hw.c 106 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058
  1. /*
  2. * Copyright (c) 2008 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/io.h>
  17. #include <asm/unaligned.h>
  18. #include "core.h"
  19. #include "hw.h"
  20. #include "reg.h"
  21. #include "phy.h"
  22. #include "initvals.h"
  23. static const u8 CLOCK_RATE[] = { 40, 80, 22, 44, 88, 40 };
  24. extern struct hal_percal_data iq_cal_multi_sample;
  25. extern struct hal_percal_data iq_cal_single_sample;
  26. extern struct hal_percal_data adc_gain_cal_multi_sample;
  27. extern struct hal_percal_data adc_gain_cal_single_sample;
  28. extern struct hal_percal_data adc_dc_cal_multi_sample;
  29. extern struct hal_percal_data adc_dc_cal_single_sample;
  30. extern struct hal_percal_data adc_init_dc_cal;
  31. static bool ath9k_hw_set_reset_reg(struct ath_hal *ah, u32 type);
  32. static void ath9k_hw_set_regs(struct ath_hal *ah, struct ath9k_channel *chan,
  33. enum ath9k_ht_macmode macmode);
  34. static u32 ath9k_hw_ini_fixup(struct ath_hal *ah,
  35. struct ar5416_eeprom *pEepData,
  36. u32 reg, u32 value);
  37. static void ath9k_hw_9280_spur_mitigate(struct ath_hal *ah, struct ath9k_channel *chan);
  38. static void ath9k_hw_spur_mitigate(struct ath_hal *ah, struct ath9k_channel *chan);
  39. /********************/
  40. /* Helper Functions */
  41. /********************/
  42. static u32 ath9k_hw_mac_usec(struct ath_hal *ah, u32 clks)
  43. {
  44. if (ah->ah_curchan != NULL)
  45. return clks / CLOCK_RATE[ath9k_hw_chan2wmode(ah, ah->ah_curchan)];
  46. else
  47. return clks / CLOCK_RATE[ATH9K_MODE_11B];
  48. }
  49. static u32 ath9k_hw_mac_to_usec(struct ath_hal *ah, u32 clks)
  50. {
  51. struct ath9k_channel *chan = ah->ah_curchan;
  52. if (chan && IS_CHAN_HT40(chan))
  53. return ath9k_hw_mac_usec(ah, clks) / 2;
  54. else
  55. return ath9k_hw_mac_usec(ah, clks);
  56. }
  57. static u32 ath9k_hw_mac_clks(struct ath_hal *ah, u32 usecs)
  58. {
  59. if (ah->ah_curchan != NULL)
  60. return usecs * CLOCK_RATE[ath9k_hw_chan2wmode(ah,
  61. ah->ah_curchan)];
  62. else
  63. return usecs * CLOCK_RATE[ATH9K_MODE_11B];
  64. }
  65. static u32 ath9k_hw_mac_to_clks(struct ath_hal *ah, u32 usecs)
  66. {
  67. struct ath9k_channel *chan = ah->ah_curchan;
  68. if (chan && IS_CHAN_HT40(chan))
  69. return ath9k_hw_mac_clks(ah, usecs) * 2;
  70. else
  71. return ath9k_hw_mac_clks(ah, usecs);
  72. }
  73. enum wireless_mode ath9k_hw_chan2wmode(struct ath_hal *ah,
  74. const struct ath9k_channel *chan)
  75. {
  76. if (IS_CHAN_CCK(chan))
  77. return ATH9K_MODE_11A;
  78. if (IS_CHAN_G(chan))
  79. return ATH9K_MODE_11G;
  80. return ATH9K_MODE_11A;
  81. }
  82. bool ath9k_hw_wait(struct ath_hal *ah, u32 reg, u32 mask, u32 val)
  83. {
  84. int i;
  85. for (i = 0; i < (AH_TIMEOUT / AH_TIME_QUANTUM); i++) {
  86. if ((REG_READ(ah, reg) & mask) == val)
  87. return true;
  88. udelay(AH_TIME_QUANTUM);
  89. }
  90. DPRINTF(ah->ah_sc, ATH_DBG_PHY_IO,
  91. "%s: timeout on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  92. __func__, reg, REG_READ(ah, reg), mask, val);
  93. return false;
  94. }
  95. u32 ath9k_hw_reverse_bits(u32 val, u32 n)
  96. {
  97. u32 retval;
  98. int i;
  99. for (i = 0, retval = 0; i < n; i++) {
  100. retval = (retval << 1) | (val & 1);
  101. val >>= 1;
  102. }
  103. return retval;
  104. }
  105. bool ath9k_get_channel_edges(struct ath_hal *ah,
  106. u16 flags, u16 *low,
  107. u16 *high)
  108. {
  109. struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
  110. if (flags & CHANNEL_5GHZ) {
  111. *low = pCap->low_5ghz_chan;
  112. *high = pCap->high_5ghz_chan;
  113. return true;
  114. }
  115. if ((flags & CHANNEL_2GHZ)) {
  116. *low = pCap->low_2ghz_chan;
  117. *high = pCap->high_2ghz_chan;
  118. return true;
  119. }
  120. return false;
  121. }
  122. u16 ath9k_hw_computetxtime(struct ath_hal *ah,
  123. const struct ath9k_rate_table *rates,
  124. u32 frameLen, u16 rateix,
  125. bool shortPreamble)
  126. {
  127. u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
  128. u32 kbps;
  129. kbps = rates->info[rateix].rateKbps;
  130. if (kbps == 0)
  131. return 0;
  132. switch (rates->info[rateix].phy) {
  133. case PHY_CCK:
  134. phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
  135. if (shortPreamble && rates->info[rateix].shortPreamble)
  136. phyTime >>= 1;
  137. numBits = frameLen << 3;
  138. txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
  139. break;
  140. case PHY_OFDM:
  141. if (ah->ah_curchan && IS_CHAN_QUARTER_RATE(ah->ah_curchan)) {
  142. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
  143. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  144. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  145. txTime = OFDM_SIFS_TIME_QUARTER
  146. + OFDM_PREAMBLE_TIME_QUARTER
  147. + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
  148. } else if (ah->ah_curchan &&
  149. IS_CHAN_HALF_RATE(ah->ah_curchan)) {
  150. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
  151. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  152. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  153. txTime = OFDM_SIFS_TIME_HALF +
  154. OFDM_PREAMBLE_TIME_HALF
  155. + (numSymbols * OFDM_SYMBOL_TIME_HALF);
  156. } else {
  157. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
  158. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  159. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  160. txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
  161. + (numSymbols * OFDM_SYMBOL_TIME);
  162. }
  163. break;
  164. default:
  165. DPRINTF(ah->ah_sc, ATH_DBG_PHY_IO,
  166. "%s: unknown phy %u (rate ix %u)\n", __func__,
  167. rates->info[rateix].phy, rateix);
  168. txTime = 0;
  169. break;
  170. }
  171. return txTime;
  172. }
  173. u32 ath9k_hw_mhz2ieee(struct ath_hal *ah, u32 freq, u32 flags)
  174. {
  175. if (flags & CHANNEL_2GHZ) {
  176. if (freq == 2484)
  177. return 14;
  178. if (freq < 2484)
  179. return (freq - 2407) / 5;
  180. else
  181. return 15 + ((freq - 2512) / 20);
  182. } else if (flags & CHANNEL_5GHZ) {
  183. if (ath9k_regd_is_public_safety_sku(ah) &&
  184. IS_CHAN_IN_PUBLIC_SAFETY_BAND(freq)) {
  185. return ((freq * 10) +
  186. (((freq % 5) == 2) ? 5 : 0) - 49400) / 5;
  187. } else if ((flags & CHANNEL_A) && (freq <= 5000)) {
  188. return (freq - 4000) / 5;
  189. } else {
  190. return (freq - 5000) / 5;
  191. }
  192. } else {
  193. if (freq == 2484)
  194. return 14;
  195. if (freq < 2484)
  196. return (freq - 2407) / 5;
  197. if (freq < 5000) {
  198. if (ath9k_regd_is_public_safety_sku(ah)
  199. && IS_CHAN_IN_PUBLIC_SAFETY_BAND(freq)) {
  200. return ((freq * 10) +
  201. (((freq % 5) ==
  202. 2) ? 5 : 0) - 49400) / 5;
  203. } else if (freq > 4900) {
  204. return (freq - 4000) / 5;
  205. } else {
  206. return 15 + ((freq - 2512) / 20);
  207. }
  208. }
  209. return (freq - 5000) / 5;
  210. }
  211. }
  212. void ath9k_hw_get_channel_centers(struct ath_hal *ah,
  213. struct ath9k_channel *chan,
  214. struct chan_centers *centers)
  215. {
  216. int8_t extoff;
  217. struct ath_hal_5416 *ahp = AH5416(ah);
  218. if (!IS_CHAN_HT40(chan)) {
  219. centers->ctl_center = centers->ext_center =
  220. centers->synth_center = chan->channel;
  221. return;
  222. }
  223. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  224. (chan->chanmode == CHANNEL_G_HT40PLUS)) {
  225. centers->synth_center =
  226. chan->channel + HT40_CHANNEL_CENTER_SHIFT;
  227. extoff = 1;
  228. } else {
  229. centers->synth_center =
  230. chan->channel - HT40_CHANNEL_CENTER_SHIFT;
  231. extoff = -1;
  232. }
  233. centers->ctl_center =
  234. centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
  235. centers->ext_center =
  236. centers->synth_center + (extoff *
  237. ((ahp->ah_extprotspacing == ATH9K_HT_EXTPROTSPACING_20) ?
  238. HT40_CHANNEL_CENTER_SHIFT : 15));
  239. }
  240. /******************/
  241. /* Chip Revisions */
  242. /******************/
  243. static void ath9k_hw_read_revisions(struct ath_hal *ah)
  244. {
  245. u32 val;
  246. val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
  247. if (val == 0xFF) {
  248. val = REG_READ(ah, AR_SREV);
  249. ah->ah_macVersion = (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
  250. ah->ah_macRev = MS(val, AR_SREV_REVISION2);
  251. ah->ah_isPciExpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
  252. } else {
  253. if (!AR_SREV_9100(ah))
  254. ah->ah_macVersion = MS(val, AR_SREV_VERSION);
  255. ah->ah_macRev = val & AR_SREV_REVISION;
  256. if (ah->ah_macVersion == AR_SREV_VERSION_5416_PCIE)
  257. ah->ah_isPciExpress = true;
  258. }
  259. }
  260. static int ath9k_hw_get_radiorev(struct ath_hal *ah)
  261. {
  262. u32 val;
  263. int i;
  264. REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
  265. for (i = 0; i < 8; i++)
  266. REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
  267. val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
  268. val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
  269. return ath9k_hw_reverse_bits(val, 8);
  270. }
  271. /************************************/
  272. /* HW Attach, Detach, Init Routines */
  273. /************************************/
  274. static void ath9k_hw_disablepcie(struct ath_hal *ah)
  275. {
  276. if (!AR_SREV_9100(ah))
  277. return;
  278. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  279. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  280. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
  281. REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
  282. REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
  283. REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
  284. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  285. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  286. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
  287. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  288. }
  289. static bool ath9k_hw_chip_test(struct ath_hal *ah)
  290. {
  291. u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
  292. u32 regHold[2];
  293. u32 patternData[4] = { 0x55555555,
  294. 0xaaaaaaaa,
  295. 0x66666666,
  296. 0x99999999 };
  297. int i, j;
  298. for (i = 0; i < 2; i++) {
  299. u32 addr = regAddr[i];
  300. u32 wrData, rdData;
  301. regHold[i] = REG_READ(ah, addr);
  302. for (j = 0; j < 0x100; j++) {
  303. wrData = (j << 16) | j;
  304. REG_WRITE(ah, addr, wrData);
  305. rdData = REG_READ(ah, addr);
  306. if (rdData != wrData) {
  307. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
  308. "%s: address test failed "
  309. "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  310. __func__, addr, wrData, rdData);
  311. return false;
  312. }
  313. }
  314. for (j = 0; j < 4; j++) {
  315. wrData = patternData[j];
  316. REG_WRITE(ah, addr, wrData);
  317. rdData = REG_READ(ah, addr);
  318. if (wrData != rdData) {
  319. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
  320. "%s: address test failed "
  321. "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  322. __func__, addr, wrData, rdData);
  323. return false;
  324. }
  325. }
  326. REG_WRITE(ah, regAddr[i], regHold[i]);
  327. }
  328. udelay(100);
  329. return true;
  330. }
  331. static const char *ath9k_hw_devname(u16 devid)
  332. {
  333. switch (devid) {
  334. case AR5416_DEVID_PCI:
  335. return "Atheros 5416";
  336. case AR5416_DEVID_PCIE:
  337. return "Atheros 5418";
  338. case AR9160_DEVID_PCI:
  339. return "Atheros 9160";
  340. case AR9280_DEVID_PCI:
  341. case AR9280_DEVID_PCIE:
  342. return "Atheros 9280";
  343. }
  344. return NULL;
  345. }
  346. static void ath9k_hw_set_defaults(struct ath_hal *ah)
  347. {
  348. int i;
  349. ah->ah_config.dma_beacon_response_time = 2;
  350. ah->ah_config.sw_beacon_response_time = 10;
  351. ah->ah_config.additional_swba_backoff = 0;
  352. ah->ah_config.ack_6mb = 0x0;
  353. ah->ah_config.cwm_ignore_extcca = 0;
  354. ah->ah_config.pcie_powersave_enable = 0;
  355. ah->ah_config.pcie_l1skp_enable = 0;
  356. ah->ah_config.pcie_clock_req = 0;
