. }
  2344. if (rt2x00_rt(rt2x00dev, RT3071) ||
  2345. rt2x00_rt(rt2x00dev, RT3090) ||
  2346. rt2x00_rt(rt2x00dev, RT3390)) {
  2347. rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr);
  2348. rt2x00_set_field8(&rfcsr, RFCSR1_RF_BLOCK_EN, 1);
  2349. rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 0);
  2350. rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 0);
  2351. rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 1);
  2352. rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 1);
  2353. rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
  2354. rt2800_rfcsr_read(rt2x00dev, 15, &rfcsr);
  2355. rt2x00_set_field8(&rfcsr, RFCSR15_TX_LO2_EN, 0);
  2356. rt2800_rfcsr_write(rt2x00dev, 15, rfcsr);
  2357. rt2800_rfcsr_read(rt2x00dev, 20, &rfcsr);
  2358. rt2x00_set_field8(&rfcsr, RFCSR20_RX_LO1_EN, 0);
  2359. rt2800_rfcsr_write(rt2x00dev, 20, rfcsr);
  2360. rt2800_rfcsr_read(rt2x00dev, 21, &rfcsr);
  2361. rt2x00_set_field8(&rfcsr, RFCSR21_RX_LO2_EN, 0);
  2362. rt2800_rfcsr_write(rt2x00dev, 21, rfcsr);
  2363. }
  2364. if (rt2x00_rt(rt2x00dev, RT3070)) {
  2365. rt2800_rfcsr_read(rt2x00dev, 27, &rfcsr);
  2366. if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F))
  2367. rt2x00_set_field8(&rfcsr, RFCSR27_R1, 3);
  2368. else
  2369. rt2x00_set_field8(&rfcsr, RFCSR27_R1, 0);
  2370. rt2x00_set_field8(&rfcsr, RFCSR27_R2, 0);
  2371. rt2x00_set_field8(&rfcsr, RFCSR27_R3, 0);
  2372. rt2x00_set_field8(&rfcsr, RFCSR27_R4, 0);
  2373. rt2800_rfcsr_write(rt2x00dev, 27, rfcsr);
  2374. }
  2375. return 0;
  2376. }
  2377. int rt2800_enable_radio(struct rt2x00_dev *rt2x00dev)
  2378. {
  2379. u32 reg;
  2380. u16 word;
  2381. /*
  2382. * Initialize all registers.
  2383. */
  2384. if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
  2385. rt2800_init_registers(rt2x00dev) ||
  2386. rt2800_init_bbp(rt2x00dev) ||
  2387. rt2800_init_rfcsr(rt2x00dev)))
  2388. return -EIO;
  2389. /*
  2390. * Send signal to firmware during boot time.
  2391. */
  2392. rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0, 0, 0);
  2393. if (rt2x00_is_usb(rt2x00dev) &&
  2394. (rt2x00_rt(rt2x00dev, RT3070) ||
  2395. rt2x00_rt(rt2x00dev, RT3071) ||
  2396. rt2x00_rt(rt2x00dev, RT3572))) {
  2397. udelay(200);
  2398. rt2800_mcu_request(rt2x00dev, MCU_CURRENT, 0, 0, 0);
  2399. udelay(10);
  2400. }
  2401. /*
  2402. * Enable RX.
  2403. */
  2404. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  2405. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
  2406. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
  2407. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  2408. udelay(50);
  2409. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  2410. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1);
  2411. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1);
  2412. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 2);
  2413. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  2414. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  2415. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  2416. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
  2417. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
  2418. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  2419. /*
  2420. * Initialize LED control
  2421. */
  2422. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED_AG_CONF, &word);
  2423. rt2800_mcu_request(rt2x00dev, MCU_LED_AG_CONF, 0xff,
  2424. word & 0xff, (word >> 8) & 0xff);
  2425. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED_ACT_CONF, &word);
  2426. rt2800_mcu_request(rt2x00dev, MCU_LED_ACT_CONF, 0xff,
  2427. word & 0xff, (word >> 8) & 0xff);
  2428. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED_POLARITY, &word);
  2429. rt2800_mcu_request(rt2x00dev, MCU_LED_LED_POLARITY, 0xff,
  2430. word & 0xff, (word >> 8) & 0xff);
  2431. return 0;
  2432. }
  2433. EXPORT_SYMBOL_GPL(rt2800_enable_radio);
  2434. void rt2800_disable_radio(struct rt2x00_dev *rt2x00dev)
  2435. {
  2436. u32 reg;
  2437. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  2438. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  2439. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  2440. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  2441. /* Wait for DMA, ignore error */
  2442. rt2800_wait_wpdma_ready(rt2x00dev);
  2443. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  2444. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 0);
  2445. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
  2446. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  2447. }
  2448. EXPORT_SYMBOL_GPL(rt2800_disable_radio);
  2449. int rt2800_efuse_detect(struct rt2x00_dev *rt2x00dev)
  2450. {
  2451. u32 reg;
  2452. rt2800_register_read(rt2x00dev, EFUSE_CTRL, &reg);
  2453. return rt2x00_get_field32(reg, EFUSE_CTRL_PRESENT);
  2454. }
