processor_idle.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169
  1. /*
  2. * processor_idle - idle state submodule to the ACPI processor driver
  3. *
  4. * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
  5. * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
  6. * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
  7. * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
  8. * - Added processor hotplug support
  9. * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  10. * - Added support for C3 on SMP
  11. *
  12. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  13. *
  14. * This program is free software; you can redistribute it and/or modify
  15. * it under the terms of the GNU General Public License as published by
  16. * the Free Software Foundation; either version 2 of the License, or (at
  17. * your option) any later version.
  18. *
  19. * This program is distributed in the hope that it will be useful, but
  20. * WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  22. * General Public License for more details.
  23. *
  24. * You should have received a copy of the GNU General Public License along
  25. * with this program; if not, write to the Free Software Foundation, Inc.,
  26. * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
  27. *
  28. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  29. */
  30. #include <linux/kernel.h>
  31. #include <linux/module.h>
  32. #include <linux/init.h>
  33. #include <linux/cpufreq.h>
  34. #include <linux/slab.h>
  35. #include <linux/acpi.h>
  36. #include <linux/dmi.h>
  37. #include <linux/moduleparam.h>
  38. #include <linux/sched.h> /* need_resched() */
  39. #include <linux/pm_qos_params.h>
  40. #include <linux/clockchips.h>
  41. #include <linux/cpuidle.h>
  42. #include <linux/irqflags.h>
  43. /*
  44. * Include the apic definitions for x86 to have the APIC timer related defines
  45. * available also for UP (on SMP it gets magically included via linux/smp.h).
  46. * asm/acpi.h is not an option, as it would require more include magic. Also
  47. * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
  48. */
  49. #ifdef CONFIG_X86
  50. #include <asm/apic.h>
  51. #endif
  52. #include <asm/io.h>
  53. #include <asm/uaccess.h>
  54. #include <acpi/acpi_bus.h>
  55. #include <acpi/processor.h>
  56. #include <asm/processor.h>
  57. #define PREFIX "ACPI: "
  58. #define ACPI_PROCESSOR_CLASS "processor"
  59. #define _COMPONENT ACPI_PROCESSOR_COMPONENT
  60. ACPI_MODULE_NAME("processor_idle");
  61. #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
  62. #define C2_OVERHEAD 1 /* 1us */
  63. #define C3_OVERHEAD 1 /* 1us */
  64. #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
  65. static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
  66. module_param(max_cstate, uint, 0000);
  67. static unsigned int nocst __read_mostly;
  68. module_param(nocst, uint, 0000);
  69. static int bm_check_disable __read_mostly;
  70. module_param(bm_check_disable, uint, 0000);
  71. static unsigned int latency_factor __read_mostly = 2;
  72. module_param(latency_factor, uint, 0644);
  73. static int disabled_by_idle_boot_param(void)
  74. {
  75. return boot_option_idle_override == IDLE_POLL ||
  76. boot_option_idle_override == IDLE_FORCE_MWAIT ||
  77. boot_option_idle_override == IDLE_HALT;
  78. }
  79. /*
  80. * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
  81. * For now disable this. Probably a bug somewhere else.
  82. *
  83. * To skip this limit, boot/load with a large max_cstate limit.
  84. */
  85. static int set_max_cstate(const struct dmi_system_id *id)
  86. {
  87. if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
  88. return 0;
  89. printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
  90. " Override with \"processor.max_cstate=%d\"\n", id->ident,
  91. (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
  92. max_cstate = (long)id->driver_data;
  93. return 0;
  94. }
  95. /* Actually this shouldn't be __cpuinitdata, would be better to fix the
  96. callers to only run once -AK */
  97. static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
  98. { set_max_cstate, "Clevo 5600D", {
  99. DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
  100. DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
  101. (void *)2},
  102. { set_max_cstate, "Pavilion zv5000", {
  103. DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
  104. DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
  105. (void *)1},
  106. { set_max_cstate, "Asus L8400B", {
  107. DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
  108. DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
  109. (void *)1},
  110. {},
  111. };
  112. /*
  113. * Callers should disable interrupts before the call and enable
  114. * interrupts after return.