  357. ah->ah_config.pcie_power_reset = 0x100;
  358. ah->ah_config.pcie_restore = 0;
  359. ah->ah_config.pcie_waen = 0;
  360. ah->ah_config.analog_shiftreg = 1;
  361. ah->ah_config.ht_enable = 1;
  362. ah->ah_config.ofdm_trig_low = 200;
  363. ah->ah_config.ofdm_trig_high = 500;
  364. ah->ah_config.cck_trig_high = 200;
  365. ah->ah_config.cck_trig_low = 100;
  366. ah->ah_config.enable_ani = 1;
  367. ah->ah_config.noise_immunity_level = 4;
  368. ah->ah_config.ofdm_weaksignal_det = 1;
  369. ah->ah_config.cck_weaksignal_thr = 0;
  370. ah->ah_config.spur_immunity_level = 2;
  371. ah->ah_config.firstep_level = 0;
  372. ah->ah_config.rssi_thr_high = 40;
  373. ah->ah_config.rssi_thr_low = 7;
  374. ah->ah_config.diversity_control = 0;
  375. ah->ah_config.antenna_switch_swap = 0;
  376. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  377. ah->ah_config.spurchans[i][0] = AR_NO_SPUR;
  378. ah->ah_config.spurchans[i][1] = AR_NO_SPUR;
  379. }
  380. ah->ah_config.intr_mitigation = 1;
  381. }
  382. static struct ath_hal_5416 *ath9k_hw_newstate(u16 devid,
  383. struct ath_softc *sc,
  384. void __iomem *mem,
  385. int *status)
  386. {
  387. static const u8 defbssidmask[ETH_ALEN] =
  388. { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
  389. struct ath_hal_5416 *ahp;
  390. struct ath_hal *ah;
  391. ahp = kzalloc(sizeof(struct ath_hal_5416), GFP_KERNEL);
  392. if (ahp == NULL) {
  393. DPRINTF(sc, ATH_DBG_FATAL,
  394. "%s: cannot allocate memory for state block\n",
  395. __func__);
  396. *status = -ENOMEM;
  397. return NULL;
  398. }
  399. ah = &ahp->ah;
  400. ah->ah_sc = sc;
  401. ah->ah_sh = mem;
  402. ah->ah_magic = AR5416_MAGIC;
  403. ah->ah_countryCode = CTRY_DEFAULT;
  404. ah->ah_devid = devid;
  405. ah->ah_subvendorid = 0;
  406. ah->ah_flags = 0;
  407. if ((devid == AR5416_AR9100_DEVID))
  408. ah->ah_macVersion = AR_SREV_VERSION_9100;
  409. if (!AR_SREV_9100(ah))
  410. ah->ah_flags = AH_USE_EEPROM;
  411. ah->ah_powerLimit = MAX_RATE_POWER;
  412. ah->ah_tpScale = ATH9K_TP_SCALE_MAX;
  413. ahp->ah_atimWindow = 0;
  414. ahp->ah_diversityControl = ah->ah_config.diversity_control;
  415. ahp->ah_antennaSwitchSwap =
  416. ah->ah_config.antenna_switch_swap;
  417. ahp->ah_staId1Defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
  418. ahp->ah_beaconInterval = 100;
  419. ahp->ah_enable32kHzClock = DONT_USE_32KHZ;
  420. ahp->ah_slottime = (u32) -1;
  421. ahp->ah_acktimeout = (u32) -1;
  422. ahp->ah_ctstimeout = (u32) -1;
  423. ahp->ah_globaltxtimeout = (u32) -1;
  424. memcpy(&ahp->ah_bssidmask, defbssidmask, ETH_ALEN);
  425. ahp->ah_gBeaconRate = 0;
  426. return ahp;
  427. }
  428. static int ath9k_hw_rfattach(struct ath_hal *ah)
  429. {
  430. bool rfStatus = false;
  431. int ecode = 0;
  432. rfStatus = ath9k_hw_init_rf(ah, &ecode);
  433. if (!rfStatus) {
  434. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  435. "%s: RF setup failed, status %u\n", __func__,
  436. ecode);
  437. return ecode;
  438. }
  439. return 0;
  440. }
  441. static int ath9k_hw_rf_claim(struct ath_hal *ah)
  442. {
  443. u32 val;
  444. REG_WRITE(ah, AR_PHY(0), 0x00000007);
  445. val = ath9k_hw_get_radiorev(ah);
  446. switch (val & AR_RADIO_SREV_MAJOR) {
  447. case 0:
  448. val = AR_RAD5133_SREV_MAJOR;
  449. break;
  450. case AR_RAD5133_SREV_MAJOR:
  451. case AR_RAD5122_SREV_MAJOR:
  452. case AR_RAD2133_SREV_MAJOR:
  453. case AR_RAD2122_SREV_MAJOR:
  454. break;
  455. default:
  456. DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
  457. "%s: 5G Radio Chip Rev 0x%02X is not "
  458. "supported by this driver\n",
  459. __func__, ah->ah_analog5GhzRev);
  460. return -EOPNOTSUPP;
  461. }
  462. ah->ah_analog5GhzRev = val;
  463. return 0;
  464. }
  465. static int ath9k_hw_init_macaddr(struct ath_hal *ah)
  466. {
  467. u32 sum;
  468. int i;
  469. u16 eeval;
  470. struct ath_hal_5416 *ahp = AH5416(ah);
  471. sum = 0;
  472. for (i = 0; i < 3; i++) {
  473. eeval = ath9k_hw_get_eeprom(ah, AR_EEPROM_MAC(i));
  474. sum += eeval;
  475. ahp->ah_macaddr[2 * i] = eeval >> 8;
  476. ahp->ah_macaddr[2 * i + 1] = eeval & 0xff;
  477. }
  478. if (sum == 0 || sum == 0xffff * 3) {
  479. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  480. "%s: mac address read failed: %pM\n", __func__,
  481. ahp->ah_macaddr);
  482. return -EADDRNOTAVAIL;
  483. }
  484. return 0;
  485. }
  486. static void ath9k_hw_init_rxgain_ini(struct ath_hal *ah)
  487. {
  488. u32 rxgain_type;
  489. struct ath_hal_5416 *ahp = AH5416(ah);
  490. if (ath9k_hw_get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
  491. rxgain_type = ath9k_hw_get_eeprom(ah, EEP_RXGAIN_TYPE);
  492. if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
  493. INIT_INI_ARRAY(&ahp->ah_iniModesRxGain,
  494. ar9280Modes_backoff_13db_rxgain_9280_2,
  495. ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
  496. else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
  497. INIT_INI_ARRAY(&ahp->ah_iniModesRxGain,
  498. ar9280Modes_backoff_23db_rxgain_9280_2,
  499. ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
  500. else
  501. INIT_INI_ARRAY(&ahp->ah_iniModesRxGain,
  502. ar9280Modes_original_rxgain_9280_2,
  503. ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
  504. } else
  505. INIT_INI_ARRAY(&ahp->ah_iniModesRxGain,
  506. ar9280Modes_original_rxgain_9280_2,
  507. ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
  508. }
  509. static void ath9k_hw_init_txgain_ini(struct ath_hal *ah)
  510. {
  511. u32 txgain_type;
  512. struct ath_hal_5416 *ahp = AH5416(ah);
  513. if (ath9k_hw_get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
  514. txgain_type = ath9k_hw_get_eeprom(ah, EEP_TXGAIN_TYPE);
  515. if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
  516. INIT_INI_ARRAY(&ahp->ah_iniModesTxGain,
  517. ar9280Modes_high_power_tx_gain_9280_2,
  518. ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
  519. else
  520. INIT_INI_ARRAY(&ahp->ah_iniModesTxGain,
  521. ar9280Modes_original_tx_gain_9280_2,
  522. ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
  523. } else
  524. INIT_INI_ARRAY(&ahp->ah_iniModesTxGain,
  525. ar9280Modes_original_tx_gain_9280_2,
  526. ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
  527. }
  528. static int ath9k_hw_post_attach(struct ath_hal *ah)
  529. {
  530. int ecode;
  531. if (!ath9k_hw_chip_test(ah)) {
  532. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
  533. "%s: hardware self-test failed\n", __func__);
  534. return -ENODEV;
  535. }
  536. ecode = ath9k_hw_rf_claim(ah);
  537. if (ecode != 0)
  538. return ecode;
  539. ecode = ath9k_hw_eeprom_attach(ah);
  540. if (ecode != 0)
  541. return ecode;
  542. ecode = ath9k_hw_rfattach(ah);
  543. if (ecode != 0)
  544. return ecode;
  545. if (!AR_SREV_9100(ah)) {
  546. ath9k_hw_ani_setup(ah);
  547. ath9k_hw_ani_attach(ah);
  548. }
  549. return 0;
  550. }
  551. static struct ath_hal *ath9k_hw_do_attach(u16 devid, struct ath_softc *sc,
  552. void __iomem *mem, int *status)
  553. {
  554. struct ath_hal_5416 *ahp;
  555. struct ath_hal *ah;
  556. int ecode;
  557. #ifndef CONFIG_SLOW_ANT_DIV
  558. u32 i;
  559. u32 j;
  560. #endif
  561. ahp = ath9k_hw_newstate(devid, sc, mem, status);
  562. if (ahp == NULL)
  563. return NULL;
  564. ah = &ahp->ah;
  565. ath9k_hw_set_defaults(ah);
  566. if (ah->ah_config.intr_mitigation != 0)
  567. ahp->ah_intrMitigation = true;
  568. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  569. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: couldn't reset chip\n",
  570. __func__);
  571. ecode = -EIO;
  572. goto bad;
  573. }
  574. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
  575. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: couldn't wakeup chip\n",
  576. __func__);
  577. ecode = -EIO;
  578. goto bad;
  579. }
  580. if (ah->ah_config.serialize_regmode == SER_REG_MODE_AUTO) {
  581. if (ah->ah_macVersion == AR_SREV_VERSION_5416_PCI) {
  582. ah->ah_config.serialize_regmode =
  583. SER_REG_MODE_ON;
  584. } else {
  585. ah->ah_config.serialize_regmode =
  586. SER_REG_MODE_OFF;
  587. }
  588. }
  589. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  590. "%s: serialize_regmode is %d\n",
  591. __func__, ah->ah_config.serialize_regmode);
  592. if ((ah->ah_macVersion != AR_SREV_VERSION_5416_PCI) &&
  593. (ah->ah_macVersion != AR_SREV_VERSION_5416_PCIE) &&
  594. (ah->ah_macVersion != AR_SREV_VERSION_9160) &&
  595. (!AR_SREV_9100(ah)) && (!AR_SREV_9280(ah))) {
  596. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  597. "%s: Mac Chip Rev 0x%02x.%x is not supported by "
  598. "this driver\n", __func__,
  599. ah->ah_macVersion, ah->ah_macRev);
  600. ecode = -EOPNOTSUPP;
  601. goto bad;
  602. }
  603. if (AR_SREV_9100(ah)) {
  604. ahp->ah_iqCalData.calData = &iq_cal_multi_sample;
  605. ahp->ah_suppCals = IQ_MISMATCH_CAL;
  606. ah->ah_isPciExpress = false;
  607. }
  608. ah->ah_phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
  609. if (AR_SREV_9160_10_OR_LATER(ah)) {
  610. if (AR_SREV_9280_10_OR_LATER(ah)) {
  611. ahp->ah_iqCalData.calData = &iq_cal_single_sample;
  612. ahp->ah_adcGainCalData.calData =
  613. &adc_gain_cal_single_sample;
  614. ahp->ah_adcDcCalData.calData =
  615. &adc_dc_cal_single_sample;
  616. ahp->ah_adcDcCalInitData.calData =
  617. &adc_init_dc_cal;
  618. } else {
  619. ahp->ah_iqCalData.calData = &iq_cal_multi_sample;
  620. ahp->ah_adcGainCalData.calData =
  621. &adc_gain_cal_multi_sample;
  622. ahp->ah_adcDcCalData.calData =
  623. &adc_dc_cal_multi_sample;
  624. ahp->ah_adcDcCalInitData.calData =
  625. &adc_init_dc_cal;
  626. }
  627. ahp->ah_suppCals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
  628. }
  629. if (AR_SREV_9160(ah)) {
  630. ah->ah_config.enable_ani = 1;
  631. ahp->ah_ani_function = (ATH9K_ANI_SPUR_IMMUNITY_LEVEL |
  632. ATH9K_ANI_FIRSTEP_LEVEL);
  633. } else {
  634. ahp->ah_ani_function = ATH9K_ANI_ALL;
  635. if (AR_SREV_9280_10_OR_LATER(ah)) {
  636. ahp->ah_ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
  637. }
  638. }
  639. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  640. "%s: This Mac Chip Rev 0x%02x.%x is \n", __func__,
  641. ah->ah_macVersion, ah->ah_macRev);
  642. if (AR_SREV_9280_20_OR_LATER(ah)) {
  643. INIT_INI_ARRAY(&ahp->ah_iniModes, ar9280Modes_9280_2,
  644. ARRAY_SIZE(ar9280Modes_9280_2), 6);
  645. INIT_INI_ARRAY(&ahp->ah_iniCommon, ar9280Common_9280_2,
  646. ARRAY_SIZE(ar9280Common_9280_2), 2);
  647. if (ah->ah_config.pcie_clock_req) {
  648. INIT_INI_ARRAY(&ahp->ah_iniPcieSerdes,
  649. ar9280PciePhy_clkreq_off_L1_9280,
  650. ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
  651. } else {
  652. INIT_INI_ARRAY(&ahp->ah_iniPcieSerdes,
  653. ar9280PciePhy_clkreq_always_on_L1_9280,
  654. ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
  655. }
  656. INIT_INI_ARRAY(&ahp->ah_iniModesAdditional,
  657. ar9280Modes_fast_clock_9280_2,
  658. ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
  659. } else if (AR_SREV_9280_10_OR_LATER(ah)) {
  660. INIT_INI_ARRAY(&ahp->ah_iniModes, ar9280Modes_9280,
  661. ARRAY_SIZE(ar9280Modes_9280), 6);
  662. INIT_INI_ARRAY(&ahp->ah_iniCommon, ar9280Common_9280,
  663. ARRAY_SIZE(ar9280Common_9280), 2);
  664. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  665. INIT_INI_ARRAY(&ahp->ah_iniModes, ar5416Modes_9160,
  666. ARRAY_SIZE(ar5416Modes_9160), 6);
  667. INIT_INI_ARRAY(&ahp->ah_iniCommon, ar5416Common_9160,
  668. ARRAY_SIZE(ar5416Common_9160), 2);
  669. INIT_INI_ARRAY(&ahp->ah_iniBank0, ar5416Bank0_9160,
  670. ARRAY_SIZE(ar5416Bank0_9160), 2);
  671. INIT_INI_ARRAY(&ahp->ah_iniBB_RfGain, ar5416BB_RfGain_9160,
  672. ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
  673. INIT_INI_ARRAY(&ahp->ah_iniBank1, ar5416Bank1_9160,
  674. ARRAY_SIZE(ar5416Bank1_9160), 2);
  675. INIT_INI_ARRAY(&ahp->ah_iniBank2, ar5416Bank2_9160,
  676. ARRAY_SIZE(ar5416Bank2_9160), 2);
  677. INIT_INI_ARRAY(&ahp->ah_iniBank3, ar5416Bank3_9160,
  678. ARRAY_SIZE(ar5416Bank3_9160), 3);
  679. INIT_INI_ARRAY(&ahp->ah_iniBank6, ar5416Bank6_9160,