  2455. EXPORT_SYMBOL_GPL(rt2800_efuse_detect);
  2456. static void rt2800_efuse_read(struct rt2x00_dev *rt2x00dev, unsigned int i)
  2457. {
  2458. u32 reg;
  2459. mutex_lock(&rt2x00dev->csr_mutex);
  2460. rt2800_register_read_lock(rt2x00dev, EFUSE_CTRL, &reg);
  2461. rt2x00_set_field32(&reg, EFUSE_CTRL_ADDRESS_IN, i);
  2462. rt2x00_set_field32(&reg, EFUSE_CTRL_MODE, 0);
  2463. rt2x00_set_field32(&reg, EFUSE_CTRL_KICK, 1);
  2464. rt2800_register_write_lock(rt2x00dev, EFUSE_CTRL, reg);
  2465. /* Wait until the EEPROM has been loaded */
  2466. rt2800_regbusy_read(rt2x00dev, EFUSE_CTRL, EFUSE_CTRL_KICK, &reg);
  2467. /* Apparently the data is read from end to start */
  2468. rt2800_register_read_lock(rt2x00dev, EFUSE_DATA3,
  2469. (u32 *)&rt2x00dev->eeprom[i]);
  2470. rt2800_register_read_lock(rt2x00dev, EFUSE_DATA2,
  2471. (u32 *)&rt2x00dev->eeprom[i + 2]);
  2472. rt2800_register_read_lock(rt2x00dev, EFUSE_DATA1,
  2473. (u32 *)&rt2x00dev->eeprom[i + 4]);
  2474. rt2800_register_read_lock(rt2x00dev, EFUSE_DATA0,
  2475. (u32 *)&rt2x00dev->eeprom[i + 6]);
  2476. mutex_unlock(&rt2x00dev->csr_mutex);
  2477. }
  2478. void rt2800_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  2479. {
  2480. unsigned int i;
  2481. for (i = 0; i < EEPROM_SIZE / sizeof(u16); i += 8)
  2482. rt2800_efuse_read(rt2x00dev, i);
  2483. }
  2484. EXPORT_SYMBOL_GPL(rt2800_read_eeprom_efuse);
  2485. int rt2800_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  2486. {
  2487. u16 word;
  2488. u8 *mac;
  2489. u8 default_lna_gain;
  2490. /*
  2491. * Start validation of the data that has been read.
  2492. */
  2493. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  2494. if (!is_valid_ether_addr(mac)) {
  2495. random_ether_addr(mac);
  2496. EEPROM(rt2x00dev, "MAC: %pM\n", mac);
  2497. }
  2498. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &word);
  2499. if (word == 0xffff) {
  2500. rt2x00_set_field16(&word, EEPROM_NIC_CONF0_RXPATH, 2);
  2501. rt2x00_set_field16(&word, EEPROM_NIC_CONF0_TXPATH, 1);
  2502. rt2x00_set_field16(&word, EEPROM_NIC_CONF0_RF_TYPE, RF2820);
  2503. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC_CONF0, word);
  2504. EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
  2505. } else if (rt2x00_rt(rt2x00dev, RT2860) ||
  2506. rt2x00_rt(rt2x00dev, RT2872)) {
  2507. /*
  2508. * There is a max of 2 RX streams for RT28x0 series
  2509. */
  2510. if (rt2x00_get_field16(word, EEPROM_NIC_CONF0_RXPATH) > 2)
  2511. rt2x00_set_field16(&word, EEPROM_NIC_CONF0_RXPATH, 2);
  2512. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC_CONF0, word);
  2513. }
  2514. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &word);
  2515. if (word == 0xffff) {
  2516. rt2x00_set_field16(&word, EEPROM_NIC_CONF1_HW_RADIO, 0);
  2517. rt2x00_set_field16(&word, EEPROM_NIC_CONF1_EXTERNAL_TX_ALC, 0);
  2518. rt2x00_set_field16(&word, EEPROM_NIC_CONF1_EXTERNAL_LNA_2G, 0);
  2519. rt2x00_set_field16(&word, EEPROM_NIC_CONF1_EXTERNAL_LNA_5G, 0);
  2520. rt2x00_set_field16(&word, EEPROM_NIC_CONF1_CARDBUS_ACCEL, 0);
  2521. rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_SB_2G, 0);
  2522. rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_SB_5G, 0);
  2523. rt2x00_set_field16(&word, EEPROM_NIC_CONF1_WPS_PBC, 0);
  2524. rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_2G, 0);
  2525. rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_5G, 0);
  2526. rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BROADBAND_EXT_LNA, 0);
  2527. rt2x00_set_field16(&word, EEPROM_NIC_CONF1_ANT_DIVERSITY, 0);
  2528. rt2x00_set_field16(&word, EEPROM_NIC_CONF1_INTERNAL_TX_ALC, 0);
  2529. rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BT_COEXIST, 0);
  2530. rt2x00_set_field16(&word, EEPROM_NIC_CONF1_DAC_TEST, 0);
  2531. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC_CONF1, word);
  2532. EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
  2533. }
  2534. rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
  2535. if ((word & 0x00ff) == 0x00ff) {
  2536. rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
  2537. rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
  2538. EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
  2539. }
  2540. if ((word & 0xff00) == 0xff00) {
  2541. rt2x00_set_field16(&word, EEPROM_FREQ_LED_MODE,
  2542. LED_MODE_TXRX_ACTIVITY);
  2543. rt2x00_set_field16(&word, EEPROM_FREQ_LED_POLARITY, 0);
  2544. rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
  2545. rt2x00_eeprom_write(rt2x00dev, EEPROM_LED_AG_CONF, 0x5555);
  2546. rt2x00_eeprom_write(rt2x00dev, EEPROM_LED_ACT_CONF, 0x2221);
  2547. rt2x00_eeprom_write(rt2x00dev, EEPROM_LED_POLARITY, 0xa9f8);
  2548. EEPROM(rt2x00dev, "Led Mode: 0x%04x\n", word);
  2549. }
  2550. /*
  2551. * During the LNA validation we are going to use
  2552. * lna0 as correct value. Note that EEPROM_LNA
  2553. * is never validated.