  115. */
  116. static void acpi_safe_halt(void)
  117. {
  118. current_thread_info()->status &= ~TS_POLLING;
  119. /*
  120. * TS_POLLING-cleared state must be visible before we
  121. * test NEED_RESCHED:
  122. */
  123. smp_mb();
  124. if (!need_resched()) {
  125. safe_halt();
  126. local_irq_disable();
  127. }
  128. current_thread_info()->status |= TS_POLLING;
  129. }
  130. #ifdef ARCH_APICTIMER_STOPS_ON_C3
  131. /*
  132. * Some BIOS implementations switch to C3 in the published C2 state.
  133. * This seems to be a common problem on AMD boxen, but other vendors
  134. * are affected too. We pick the most conservative approach: we assume
  135. * that the local APIC stops in both C2 and C3.
  136. */
  137. static void lapic_timer_check_state(int state, struct acpi_processor *pr,
  138. struct acpi_processor_cx *cx)
  139. {
  140. struct acpi_processor_power *pwr = &pr->power;
  141. u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
  142. if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
  143. return;
  144. if (amd_e400_c1e_detected)
  145. type = ACPI_STATE_C1;
  146. /*
  147. * Check, if one of the previous states already marked the lapic
  148. * unstable
  149. */
  150. if (pwr->timer_broadcast_on_state < state)
  151. return;
  152. if (cx->type >= type)
  153. pr->power.timer_broadcast_on_state = state;
  154. }
  155. static void __lapic_timer_propagate_broadcast(void *arg)
  156. {
  157. struct acpi_processor *pr = (struct acpi_processor *) arg;
  158. unsigned long reason;
  159. reason = pr->power.timer_broadcast_on_state < INT_MAX ?
  160. CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
  161. clockevents_notify(reason, &pr->id);
  162. }
  163. static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
  164. {
  165. smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
  166. (void *)pr, 1);
  167. }
  168. /* Power(C) State timer broadcast control */
  169. static void lapic_timer_state_broadcast(struct acpi_processor *pr,
  170. struct acpi_processor_cx *cx,
  171. int broadcast)
  172. {
  173. int state = cx - pr->power.states;
  174. if (state >= pr->power.timer_broadcast_on_state) {
  175. unsigned long reason;
  176. reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
  177. CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
  178. clockevents_notify(reason, &pr->id);
  179. }
  180. }
  181. #else
  182. static void lapic_timer_check_state(int state, struct acpi_processor *pr,
  183. struct acpi_processor_cx *cstate) { }
  184. static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
  185. static void lapic_timer_state_broadcast(struct acpi_processor *pr,
  186. struct acpi_processor_cx *cx,
  187. int broadcast)
  188. {
  189. }
  190. #endif
  191. /*
  192. * Suspend / resume control
  193. */
  194. static int acpi_idle_suspend;
  195. static u32 saved_bm_rld;
  196. static void acpi_idle_bm_rld_save(void)
  197. {
  198. acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
  199. }
  200. static void acpi_idle_bm_rld_restore(void)
  201. {
  202. u32 resumed_bm_rld;
  203. acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
  204. if (resumed_bm_rld != saved_bm_rld)
  205. acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
  206. }
  207. int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
  208. {
  209. if (acpi_idle_suspend == 1)
  210. return 0;
  211. acpi_idle_bm_rld_save();
  212. acpi_idle_suspend = 1;
  213. return 0;
  214. }
  215. int acpi_processor_resume(struct acpi_device * device)
  216. {
  217. if (acpi_idle_suspend == 0)
  218. return 0;
  219. acpi_idle_bm_rld_restore();
  220. acpi_idle_suspend = 0;
  221. return 0;
  222. }
  223. #if defined(CONFIG_X86)
  224. static void tsc_check_state(int state)
  225. {
  226. switch (boot_cpu_data.x86_vendor) {
  227. case X86_VENDOR_AMD:
  228. case X86_VENDOR_INTEL:
  229. /*
  230. * AMD Fam10h TSC will tick in all
  231. * C/P/S0/S1 states when this bit is set.
  232. */
  233. if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
  234. return;
  235. /*FALL THROUGH*/
  236. default:
  237. /* TSC could halt in idle, so notify users */
  238. if (state > ACPI_STATE_C1)
  239. mark_tsc_unstable("TSC halts in idle");
  240. }
  241. }
  242. #else
  243. static void tsc_check_state(int state) { return; }
  244. #endif
  245. static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
  246. {
  247. if (!pr)
  248. return -EINVAL;
  249. if (!pr->pblk)
  250. return -ENODEV;
  251. /* if info is obtained from pblk/fadt, type equals state */
  252. pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
  253. pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
  254. #ifndef CONFIG_HOTPLUG_CPU
  255. /*
  256. * Check for P_LVL2_UP flag before entering C2 and above on
  257. * an SMP system.