  680. ARRAY_SIZE(ar5416Bank6_9160), 3);
  681. INIT_INI_ARRAY(&ahp->ah_iniBank6TPC, ar5416Bank6TPC_9160,
  682. ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
  683. INIT_INI_ARRAY(&ahp->ah_iniBank7, ar5416Bank7_9160,
  684. ARRAY_SIZE(ar5416Bank7_9160), 2);
  685. if (AR_SREV_9160_11(ah)) {
  686. INIT_INI_ARRAY(&ahp->ah_iniAddac,
  687. ar5416Addac_91601_1,
  688. ARRAY_SIZE(ar5416Addac_91601_1), 2);
  689. } else {
  690. INIT_INI_ARRAY(&ahp->ah_iniAddac, ar5416Addac_9160,
  691. ARRAY_SIZE(ar5416Addac_9160), 2);
  692. }
  693. } else if (AR_SREV_9100_OR_LATER(ah)) {
  694. INIT_INI_ARRAY(&ahp->ah_iniModes, ar5416Modes_9100,
  695. ARRAY_SIZE(ar5416Modes_9100), 6);
  696. INIT_INI_ARRAY(&ahp->ah_iniCommon, ar5416Common_9100,
  697. ARRAY_SIZE(ar5416Common_9100), 2);
  698. INIT_INI_ARRAY(&ahp->ah_iniBank0, ar5416Bank0_9100,
  699. ARRAY_SIZE(ar5416Bank0_9100), 2);
  700. INIT_INI_ARRAY(&ahp->ah_iniBB_RfGain, ar5416BB_RfGain_9100,
  701. ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
  702. INIT_INI_ARRAY(&ahp->ah_iniBank1, ar5416Bank1_9100,
  703. ARRAY_SIZE(ar5416Bank1_9100), 2);
  704. INIT_INI_ARRAY(&ahp->ah_iniBank2, ar5416Bank2_9100,
  705. ARRAY_SIZE(ar5416Bank2_9100), 2);
  706. INIT_INI_ARRAY(&ahp->ah_iniBank3, ar5416Bank3_9100,
  707. ARRAY_SIZE(ar5416Bank3_9100), 3);
  708. INIT_INI_ARRAY(&ahp->ah_iniBank6, ar5416Bank6_9100,
  709. ARRAY_SIZE(ar5416Bank6_9100), 3);
  710. INIT_INI_ARRAY(&ahp->ah_iniBank6TPC, ar5416Bank6TPC_9100,
  711. ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
  712. INIT_INI_ARRAY(&ahp->ah_iniBank7, ar5416Bank7_9100,
  713. ARRAY_SIZE(ar5416Bank7_9100), 2);
  714. INIT_INI_ARRAY(&ahp->ah_iniAddac, ar5416Addac_9100,
  715. ARRAY_SIZE(ar5416Addac_9100), 2);
  716. } else {
  717. INIT_INI_ARRAY(&ahp->ah_iniModes, ar5416Modes,
  718. ARRAY_SIZE(ar5416Modes), 6);
  719. INIT_INI_ARRAY(&ahp->ah_iniCommon, ar5416Common,
  720. ARRAY_SIZE(ar5416Common), 2);
  721. INIT_INI_ARRAY(&ahp->ah_iniBank0, ar5416Bank0,
  722. ARRAY_SIZE(ar5416Bank0), 2);
  723. INIT_INI_ARRAY(&ahp->ah_iniBB_RfGain, ar5416BB_RfGain,
  724. ARRAY_SIZE(ar5416BB_RfGain), 3);
  725. INIT_INI_ARRAY(&ahp->ah_iniBank1, ar5416Bank1,
  726. ARRAY_SIZE(ar5416Bank1), 2);
  727. INIT_INI_ARRAY(&ahp->ah_iniBank2, ar5416Bank2,
  728. ARRAY_SIZE(ar5416Bank2), 2);
  729. INIT_INI_ARRAY(&ahp->ah_iniBank3, ar5416Bank3,
  730. ARRAY_SIZE(ar5416Bank3), 3);
  731. INIT_INI_ARRAY(&ahp->ah_iniBank6, ar5416Bank6,
  732. ARRAY_SIZE(ar5416Bank6), 3);
  733. INIT_INI_ARRAY(&ahp->ah_iniBank6TPC, ar5416Bank6TPC,
  734. ARRAY_SIZE(ar5416Bank6TPC), 3);
  735. INIT_INI_ARRAY(&ahp->ah_iniBank7, ar5416Bank7,
  736. ARRAY_SIZE(ar5416Bank7), 2);
  737. INIT_INI_ARRAY(&ahp->ah_iniAddac, ar5416Addac,
  738. ARRAY_SIZE(ar5416Addac), 2);
  739. }
  740. if (ah->ah_isPciExpress)
  741. ath9k_hw_configpcipowersave(ah, 0);
  742. else
  743. ath9k_hw_disablepcie(ah);
  744. ecode = ath9k_hw_post_attach(ah);
  745. if (ecode != 0)
  746. goto bad;
  747. /* rxgain table */
  748. if (AR_SREV_9280_20_OR_LATER(ah))
  749. ath9k_hw_init_rxgain_ini(ah);
  750. /* txgain table */
  751. if (AR_SREV_9280_20_OR_LATER(ah))
  752. ath9k_hw_init_txgain_ini(ah);
  753. #ifndef CONFIG_SLOW_ANT_DIV
  754. if (ah->ah_devid == AR9280_DEVID_PCI) {
  755. for (i = 0; i < ahp->ah_iniModes.ia_rows; i++) {
  756. u32 reg = INI_RA(&ahp->ah_iniModes, i, 0);
  757. for (j = 1; j < ahp->ah_iniModes.ia_columns; j++) {
  758. u32 val = INI_RA(&ahp->ah_iniModes, i, j);
  759. INI_RA(&ahp->ah_iniModes, i, j) =
  760. ath9k_hw_ini_fixup(ah, &ahp->ah_eeprom,
  761. reg, val);
  762. }
  763. }
  764. }
  765. #endif
  766. if (!ath9k_hw_fill_cap_info(ah)) {
  767. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  768. "%s:failed ath9k_hw_fill_cap_info\n", __func__);
  769. ecode = -EINVAL;
  770. goto bad;
  771. }
  772. ecode = ath9k_hw_init_macaddr(ah);
  773. if (ecode != 0) {
  774. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  775. "%s: failed initializing mac address\n",
  776. __func__);
  777. goto bad;
  778. }
  779. if (AR_SREV_9285(ah))
  780. ah->ah_txTrigLevel = (AR_FTRIG_256B >> AR_FTRIG_S);
  781. else
  782. ah->ah_txTrigLevel = (AR_FTRIG_512B >> AR_FTRIG_S);
  783. ath9k_init_nfcal_hist_buffer(ah);
  784. return ah;
  785. bad:
  786. if (ahp)
  787. ath9k_hw_detach((struct ath_hal *) ahp);
  788. if (status)
  789. *status = ecode;
  790. return NULL;
  791. }
  792. static void ath9k_hw_init_bb(struct ath_hal *ah,
  793. struct ath9k_channel *chan)
  794. {
  795. u32 synthDelay;
  796. synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
  797. if (IS_CHAN_CCK(chan))
  798. synthDelay = (4 * synthDelay) / 22;
  799. else
  800. synthDelay /= 10;
  801. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
  802. udelay(synthDelay + BASE_ACTIVATE_DELAY);
  803. }
  804. static void ath9k_hw_init_qos(struct ath_hal *ah)
  805. {
  806. REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
  807. REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
  808. REG_WRITE(ah, AR_QOS_NO_ACK,
  809. SM(2, AR_QOS_NO_ACK_TWO_BIT) |
  810. SM(5, AR_QOS_NO_ACK_BIT_OFF) |
  811. SM(0, AR_QOS_NO_ACK_BYTE_OFF));
  812. REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
  813. REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
  814. REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
  815. REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
  816. REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
  817. }
  818. static void ath9k_hw_init_pll(struct ath_hal *ah,
  819. struct ath9k_channel *chan)
  820. {
  821. u32 pll;
  822. if (AR_SREV_9100(ah)) {
  823. if (chan && IS_CHAN_5GHZ(chan))
  824. pll = 0x1450;
  825. else
  826. pll = 0x1458;
  827. } else {
  828. if (AR_SREV_9280_10_OR_LATER(ah)) {
  829. pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
  830. if (chan && IS_CHAN_HALF_RATE(chan))
  831. pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
  832. else if (chan && IS_CHAN_QUARTER_RATE(chan))
  833. pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
  834. if (chan && IS_CHAN_5GHZ(chan)) {
  835. pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
  836. if (AR_SREV_9280_20(ah)) {
  837. if (((chan->channel % 20) == 0)
  838. || ((chan->channel % 10) == 0))
  839. pll = 0x2850;
  840. else
  841. pll = 0x142c;
  842. }
  843. } else {
  844. pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
  845. }
  846. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  847. pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
  848. if (chan && IS_CHAN_HALF_RATE(chan))
  849. pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
  850. else if (chan && IS_CHAN_QUARTER_RATE(chan))
  851. pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
  852. if (chan && IS_CHAN_5GHZ(chan))
  853. pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
  854. else
  855. pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
  856. } else {
  857. pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
  858. if (chan && IS_CHAN_HALF_RATE(chan))
  859. pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
  860. else if (chan && IS_CHAN_QUARTER_RATE(chan))
  861. pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
  862. if (chan && IS_CHAN_5GHZ(chan))
  863. pll |= SM(0xa, AR_RTC_PLL_DIV);
  864. else
  865. pll |= SM(0xb, AR_RTC_PLL_DIV);
  866. }
  867. }
  868. REG_WRITE(ah, (u16) (AR_RTC_PLL_CONTROL), pll);
  869. udelay(RTC_PLL_SETTLE_DELAY);
  870. REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
  871. }
  872. static void ath9k_hw_init_chain_masks(struct ath_hal *ah)
  873. {
  874. struct ath_hal_5416 *ahp = AH5416(ah);
  875. int rx_chainmask, tx_chainmask;
  876. rx_chainmask = ahp->ah_rxchainmask;
  877. tx_chainmask = ahp->ah_txchainmask;
  878. switch (rx_chainmask) {
  879. case 0x5:
  880. REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
  881. AR_PHY_SWAP_ALT_CHAIN);
  882. case 0x3:
  883. if (((ah)->ah_macVersion <= AR_SREV_VERSION_9160)) {
  884. REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
  885. REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
  886. break;
  887. }
  888. case 0x1:
  889. case 0x2:
  890. if (!AR_SREV_9280(ah))
  891. break;
  892. case 0x7:
  893. REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
  894. REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
  895. break;
  896. default:
  897. break;
  898. }
  899. REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
  900. if (tx_chainmask == 0x5) {
  901. REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
  902. AR_PHY_SWAP_ALT_CHAIN);
  903. }
  904. if (AR_SREV_9100(ah))
  905. REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
  906. REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
  907. }
  908. static void ath9k_hw_init_interrupt_masks(struct ath_hal *ah, enum ath9k_opmode opmode)
  909. {
  910. struct ath_hal_5416 *ahp = AH5416(ah);
  911. ahp->ah_maskReg = AR_IMR_TXERR |
  912. AR_IMR_TXURN |
  913. AR_IMR_RXERR |
  914. AR_IMR_RXORN |
  915. AR_IMR_BCNMISC;
  916. if (ahp->ah_intrMitigation)
  917. ahp->ah_maskReg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  918. else
  919. ahp->ah_maskReg |= AR_IMR_RXOK;
  920. ahp->ah_maskReg |= AR_IMR_TXOK;
  921. if (opmode == ATH9K_M_HOSTAP)
  922. ahp->ah_maskReg |= AR_IMR_MIB;
  923. REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
  924. REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
  925. if (!AR_SREV_9100(ah)) {
  926. REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
  927. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
  928. REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
  929. }
  930. }
  931. static bool ath9k_hw_set_ack_timeout(struct ath_hal *ah, u32 us)
  932. {
  933. struct ath_hal_5416 *ahp = AH5416(ah);
  934. if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
  935. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: bad ack timeout %u\n",
  936. __func__, us);
  937. ahp->ah_acktimeout = (u32) -1;
  938. return false;
  939. } else {
  940. REG_RMW_FIELD(ah, AR_TIME_OUT,
  941. AR_TIME_OUT_ACK, ath9k_hw_mac_to_clks(ah, us));
  942. ahp->ah_acktimeout = us;
  943. return true;
  944. }
  945. }
  946. static bool ath9k_hw_set_cts_timeout(struct ath_hal *ah, u32 us)
  947. {
  948. struct ath_hal_5416 *ahp = AH5416(ah);
  949. if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
  950. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: bad cts timeout %u\n",
  951. __func__, us);
  952. ahp->ah_ctstimeout = (u32) -1;
  953. return false;
  954. } else {
  955. REG_RMW_FIELD(ah, AR_TIME_OUT,
  956. AR_TIME_OUT_CTS, ath9k_hw_mac_to_clks(ah, us));
  957. ahp->ah_ctstimeout = us;
  958. return true;
  959. }
  960. }
  961. static bool ath9k_hw_set_global_txtimeout(struct ath_hal *ah, u32 tu)
  962. {
  963. struct ath_hal_5416 *ahp = AH5416(ah);
  964. if (tu > 0xFFFF) {
  965. DPRINTF(ah->ah_sc, ATH_DBG_XMIT,
  966. "%s: bad global tx timeout %u\n", __func__, tu);
  967. ahp->ah_globaltxtimeout = (u32) -1;
  968. return false;
  969. } else {
  970. REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
  971. ahp->ah_globaltxtimeout = tu;
  972. return true;
  973. }
  974. }
  975. static void ath9k_hw_init_user_settings(struct ath_hal *ah)
  976. {
  977. struct ath_hal_5416 *ahp = AH5416(ah);
  978. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "--AP %s ahp->ah_miscMode 0x%x\n",
  979. __func__, ahp->ah_miscMode);
  980. if (ahp->ah_miscMode != 0)
  981. REG_WRITE(ah, AR_PCU_MISC,
  982. REG_READ(ah, AR_PCU_MISC) | ahp->ah_miscMode);
  983. if (ahp->ah_slottime != (u32) -1)
  984. ath9k_hw_setslottime(ah, ahp->ah_slottime);
  985. if (ahp->ah_acktimeout != (u32) -1)
  986. ath9k_hw_set_ack_timeout(ah, ahp->ah_acktimeout);
  987. if (ahp->ah_ctstimeout != (u32) -1)
  988. ath9k_hw_set_cts_timeout(ah, ahp->ah_ctstimeout);
  989. if (ahp->ah_globaltxtimeout != (u32) -1)
  990. ath9k_hw_set_global_txtimeout(ah, ahp->ah_globaltxtimeout);
  991. }
  992. const char *ath9k_hw_probe(u16 vendorid, u16 devid)
  993. {
  994. return vendorid == ATHEROS_VENDOR_ID ?