  2554. */
  2555. rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &word);
  2556. default_lna_gain = rt2x00_get_field16(word, EEPROM_LNA_A0);
  2557. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG, &word);
  2558. if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET0)) > 10)
  2559. rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET0, 0);
  2560. if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET1)) > 10)
  2561. rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET1, 0);
  2562. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG, word);
  2563. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &word);
  2564. if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG2_OFFSET2)) > 10)
  2565. rt2x00_set_field16(&word, EEPROM_RSSI_BG2_OFFSET2, 0);
  2566. if (rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0x00 ||
  2567. rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0xff)
  2568. rt2x00_set_field16(&word, EEPROM_RSSI_BG2_LNA_A1,
  2569. default_lna_gain);
  2570. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG2, word);
  2571. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A, &word);
  2572. if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET0)) > 10)
  2573. rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET0, 0);
  2574. if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET1)) > 10)
  2575. rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET1, 0);
  2576. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A, word);
  2577. rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &word);
  2578. if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A2_OFFSET2)) > 10)
  2579. rt2x00_set_field16(&word, EEPROM_RSSI_A2_OFFSET2, 0);
  2580. if (rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0x00 ||
  2581. rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0xff)
  2582. rt2x00_set_field16(&word, EEPROM_RSSI_A2_LNA_A2,
  2583. default_lna_gain);
  2584. rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A2, word);
  2585. rt2x00_eeprom_read(rt2x00dev, EEPROM_MAX_TX_POWER, &word);
  2586. if (rt2x00_get_field16(word, EEPROM_MAX_TX_POWER_24GHZ) == 0xff)
  2587. rt2x00_set_field16(&word, EEPROM_MAX_TX_POWER_24GHZ, MAX_G_TXPOWER);
  2588. if (rt2x00_get_field16(word, EEPROM_MAX_TX_POWER_5GHZ) == 0xff)
  2589. rt2x00_set_field16(&word, EEPROM_MAX_TX_POWER_5GHZ, MAX_A_TXPOWER);
  2590. rt2x00_eeprom_write(rt2x00dev, EEPROM_MAX_TX_POWER, word);
  2591. return 0;
  2592. }
  2593. EXPORT_SYMBOL_GPL(rt2800_validate_eeprom);
  2594. int rt2800_init_eeprom(struct rt2x00_dev *rt2x00dev)
  2595. {
  2596. u32 reg;
  2597. u16 value;
  2598. u16 eeprom;
  2599. /*
  2600. * Read EEPROM word for configuration.
  2601. */
  2602. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &eeprom);
  2603. /*
  2604. * Identify RF chipset.
  2605. */
  2606. value = rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RF_TYPE);
  2607. rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
  2608. rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
  2609. value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
  2610. if (!rt2x00_rt(rt2x00dev, RT2860) &&
  2611. !rt2x00_rt(rt2x00dev, RT2872) &&
  2612. !rt2x00_rt(rt2x00dev, RT2883) &&
  2613. !rt2x00_rt(rt2x00dev, RT3070) &&
  2614. !rt2x00_rt(rt2x00dev, RT3071) &&
  2615. !rt2x00_rt(rt2x00dev, RT3090) &&
  2616. !rt2x00_rt(rt2x00dev, RT3390) &&
  2617. !rt2x00_rt(rt2x00dev, RT3572)) {
  2618. ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
  2619. return -ENODEV;
  2620. }
  2621. if (!rt2x00_rf(rt2x00dev, RF2820) &&
  2622. !rt2x00_rf(rt2x00dev, RF2850) &&
  2623. !rt2x00_rf(rt2x00dev, RF2720) &&
  2624. !rt2x00_rf(rt2x00dev, RF2750) &&
  2625. !rt2x00_rf(rt2x00dev, RF3020) &&
  2626. !rt2x00_rf(rt2x00dev, RF2020) &&
  2627. !rt2x00_rf(rt2x00dev, RF3021) &&
  2628. !rt2x00_rf(rt2x00dev, RF3022) &&
  2629. !rt2x00_rf(rt2x00dev, RF3052) &&
  2630. !rt2x00_rf(rt2x00dev, RF3320)) {
  2631. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  2632. return -ENODEV;
  2633. }
  2634. /*
  2635. * Identify default antenna configuration.