  258. */
  259. if ((num_online_cpus() > 1) &&
  260. !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
  261. return -ENODEV;
  262. #endif
  263. /* determine C2 and C3 address from pblk */
  264. pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
  265. pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
  266. /* determine latencies from FADT */
  267. pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
  268. pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
  269. /*
  270. * FADT specified C2 latency must be less than or equal to
  271. * 100 microseconds.
  272. */
  273. if (acpi_gbl_FADT.C2latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
  274. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  275. "C2 latency too large [%d]\n", acpi_gbl_FADT.C2latency));
  276. /* invalidate C2 */
  277. pr->power.states[ACPI_STATE_C2].address = 0;
  278. }
  279. /*
  280. * FADT supplied C3 latency must be less than or equal to
  281. * 1000 microseconds.
  282. */
  283. if (acpi_gbl_FADT.C3latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
  284. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  285. "C3 latency too large [%d]\n", acpi_gbl_FADT.C3latency));
  286. /* invalidate C3 */
  287. pr->power.states[ACPI_STATE_C3].address = 0;
  288. }
  289. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  290. "lvl2[0x%08x] lvl3[0x%08x]\n",
  291. pr->power.states[ACPI_STATE_C2].address,
  292. pr->power.states[ACPI_STATE_C3].address));
  293. return 0;
  294. }
  295. static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
  296. {
  297. if (!pr->power.states[ACPI_STATE_C1].valid) {
  298. /* set the first C-State to C1 */
  299. /* all processors need to support C1 */
  300. pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
  301. pr->power.states[ACPI_STATE_C1].valid = 1;
  302. pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
  303. }
  304. /* the C0 state only exists as a filler in our array */
  305. pr->power.states[ACPI_STATE_C0].valid = 1;
  306. return 0;
  307. }
  308. static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
  309. {
  310. acpi_status status = 0;
  311. u64 count;
  312. int current_count;
  313. int i;
  314. struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
  315. union acpi_object *cst;
  316. if (nocst)
  317. return -ENODEV;
  318. current_count = 0;
  319. status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
  320. if (ACPI_FAILURE(status)) {
  321. ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
  322. return -ENODEV;
  323. }
  324. cst = buffer.pointer;
  325. /* There must be at least 2 elements */
  326. if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
  327. printk(KERN_ERR PREFIX "not enough elements in _CST\n");
  328. status = -EFAULT;
  329. goto end;
  330. }
  331. count = cst->package.elements[0].integer.value;
  332. /* Validate number of power states. */
  333. if (count < 1 || count != cst->package.count - 1) {
  334. printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
  335. status = -EFAULT;
  336. goto end;
  337. }
  338. /* Tell driver that at least _CST is supported. */
  339. pr->flags.has_cst = 1;
  340. for (i = 1; i <= count; i++) {
  341. union acpi_object *element;
  342. union acpi_object *obj;
  343. struct acpi_power_register *reg;
  344. struct acpi_processor_cx cx;
  345. memset(&cx, 0, sizeof(cx));
  346. element = &(cst->package.elements[i]);
  347. if (element->type != ACPI_TYPE_PACKAGE)
  348. continue;
  349. if (element->package.count != 4)
  350. continue;
  351. obj = &(element->package.elements[0]);
  352. if (obj->type != ACPI_TYPE_BUFFER)
  353. continue;
  354. reg = (struct acpi_power_register *)obj->buffer.pointer;
  355. if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
  356. (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
  357. continue;
  358. /* There should be an easy way to extract an integer... */
  359. obj = &(element->package.elements[1]);
  360. if (obj->type != ACPI_TYPE_INTEGER)
  361. continue;
  362. cx.type = obj->integer.value;
  363. /*
  364. * Some buggy BIOSes won't list C1 in _CST -
  365. * Let acpi_processor_get_power_info_default() handle them later
  366. */
  367. if (i == 1 && cx.type != ACPI_STATE_C1)
  368. current_count++;
  369. cx.address = reg->address;
  370. cx.index = current_count + 1;
  371. cx.entry_method = ACPI_CSTATE_SYSTEMIO;
  372. if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
  373. if (acpi_processor_ffh_cstate_probe
  374. (pr->id, &cx, reg) == 0) {
  375. cx.entry_method = ACPI_CSTATE_FFH;
  376. } else if (cx.type == ACPI_STATE_C1) {
  377. /*
  378. * C1 is a special case where FIXED_HARDWARE
  379. * can be handled in non-MWAIT way as well.