  995. ath9k_hw_devname(devid) : NULL;
  996. }
  997. void ath9k_hw_detach(struct ath_hal *ah)
  998. {
  999. if (!AR_SREV_9100(ah))
  1000. ath9k_hw_ani_detach(ah);
  1001. ath9k_hw_rfdetach(ah);
  1002. ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
  1003. kfree(ah);
  1004. }
  1005. struct ath_hal *ath9k_hw_attach(u16 devid, struct ath_softc *sc,
  1006. void __iomem *mem, int *error)
  1007. {
  1008. struct ath_hal *ah = NULL;
  1009. switch (devid) {
  1010. case AR5416_DEVID_PCI:
  1011. case AR5416_DEVID_PCIE:
  1012. case AR9160_DEVID_PCI:
  1013. case AR9280_DEVID_PCI:
  1014. case AR9280_DEVID_PCIE:
  1015. ah = ath9k_hw_do_attach(devid, sc, mem, error);
  1016. break;
  1017. default:
  1018. DPRINTF(ah->ah_sc, ATH_DBG_ANY,
  1019. "devid=0x%x not supported.\n", devid);
  1020. ah = NULL;
  1021. *error = -ENXIO;
  1022. break;
  1023. }
  1024. return ah;
  1025. }
  1026. /*******/
  1027. /* INI */
  1028. /*******/
  1029. static void ath9k_hw_override_ini(struct ath_hal *ah,
  1030. struct ath9k_channel *chan)
  1031. {
  1032. if (!AR_SREV_5416_V20_OR_LATER(ah) ||
  1033. AR_SREV_9280_10_OR_LATER(ah))
  1034. return;
  1035. REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
  1036. }
  1037. static u32 ath9k_hw_ini_fixup(struct ath_hal *ah,
  1038. struct ar5416_eeprom *pEepData,
  1039. u32 reg, u32 value)
  1040. {
  1041. struct base_eep_header *pBase = &(pEepData->baseEepHeader);
  1042. switch (ah->ah_devid) {
  1043. case AR9280_DEVID_PCI:
  1044. if (reg == 0x7894) {
  1045. DPRINTF(ah->ah_sc, ATH_DBG_ANY,
  1046. "ini VAL: %x EEPROM: %x\n", value,
  1047. (pBase->version & 0xff));
  1048. if ((pBase->version & 0xff) > 0x0a) {
  1049. DPRINTF(ah->ah_sc, ATH_DBG_ANY,
  1050. "PWDCLKIND: %d\n",
  1051. pBase->pwdclkind);
  1052. value &= ~AR_AN_TOP2_PWDCLKIND;
  1053. value |= AR_AN_TOP2_PWDCLKIND &
  1054. (pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
  1055. } else {
  1056. DPRINTF(ah->ah_sc, ATH_DBG_ANY,
  1057. "PWDCLKIND Earlier Rev\n");
  1058. }
  1059. DPRINTF(ah->ah_sc, ATH_DBG_ANY,
  1060. "final ini VAL: %x\n", value);
  1061. }
  1062. break;
  1063. }
  1064. return value;
  1065. }
  1066. static int ath9k_hw_process_ini(struct ath_hal *ah,
  1067. struct ath9k_channel *chan,
  1068. enum ath9k_ht_macmode macmode)
  1069. {
  1070. int i, regWrites = 0;
  1071. struct ath_hal_5416 *ahp = AH5416(ah);
  1072. u32 modesIndex, freqIndex;
  1073. int status;
  1074. switch (chan->chanmode) {
  1075. case CHANNEL_A:
  1076. case CHANNEL_A_HT20:
  1077. modesIndex = 1;
  1078. freqIndex = 1;
  1079. break;
  1080. case CHANNEL_A_HT40PLUS:
  1081. case CHANNEL_A_HT40MINUS:
  1082. modesIndex = 2;
  1083. freqIndex = 1;
  1084. break;
  1085. case CHANNEL_G:
  1086. case CHANNEL_G_HT20:
  1087. case CHANNEL_B:
  1088. modesIndex = 4;
  1089. freqIndex = 2;
  1090. break;
  1091. case CHANNEL_G_HT40PLUS:
  1092. case CHANNEL_G_HT40MINUS:
  1093. modesIndex = 3;
  1094. freqIndex = 2;
  1095. break;
  1096. default:
  1097. return -EINVAL;
  1098. }
  1099. REG_WRITE(ah, AR_PHY(0), 0x00000007);
  1100. REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
  1101. ath9k_hw_set_addac(ah, chan);
  1102. if (AR_SREV_5416_V22_OR_LATER(ah)) {
  1103. REG_WRITE_ARRAY(&ahp->ah_iniAddac, 1, regWrites);
  1104. } else {
  1105. struct ar5416IniArray temp;
  1106. u32 addacSize =
  1107. sizeof(u32) * ahp->ah_iniAddac.ia_rows *
  1108. ahp->ah_iniAddac.ia_columns;
  1109. memcpy(ahp->ah_addac5416_21,
  1110. ahp->ah_iniAddac.ia_array, addacSize);
  1111. (ahp->ah_addac5416_21)[31 * ahp->ah_iniAddac.ia_columns + 1] = 0;
  1112. temp.ia_array = ahp->ah_addac5416_21;
  1113. temp.ia_columns = ahp->ah_iniAddac.ia_columns;
  1114. temp.ia_rows = ahp->ah_iniAddac.ia_rows;
  1115. REG_WRITE_ARRAY(&temp, 1, regWrites);
  1116. }
  1117. REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
  1118. for (i = 0; i < ahp->ah_iniModes.ia_rows; i++) {
  1119. u32 reg = INI_RA(&ahp->ah_iniModes, i, 0);
  1120. u32 val = INI_RA(&ahp->ah_iniModes, i, modesIndex);
  1121. #ifdef CONFIG_SLOW_ANT_DIV
  1122. if (ah->ah_devid == AR9280_DEVID_PCI)
  1123. val = ath9k_hw_ini_fixup(ah, &ahp->ah_eeprom, reg, val);
  1124. #endif
  1125. REG_WRITE(ah, reg, val);
  1126. if (reg >= 0x7800 && reg < 0x78a0
  1127. && ah->ah_config.analog_shiftreg) {
  1128. udelay(100);
  1129. }
  1130. DO_DELAY(regWrites);
  1131. }
  1132. if (AR_SREV_9280_20_OR_LATER(ah))
  1133. REG_WRITE_ARRAY(&ahp->ah_iniModesRxGain, modesIndex, regWrites);
  1134. if (AR_SREV_9280_20_OR_LATER(ah))
  1135. REG_WRITE_ARRAY(&ahp->ah_iniModesTxGain, modesIndex, regWrites);
  1136. for (i = 0; i < ahp->ah_iniCommon.ia_rows; i++) {
  1137. u32 reg = INI_RA(&ahp->ah_iniCommon, i, 0);
  1138. u32 val = INI_RA(&ahp->ah_iniCommon, i, 1);
  1139. REG_WRITE(ah, reg, val);
  1140. if (reg >= 0x7800 && reg < 0x78a0
  1141. && ah->ah_config.analog_shiftreg) {
  1142. udelay(100);
  1143. }
  1144. DO_DELAY(regWrites);
  1145. }
  1146. ath9k_hw_write_regs(ah, modesIndex, freqIndex, regWrites);
  1147. if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
  1148. REG_WRITE_ARRAY(&ahp->ah_iniModesAdditional, modesIndex,
  1149. regWrites);
  1150. }
  1151. ath9k_hw_override_ini(ah, chan);
  1152. ath9k_hw_set_regs(ah, chan, macmode);
  1153. ath9k_hw_init_chain_masks(ah);
  1154. status = ath9k_hw_set_txpower(ah, chan,
  1155. ath9k_regd_get_ctl(ah, chan),
  1156. ath9k_regd_get_antenna_allowed(ah,
  1157. chan),
  1158. chan->maxRegTxPower * 2,
  1159. min((u32) MAX_RATE_POWER,
  1160. (u32) ah->ah_powerLimit));
  1161. if (status != 0) {
  1162. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
  1163. "%s: error init'ing transmit power\n", __func__);
  1164. return -EIO;
  1165. }
  1166. if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
  1167. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
  1168. "%s: ar5416SetRfRegs failed\n", __func__);
  1169. return -EIO;
  1170. }
  1171. return 0;
  1172. }
  1173. /****************************************/
  1174. /* Reset and Channel Switching Routines */
  1175. /****************************************/
  1176. static void ath9k_hw_set_rfmode(struct ath_hal *ah, struct ath9k_channel *chan)
  1177. {
  1178. u32 rfMode = 0;
  1179. if (chan == NULL)
  1180. return;
  1181. rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
  1182. ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
  1183. if (!AR_SREV_9280_10_OR_LATER(ah))
  1184. rfMode |= (IS_CHAN_5GHZ(chan)) ?
  1185. AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
  1186. if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
  1187. rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
  1188. REG_WRITE(ah, AR_PHY_MODE, rfMode);
  1189. }
  1190. static void ath9k_hw_mark_phy_inactive(struct ath_hal *ah)
  1191. {
  1192. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
  1193. }
  1194. static inline void ath9k_hw_set_dma(struct ath_hal *ah)
  1195. {
  1196. u32 regval;
  1197. regval = REG_READ(ah, AR_AHB_MODE);
  1198. REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
  1199. regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
  1200. REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
  1201. REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->ah_txTrigLevel);
  1202. regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
  1203. REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
  1204. REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
  1205. if (AR_SREV_9285(ah)) {
  1206. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  1207. AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
  1208. } else {
  1209. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  1210. AR_PCU_TXBUF_CTRL_USABLE_SIZE);
  1211. }
  1212. }
  1213. static void ath9k_hw_set_operating_mode(struct ath_hal *ah, int opmode)
  1214. {
  1215. u32 val;
  1216. val = REG_READ(ah, AR_STA_ID1);
  1217. val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
  1218. switch (opmode) {
  1219. case ATH9K_M_HOSTAP:
  1220. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
  1221. | AR_STA_ID1_KSRCH_MODE);
  1222. REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  1223. break;
  1224. case ATH9K_M_IBSS:
  1225. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
  1226. | AR_STA_ID1_KSRCH_MODE);
  1227. REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  1228. break;
  1229. case ATH9K_M_STA:
  1230. case ATH9K_M_MONITOR:
  1231. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
  1232. break;
  1233. }
  1234. }
  1235. static inline void ath9k_hw_get_delta_slope_vals(struct ath_hal *ah,
  1236. u32 coef_scaled,
  1237. u32 *coef_mantissa,
  1238. u32 *coef_exponent)
  1239. {
  1240. u32 coef_exp, coef_man;
  1241. for (coef_exp = 31; coef_exp > 0; coef_exp--)
  1242. if ((coef_scaled >> coef_exp) & 0x1)
  1243. break;
  1244. coef_exp = 14 - (coef_exp - COEF_SCALE_S);
  1245. coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
  1246. *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
  1247. *coef_exponent = coef_exp - 16;
  1248. }
  1249. static void ath9k_hw_set_delta_slope(struct ath_hal *ah,
  1250. struct ath9k_channel *chan)
  1251. {
  1252. u32 coef_scaled, ds_coef_exp, ds_coef_man;
  1253. u32 clockMhzScaled = 0x64000000;
  1254. struct chan_centers centers;
  1255. if (IS_CHAN_HALF_RATE(chan))
  1256. clockMhzScaled = clockMhzScaled >> 1;
  1257. else if (IS_CHAN_QUARTER_RATE(chan))
  1258. clockMhzScaled = clockMhzScaled >> 2;
  1259. ath9k_hw_get_channel_centers(ah, chan, &centers);
  1260. coef_scaled = clockMhzScaled / centers.synth_center;
  1261. ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
  1262. &ds_coef_exp);
  1263. REG_RMW_FIELD(ah, AR_PHY_TIMING3,
  1264. AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
  1265. REG_RMW_FIELD(ah, AR_PHY_TIMING3,
  1266. AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
  1267. coef_scaled = (9 * coef_scaled) / 10;
  1268. ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
  1269. &ds_coef_exp);
  1270. REG_RMW_FIELD(ah, AR_PHY_HALFGI,
  1271. AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
  1272. REG_RMW_FIELD(ah, AR_PHY_HALFGI,
  1273. AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
  1274. }
  1275. static bool ath9k_hw_set_reset(struct ath_hal *ah, int type)
  1276. {
  1277. u32 rst_flags;
  1278. u32 tmpReg;
  1279. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1280. AR_RTC_FORCE_WAKE_ON_INT);
  1281. if (AR_SREV_9100(ah)) {
  1282. rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
  1283. AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
  1284. } else {
  1285. tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  1286. if (tmpReg &
  1287. (AR_INTR_SYNC_LOCAL_TIMEOUT |
  1288. AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
  1289. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  1290. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  1291. } else {
  1292. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1293. }
  1294. rst_flags = AR_RTC_RC_MAC_WARM;
  1295. if (type == ATH9K_RESET_COLD)
  1296. rst_flags |= AR_RTC_RC_MAC_COLD;
  1297. }
  1298. REG_WRITE(ah, (u16) (AR_RTC_RC), rst_flags);
  1299. udelay(50);
  1300. REG_WRITE(ah, (u16) (AR_RTC_RC), 0);
  1301. if (!ath9k_hw_wait(ah, (u16) (AR_RTC_RC), AR_RTC_RC_M, 0)) {
  1302. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  1303. "%s: RTC stuck in MAC reset\n",
  1304. __func__);
  1305. return false;
  1306. }
  1307. if (!AR_SREV_9100(ah))
  1308. REG_WRITE(ah, AR_RC, 0);
  1309. ath9k_hw_init_pll(ah, NULL);
  1310. if (AR_SREV_9100(ah))
  1311. udelay(50);
  1312. return true;
  1313. }
  1314. static bool ath9k_hw_set_reset_power_on(struct ath_hal *ah)
  1315. {
  1316. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1317. AR_RTC_FORCE_WAKE_ON_INT);
  1318. REG_WRITE(ah, (u16) (AR_RTC_RESET), 0);
  1319. REG_WRITE(ah, (u16) (AR_RTC_RESET), 1);
  1320. if (!ath9k_hw_wait(ah,
  1321. AR_RTC_STATUS,
  1322. AR_RTC_STATUS_M,
  1323. AR_RTC_STATUS_ON)) {
  1324. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: RTC not waking up\n",
  1325. __func__);
  1326. return false;
  1327. }
  1328. ath9k_hw_read_revisions(ah);
  1329. return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
  1330. }
  1331. static bool ath9k_hw_set_reset_reg(struct ath_hal *ah, u32 type)
  1332. {
  1333. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1334. AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
  1335. switch (type) {
  1336. case ATH9K_RESET_POWER_ON:
  1337. return ath9k_hw_set_reset_power_on(ah);
  1338. break;
  1339. case ATH9K_RESET_WARM:
  1340. case ATH9K_RESET_COLD:
  1341. return ath9k_hw_set_reset(ah, type);
  1342. break;
  1343. default:
  1344. return false;
  1345. }
  1346. }
  1347. static void ath9k_hw_set_regs(struct ath_hal *ah, struct ath9k_channel *chan,
  1348. enum ath9k_ht_macmode macmode)
  1349. {
  1350. u32 phymode;
  1351. struct ath_hal_5416 *ahp = AH5416(ah);
  1352. phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
  1353. | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH;
  1354. if (IS_CHAN_HT40(chan)) {
  1355. phymode |= AR_PHY_FC_DYN2040_EN;
  1356. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  1357. (chan->chanmode == CHANNEL_G_HT40PLUS))
  1358. phymode |= AR_PHY_FC_DYN2040_PRI_CH;
  1359. if (ahp->ah_extprotspacing == ATH9K_HT_EXTPROTSPACING_25)
  1360. phymode |= AR_PHY_FC_DYN2040_EXT_CH;
  1361. }
  1362. REG_WRITE(ah, AR_PHY_TURBO, phymode);
  1363. ath9k_hw_set11nmac2040(ah, macmode);
  1364. REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
  1365. REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
  1366. }
  1367. static bool ath9k_hw_chip_reset(struct ath_hal *ah,
  1368. struct ath9k_channel *chan)
  1369. {
  1370. struct ath_hal_5416 *ahp = AH5416(ah);
  1371. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  1372. return false;
  1373. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1374. return false;
  1375. ahp->ah_chipFullSleep = false;
  1376. ath9k_hw_init_pll(ah, chan);
  1377. ath9k_hw_set_rfmode(ah, chan);
  1378. return true;
  1379. }
  1380. static struct ath9k_channel *ath9k_hw_check_chan(struct ath_hal *ah,
  1381. struct ath9k_channel *chan)
  1382. {
  1383. if (!(IS_CHAN_2GHZ(chan) ^ IS_CHAN_5GHZ(chan))) {
  1384. DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
  1385. "%s: invalid channel %u/0x%x; not marked as "
  1386. "2GHz or 5GHz\n", __func__, chan->channel,
  1387. chan->channelFlags);
  1388. return NULL;
  1389. }