  2636. */
  2637. rt2x00dev->default_ant.tx =
  2638. rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH);
  2639. rt2x00dev->default_ant.rx =
  2640. rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH);
  2641. /*
  2642. * Read frequency offset and RF programming sequence.
  2643. */
  2644. rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
  2645. rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
  2646. /*
  2647. * Read external LNA informations.
  2648. */
  2649. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &eeprom);
  2650. if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_EXTERNAL_LNA_5G))
  2651. __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
  2652. if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_EXTERNAL_LNA_2G))
  2653. __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
  2654. /*
  2655. * Detect if this device has an hardware controlled radio.
  2656. */
  2657. if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_HW_RADIO))
  2658. __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
  2659. /*
  2660. * Store led settings, for correct led behaviour.
  2661. */
  2662. #ifdef CONFIG_RT2X00_LIB_LEDS
  2663. rt2800_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
  2664. rt2800_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
  2665. rt2800_init_led(rt2x00dev, &rt2x00dev->led_qual, LED_TYPE_QUALITY);
  2666. rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &rt2x00dev->led_mcu_reg);
  2667. #endif /* CONFIG_RT2X00_LIB_LEDS */
  2668. return 0;
  2669. }
  2670. EXPORT_SYMBOL_GPL(rt2800_init_eeprom);
  2671. /*
  2672. * RF value list for rt28xx
  2673. * Supports: 2.4 GHz (all) & 5.2 GHz (RF2850 & RF2750)
  2674. */
  2675. static const struct rf_channel rf_vals[] = {
  2676. { 1, 0x18402ecc, 0x184c0786, 0x1816b455, 0x1800510b },
  2677. { 2, 0x18402ecc, 0x184c0786, 0x18168a55, 0x1800519f },
  2678. { 3, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800518b },
  2679. { 4, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800519f },
  2680. { 5, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800518b },
  2681. { 6, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800519f },
  2682. { 7, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800518b },
  2683. { 8, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800519f },
  2684. { 9, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800518b },
  2685. { 10, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800519f },
  2686. { 11, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800518b },
  2687. { 12, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800519f },
  2688. { 13, 0x18402ecc, 0x184c079e, 0x18168a55, 0x1800518b },
  2689. { 14, 0x18402ecc, 0x184c07a2, 0x18168a55, 0x18005193 },
  2690. /* 802.11 UNI / HyperLan 2 */
  2691. { 36, 0x18402ecc, 0x184c099a, 0x18158a55, 0x180ed1a3 },
  2692. { 38, 0x18402ecc, 0x184c099e, 0x18158a55, 0x180ed193 },
  2693. { 40, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed183 },
  2694. { 44, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed1a3 },
  2695. { 46, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed18b },
  2696. { 48, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed19b },
  2697. { 52, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed193 },
  2698. { 54, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed1a3 },
  2699. { 56, 0x18402ec8, 0x184c068e, 0x18158a55, 0x180ed18b },
  2700. { 60, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed183 },
  2701. { 62, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed193 },
  2702. { 64, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed1a3 },
  2703. /* 802.11 HyperLan 2 */
  2704. { 100, 0x18402ec8, 0x184c06b2, 0x18178a55, 0x180ed783 },
  2705. { 102, 0x18402ec8, 0x184c06b2, 0x18578a55, 0x180ed793 },
  2706. { 104, 0x18402ec8, 0x185c06b2, 0x18578a55, 0x180ed1a3 },
  2707. { 108, 0x18402ecc, 0x185c0a32, 0x18578a55, 0x180ed193 },
  2708. { 110, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed183 },
  2709. { 112, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed19b },
  2710. { 116, 0x18402ecc, 0x184c0a3a, 0x18178a55, 0x180ed1a3 },
  2711. { 118, 0x18402ecc, 0x184c0a3e, 0x18178a55, 0x180ed193 },
  2712. { 120, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed183 },
  2713. { 124, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed193 },
  2714. { 126, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed15b },