  380. * In that case, save this _CST entry info.
  381. * Otherwise, ignore this info and continue.
  382. */
  383. cx.entry_method = ACPI_CSTATE_HALT;
  384. snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
  385. } else {
  386. continue;
  387. }
  388. if (cx.type == ACPI_STATE_C1 &&
  389. (boot_option_idle_override == IDLE_NOMWAIT)) {
  390. /*
  391. * In most cases the C1 space_id obtained from
  392. * _CST object is FIXED_HARDWARE access mode.
  393. * But when the option of idle=halt is added,
  394. * the entry_method type should be changed from
  395. * CSTATE_FFH to CSTATE_HALT.
  396. * When the option of idle=nomwait is added,
  397. * the C1 entry_method type should be
  398. * CSTATE_HALT.
  399. */
  400. cx.entry_method = ACPI_CSTATE_HALT;
  401. snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
  402. }
  403. } else {
  404. snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
  405. cx.address);
  406. }
  407. if (cx.type == ACPI_STATE_C1) {
  408. cx.valid = 1;
  409. }
  410. obj = &(element->package.elements[2]);
  411. if (obj->type != ACPI_TYPE_INTEGER)
  412. continue;
  413. cx.latency = obj->integer.value;
  414. obj = &(element->package.elements[3]);
  415. if (obj->type != ACPI_TYPE_INTEGER)
  416. continue;
  417. cx.power = obj->integer.value;
  418. current_count++;
  419. memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
  420. /*
  421. * We support total ACPI_PROCESSOR_MAX_POWER - 1
  422. * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
  423. */
  424. if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
  425. printk(KERN_WARNING
  426. "Limiting number of power states to max (%d)\n",
  427. ACPI_PROCESSOR_MAX_POWER);
  428. printk(KERN_WARNING
  429. "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
  430. break;
  431. }
  432. }
  433. ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
  434. current_count));
  435. /* Validate number of power states discovered */
  436. if (current_count < 2)
  437. status = -EFAULT;
  438. end:
  439. kfree(buffer.pointer);
  440. return status;
  441. }
  442. static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
  443. struct acpi_processor_cx *cx)
  444. {
  445. static int bm_check_flag = -1;
  446. static int bm_control_flag = -1;
  447. if (!cx->address)
  448. return;
  449. /*
  450. * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
  451. * DMA transfers are used by any ISA device to avoid livelock.
  452. * Note that we could disable Type-F DMA (as recommended by
  453. * the erratum), but this is known to disrupt certain ISA
  454. * devices thus we take the conservative approach.
  455. */
  456. else if (errata.piix4.fdma) {
  457. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  458. "C3 not supported on PIIX4 with Type-F DMA\n"));
  459. return;
  460. }
  461. /* All the logic here assumes flags.bm_check is same across all CPUs */
  462. if (bm_check_flag == -1) {
  463. /* Determine whether bm_check is needed based on CPU */
  464. acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
  465. bm_check_flag = pr->flags.bm_check;
  466. bm_control_flag = pr->flags.bm_control;
  467. } else {
  468. pr->flags.bm_check = bm_check_flag;
  469. pr->flags.bm_control = bm_control_flag;
  470. }
  471. if (pr->flags.bm_check) {
  472. if (!pr->flags.bm_control) {
  473. if (pr->flags.has_cst != 1) {
  474. /* bus mastering control is necessary */
  475. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  476. "C3 support requires BM control\n"));
  477. return;
  478. } else {
  479. /* Here we enter C3 without bus mastering */
  480. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  481. "C3 support without BM control\n"));
  482. }
  483. }
  484. } else {
  485. /*
  486. * WBINVD should be set in fadt, for C3 state to be
  487. * supported on when bm_check is not required.
  488. */
  489. if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
  490. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  491. "Cache invalidation should work properly"
  492. " for C3 to be enabled on SMP systems\n"));
  493. return;
  494. }
  495. }
  496. /*
  497. * Otherwise we've met all of our C3 requirements.