  1390. if (!IS_CHAN_OFDM(chan) &&
  1391. !IS_CHAN_CCK(chan) &&
  1392. !IS_CHAN_HT20(chan) &&
  1393. !IS_CHAN_HT40(chan)) {
  1394. DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
  1395. "%s: invalid channel %u/0x%x; not marked as "
  1396. "OFDM or CCK or HT20 or HT40PLUS or HT40MINUS\n",
  1397. __func__, chan->channel, chan->channelFlags);
  1398. return NULL;
  1399. }
  1400. return ath9k_regd_check_channel(ah, chan);
  1401. }
  1402. static bool ath9k_hw_channel_change(struct ath_hal *ah,
  1403. struct ath9k_channel *chan,
  1404. enum ath9k_ht_macmode macmode)
  1405. {
  1406. u32 synthDelay, qnum;
  1407. for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
  1408. if (ath9k_hw_numtxpending(ah, qnum)) {
  1409. DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
  1410. "%s: Transmit frames pending on queue %d\n",
  1411. __func__, qnum);
  1412. return false;
  1413. }
  1414. }
  1415. REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
  1416. if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
  1417. AR_PHY_RFBUS_GRANT_EN)) {
  1418. DPRINTF(ah->ah_sc, ATH_DBG_PHY_IO,
  1419. "%s: Could not kill baseband RX\n", __func__);
  1420. return false;
  1421. }
  1422. ath9k_hw_set_regs(ah, chan, macmode);
  1423. if (AR_SREV_9280_10_OR_LATER(ah)) {
  1424. if (!(ath9k_hw_ar9280_set_channel(ah, chan))) {
  1425. DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
  1426. "%s: failed to set channel\n", __func__);
  1427. return false;
  1428. }
  1429. } else {
  1430. if (!(ath9k_hw_set_channel(ah, chan))) {
  1431. DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
  1432. "%s: failed to set channel\n", __func__);
  1433. return false;
  1434. }
  1435. }
  1436. if (ath9k_hw_set_txpower(ah, chan,
  1437. ath9k_regd_get_ctl(ah, chan),
  1438. ath9k_regd_get_antenna_allowed(ah, chan),
  1439. chan->maxRegTxPower * 2,
  1440. min((u32) MAX_RATE_POWER,
  1441. (u32) ah->ah_powerLimit)) != 0) {
  1442. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  1443. "%s: error init'ing transmit power\n", __func__);
  1444. return false;
  1445. }
  1446. synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
  1447. if (IS_CHAN_CCK(chan))
  1448. synthDelay = (4 * synthDelay) / 22;
  1449. else
  1450. synthDelay /= 10;
  1451. udelay(synthDelay + BASE_ACTIVATE_DELAY);
  1452. REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
  1453. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1454. ath9k_hw_set_delta_slope(ah, chan);
  1455. if (AR_SREV_9280_10_OR_LATER(ah))
  1456. ath9k_hw_9280_spur_mitigate(ah, chan);
  1457. else
  1458. ath9k_hw_spur_mitigate(ah, chan);
  1459. if (!chan->oneTimeCalsDone)
  1460. chan->oneTimeCalsDone = true;
  1461. return true;
  1462. }
  1463. static void ath9k_hw_9280_spur_mitigate(struct ath_hal *ah, struct ath9k_channel *chan)
  1464. {
  1465. int bb_spur = AR_NO_SPUR;
  1466. int freq;
  1467. int bin, cur_bin;
  1468. int bb_spur_off, spur_subchannel_sd;
  1469. int spur_freq_sd;
  1470. int spur_delta_phase;
  1471. int denominator;
  1472. int upper, lower, cur_vit_mask;
  1473. int tmp, newVal;
  1474. int i;
  1475. int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
  1476. AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
  1477. };
  1478. int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
  1479. AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
  1480. };
  1481. int inc[4] = { 0, 100, 0, 0 };
  1482. struct chan_centers centers;
  1483. int8_t mask_m[123];
  1484. int8_t mask_p[123];
  1485. int8_t mask_amt;
  1486. int tmp_mask;
  1487. int cur_bb_spur;
  1488. bool is2GHz = IS_CHAN_2GHZ(chan);
  1489. memset(&mask_m, 0, sizeof(int8_t) * 123);
  1490. memset(&mask_p, 0, sizeof(int8_t) * 123);
  1491. ath9k_hw_get_channel_centers(ah, chan, &centers);
  1492. freq = centers.synth_center;
  1493. ah->ah_config.spurmode = SPUR_ENABLE_EEPROM;
  1494. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  1495. cur_bb_spur = ath9k_hw_eeprom_get_spur_chan(ah, i, is2GHz);
  1496. if (is2GHz)
  1497. cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
  1498. else
  1499. cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
  1500. if (AR_NO_SPUR == cur_bb_spur)
  1501. break;
  1502. cur_bb_spur = cur_bb_spur - freq;
  1503. if (IS_CHAN_HT40(chan)) {
  1504. if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
  1505. (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
  1506. bb_spur = cur_bb_spur;
  1507. break;
  1508. }
  1509. } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
  1510. (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
  1511. bb_spur = cur_bb_spur;
  1512. break;
  1513. }
  1514. }
  1515. if (AR_NO_SPUR == bb_spur) {
  1516. REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
  1517. AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
  1518. return;
  1519. } else {
  1520. REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
  1521. AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
  1522. }
  1523. bin = bb_spur * 320;
  1524. tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
  1525. newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
  1526. AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
  1527. AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
  1528. AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
  1529. REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
  1530. newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
  1531. AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
  1532. AR_PHY_SPUR_REG_MASK_RATE_SELECT |
  1533. AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
  1534. SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
  1535. REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
  1536. if (IS_CHAN_HT40(chan)) {
  1537. if (bb_spur < 0) {
  1538. spur_subchannel_sd = 1;
  1539. bb_spur_off = bb_spur + 10;
  1540. } else {
  1541. spur_subchannel_sd = 0;
  1542. bb_spur_off = bb_spur - 10;
  1543. }
  1544. } else {
  1545. spur_subchannel_sd = 0;
  1546. bb_spur_off = bb_spur;
  1547. }
  1548. if (IS_CHAN_HT40(chan))
  1549. spur_delta_phase =
  1550. ((bb_spur * 262144) /
  1551. 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
  1552. else
  1553. spur_delta_phase =
  1554. ((bb_spur * 524288) /
  1555. 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
  1556. denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
  1557. spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
  1558. newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
  1559. SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
  1560. SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
  1561. REG_WRITE(ah, AR_PHY_TIMING11, newVal);
  1562. newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
  1563. REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
  1564. cur_bin = -6000;
  1565. upper = bin + 100;
  1566. lower = bin - 100;
  1567. for (i = 0; i < 4; i++) {
  1568. int pilot_mask = 0;
  1569. int chan_mask = 0;
  1570. int bp = 0;
  1571. for (bp = 0; bp < 30; bp++) {
  1572. if ((cur_bin > lower) && (cur_bin < upper)) {
  1573. pilot_mask = pilot_mask | 0x1 << bp;
  1574. chan_mask = chan_mask | 0x1 << bp;
  1575. }
  1576. cur_bin += 100;
  1577. }
  1578. cur_bin += inc[i];
  1579. REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
  1580. REG_WRITE(ah, chan_mask_reg[i], chan_mask);
  1581. }
  1582. cur_vit_mask = 6100;
  1583. upper = bin + 120;
  1584. lower = bin - 120;
  1585. for (i = 0; i < 123; i++) {
  1586. if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
  1587. /* workaround for gcc bug #37014 */
  1588. volatile int tmp = abs(cur_vit_mask - bin);
  1589. if (tmp < 75)
  1590. mask_amt = 1;
  1591. else
  1592. mask_amt = 0;
  1593. if (cur_vit_mask < 0)
  1594. mask_m[abs(cur_vit_mask / 100)] = mask_amt;
  1595. else
  1596. mask_p[cur_vit_mask / 100] = mask_amt;
  1597. }
  1598. cur_vit_mask -= 100;
  1599. }
  1600. tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
  1601. | (mask_m[48] << 26) | (mask_m[49] << 24)
  1602. | (mask_m[50] << 22) | (mask_m[51] << 20)
  1603. | (mask_m[52] << 18) | (mask_m[53] << 16)
  1604. | (mask_m[54] << 14) | (mask_m[55] << 12)
  1605. | (mask_m[56] << 10) | (mask_m[57] << 8)
  1606. | (mask_m[58] << 6) | (mask_m[59] << 4)
  1607. | (mask_m[60] << 2) | (mask_m[61] << 0);
  1608. REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
  1609. REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
  1610. tmp_mask = (mask_m[31] << 28)
  1611. | (mask_m[32] << 26) | (mask_m[33] << 24)
  1612. | (mask_m[34] << 22) | (mask_m[35] << 20)
  1613. | (mask_m[36] << 18) | (mask_m[37] << 16)
  1614. | (mask_m[48] << 14) | (mask_m[39] << 12)
  1615. | (mask_m[40] << 10) | (mask_m[41] << 8)
  1616. | (mask_m[42] << 6) | (mask_m[43] << 4)
  1617. | (mask_m[44] << 2) | (mask_m[45] << 0);
  1618. REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
  1619. REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
  1620. tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
  1621. | (mask_m[18] << 26) | (mask_m[18] << 24)
  1622. | (mask_m[20] << 22) | (mask_m[20] << 20)
  1623. | (mask_m[22] << 18) | (mask_m[22] << 16)
  1624. | (mask_m[24] << 14) | (mask_m[24] << 12)
  1625. | (mask_m[25] << 10) | (mask_m[26] << 8)
  1626. | (mask_m[27] << 6) | (mask_m[28] << 4)
  1627. | (mask_m[29] << 2) | (mask_m[30] << 0);
  1628. REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
  1629. REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
  1630. tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
  1631. | (mask_m[2] << 26) | (mask_m[3] << 24)
  1632. | (mask_m[4] << 22) | (mask_m[5] << 20)
  1633. | (mask_m[6] << 18) | (mask_m[7] << 16)
  1634. | (mask_m[8] << 14) | (mask_m[9] << 12)
  1635. | (mask_m[10] << 10) | (mask_m[11] << 8)
  1636. | (mask_m[12] << 6) | (mask_m[13] << 4)
  1637. | (mask_m[14] << 2) | (mask_m[15] << 0);
  1638. REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
  1639. REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
  1640. tmp_mask = (mask_p[15] << 28)
  1641. | (mask_p[14] << 26) | (mask_p[13] << 24)
  1642. | (mask_p[12] << 22) | (mask_p[11] << 20)
  1643. | (mask_p[10] << 18) | (mask_p[9] << 16)
  1644. | (mask_p[8] << 14) | (mask_p[7] << 12)
  1645. | (mask_p[6] << 10) | (mask_p[5] << 8)
  1646. | (mask_p[4] << 6) | (mask_p[3] << 4)
  1647. | (mask_p[2] << 2) | (mask_p[1] << 0);
  1648. REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
  1649. REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
  1650. tmp_mask = (mask_p[30] << 28)
  1651. | (mask_p[29] << 26) | (mask_p[28] << 24)
  1652. | (mask_p[27] << 22) | (mask_p[26] << 20)
  1653. | (mask_p[25] << 18) | (mask_p[24] << 16)
  1654. | (mask_p[23] << 14) | (mask_p[22] << 12)
  1655. | (mask_p[21] << 10) | (mask_p[20] << 8)
  1656. | (mask_p[19] << 6) | (mask_p[18] << 4)
  1657. | (mask_p[17] << 2) | (mask_p[16] << 0);
  1658. REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
  1659. REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
  1660. tmp_mask = (mask_p[45] << 28)
  1661. | (mask_p[44] << 26) | (mask_p[43] << 24)
  1662. | (mask_p[42] << 22) | (mask_p[41] << 20)
  1663. | (mask_p[40] << 18) | (mask_p[39] << 16)
  1664. | (mask_p[38] << 14) | (mask_p[37] << 12)
  1665. | (mask_p[36] << 10) | (mask_p[35] << 8)
  1666. | (mask_p[34] << 6) | (mask_p[33] << 4)
  1667. | (mask_p[32] << 2) | (mask_p[31] << 0);
  1668. REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
  1669. REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
  1670. tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
  1671. | (mask_p[59] << 26) | (mask_p[58] << 24)
  1672. | (mask_p[57] << 22) | (mask_p[56] << 20)
  1673. | (mask_p[55] << 18) | (mask_p[54] << 16)
  1674. | (mask_p[53] << 14) | (mask_p[52] << 12)
  1675. | (mask_p[51] << 10) | (mask_p[50] << 8)
  1676. | (mask_p[49] << 6) | (mask_p[48] << 4)
  1677. | (mask_p[47] << 2) | (mask_p[46] << 0);
  1678. REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
  1679. REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
  1680. }
  1681. static void ath9k_hw_spur_mitigate(struct ath_hal *ah, struct ath9k_channel *chan)
  1682. {
  1683. int bb_spur = AR_NO_SPUR;
  1684. int bin, cur_bin;
  1685. int spur_freq_sd;
  1686. int spur_delta_phase;
  1687. int denominator;
  1688. int upper, lower, cur_vit_mask;
  1689. int tmp, new;
  1690. int i;
  1691. int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
  1692. AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
  1693. };
  1694. int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
  1695. AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
  1696. };
  1697. int inc[4] = { 0, 100, 0, 0 };
  1698. int8_t mask_m[123];
  1699. int8_t mask_p[123];
  1700. int8_t mask_amt;
  1701. int tmp_mask;
  1702. int cur_bb_spur;
  1703. bool is2GHz = IS_CHAN_2GHZ(chan);
  1704. memset(&mask_m, 0, sizeof(int8_t) * 123);
  1705. memset(&mask_p, 0, sizeof(int8_t) * 123);
  1706. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  1707. cur_bb_spur = ath9k_hw_eeprom_get_spur_chan(ah, i, is2GHz);
  1708. if (AR_NO_SPUR == cur_bb_spur)
  1709. break;
  1710. cur_bb_spur = cur_bb_spur - (chan->channel * 10);
  1711. if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
  1712. bb_spur = cur_bb_spur;
  1713. break;
  1714. }
  1715. }
  1716. if (AR_NO_SPUR == bb_spur)
  1717. return;
  1718. bin = bb_spur * 32;
  1719. tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
  1720. new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
  1721. AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
  1722. AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
  1723. AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
  1724. REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
  1725. new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
  1726. AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
  1727. AR_PHY_SPUR_REG_MASK_RATE_SELECT |
  1728. AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
  1729. SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
  1730. REG_WRITE(ah, AR_PHY_SPUR_REG, new);
  1731. spur_delta_phase = ((bb_spur * 524288) / 100) &
  1732. AR_PHY_TIMING11_SPUR_DELTA_PHASE;
  1733. denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
  1734. spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
  1735. new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
  1736. SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