  2715. { 128, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed1a3 },
  2716. { 132, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed18b },
  2717. { 134, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed193 },
  2718. { 136, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed19b },
  2719. { 140, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed183 },
  2720. /* 802.11 UNII */
  2721. { 149, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed1a7 },
  2722. { 151, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed187 },
  2723. { 153, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed18f },
  2724. { 157, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed19f },
  2725. { 159, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed1a7 },
  2726. { 161, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed187 },
  2727. { 165, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed197 },
  2728. { 167, 0x18402ec4, 0x184c03d2, 0x18179855, 0x1815531f },
  2729. { 169, 0x18402ec4, 0x184c03d2, 0x18179855, 0x18155327 },
  2730. { 171, 0x18402ec4, 0x184c03d6, 0x18179855, 0x18155307 },
  2731. { 173, 0x18402ec4, 0x184c03d6, 0x18179855, 0x1815530f },
  2732. /* 802.11 Japan */
  2733. { 184, 0x15002ccc, 0x1500491e, 0x1509be55, 0x150c0a0b },
  2734. { 188, 0x15002ccc, 0x15004922, 0x1509be55, 0x150c0a13 },
  2735. { 192, 0x15002ccc, 0x15004926, 0x1509be55, 0x150c0a1b },
  2736. { 196, 0x15002ccc, 0x1500492a, 0x1509be55, 0x150c0a23 },
  2737. { 208, 0x15002ccc, 0x1500493a, 0x1509be55, 0x150c0a13 },
  2738. { 212, 0x15002ccc, 0x1500493e, 0x1509be55, 0x150c0a1b },
  2739. { 216, 0x15002ccc, 0x15004982, 0x1509be55, 0x150c0a23 },
  2740. };
  2741. /*
  2742. * RF value list for rt3xxx
  2743. * Supports: 2.4 GHz (all) & 5.2 GHz (RF3052)
  2744. */
  2745. static const struct rf_channel rf_vals_3x[] = {
  2746. {1, 241, 2, 2 },
  2747. {2, 241, 2, 7 },
  2748. {3, 242, 2, 2 },
  2749. {4, 242, 2, 7 },
  2750. {5, 243, 2, 2 },
  2751. {6, 243, 2, 7 },
  2752. {7, 244, 2, 2 },
  2753. {8, 244, 2, 7 },
  2754. {9, 245, 2, 2 },
  2755. {10, 245, 2, 7 },
  2756. {11, 246, 2, 2 },
  2757. {12, 246, 2, 7 },
  2758. {13, 247, 2, 2 },
  2759. {14, 248, 2, 4 },
  2760. /* 802.11 UNI / HyperLan 2 */
  2761. {36, 0x56, 0, 4},
  2762. {38, 0x56, 0, 6},
  2763. {40, 0x56, 0, 8},
  2764. {44, 0x57, 0, 0},
  2765. {46, 0x57, 0, 2},
  2766. {48, 0x57, 0, 4},
  2767. {52, 0x57, 0, 8},
  2768. {54, 0x57, 0, 10},
  2769. {56, 0x58, 0, 0},
  2770. {60, 0x58, 0, 4},
  2771. {62, 0x58, 0, 6},
  2772. {64, 0x58, 0, 8},
  2773. /* 802.11 HyperLan 2 */
  2774. {100, 0x5b, 0, 8},
  2775. {102, 0x5b, 0, 10},
  2776. {104, 0x5c, 0, 0},
  2777. {108, 0x5c, 0, 4},
  2778. {110, 0x5c, 0, 6},
  2779. {112, 0x5c, 0, 8},
  2780. {116, 0x5d, 0, 0},
  2781. {118, 0x5d, 0, 2},
  2782. {120, 0x5d, 0, 4},
  2783. {124, 0x5d, 0, 8},
  2784. {126, 0x5d, 0, 10},
  2785. {128, 0x5e, 0, 0},
  2786. {132, 0x5e, 0, 4},
  2787. {134, 0x5e, 0, 6},
  2788. {136, 0x5e, 0, 8},
  2789. {140, 0x5f, 0, 0},
  2790. /* 802.11 UNII */
  2791. {149, 0x5f, 0, 9},
  2792. {151, 0x5f, 0, 11},
  2793. {153, 0x60, 0, 1},
  2794. {157, 0x60, 0, 5},
  2795. {159, 0x60, 0, 7},
  2796. {161, 0x60, 0, 9},
  2797. {165, 0x61, 0, 1},
  2798. {167, 0x61, 0, 3},
  2799. {169, 0x61, 0, 5},
  2800. {171, 0x61, 0, 7},
  2801. {173, 0x61, 0, 9},
  2802. };
  2803. int rt2800_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  2804. {
  2805. struct hw_mode_spec *spec = &rt2x00dev->spec;
  2806. struct channel_info *info;
  2807. char *default_power1;
  2808. char *default_power2;
  2809. unsigned int i;
  2810. unsigned short max_power;
  2811. u16 eeprom;
  2812. /*
  2813. * Disable powersaving as default on PCI devices.
  2814. */
  2815. if (rt2x00_is_pci(rt2x00dev) || rt2x00_is_soc(rt2x00dev))
  2816. rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
  2817. /*
  2818. * Initialize all hw fields.
  2819. */
  2820. rt2x00dev->hw->flags =
  2821. IEEE80211_HW_SIGNAL_DBM |
  2822. IEEE80211_HW_SUPPORTS_PS |
  2823. IEEE80211_HW_PS_NULLFUNC_STACK |
  2824. IEEE80211_HW_AMPDU_AGGREGATION;
  2825. /*
  2826. * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING for USB devices
  2827. * unless we are capable of sending the buffered frames out after the
  2828. * DTIM transmission using rt2x00lib_beacondone. This will send out
  2829. * multicast and broadcast traffic immediately instead of buffering it
  2830. * infinitly and thus dropping it after some time.