  498. * Normalize the C3 latency to expidite policy. Enable
  499. * checking of bus mastering status (bm_check) so we can
  500. * use this in our C3 policy
  501. */
  502. cx->valid = 1;
  503. cx->latency_ticks = cx->latency;
  504. /*
  505. * On older chipsets, BM_RLD needs to be set
  506. * in order for Bus Master activity to wake the
  507. * system from C3. Newer chipsets handle DMA
  508. * during C3 automatically and BM_RLD is a NOP.
  509. * In either case, the proper way to
  510. * handle BM_RLD is to set it and leave it set.
  511. */
  512. acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
  513. return;
  514. }
  515. static int acpi_processor_power_verify(struct acpi_processor *pr)
  516. {
  517. unsigned int i;
  518. unsigned int working = 0;
  519. pr->power.timer_broadcast_on_state = INT_MAX;
  520. for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
  521. struct acpi_processor_cx *cx = &pr->power.states[i];
  522. switch (cx->type) {
  523. case ACPI_STATE_C1:
  524. cx->valid = 1;
  525. break;
  526. case ACPI_STATE_C2:
  527. if (!cx->address)
  528. break;
  529. cx->valid = 1;
  530. cx->latency_ticks = cx->latency; /* Normalize latency */
  531. break;
  532. case ACPI_STATE_C3:
  533. acpi_processor_power_verify_c3(pr, cx);
  534. break;
  535. }
  536. if (!cx->valid)
  537. continue;
  538. lapic_timer_check_state(i, pr, cx);
  539. tsc_check_state(cx->type);
  540. working++;
  541. }
  542. lapic_timer_propagate_broadcast(pr);
  543. return (working);
  544. }
  545. static int acpi_processor_get_power_info(struct acpi_processor *pr)
  546. {
  547. unsigned int i;
  548. int result;
  549. /* NOTE: the idle thread may not be running while calling
  550. * this function */
  551. /* Zero initialize all the C-states info. */
  552. memset(pr->power.states, 0, sizeof(pr->power.states));
  553. result = acpi_processor_get_power_info_cst(pr);
  554. if (result == -ENODEV)
  555. result = acpi_processor_get_power_info_fadt(pr);
  556. if (result)
  557. return result;
  558. acpi_processor_get_power_info_default(pr);
  559. pr->power.count = acpi_processor_power_verify(pr);
  560. /*
  561. * if one state of type C2 or C3 is available, mark this
  562. * CPU as being "idle manageable"
  563. */
  564. for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
  565. if (pr->power.states[i].valid) {
  566. pr->power.count = i;
  567. if (pr->power.states[i].type >= ACPI_STATE_C2)
  568. pr->flags.power = 1;
  569. }
  570. }
  571. return 0;
  572. }
  573. /**
  574. * acpi_idle_bm_check - checks if bus master activity was detected
  575. */
  576. static int acpi_idle_bm_check(void)
  577. {
  578. u32 bm_status = 0;
  579. if (bm_check_disable)
  580. return 0;
  581. acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
  582. if (bm_status)
  583. acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
  584. /*
  585. * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
  586. * the true state of bus mastering activity; forcing us to
  587. * manually check the BMIDEA bit of each IDE channel.
  588. */
  589. else if (errata.piix4.bmisx) {
  590. if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
  591. || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
  592. bm_status = 1;
  593. }
  594. return bm_status;
  595. }
  596. /**
  597. * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
  598. * @cx: cstate data
  599. *
  600. * Caller disables interrupt before call and enables interrupt after return.
  601. */
  602. static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
  603. {
  604. /* Don't trace irqs off for idle */
  605. stop_critical_timings();
  606. if (cx->entry_method == ACPI_CSTATE_FFH) {
  607. /* Call into architectural FFH based C-state */
  608. acpi_processor_ffh_cstate_enter(cx);
  609. } else if (cx->entry_method == ACPI_CSTATE_HALT) {
  610. acpi_safe_halt();
  611. } else {
  612. /* IO port based C-state */
  613. inb(cx->address);
  614. /* Dummy wait op - must do something useless after P_LVL2 read
  615. because chipsets cannot guarantee that STPCLK# signal
  616. gets asserted in time to freeze execution properly. */
  617. inl(acpi_gbl_FADT.xpm_timer_block.address);
  618. }
  619. start_critical_timings();
  620. }
  621. /**
  622. * acpi_idle_enter_c1 - enters an ACPI C1 state-type
  623. * @dev: the target CPU
  624. * @index: index of target state
  625. *
  626. * This is equivalent to the HALT instruction.