  1737. SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
  1738. REG_WRITE(ah, AR_PHY_TIMING11, new);
  1739. cur_bin = -6000;
  1740. upper = bin + 100;
  1741. lower = bin - 100;
  1742. for (i = 0; i < 4; i++) {
  1743. int pilot_mask = 0;
  1744. int chan_mask = 0;
  1745. int bp = 0;
  1746. for (bp = 0; bp < 30; bp++) {
  1747. if ((cur_bin > lower) && (cur_bin < upper)) {
  1748. pilot_mask = pilot_mask | 0x1 << bp;
  1749. chan_mask = chan_mask | 0x1 << bp;
  1750. }
  1751. cur_bin += 100;
  1752. }
  1753. cur_bin += inc[i];
  1754. REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
  1755. REG_WRITE(ah, chan_mask_reg[i], chan_mask);
  1756. }
  1757. cur_vit_mask = 6100;
  1758. upper = bin + 120;
  1759. lower = bin - 120;
  1760. for (i = 0; i < 123; i++) {
  1761. if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
  1762. /* workaround for gcc bug #37014 */
  1763. volatile int tmp = abs(cur_vit_mask - bin);
  1764. if (tmp < 75)
  1765. mask_amt = 1;
  1766. else
  1767. mask_amt = 0;
  1768. if (cur_vit_mask < 0)
  1769. mask_m[abs(cur_vit_mask / 100)] = mask_amt;
  1770. else
  1771. mask_p[cur_vit_mask / 100] = mask_amt;
  1772. }
  1773. cur_vit_mask -= 100;
  1774. }
  1775. tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
  1776. | (mask_m[48] << 26) | (mask_m[49] << 24)
  1777. | (mask_m[50] << 22) | (mask_m[51] << 20)
  1778. | (mask_m[52] << 18) | (mask_m[53] << 16)
  1779. | (mask_m[54] << 14) | (mask_m[55] << 12)
  1780. | (mask_m[56] << 10) | (mask_m[57] << 8)
  1781. | (mask_m[58] << 6) | (mask_m[59] << 4)
  1782. | (mask_m[60] << 2) | (mask_m[61] << 0);
  1783. REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
  1784. REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
  1785. tmp_mask = (mask_m[31] << 28)
  1786. | (mask_m[32] << 26) | (mask_m[33] << 24)
  1787. | (mask_m[34] << 22) | (mask_m[35] << 20)
  1788. | (mask_m[36] << 18) | (mask_m[37] << 16)
  1789. | (mask_m[48] << 14) | (mask_m[39] << 12)
  1790. | (mask_m[40] << 10) | (mask_m[41] << 8)
  1791. | (mask_m[42] << 6) | (mask_m[43] << 4)
  1792. | (mask_m[44] << 2) | (mask_m[45] << 0);
  1793. REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
  1794. REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
  1795. tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
  1796. | (mask_m[18] << 26) | (mask_m[18] << 24)
  1797. | (mask_m[20] << 22) | (mask_m[20] << 20)
  1798. | (mask_m[22] << 18) | (mask_m[22] << 16)
  1799. | (mask_m[24] << 14) | (mask_m[24] << 12)
  1800. | (mask_m[25] << 10) | (mask_m[26] << 8)
  1801. | (mask_m[27] << 6) | (mask_m[28] << 4)
  1802. | (mask_m[29] << 2) | (mask_m[30] << 0);
  1803. REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
  1804. REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
  1805. tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
  1806. | (mask_m[2] << 26) | (mask_m[3] << 24)
  1807. | (mask_m[4] << 22) | (mask_m[5] << 20)
  1808. | (mask_m[6] << 18) | (mask_m[7] << 16)
  1809. | (mask_m[8] << 14) | (mask_m[9] << 12)
  1810. | (mask_m[10] << 10) | (mask_m[11] << 8)
  1811. | (mask_m[12] << 6) | (mask_m[13] << 4)
  1812. | (mask_m[14] << 2) | (mask_m[15] << 0);
  1813. REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
  1814. REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
  1815. tmp_mask = (mask_p[15] << 28)
  1816. | (mask_p[14] << 26) | (mask_p[13] << 24)
  1817. | (mask_p[12] << 22) | (mask_p[11] << 20)
  1818. | (mask_p[10] << 18) | (mask_p[9] << 16)
  1819. | (mask_p[8] << 14) | (mask_p[7] << 12)
  1820. | (mask_p[6] << 10) | (mask_p[5] << 8)
  1821. | (mask_p[4] << 6) | (mask_p[3] << 4)
  1822. | (mask_p[2] << 2) | (mask_p[1] << 0);
  1823. REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
  1824. REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
  1825. tmp_mask = (mask_p[30] << 28)
  1826. | (mask_p[29] << 26) | (mask_p[28] << 24)
  1827. | (mask_p[27] << 22) | (mask_p[26] << 20)
  1828. | (mask_p[25] << 18) | (mask_p[24] << 16)
  1829. | (mask_p[23] << 14) | (mask_p[22] << 12)
  1830. | (mask_p[21] << 10) | (mask_p[20] << 8)
  1831. | (mask_p[19] << 6) | (mask_p[18] << 4)
  1832. | (mask_p[17] << 2) | (mask_p[16] << 0);
  1833. REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
  1834. REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
  1835. tmp_mask = (mask_p[45] << 28)
  1836. | (mask_p[44] << 26) | (mask_p[43] << 24)
  1837. | (mask_p[42] << 22) | (mask_p[41] << 20)
  1838. | (mask_p[40] << 18) | (mask_p[39] << 16)
  1839. | (mask_p[38] << 14) | (mask_p[37] << 12)
  1840. | (mask_p[36] << 10) | (mask_p[35] << 8)
  1841. | (mask_p[34] << 6) | (mask_p[33] << 4)
  1842. | (mask_p[32] << 2) | (mask_p[31] << 0);
  1843. REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
  1844. REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
  1845. tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
  1846. | (mask_p[59] << 26) | (mask_p[58] << 24)
  1847. | (mask_p[57] << 22) | (mask_p[56] << 20)
  1848. | (mask_p[55] << 18) | (mask_p[54] << 16)
  1849. | (mask_p[53] << 14) | (mask_p[52] << 12)
  1850. | (mask_p[51] << 10) | (mask_p[50] << 8)
  1851. | (mask_p[49] << 6) | (mask_p[48] << 4)
  1852. | (mask_p[47] << 2) | (mask_p[46] << 0);
  1853. REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
  1854. REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
  1855. }
  1856. bool ath9k_hw_reset(struct ath_hal *ah, struct ath9k_channel *chan,
  1857. enum ath9k_ht_macmode macmode,
  1858. u8 txchainmask, u8 rxchainmask,
  1859. enum ath9k_ht_extprotspacing extprotspacing,
  1860. bool bChannelChange, int *status)
  1861. {
  1862. u32 saveLedState;
  1863. struct ath_hal_5416 *ahp = AH5416(ah);
  1864. struct ath9k_channel *curchan = ah->ah_curchan;
  1865. u32 saveDefAntenna;
  1866. u32 macStaId1;
  1867. int ecode;
  1868. int i, rx_chainmask;
  1869. ahp->ah_extprotspacing = extprotspacing;
  1870. ahp->ah_txchainmask = txchainmask;
  1871. ahp->ah_rxchainmask = rxchainmask;
  1872. if (AR_SREV_9280(ah)) {
  1873. ahp->ah_txchainmask &= 0x3;
  1874. ahp->ah_rxchainmask &= 0x3;
  1875. }
  1876. if (ath9k_hw_check_chan(ah, chan) == NULL) {
  1877. DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
  1878. "%s: invalid channel %u/0x%x; no mapping\n",
  1879. __func__, chan->channel, chan->channelFlags);
  1880. ecode = -EINVAL;
  1881. goto bad;
  1882. }
  1883. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
  1884. ecode = -EIO;
  1885. goto bad;
  1886. }
  1887. if (curchan)
  1888. ath9k_hw_getnf(ah, curchan);
  1889. if (bChannelChange &&
  1890. (ahp->ah_chipFullSleep != true) &&
  1891. (ah->ah_curchan != NULL) &&
  1892. (chan->channel != ah->ah_curchan->channel) &&
  1893. ((chan->channelFlags & CHANNEL_ALL) ==
  1894. (ah->ah_curchan->channelFlags & CHANNEL_ALL)) &&
  1895. (!AR_SREV_9280(ah) || (!IS_CHAN_A_5MHZ_SPACED(chan) &&
  1896. !IS_CHAN_A_5MHZ_SPACED(ah->
  1897. ah_curchan)))) {
  1898. if (ath9k_hw_channel_change(ah, chan, macmode)) {
  1899. ath9k_hw_loadnf(ah, ah->ah_curchan);
  1900. ath9k_hw_start_nfcal(ah);
  1901. return true;
  1902. }
  1903. }
  1904. saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
  1905. if (saveDefAntenna == 0)
  1906. saveDefAntenna = 1;
  1907. macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
  1908. saveLedState = REG_READ(ah, AR_CFG_LED) &
  1909. (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
  1910. AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
  1911. ath9k_hw_mark_phy_inactive(ah);
  1912. if (!ath9k_hw_chip_reset(ah, chan)) {
  1913. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: chip reset failed\n",
  1914. __func__);
  1915. ecode = -EINVAL;
  1916. goto bad;
  1917. }
  1918. if (AR_SREV_9280(ah)) {
  1919. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
  1920. AR_GPIO_JTAG_DISABLE);
  1921. if (test_bit(ATH9K_MODE_11A, ah->ah_caps.wireless_modes)) {
  1922. if (IS_CHAN_5GHZ(chan))
  1923. ath9k_hw_set_gpio(ah, 9, 0);
  1924. else
  1925. ath9k_hw_set_gpio(ah, 9, 1);
  1926. }
  1927. ath9k_hw_cfg_output(ah, 9, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
  1928. }
  1929. ecode = ath9k_hw_process_ini(ah, chan, macmode);
  1930. if (ecode != 0) {
  1931. ecode = -EINVAL;
  1932. goto bad;
  1933. }
  1934. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1935. ath9k_hw_set_delta_slope(ah, chan);
  1936. if (AR_SREV_9280_10_OR_LATER(ah))
  1937. ath9k_hw_9280_spur_mitigate(ah, chan);
  1938. else
  1939. ath9k_hw_spur_mitigate(ah, chan);
  1940. if (!ath9k_hw_eeprom_set_board_values(ah, chan)) {
  1941. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  1942. "%s: error setting board options\n", __func__);
  1943. ecode = -EIO;
  1944. goto bad;
  1945. }
  1946. ath9k_hw_decrease_chain_power(ah, chan);
  1947. REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(ahp->ah_macaddr));
  1948. REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(ahp->ah_macaddr + 4)
  1949. | macStaId1
  1950. | AR_STA_ID1_RTS_USE_DEF
  1951. | (ah->ah_config.
  1952. ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
  1953. | ahp->ah_staId1Defaults);
  1954. ath9k_hw_set_operating_mode(ah, ah->ah_opmode);
  1955. REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(ahp->ah_bssidmask));
  1956. REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(ahp->ah_bssidmask + 4));
  1957. REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
  1958. REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(ahp->ah_bssid));
  1959. REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(ahp->ah_bssid + 4) |
  1960. ((ahp->ah_assocId & 0x3fff) << AR_BSS_ID1_AID_S));
  1961. REG_WRITE(ah, AR_ISR, ~0);
  1962. REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
  1963. if (AR_SREV_9280_10_OR_LATER(ah)) {
  1964. if (!(ath9k_hw_ar9280_set_channel(ah, chan))) {
  1965. ecode = -EIO;
  1966. goto bad;
  1967. }
  1968. } else {
  1969. if (!(ath9k_hw_set_channel(ah, chan))) {
  1970. ecode = -EIO;
  1971. goto bad;
  1972. }
  1973. }
  1974. for (i = 0; i < AR_NUM_DCU; i++)
  1975. REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
  1976. ahp->ah_intrTxqs = 0;
  1977. for (i = 0; i < ah->ah_caps.total_queues; i++)
  1978. ath9k_hw_resettxqueue(ah, i);
  1979. ath9k_hw_init_interrupt_masks(ah, ah->ah_opmode);
  1980. ath9k_hw_init_qos(ah);
  1981. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  1982. if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1983. ath9k_enable_rfkill(ah);
  1984. #endif
  1985. ath9k_hw_init_user_settings(ah);
  1986. REG_WRITE(ah, AR_STA_ID1,
  1987. REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
  1988. ath9k_hw_set_dma(ah);
  1989. REG_WRITE(ah, AR_OBS, 8);
  1990. if (ahp->ah_intrMitigation) {
  1991. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
  1992. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
  1993. }
  1994. ath9k_hw_init_bb(ah, chan);
  1995. if (!ath9k_hw_init_cal(ah, chan)){
  1996. ecode = -EIO;;
  1997. goto bad;
  1998. }
  1999. rx_chainmask = ahp->ah_rxchainmask;
  2000. if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
  2001. REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
  2002. REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
  2003. }
  2004. REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
  2005. if (AR_SREV_9100(ah)) {
  2006. u32 mask;
  2007. mask = REG_READ(ah, AR_CFG);
  2008. if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
  2009. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  2010. "%s CFG Byte Swap Set 0x%x\n", __func__,
  2011. mask);
  2012. } else {
  2013. mask =
  2014. INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
  2015. REG_WRITE(ah, AR_CFG, mask);
  2016. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  2017. "%s Setting CFG 0x%x\n", __func__,
  2018. REG_READ(ah, AR_CFG));
  2019. }
  2020. } else {
  2021. #ifdef __BIG_ENDIAN
  2022. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  2023. #endif
  2024. }
  2025. return true;
  2026. bad:
  2027. if (status)
  2028. *status = ecode;
  2029. return false;
  2030. }
  2031. /************************/
  2032. /* Key Cache Management */
  2033. /************************/
  2034. bool ath9k_hw_keyreset(struct ath_hal *ah, u16 entry)
  2035. {
  2036. u32 keyType;
  2037. if (entry >= ah->ah_caps.keycache_size) {
  2038. DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
  2039. "%s: entry %u out of range\n", __func__, entry);
  2040. return false;
  2041. }
  2042. keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
  2043. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
  2044. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
  2045. REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
  2046. REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
  2047. REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
  2048. REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
  2049. REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
  2050. REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
  2051. if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
  2052. u16 micentry = entry + 64;
  2053. REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
  2054. REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
  2055. REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
  2056. REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
  2057. }
  2058. if (ah->ah_curchan == NULL)
  2059. return true;
  2060. return true;
  2061. }
  2062. bool ath9k_hw_keysetmac(struct ath_hal *ah, u16 entry, const u8 *mac)
  2063. {
  2064. u32 macHi, macLo;
  2065. if (entry >= ah->ah_caps.keycache_size) {
  2066. DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
  2067. "%s: entry %u out of range\n", __func__, entry);
  2068. return false;
  2069. }
  2070. if (mac != NULL) {
  2071. macHi = (mac[5] << 8) | mac[4];
  2072. macLo = (mac[3] << 24) |
  2073. (mac[2] << 16) |
  2074. (mac[1] << 8) |
  2075. mac[0];
  2076. macLo >>= 1;
  2077. macLo |= (macHi & 1) << 31;
  2078. macHi >>= 1;
  2079. } else {
  2080. macLo = macHi = 0;
  2081. }
  2082. REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
  2083. REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
  2084. return true;
  2085. }
  2086. bool ath9k_hw_set_keycache_entry(struct ath_hal *ah, u16 entry,
  2087. const struct ath9k_keyval *k,
  2088. const u8 *mac, int xorKey)
  2089. {
  2090. const struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
  2091. u32 key0, key1, key2, key3, key4;
  2092. u32 keyType;
  2093. u32 xorMask = xorKey ?