  2831. */
  2832. if (!rt2x00_is_usb(rt2x00dev))
  2833. rt2x00dev->hw->flags |=
  2834. IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
  2835. SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
  2836. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  2837. rt2x00_eeprom_addr(rt2x00dev,
  2838. EEPROM_MAC_ADDR_0));
  2839. /*
  2840. * As rt2800 has a global fallback table we cannot specify
  2841. * more then one tx rate per frame but since the hw will
  2842. * try several rates (based on the fallback table) we should
  2843. * initialize max_report_rates to the maximum number of rates
  2844. * we are going to try. Otherwise mac80211 will truncate our
  2845. * reported tx rates and the rc algortihm will end up with
  2846. * incorrect data.
  2847. */
  2848. rt2x00dev->hw->max_rates = 1;
  2849. rt2x00dev->hw->max_report_rates = 7;
  2850. rt2x00dev->hw->max_rate_tries = 1;
  2851. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &eeprom);
  2852. /*
  2853. * Initialize hw_mode information.
  2854. */
  2855. spec->supported_bands = SUPPORT_BAND_2GHZ;
  2856. spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
  2857. if (rt2x00_rf(rt2x00dev, RF2820) ||
  2858. rt2x00_rf(rt2x00dev, RF2720)) {
  2859. spec->num_channels = 14;
  2860. spec->channels = rf_vals;
  2861. } else if (rt2x00_rf(rt2x00dev, RF2850) ||
  2862. rt2x00_rf(rt2x00dev, RF2750)) {
  2863. spec->supported_bands |= SUPPORT_BAND_5GHZ;
  2864. spec->num_channels = ARRAY_SIZE(rf_vals);
  2865. spec->channels = rf_vals;
  2866. } else if (rt2x00_rf(rt2x00dev, RF3020) ||
  2867. rt2x00_rf(rt2x00dev, RF2020) ||
  2868. rt2x00_rf(rt2x00dev, RF3021) ||
  2869. rt2x00_rf(rt2x00dev, RF3022) ||
  2870. rt2x00_rf(rt2x00dev, RF3320)) {
  2871. spec->num_channels = 14;
  2872. spec->channels = rf_vals_3x;
  2873. } else if (rt2x00_rf(rt2x00dev, RF3052)) {
  2874. spec->supported_bands |= SUPPORT_BAND_5GHZ;
  2875. spec->num_channels = ARRAY_SIZE(rf_vals_3x);
  2876. spec->channels = rf_vals_3x;
  2877. }
  2878. /*
  2879. * Initialize HT information.
  2880. */
  2881. if (!rt2x00_rf(rt2x00dev, RF2020))
  2882. spec->ht.ht_supported = true;
  2883. else
  2884. spec->ht.ht_supported = false;
  2885. spec->ht.cap =
  2886. IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
  2887. IEEE80211_HT_CAP_GRN_FLD |
  2888. IEEE80211_HT_CAP_SGI_20 |
  2889. IEEE80211_HT_CAP_SGI_40;
  2890. if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH) >= 2)
  2891. spec->ht.cap |= IEEE80211_HT_CAP_TX_STBC;
  2892. spec->ht.cap |=
  2893. rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH) <<
  2894. IEEE80211_HT_CAP_RX_STBC_SHIFT;
  2895. spec->ht.ampdu_factor = 3;
  2896. spec->ht.ampdu_density = 4;
  2897. spec->ht.mcs.tx_params =
  2898. IEEE80211_HT_MCS_TX_DEFINED |
  2899. IEEE80211_HT_MCS_TX_RX_DIFF |
  2900. ((rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH) - 1) <<
  2901. IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
  2902. switch (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH)) {
  2903. case 3:
  2904. spec->ht.mcs.rx_mask[2] = 0xff;
  2905. case 2:
  2906. spec->ht.mcs.rx_mask[1] = 0xff;
  2907. case 1:
  2908. spec->ht.mcs.rx_mask[0] = 0xff;
  2909. spec->ht.mcs.rx_mask[4] = 0x1; /* MCS32 */
  2910. break;
  2911. }
  2912. /*
  2913. * Create channel information array
  2914. */
  2915. info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
  2916. if (!info)
  2917. return -ENOMEM;
  2918. spec->channels_info = info;
  2919. rt2x00_eeprom_read(rt2x00dev, EEPROM_MAX_TX_POWER, &eeprom);
  2920. max_power = rt2x00_get_field16(eeprom, EEPROM_MAX_TX_POWER_24GHZ);
  2921. default_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG1);
  2922. default_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG2);
  2923. for (i = 0; i < 14; i++) {
  2924. info[i].max_power = max_power;
  2925. info[i].default_power1 = TXPOWER_G_FROM_DEV(default_power1[i]);
  2926. info[i].default_power2 = TXPOWER_G_FROM_DEV(default_power2[i]);
  2927. }
  2928. if (spec->num_channels > 14) {
  2929. max_power = rt2x00_get_field16(eeprom, EEPROM_MAX_TX_POWER_5GHZ);
  2930. default_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A1);
  2931. default_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A2);
  2932. for (i = 14; i < spec->num_channels; i++) {
  2933. info[i].max_power = max_power;
  2934. info[i].default_power1 = TXPOWER_A_FROM_DEV(default_power1[i]);
  2935. info[i].default_power2 = TXPOWER_A_FROM_DEV(default_power2[i]);
  2936. }
  2937. }
  2938. return 0;
  2939. }
  2940. EXPORT_SYMBOL_GPL(rt2800_probe_hw_mode);
  2941. /*
  2942. * IEEE80211 stack callback functions.