  627. */
  628. static int acpi_idle_enter_c1(struct cpuidle_device *dev,
  629. int index)
  630. {
  631. ktime_t kt1, kt2;
  632. s64 idle_time;
  633. struct acpi_processor *pr;
  634. struct cpuidle_state *state = &dev->states[index];
  635. struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
  636. pr = __this_cpu_read(processors);
  637. dev->last_residency = 0;
  638. if (unlikely(!pr))
  639. return -EINVAL;
  640. local_irq_disable();
  641. /* Do not access any ACPI IO ports in suspend path */
  642. if (acpi_idle_suspend) {
  643. local_irq_enable();
  644. cpu_relax();
  645. return -EINVAL;
  646. }
  647. lapic_timer_state_broadcast(pr, cx, 1);
  648. kt1 = ktime_get_real();
  649. acpi_idle_do_entry(cx);
  650. kt2 = ktime_get_real();
  651. idle_time = ktime_to_us(ktime_sub(kt2, kt1));
  652. /* Update device last_residency*/
  653. dev->last_residency = (int)idle_time;
  654. local_irq_enable();
  655. cx->usage++;
  656. lapic_timer_state_broadcast(pr, cx, 0);
  657. return index;
  658. }
  659. /**
  660. * acpi_idle_enter_simple - enters an ACPI state without BM handling
  661. * @dev: the target CPU
  662. * @index: the index of suggested state
  663. */
  664. static int acpi_idle_enter_simple(struct cpuidle_device *dev,
  665. int index)
  666. {
  667. struct acpi_processor *pr;
  668. struct cpuidle_state *state = &dev->states[index];
  669. struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
  670. ktime_t kt1, kt2;
  671. s64 idle_time_ns;
  672. s64 idle_time;
  673. pr = __this_cpu_read(processors);
  674. dev->last_residency = 0;
  675. if (unlikely(!pr))
  676. return -EINVAL;
  677. local_irq_disable();
  678. if (acpi_idle_suspend) {
  679. local_irq_enable();
  680. cpu_relax();
  681. return -EINVAL;
  682. }
  683. if (cx->entry_method != ACPI_CSTATE_FFH) {
  684. current_thread_info()->status &= ~TS_POLLING;
  685. /*
  686. * TS_POLLING-cleared state must be visible before we test
  687. * NEED_RESCHED:
  688. */
  689. smp_mb();
  690. if (unlikely(need_resched())) {
  691. current_thread_info()->status |= TS_POLLING;
  692. local_irq_enable();
  693. return -EINVAL;
  694. }
  695. }
  696. /*
  697. * Must be done before busmaster disable as we might need to
  698. * access HPET !
  699. */
  700. lapic_timer_state_broadcast(pr, cx, 1);
  701. if (cx->type == ACPI_STATE_C3)
  702. ACPI_FLUSH_CPU_CACHE();
  703. kt1 = ktime_get_real();
  704. /* Tell the scheduler that we are going deep-idle: */
  705. sched_clock_idle_sleep_event();
  706. acpi_idle_do_entry(cx);
  707. kt2 = ktime_get_real();
  708. idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1));
  709. idle_time = idle_time_ns;
  710. do_div(idle_time, NSEC_PER_USEC);
  711. /* Update device last_residency*/
  712. dev->last_residency = (int)idle_time;
  713. /* Tell the scheduler how much we idled: */
  714. sched_clock_idle_wakeup_event(idle_time_ns);
  715. local_irq_enable();
  716. if (cx->entry_method != ACPI_CSTATE_FFH)
  717. current_thread_info()->status |= TS_POLLING;
  718. cx->usage++;
  719. lapic_timer_state_broadcast(pr, cx, 0);
  720. cx->time += idle_time;
  721. return index;
  722. }
  723. static int c3_cpu_count;
  724. static DEFINE_SPINLOCK(c3_lock);
  725. /**
  726. * acpi_idle_enter_bm - enters C3 with proper BM handling
  727. * @dev: the target CPU
  728. * @index: the index of suggested state
  729. *
  730. * If BM is detected, the deepest non-C3 idle state is entered instead.