  2094. (ATH9K_KEY_XOR << 24 | ATH9K_KEY_XOR << 16 | ATH9K_KEY_XOR << 8
  2095. | ATH9K_KEY_XOR) : 0;
  2096. struct ath_hal_5416 *ahp = AH5416(ah);
  2097. if (entry >= pCap->keycache_size) {
  2098. DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
  2099. "%s: entry %u out of range\n", __func__, entry);
  2100. return false;
  2101. }
  2102. switch (k->kv_type) {
  2103. case ATH9K_CIPHER_AES_OCB:
  2104. keyType = AR_KEYTABLE_TYPE_AES;
  2105. break;
  2106. case ATH9K_CIPHER_AES_CCM:
  2107. if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
  2108. DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
  2109. "%s: AES-CCM not supported by "
  2110. "mac rev 0x%x\n", __func__,
  2111. ah->ah_macRev);
  2112. return false;
  2113. }
  2114. keyType = AR_KEYTABLE_TYPE_CCM;
  2115. break;
  2116. case ATH9K_CIPHER_TKIP:
  2117. keyType = AR_KEYTABLE_TYPE_TKIP;
  2118. if (ATH9K_IS_MIC_ENABLED(ah)
  2119. && entry + 64 >= pCap->keycache_size) {
  2120. DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
  2121. "%s: entry %u inappropriate for TKIP\n",
  2122. __func__, entry);
  2123. return false;
  2124. }
  2125. break;
  2126. case ATH9K_CIPHER_WEP:
  2127. if (k->kv_len < LEN_WEP40) {
  2128. DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
  2129. "%s: WEP key length %u too small\n",
  2130. __func__, k->kv_len);
  2131. return false;
  2132. }
  2133. if (k->kv_len <= LEN_WEP40)
  2134. keyType = AR_KEYTABLE_TYPE_40;
  2135. else if (k->kv_len <= LEN_WEP104)
  2136. keyType = AR_KEYTABLE_TYPE_104;
  2137. else
  2138. keyType = AR_KEYTABLE_TYPE_128;
  2139. break;
  2140. case ATH9K_CIPHER_CLR:
  2141. keyType = AR_KEYTABLE_TYPE_CLR;
  2142. break;
  2143. default:
  2144. DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
  2145. "%s: cipher %u not supported\n", __func__,
  2146. k->kv_type);
  2147. return false;
  2148. }
  2149. key0 = get_unaligned_le32(k->kv_val + 0) ^ xorMask;
  2150. key1 = (get_unaligned_le16(k->kv_val + 4) ^ xorMask) & 0xffff;
  2151. key2 = get_unaligned_le32(k->kv_val + 6) ^ xorMask;
  2152. key3 = (get_unaligned_le16(k->kv_val + 10) ^ xorMask) & 0xffff;
  2153. key4 = get_unaligned_le32(k->kv_val + 12) ^ xorMask;
  2154. if (k->kv_len <= LEN_WEP104)
  2155. key4 &= 0xff;
  2156. if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
  2157. u16 micentry = entry + 64;
  2158. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
  2159. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
  2160. REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
  2161. REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
  2162. REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
  2163. REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
  2164. (void) ath9k_hw_keysetmac(ah, entry, mac);
  2165. if (ahp->ah_miscMode & AR_PCU_MIC_NEW_LOC_ENA) {
  2166. u32 mic0, mic1, mic2, mic3, mic4;
  2167. mic0 = get_unaligned_le32(k->kv_mic + 0);
  2168. mic2 = get_unaligned_le32(k->kv_mic + 4);
  2169. mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
  2170. mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
  2171. mic4 = get_unaligned_le32(k->kv_txmic + 4);
  2172. REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
  2173. REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
  2174. REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
  2175. REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
  2176. REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
  2177. REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
  2178. AR_KEYTABLE_TYPE_CLR);
  2179. } else {
  2180. u32 mic0, mic2;
  2181. mic0 = get_unaligned_le32(k->kv_mic + 0);
  2182. mic2 = get_unaligned_le32(k->kv_mic + 4);
  2183. REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
  2184. REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
  2185. REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
  2186. REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
  2187. REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
  2188. REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
  2189. AR_KEYTABLE_TYPE_CLR);
  2190. }
  2191. REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
  2192. REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
  2193. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
  2194. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
  2195. } else {
  2196. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
  2197. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
  2198. REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
  2199. REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
  2200. REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
  2201. REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
  2202. (void) ath9k_hw_keysetmac(ah, entry, mac);
  2203. }
  2204. if (ah->ah_curchan == NULL)
  2205. return true;
  2206. return true;
  2207. }
  2208. bool ath9k_hw_keyisvalid(struct ath_hal *ah, u16 entry)
  2209. {
  2210. if (entry < ah->ah_caps.keycache_size) {
  2211. u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
  2212. if (val & AR_KEYTABLE_VALID)
  2213. return true;
  2214. }
  2215. return false;
  2216. }
  2217. /******************************/
  2218. /* Power Management (Chipset) */
  2219. /******************************/
  2220. static void ath9k_set_power_sleep(struct ath_hal *ah, int setChip)
  2221. {
  2222. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  2223. if (setChip) {
  2224. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  2225. AR_RTC_FORCE_WAKE_EN);
  2226. if (!AR_SREV_9100(ah))
  2227. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  2228. REG_CLR_BIT(ah, (u16) (AR_RTC_RESET),
  2229. AR_RTC_RESET_EN);
  2230. }
  2231. }
  2232. static void ath9k_set_power_network_sleep(struct ath_hal *ah, int setChip)
  2233. {
  2234. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  2235. if (setChip) {
  2236. struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
  2237. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  2238. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  2239. AR_RTC_FORCE_WAKE_ON_INT);
  2240. } else {
  2241. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  2242. AR_RTC_FORCE_WAKE_EN);
  2243. }
  2244. }
  2245. }
  2246. static bool ath9k_hw_set_power_awake(struct ath_hal *ah,
  2247. int setChip)
  2248. {
  2249. u32 val;
  2250. int i;
  2251. if (setChip) {
  2252. if ((REG_READ(ah, AR_RTC_STATUS) &
  2253. AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
  2254. if (ath9k_hw_set_reset_reg(ah,
  2255. ATH9K_RESET_POWER_ON) != true) {
  2256. return false;
  2257. }
  2258. }
  2259. if (AR_SREV_9100(ah))
  2260. REG_SET_BIT(ah, AR_RTC_RESET,
  2261. AR_RTC_RESET_EN);
  2262. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  2263. AR_RTC_FORCE_WAKE_EN);
  2264. udelay(50);
  2265. for (i = POWER_UP_TIME / 50; i > 0; i--) {
  2266. val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
  2267. if (val == AR_RTC_STATUS_ON)
  2268. break;
  2269. udelay(50);
  2270. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  2271. AR_RTC_FORCE_WAKE_EN);
  2272. }
  2273. if (i == 0) {
  2274. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
  2275. "%s: Failed to wakeup in %uus\n",
  2276. __func__, POWER_UP_TIME / 20);
  2277. return false;
  2278. }
  2279. }
  2280. REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  2281. return true;
  2282. }
  2283. bool ath9k_hw_setpower(struct ath_hal *ah,
  2284. enum ath9k_power_mode mode)
  2285. {
  2286. struct ath_hal_5416 *ahp = AH5416(ah);
  2287. static const char *modes[] = {
  2288. "AWAKE",
  2289. "FULL-SLEEP",
  2290. "NETWORK SLEEP",
  2291. "UNDEFINED"
  2292. };
  2293. int status = true, setChip = true;
  2294. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT, "%s: %s -> %s (%s)\n", __func__,
  2295. modes[ahp->ah_powerMode], modes[mode],
  2296. setChip ? "set chip " : "");
  2297. switch (mode) {
  2298. case ATH9K_PM_AWAKE:
  2299. status = ath9k_hw_set_power_awake(ah, setChip);
  2300. break;
  2301. case ATH9K_PM_FULL_SLEEP:
  2302. ath9k_set_power_sleep(ah, setChip);
  2303. ahp->ah_chipFullSleep = true;
  2304. break;
  2305. case ATH9K_PM_NETWORK_SLEEP:
  2306. ath9k_set_power_network_sleep(ah, setChip);
  2307. break;
  2308. default:
  2309. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
  2310. "%s: unknown power mode %u\n", __func__, mode);
  2311. return false;
  2312. }
  2313. ahp->ah_powerMode = mode;
  2314. return status;
  2315. }
  2316. void ath9k_hw_configpcipowersave(struct ath_hal *ah, int restore)
  2317. {
  2318. struct ath_hal_5416 *ahp = AH5416(ah);
  2319. u8 i;
  2320. if (ah->ah_isPciExpress != true)
  2321. return;
  2322. if (ah->ah_config.pcie_powersave_enable == 2)
  2323. return;
  2324. if (restore)
  2325. return;
  2326. if (AR_SREV_9280_20_OR_LATER(ah)) {
  2327. for (i = 0; i < ahp->ah_iniPcieSerdes.ia_rows; i++) {
  2328. REG_WRITE(ah, INI_RA(&ahp->ah_iniPcieSerdes, i, 0),
  2329. INI_RA(&ahp->ah_iniPcieSerdes, i, 1));
  2330. }
  2331. udelay(1000);
  2332. } else if (AR_SREV_9280(ah) &&
  2333. (ah->ah_macRev == AR_SREV_REVISION_9280_10)) {
  2334. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
  2335. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  2336. REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
  2337. REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
  2338. REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
  2339. if (ah->ah_config.pcie_clock_req)
  2340. REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
  2341. else
  2342. REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
  2343. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  2344. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  2345. REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
  2346. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  2347. udelay(1000);
  2348. } else {
  2349. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  2350. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  2351. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
  2352. REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
  2353. REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
  2354. REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
  2355. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  2356. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  2357. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
  2358. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  2359. }
  2360. REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
  2361. if (ah->ah_config.pcie_waen) {
  2362. REG_WRITE(ah, AR_WA, ah->ah_config.pcie_waen);
  2363. } else {
  2364. if (AR_SREV_9280(ah))
  2365. REG_WRITE(ah, AR_WA, 0x0040073f);
  2366. else
  2367. REG_WRITE(ah, AR_WA, 0x0000073f);
  2368. }
  2369. }
  2370. /**********************/
  2371. /* Interrupt Handling */
  2372. /**********************/
  2373. bool ath9k_hw_intrpend(struct ath_hal *ah)
  2374. {
  2375. u32 host_isr;
  2376. if (AR_SREV_9100(ah))
  2377. return true;
  2378. host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
  2379. if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
  2380. return true;
  2381. host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  2382. if ((host_isr & AR_INTR_SYNC_DEFAULT)
  2383. && (host_isr != AR_INTR_SPURIOUS))
  2384. return true;
  2385. return false;
  2386. }
  2387. bool ath9k_hw_getisr(struct ath_hal *ah, enum ath9k_int *masked)
  2388. {
  2389. u32 isr = 0;
  2390. u32 mask2 = 0;
  2391. struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
  2392. u32 sync_cause = 0;
  2393. bool fatal_int = false;
  2394. struct ath_hal_5416 *ahp = AH5416(ah);
  2395. if (!AR_SREV_9100(ah)) {
  2396. if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
  2397. if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
  2398. == AR_RTC_STATUS_ON) {
  2399. isr = REG_READ(ah, AR_ISR);
  2400. }
  2401. }
  2402. sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
  2403. AR_INTR_SYNC_DEFAULT;
  2404. *masked = 0;
  2405. if (!isr && !sync_cause)
  2406. return false;
  2407. } else {
  2408. *masked = 0;
  2409. isr = REG_READ(ah, AR_ISR);
  2410. }
  2411. if (isr) {
  2412. if (isr & AR_ISR_BCNMISC) {
  2413. u32 isr2;
  2414. isr2 = REG_READ(ah, AR_ISR_S2);
  2415. if (isr2 & AR_ISR_S2_TIM)
  2416. mask2 |= ATH9K_INT_TIM;
  2417. if (isr2 & AR_ISR_S2_DTIM)
  2418. mask2 |= ATH9K_INT_DTIM;
  2419. if (isr2 & AR_ISR_S2_DTIMSYNC)
  2420. mask2 |= ATH9K_INT_DTIMSYNC;
  2421. if (isr2 & (AR_ISR_S2_CABEND))
  2422. mask2 |= ATH9K_INT_CABEND;
  2423. if (isr2 & AR_ISR_S2_GTT)
  2424. mask2 |= ATH9K_INT_GTT;
  2425. if (isr2 & AR_ISR_S2_CST)
  2426. mask2 |= ATH9K_INT_CST;
  2427. }
  2428. isr = REG_READ(ah, AR_ISR_RAC);
  2429. if (isr == 0xffffffff) {
  2430. *masked = 0;
  2431. return false;
  2432. }
  2433. *masked = isr & ATH9K_INT_COMMON;
  2434. if (ahp->ah_intrMitigation) {
  2435. if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
  2436. *masked |= ATH9K_INT_RX;
  2437. }
  2438. if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
  2439. *masked |= ATH9K_INT_RX;
  2440. if (isr &
  2441. (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
  2442. AR_ISR_TXEOL)) {
  2443. u32 s0_s, s1_s;
  2444. *masked |= ATH9K_INT_TX;
  2445. s0_s = REG_READ(ah, AR_ISR_S0_S);
  2446. ahp->ah_intrTxqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
  2447. ahp->ah_intrTxqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
  2448. s1_s = REG_READ(ah, AR_ISR_S1_S);
  2449. ahp->ah_intrTxqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
  2450. ahp->ah_intrTxqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
  2451. }
  2452. if (isr & AR_ISR_RXORN) {
  2453. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
  2454. "%s: receive FIFO overrun interrupt\n",
  2455. __func__);
  2456. }
  2457. if (!AR_SREV_9100(ah)) {
  2458. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  2459. u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
  2460. if (isr5 & AR_ISR_S5_TIM_TIMER)
  2461. *masked |= ATH9K_INT_TIM_TIMER;
  2462. }
  2463. }
  2464. *masked |= mask2;
  2465. }
  2466. if (AR_SREV_9100(ah))
  2467. return true;
  2468. if (sync_cause) {
  2469. fatal_int =
  2470. (sync_cause &
  2471. (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
  2472. ? true : false;
  2473. if (fatal_int) {
  2474. if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
  2475. DPRINTF(ah->ah_sc, ATH_DBG_ANY,
  2476. "%s: received PCI FATAL interrupt\n",
  2477. __func__);
  2478. }
  2479. if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
  2480. DPRINTF(ah->ah_sc, ATH_DBG_ANY,
  2481. "%s: received PCI PERR interrupt\n",
  2482. __func__);
  2483. }
  2484. }
  2485. if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
  2486. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
  2487. "%s: AR_INTR_SYNC_RADM_CPL_TIMEOUT\n",
  2488. __func__);
  2489. REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
  2490. REG_WRITE(ah, AR_RC, 0);
  2491. *masked |= ATH9K_INT_FATAL;
  2492. }
  2493. if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
  2494. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
  2495. "%s: AR_INTR_SYNC_LOCAL_TIMEOUT\n",
  2496. __func__);
  2497. }
  2498. REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
  2499. (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
  2500. }
  2501. return true;
  2502. }
  2503. enum ath9k_int ath9k_hw_intrget(struct ath_hal *ah)
  2504. {
  2505. return AH5416(ah)->ah_maskReg;
  2506. }
  2507. enum ath9k_int ath9k_hw_set_interrupts(struct ath_hal *ah, enum ath9k_int ints)
  2508. {
  2509. struct ath_hal_5416 *ahp = AH5416(ah);
  2510. u32 omask = ahp->ah_maskReg;
  2511. u32 mask, mask2;
  2512. struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
  2513. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "%s: 0x%x => 0x%x\n", __func__,
  2514. omask, ints);
  2515. if (omask & ATH9K_INT_GLOBAL) {
  2516. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "%s: disable IER\n",
  2517. __func__);
  2518. REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
  2519. (void) REG_READ(ah, AR_IER);
  2520. if (!AR_SREV_9100(ah)) {
  2521. REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
  2522. (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
  2523. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  2524. (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
  2525. }
  2526. }
  2527. mask = ints & ATH9K_INT_COMMON;
  2528. mask2 = 0;
  2529. if (ints & ATH9K_INT_TX) {
  2530. if (ahp->ah_txOkInterruptMask)
  2531. mask |= AR_IMR_TXOK;
  2532. if (ahp->ah_txDescInterruptMask)
  2533. mask |= AR_IMR_TXDESC;
  2534. if (ahp->ah_txErrInterruptMask)
  2535. mask |= AR_IMR_TXERR;
  2536. if (ahp->ah_txEolInterruptMask)
  2537. mask |= AR_IMR_TXEOL;
  2538. }
  2539. if (ints & ATH9K_INT_RX) {
  2540. mask |= AR_IMR_RXERR;
  2541. if (ahp->ah_intrMitigation)
  2542. mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
  2543. else
  2544. mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
  2545. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
  2546. mask |= AR_IMR_GENTMR;
  2547. }
  2548. if (ints & (ATH9K_INT_BMISC)) {
  2549. mask |= AR_IMR_BCNMISC;
  2550. if (ints & ATH9K_INT_TIM)
  2551. mask2 |= AR_IMR_S2_TIM;
  2552. if (ints & ATH9K_INT_DTIM)
  2553. mask2 |= AR_IMR_S2_DTIM;
  2554. if (ints & ATH9K_INT_DTIMSYNC)
  2555. mask2 |= AR_IMR_S2_DTIMSYNC;
  2556. if (ints & ATH9K_INT_CABEND)
  2557. mask2 |= (AR_IMR_S2_CABEND);
  2558. }
  2559. if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
  2560. mask |= AR_IMR_BCNMISC;
  2561. if (ints & ATH9K_INT_GTT)
  2562. mask2 |= AR_IMR_S2_GTT;
  2563. if (ints & ATH9K_INT_CST)
  2564. mask2 |= AR_IMR_S2_CST;
  2565. }
  2566. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "%s: new IMR 0x%x\n", __func__,
  2567. mask);
  2568. REG_WRITE(ah, AR_IMR, mask);
  2569. mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
  2570. AR_IMR_S2_DTIM |
  2571. AR_IMR_S2_DTIMSYNC |
  2572. AR_IMR_S2_CABEND |
  2573. AR_IMR_S2_CABTO |
  2574. AR_IMR_S2_TSFOOR |
  2575. AR_IMR_S2_GTT | AR_IMR_S2_CST);
  2576. REG_WRITE(ah, AR_IMR_S2, mask | mask2);
  2577. ahp->ah_maskReg = ints;
  2578. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  2579. if (ints & ATH9K_INT_TIM_TIMER)
  2580. REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
  2581. else
  2582. REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
  2583. }
  2584. if (ints & ATH9K_INT_GLOBAL) {
  2585. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "%s: enable IER\n",
  2586. __func__);
  2587. REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
  2588. if (!AR_SREV_9100(ah)) {
  2589. REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
  2590. AR_INTR_MAC_IRQ);
  2591. REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
  2592. REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
  2593. AR_INTR_SYNC_DEFAULT);
  2594. REG_WRITE(ah, AR_INTR_SYNC_MASK,
  2595. AR_INTR_SYNC_DEFAULT);
  2596. }
  2597. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
  2598. REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
  2599. }
  2600. return omask;
  2601. }
  2602. /*******************/
  2603. /* Beacon Handling */
  2604. /*******************/
  2605. void ath9k_hw_beaconinit(struct ath_hal *ah, u32 next_beacon, u32 beacon_period)
  2606. {
  2607. struct ath_hal_5416 *ahp = AH5416(ah);
  2608. int flags = 0;
  2609. ahp->ah_beaconInterval = beacon_period;
  2610. switch (ah->ah_opmode) {
  2611. case ATH9K_M_STA:
  2612. case ATH9K_M_MONITOR:
  2613. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
  2614. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
  2615. REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
  2616. flags |= AR_TBTT_TIMER_EN;
  2617. break;
  2618. case ATH9K_M_IBSS:
  2619. REG_SET_BIT(ah, AR_TXCFG,
  2620. AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
  2621. REG_WRITE(ah, AR_NEXT_NDP_TIMER,
  2622. TU_TO_USEC(next_beacon +
  2623. (ahp->ah_atimWindow ? ahp->
  2624. ah_atimWindow : 1)));
  2625. flags |= AR_NDP_TIMER_EN;
  2626. case ATH9K_M_HOSTAP:
  2627. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
  2628. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
  2629. TU_TO_USEC(next_beacon -
  2630. ah->ah_config.