  2943. */
  2944. void rt2800_get_tkip_seq(struct ieee80211_hw *hw, u8 hw_key_idx, u32 *iv32,
  2945. u16 *iv16)
  2946. {
  2947. struct rt2x00_dev *rt2x00dev = hw->priv;
  2948. struct mac_iveiv_entry iveiv_entry;
  2949. u32 offset;
  2950. offset = MAC_IVEIV_ENTRY(hw_key_idx);
  2951. rt2800_register_multiread(rt2x00dev, offset,
  2952. &iveiv_entry, sizeof(iveiv_entry));
  2953. memcpy(iv16, &iveiv_entry.iv[0], sizeof(*iv16));
  2954. memcpy(iv32, &iveiv_entry.iv[4], sizeof(*iv32));
  2955. }
  2956. EXPORT_SYMBOL_GPL(rt2800_get_tkip_seq);
  2957. int rt2800_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
  2958. {
  2959. struct rt2x00_dev *rt2x00dev = hw->priv;
  2960. u32 reg;
  2961. bool enabled = (value < IEEE80211_MAX_RTS_THRESHOLD);
  2962. rt2800_register_read(rt2x00dev, TX_RTS_CFG, &reg);
  2963. rt2x00_set_field32(&reg, TX_RTS_CFG_RTS_THRES, value);
  2964. rt2800_register_write(rt2x00dev, TX_RTS_CFG, reg);
  2965. rt2800_register_read(rt2x00dev, CCK_PROT_CFG, &reg);
  2966. rt2x00_set_field32(&reg, CCK_PROT_CFG_RTS_TH_EN, enabled);
  2967. rt2800_register_write(rt2x00dev, CCK_PROT_CFG, reg);
  2968. rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, &reg);
  2969. rt2x00_set_field32(&reg, OFDM_PROT_CFG_RTS_TH_EN, enabled);
  2970. rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
  2971. rt2800_register_read(rt2x00dev, MM20_PROT_CFG, &reg);
  2972. rt2x00_set_field32(&reg, MM20_PROT_CFG_RTS_TH_EN, enabled);
  2973. rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);
  2974. rt2800_register_read(rt2x00dev, MM40_PROT_CFG, &reg);
  2975. rt2x00_set_field32(&reg, MM40_PROT_CFG_RTS_TH_EN, enabled);
  2976. rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);
  2977. rt2800_register_read(rt2x00dev, GF20_PROT_CFG, &reg);
  2978. rt2x00_set_field32(&reg, GF20_PROT_CFG_RTS_TH_EN, enabled);
  2979. rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);
  2980. rt2800_register_read(rt2x00dev, GF40_PROT_CFG, &reg);
  2981. rt2x00_set_field32(&reg, GF40_PROT_CFG_RTS_TH_EN, enabled);
  2982. rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);
  2983. return 0;
  2984. }
  2985. EXPORT_SYMBOL_GPL(rt2800_set_rts_threshold);
  2986. int rt2800_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
  2987. const struct ieee80211_tx_queue_params *params)
  2988. {
  2989. struct rt2x00_dev *rt2x00dev = hw->priv;
  2990. struct data_queue *queue;
  2991. struct rt2x00_field32 field;
  2992. int retval;
  2993. u32 reg;
  2994. u32 offset;
  2995. /*
  2996. * First pass the configuration through rt2x00lib, that will
  2997. * update the queue settings and validate the input. After that
  2998. * we are free to update the registers based on the value
  2999. * in the queue parameter.