  731. */
  732. static int acpi_idle_enter_bm(struct cpuidle_device *dev,
  733. int index)
  734. {
  735. struct acpi_processor *pr;
  736. struct cpuidle_state *state = &dev->states[index];
  737. struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
  738. ktime_t kt1, kt2;
  739. s64 idle_time_ns;
  740. s64 idle_time;
  741. pr = __this_cpu_read(processors);
  742. dev->last_residency = 0;
  743. if (unlikely(!pr))
  744. return -EINVAL;
  745. if (acpi_idle_suspend) {
  746. cpu_relax();
  747. return -EINVAL;
  748. }
  749. if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
  750. if (dev->safe_state_index >= 0) {
  751. return dev->states[dev->safe_state_index].enter(dev,
  752. dev->safe_state_index);
  753. } else {
  754. local_irq_disable();
  755. acpi_safe_halt();
  756. local_irq_enable();
  757. return -EINVAL;
  758. }
  759. }
  760. local_irq_disable();
  761. if (cx->entry_method != ACPI_CSTATE_FFH) {
  762. current_thread_info()->status &= ~TS_POLLING;
  763. /*
  764. * TS_POLLING-cleared state must be visible before we test
  765. * NEED_RESCHED:
  766. */
  767. smp_mb();
  768. if (unlikely(need_resched())) {
  769. current_thread_info()->status |= TS_POLLING;
  770. local_irq_enable();
  771. return -EINVAL;
  772. }
  773. }
  774. acpi_unlazy_tlb(smp_processor_id());
  775. /* Tell the scheduler that we are going deep-idle: */
  776. sched_clock_idle_sleep_event();
  777. /*
  778. * Must be done before busmaster disable as we might need to
  779. * access HPET !
  780. */
  781. lapic_timer_state_broadcast(pr, cx, 1);
  782. kt1 = ktime_get_real();
  783. /*
  784. * disable bus master
  785. * bm_check implies we need ARB_DIS
  786. * !bm_check implies we need cache flush
  787. * bm_control implies whether we can do ARB_DIS
  788. *
  789. * That leaves a case where bm_check is set and bm_control is
  790. * not set. In that case we cannot do much, we enter C3
  791. * without doing anything.
  792. */
  793. if (pr->flags.bm_check && pr->flags.bm_control) {
  794. spin_lock(&c3_lock);
  795. c3_cpu_count++;
  796. /* Disable bus master arbitration when all CPUs are in C3 */
  797. if (c3_cpu_count == num_online_cpus())
  798. acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
  799. spin_unlock(&c3_lock);
  800. } else if (!pr->flags.bm_check) {
  801. ACPI_FLUSH_CPU_CACHE();
  802. }
  803. acpi_idle_do_entry(cx);
  804. /* Re-enable bus master arbitration */
  805. if (pr->flags.bm_check && pr->flags.bm_control) {
  806. spin_lock(&c3_lock);
  807. acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
  808. c3_cpu_count--;
  809. spin_unlock(&c3_lock);
  810. }
  811. kt2 = ktime_get_real();
  812. idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1));
  813. idle_time = idle_time_ns;
  814. do_div(idle_time, NSEC_PER_USEC);
  815. /* Update device last_residency*/
  816. dev->last_residency = (int)idle_time;
  817. /* Tell the scheduler how much we idled: */
  818. sched_clock_idle_wakeup_event(idle_time_ns);
  819. local_irq_enable();
  820. if (cx->entry_method != ACPI_CSTATE_FFH)
  821. current_thread_info()->status |= TS_POLLING;
  822. cx->usage++;
  823. lapic_timer_state_broadcast(pr, cx, 0);
  824. cx->time += idle_time;
  825. return index;
  826. }
  827. struct cpuidle_driver acpi_idle_driver = {
  828. .name = "acpi_idle",
  829. .owner = THIS_MODULE,
  830. };
  831. /**
  832. * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
  833. * @pr: the ACPI processor
  834. */
  835. static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
  836. {
  837. int i, count = CPUIDLE_DRIVER_STATE_START;
  838. struct acpi_processor_cx *cx;
  839. struct cpuidle_state *state;
  840. struct cpuidle_device *dev = &pr->power.dev;
  841. if (!pr->flags.power_setup_done)
  842. return -EINVAL;
  843. if (pr->flags.power == 0) {
  844. return -EINVAL;
  845. }
  846. dev->cpu = pr->id;