  3000. */
  3001. retval = rt2x00mac_conf_tx(hw, queue_idx, params);
  3002. if (retval)
  3003. return retval;
  3004. /*
  3005. * We only need to perform additional register initialization
  3006. * for WMM queues/
  3007. */
  3008. if (queue_idx >= 4)
  3009. return 0;
  3010. queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
  3011. /* Update WMM TXOP register */
  3012. offset = WMM_TXOP0_CFG + (sizeof(u32) * (!!(queue_idx & 2)));
  3013. field.bit_offset = (queue_idx & 1) * 16;
  3014. field.bit_mask = 0xffff << field.bit_offset;
  3015. rt2800_register_read(rt2x00dev, offset, &reg);
  3016. rt2x00_set_field32(&reg, field, queue->txop);
  3017. rt2800_register_write(rt2x00dev, offset, reg);
  3018. /* Update WMM registers */
  3019. field.bit_offset = queue_idx * 4;
  3020. field.bit_mask = 0xf << field.bit_offset;
  3021. rt2800_register_read(rt2x00dev, WMM_AIFSN_CFG, &reg);
  3022. rt2x00_set_field32(&reg, field, queue->aifs);
  3023. rt2800_register_write(rt2x00dev, WMM_AIFSN_CFG, reg);
  3024. rt2800_register_read(rt2x00dev, WMM_CWMIN_CFG, &reg);
  3025. rt2x00_set_field32(&reg, field, queue->cw_min);
  3026. rt2800_register_write(rt2x00dev, WMM_CWMIN_CFG, reg);
  3027. rt2800_register_read(rt2x00dev, WMM_CWMAX_CFG, &reg);
  3028. rt2x00_set_field32(&reg, field, queue->cw_max);
  3029. rt2800_register_write(rt2x00dev, WMM_CWMAX_CFG, reg);
  3030. /* Update EDCA registers */
  3031. offset = EDCA_AC0_CFG + (sizeof(u32) * queue_idx);
  3032. rt2800_register_read(rt2x00dev, offset, &reg);
  3033. rt2x00_set_field32(&reg, EDCA_AC0_CFG_TX_OP, queue->txop);
  3034. rt2x00_set_field32(&reg, EDCA_AC0_CFG_AIFSN, queue->aifs);
  3035. rt2x00_set_field32(&reg, EDCA_AC0_CFG_CWMIN, queue->cw_min);
  3036. rt2x00_set_field32(&reg, EDCA_AC0_CFG_CWMAX, queue->cw_max);
  3037. rt2800_register_write(rt2x00dev, offset, reg);
  3038. return 0;
  3039. }
  3040. EXPORT_SYMBOL_GPL(rt2800_conf_tx);
  3041. u64 rt2800_get_tsf(struct ieee80211_hw *hw)
  3042. {
  3043. struct rt2x00_dev *rt2x00dev = hw->priv;
  3044. u64 tsf;
  3045. u32 reg;
  3046. rt2800_register_read(rt2x00dev, TSF_TIMER_DW1, &reg);
  3047. tsf = (u64) rt2x00_get_field32(reg, TSF_TIMER_DW1_HIGH_WORD) << 32;
  3048. rt2800_register_read(rt2x00dev, TSF_TIMER_DW0, &reg);
  3049. tsf |= rt2x00_get_field32(reg, TSF_TIMER_DW0_LOW_WORD);
  3050. return tsf;
  3051. }
  3052. EXPORT_SYMBOL_GPL(rt2800_get_tsf);
  3053. int rt2800_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
  3054. enum ieee80211_ampdu_mlme_action action,
  3055. struct ieee80211_sta *sta, u16 tid, u16 *ssn,
  3056. u8 buf_size)
  3057. {
  3058. int ret = 0;
  3059. switch (action) {
  3060. case IEEE80211_AMPDU_RX_START:
  3061. case IEEE80211_AMPDU_RX_STOP:
  3062. /*
  3063. * The hw itself takes care of setting up BlockAck mechanisms.
  3064. * So, we only have to allow mac80211 to nagotiate a BlockAck
  3065. * agreement. Once that is done, the hw will BlockAck incoming
  3066. * AMPDUs without further setup.
  3067. */
  3068. break;
  3069. case IEEE80211_AMPDU_TX_START:
  3070. ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid);
  3071. break;
  3072. case IEEE80211_AMPDU_TX_STOP:
  3073. ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid);
  3074. break;
  3075. case IEEE80211_AMPDU_TX_OPERATIONAL:
  3076. break;
  3077. default:
  3078. WARNING((struct rt2x00_dev *)hw->priv, "Unknown AMPDU action\n");
  3079. }
  3080. return ret;
  3081. }
  3082. EXPORT_SYMBOL_GPL(rt2800_ampdu_action);
  3083. int rt2800_get_survey(struct ieee80211_hw *hw, int idx,
  3084. struct survey_info *survey)
  3085. {
  3086. struct rt2x00_dev *rt2x00dev = hw->priv;
  3087. struct ieee80211_conf *conf = &hw->conf;
  3088. u32 idle, busy, busy_ext;
  3089. if (idx != 0)
  3090. return -ENOENT;
  3091. survey->channel = conf->channel;
  3092. rt2800_register_read(rt2x00dev, CH_IDLE_STA, &idle);
  3093. rt2800_register_read(rt2x00dev, CH_BUSY_STA, &busy);
  3094. rt2800_register_read(rt2x00dev, CH_BUSY_STA_SEC, &busy_ext);
  3095. if (idle || busy) {
  3096. survey->filled = SURVEY_INFO_CHANNEL_TIME |
  3097. SURVEY_INFO_CHANNEL_TIME_BUSY |
  3098. SURVEY_INFO_CHANNEL_TIME_EXT_BUSY;
  3099. survey->channel_time = (idle + busy) / 1000;
  3100. survey->channel_time_busy = busy / 1000;
  3101. survey->channel_time_ext_busy = busy_ext / 1000;
  3102. }
  3103. return 0;
  3104. }
  3105. EXPORT_SYMBOL_GPL(rt2800_get_survey);
  3106. MODULE_AUTHOR(DRV_PROJECT ", Bartlomiej Zolnierkiewicz");
  3107. MODULE_VERSION(DRV_VERSION);
  3108. MODULE_DESCRIPTION("Ralink RT2800 library");
  3109. MODULE_LICENSE("GPL");