  847. dev->safe_state_index = -1;
  848. for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
  849. dev->states[i].name[0] = '\0';
  850. dev->states[i].desc[0] = '\0';
  851. }
  852. if (max_cstate == 0)
  853. max_cstate = 1;
  854. for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
  855. cx = &pr->power.states[i];
  856. state = &dev->states[count];
  857. if (!cx->valid)
  858. continue;
  859. #ifdef CONFIG_HOTPLUG_CPU
  860. if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
  861. !pr->flags.has_cst &&
  862. !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
  863. continue;
  864. #endif
  865. cpuidle_set_statedata(state, cx);
  866. snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
  867. strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
  868. state->exit_latency = cx->latency;
  869. state->target_residency = cx->latency * latency_factor;
  870. state->flags = 0;
  871. switch (cx->type) {
  872. case ACPI_STATE_C1:
  873. if (cx->entry_method == ACPI_CSTATE_FFH)
  874. state->flags |= CPUIDLE_FLAG_TIME_VALID;
  875. state->enter = acpi_idle_enter_c1;
  876. dev->safe_state_index = count;
  877. break;
  878. case ACPI_STATE_C2:
  879. state->flags |= CPUIDLE_FLAG_TIME_VALID;
  880. state->enter = acpi_idle_enter_simple;
  881. dev->safe_state_index = count;
  882. break;
  883. case ACPI_STATE_C3:
  884. state->flags |= CPUIDLE_FLAG_TIME_VALID;
  885. state->enter = pr->flags.bm_check ?
  886. acpi_idle_enter_bm :
  887. acpi_idle_enter_simple;
  888. break;
  889. }
  890. count++;
  891. if (count == CPUIDLE_STATE_MAX)
  892. break;
  893. }
  894. dev->state_count = count;
  895. if (!count)
  896. return -EINVAL;
  897. return 0;
  898. }
  899. int acpi_processor_cst_has_changed(struct acpi_processor *pr)
  900. {
  901. int ret = 0;
  902. if (disabled_by_idle_boot_param())
  903. return 0;
  904. if (!pr)
  905. return -EINVAL;
  906. if (nocst) {
  907. return -ENODEV;
  908. }
  909. if (!pr->flags.power_setup_done)
  910. return -ENODEV;
  911. cpuidle_pause_and_lock();
  912. cpuidle_disable_device(&pr->power.dev);
  913. acpi_processor_get_power_info(pr);
  914. if (pr->flags.power) {
  915. acpi_processor_setup_cpuidle(pr);
  916. ret = cpuidle_enable_device(&pr->power.dev);
  917. }
  918. cpuidle_resume_and_unlock();
  919. return ret;
  920. }
  921. int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
  922. struct acpi_device *device)
  923. {
  924. acpi_status status = 0;
  925. static int first_run;
  926. if (disabled_by_idle_boot_param())
  927. return 0;
  928. if (!first_run) {
  929. dmi_check_system(processor_power_dmi_table);
  930. max_cstate = acpi_processor_cstate_check(max_cstate);
  931. if (max_cstate < ACPI_C_STATES_MAX)
  932. printk(KERN_NOTICE
  933. "ACPI: processor limited to max C-state %d\n",
  934. max_cstate);
  935. first_run++;
  936. }
  937. if (!pr)
  938. return -EINVAL;
  939. if (acpi_gbl_FADT.cst_control && !nocst) {
  940. status =
  941. acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
  942. if (ACPI_FAILURE(status)) {
  943. ACPI_EXCEPTION((AE_INFO, status,
  944. "Notifying BIOS of _CST ability failed"));
  945. }
  946. }
  947. acpi_processor_get_power_info(pr);
  948. pr->flags.power_setup_done = 1;
  949. /*
  950. * Install the idle handler if processor power management is supported.
  951. * Note that we use previously set idle handler will be used on
  952. * platforms that only support C1.
  953. */
  954. if (pr->flags.power) {
  955. acpi_processor_setup_cpuidle(pr);
  956. if (cpuidle_register_device(&pr->power.dev))
  957. return -EIO;
  958. }
  959. return 0;
  960. }
  961. int acpi_processor_power_exit(struct acpi_processor *pr,
  962. struct acpi_device *device)
  963. {
  964. if (disabled_by_idle_boot_param())
  965. return 0;
  966. cpuidle_unregister_device(&pr->power.dev);
  967. pr->flags.power_setup_done = 0;
  968. return 0;
  969. }