  2631. dma_beacon_response_time));
  2632. REG_WRITE(ah, AR_NEXT_SWBA,
  2633. TU_TO_USEC(next_beacon -
  2634. ah->ah_config.
  2635. sw_beacon_response_time));
  2636. flags |=
  2637. AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
  2638. break;
  2639. }
  2640. REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
  2641. REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
  2642. REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
  2643. REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
  2644. beacon_period &= ~ATH9K_BEACON_ENA;
  2645. if (beacon_period & ATH9K_BEACON_RESET_TSF) {
  2646. beacon_period &= ~ATH9K_BEACON_RESET_TSF;
  2647. ath9k_hw_reset_tsf(ah);
  2648. }
  2649. REG_SET_BIT(ah, AR_TIMER_MODE, flags);
  2650. }
  2651. void ath9k_hw_set_sta_beacon_timers(struct ath_hal *ah,
  2652. const struct ath9k_beacon_state *bs)
  2653. {
  2654. u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
  2655. struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
  2656. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
  2657. REG_WRITE(ah, AR_BEACON_PERIOD,
  2658. TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
  2659. REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
  2660. TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
  2661. REG_RMW_FIELD(ah, AR_RSSI_THR,
  2662. AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
  2663. beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
  2664. if (bs->bs_sleepduration > beaconintval)
  2665. beaconintval = bs->bs_sleepduration;
  2666. dtimperiod = bs->bs_dtimperiod;
  2667. if (bs->bs_sleepduration > dtimperiod)
  2668. dtimperiod = bs->bs_sleepduration;
  2669. if (beaconintval == dtimperiod)
  2670. nextTbtt = bs->bs_nextdtim;
  2671. else
  2672. nextTbtt = bs->bs_nexttbtt;
  2673. DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "%s: next DTIM %d\n", __func__,
  2674. bs->bs_nextdtim);
  2675. DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "%s: next beacon %d\n", __func__,
  2676. nextTbtt);
  2677. DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "%s: beacon period %d\n", __func__,
  2678. beaconintval);
  2679. DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "%s: DTIM period %d\n", __func__,
  2680. dtimperiod);
  2681. REG_WRITE(ah, AR_NEXT_DTIM,
  2682. TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
  2683. REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
  2684. REG_WRITE(ah, AR_SLEEP1,
  2685. SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
  2686. | AR_SLEEP1_ASSUME_DTIM);
  2687. if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
  2688. beacontimeout = (BEACON_TIMEOUT_VAL << 3);
  2689. else
  2690. beacontimeout = MIN_BEACON_TIMEOUT_VAL;
  2691. REG_WRITE(ah, AR_SLEEP2,
  2692. SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
  2693. REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
  2694. REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
  2695. REG_SET_BIT(ah, AR_TIMER_MODE,
  2696. AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
  2697. AR_DTIM_TIMER_EN);
  2698. }
  2699. /***************/
  2700. /* Rate tables */
  2701. /***************/
  2702. static struct ath9k_rate_table ar5416_11a_table = {
  2703. 8,
  2704. {0},
  2705. {
  2706. {true, PHY_OFDM, 6000, 0x0b, 0x00, (0x80 | 12), 0},
  2707. {true, PHY_OFDM, 9000, 0x0f, 0x00, 18, 0},
  2708. {true, PHY_OFDM, 12000, 0x0a, 0x00, (0x80 | 24), 2},
  2709. {true, PHY_OFDM, 18000, 0x0e, 0x00, 36, 2},
  2710. {true, PHY_OFDM, 24000, 0x09, 0x00, (0x80 | 48), 4},
  2711. {true, PHY_OFDM, 36000, 0x0d, 0x00, 72, 4},
  2712. {true, PHY_OFDM, 48000, 0x08, 0x00, 96, 4},
  2713. {true, PHY_OFDM, 54000, 0x0c, 0x00, 108, 4}
  2714. },
  2715. };
  2716. static struct ath9k_rate_table ar5416_11b_table = {
  2717. 4,
  2718. {0},
  2719. {
  2720. {true, PHY_CCK, 1000, 0x1b, 0x00, (0x80 | 2), 0},
  2721. {true, PHY_CCK, 2000, 0x1a, 0x04, (0x80 | 4), 1},
  2722. {true, PHY_CCK, 5500, 0x19, 0x04, (0x80 | 11), 1},
  2723. {true, PHY_CCK, 11000, 0x18, 0x04, (0x80 | 22), 1}
  2724. },
  2725. };
  2726. static struct ath9k_rate_table ar5416_11g_table = {
  2727. 12,
  2728. {0},
  2729. {
  2730. {true, PHY_CCK, 1000, 0x1b, 0x00, (0x80 | 2), 0},
  2731. {true, PHY_CCK, 2000, 0x1a, 0x04, (0x80 | 4), 1},
  2732. {true, PHY_CCK, 5500, 0x19, 0x04, (0x80 | 11), 2},
  2733. {true, PHY_CCK, 11000, 0x18, 0x04, (0x80 | 22), 3},
  2734. {false, PHY_OFDM, 6000, 0x0b, 0x00, 12, 4},
  2735. {false, PHY_OFDM, 9000, 0x0f, 0x00, 18, 4},
  2736. {true, PHY_OFDM, 12000, 0x0a, 0x00, 24, 6},
  2737. {true, PHY_OFDM, 18000, 0x0e, 0x00, 36, 6},
  2738. {true, PHY_OFDM, 24000, 0x09, 0x00, 48, 8},
  2739. {true, PHY_OFDM, 36000, 0x0d, 0x00, 72, 8},
  2740. {true, PHY_OFDM, 48000, 0x08, 0x00, 96, 8},
  2741. {true, PHY_OFDM, 54000, 0x0c, 0x00, 108, 8}
  2742. },
  2743. };
  2744. static struct ath9k_rate_table ar5416_11ng_table = {
  2745. 28,
  2746. {0},
  2747. {
  2748. {true, PHY_CCK, 1000, 0x1b, 0x00, (0x80 | 2), 0},
  2749. {true, PHY_CCK, 2000, 0x1a, 0x04, (0x80 | 4), 1},
  2750. {true, PHY_CCK, 5500, 0x19, 0x04, (0x80 | 11), 2},
  2751. {true, PHY_CCK, 11000, 0x18, 0x04, (0x80 | 22), 3},
  2752. {false, PHY_OFDM, 6000, 0x0b, 0x00, 12, 4},
  2753. {false, PHY_OFDM, 9000, 0x0f, 0x00, 18, 4},
  2754. {true, PHY_OFDM, 12000, 0x0a, 0x00, 24, 6},
  2755. {true, PHY_OFDM, 18000, 0x0e, 0x00, 36, 6},
  2756. {true, PHY_OFDM, 24000, 0x09, 0x00, 48, 8},
  2757. {true, PHY_OFDM, 36000, 0x0d, 0x00, 72, 8},
  2758. {true, PHY_OFDM, 48000, 0x08, 0x00, 96, 8},
  2759. {true, PHY_OFDM, 54000, 0x0c, 0x00, 108, 8},
  2760. {true, PHY_HT, 6500, 0x80, 0x00, 0, 4},
  2761. {true, PHY_HT, 13000, 0x81, 0x00, 1, 6},
  2762. {true, PHY_HT, 19500, 0x82, 0x00, 2, 6},
  2763. {true, PHY_HT, 26000, 0x83, 0x00, 3, 8},
  2764. {true, PHY_HT, 39000, 0x84, 0x00, 4, 8},
  2765. {true, PHY_HT, 52000, 0x85, 0x00, 5, 8},
  2766. {true, PHY_HT, 58500, 0x86, 0x00, 6, 8},
  2767. {true, PHY_HT, 65000, 0x87, 0x00, 7, 8},
  2768. {true, PHY_HT, 13000, 0x88, 0x00, 8, 4},
  2769. {true, PHY_HT, 26000, 0x89, 0x00, 9, 6},
  2770. {true, PHY_HT, 39000, 0x8a, 0x00, 10, 6},
  2771. {true, PHY_HT, 52000, 0x8b, 0x00, 11, 8},
  2772. {true, PHY_HT, 78000, 0x8c, 0x00, 12, 8},
  2773. {true, PHY_HT, 104000, 0x8d, 0x00, 13, 8},
  2774. {true, PHY_HT, 117000, 0x8e, 0x00, 14, 8},
  2775. {true, PHY_HT, 130000, 0x8f, 0x00, 15, 8},
  2776. },
  2777. };
  2778. static struct ath9k_rate_table ar5416_11na_table = {
  2779. 24,
  2780. {0},
  2781. {
  2782. {true, PHY_OFDM, 6000, 0x0b, 0x00, (0x80 | 12), 0},
  2783. {true, PHY_OFDM, 9000, 0x0f, 0x00, 18, 0},
  2784. {true, PHY_OFDM, 12000, 0x0a, 0x00, (0x80 | 24), 2},
  2785. {true, PHY_OFDM, 18000, 0x0e, 0x00, 36, 2},
  2786. {true, PHY_OFDM, 24000, 0x09, 0x00, (0x80 | 48), 4},
  2787. {true, PHY_OFDM, 36000, 0x0d, 0x00, 72, 4},
  2788. {true, PHY_OFDM, 48000, 0x08, 0x00, 96, 4},
  2789. {true, PHY_OFDM, 54000, 0x0c, 0x00, 108, 4},
  2790. {true, PHY_HT, 6500, 0x80, 0x00, 0, 0},
  2791. {true, PHY_HT, 13000, 0x81, 0x00, 1, 2},
  2792. {true, PHY_HT, 19500, 0x82, 0x00, 2, 2},
  2793. {true, PHY_HT, 26000, 0x83, 0x00, 3, 4},
  2794. {true, PHY_HT, 39000, 0x84, 0x00, 4, 4},
  2795. {true, PHY_HT, 52000, 0x85, 0x00, 5, 4},
  2796. {true, PHY_HT, 58500, 0x86, 0x00, 6, 4},
  2797. {true, PHY_HT, 65000, 0x87, 0x00, 7, 4},
  2798. {true, PHY_HT, 13000, 0x88, 0x00, 8, 0},
  2799. {true, PHY_HT, 26000, 0x89, 0x00, 9, 2},
  2800. {true, PHY_HT, 39000, 0x8a, 0x00, 10, 2},
  2801. {true, PHY_HT, 52000, 0x8b, 0x00, 11, 4},
  2802. {true, PHY_HT, 78000, 0x8c, 0x00, 12, 4},
  2803. {true, PHY_HT, 104000, 0x8d, 0x00, 13, 4},
  2804. {true, PHY_HT, 117000, 0x8e, 0x00, 14, 4},
  2805. {true, PHY_HT, 130000, 0x8f, 0x00, 15, 4},
  2806. },
  2807. };
  2808. static void ath9k_hw_setup_rate_table(struct ath_hal *ah,
  2809. struct ath9k_rate_table *rt)
  2810. {
  2811. int i;
  2812. if (rt->rateCodeToIndex[0] != 0)
  2813. return;
  2814. for (i = 0; i < 256; i++)
  2815. rt->rateCodeToIndex[i] = (u8) -1;
  2816. for (i = 0; i < rt->rateCount; i++) {
  2817. u8 code = rt->info[i].rateCode;
  2818. u8 cix = rt->info[i].controlRate;
  2819. rt->rateCodeToIndex[code] = i;
  2820. rt->rateCodeToIndex[code | rt->info[i].shortPreamble] = i;
  2821. rt->info[i].lpAckDuration =
  2822. ath9k_hw_computetxtime(ah, rt,
  2823. WLAN_CTRL_FRAME_SIZE,
  2824. cix,
  2825. false);
  2826. rt->info[i].spAckDuration =
  2827. ath9k_hw_computetxtime(ah, rt,
  2828. WLAN_CTRL_FRAME_SIZE,
  2829. cix,
  2830. true);
  2831. }
  2832. }
  2833. const struct ath9k_rate_table *ath9k_hw_getratetable(struct ath_hal *ah,
  2834. u32 mode)
  2835. {
  2836. struct ath9k_rate_table *rt;
  2837. switch (mode) {
  2838. case ATH9K_MODE_11A:
  2839. rt = &ar5416_11a_table;
  2840. break;
  2841. case ATH9K_MODE_11B:
  2842. rt = &ar5416_11b_table;
  2843. break;
  2844. case ATH9K_MODE_11G:
  2845. rt = &ar5416_11g_table;
  2846. break;
  2847. case ATH9K_MODE_11NG_HT20:
  2848. case ATH9K_MODE_11NG_HT40PLUS:
  2849. case ATH9K_MODE_11NG_HT40MINUS:
  2850. rt = &ar5416_11ng_table;
  2851. break;
  2852. case ATH9K_MODE_11NA_HT20:
  2853. case ATH9K_MODE_11NA_HT40PLUS:
  2854. case ATH9K_MODE_11NA_HT40MINUS:
  2855. rt = &ar5416_11na_table;
  2856. break;
  2857. default:
  2858. DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL, "%s: invalid mode 0x%x\n",
  2859. __func__, mode);
  2860. return NULL;
  2861. }
  2862. ath9k_hw_setup_rate_table(ah, rt);
  2863. return rt;
  2864. }
  2865. /*******************/
  2866. /* HW Capabilities */
  2867. /*******************/
  2868. bool ath9k_hw_fill_cap_info(struct ath_hal *ah)
  2869. {
  2870. struct ath_hal_5416 *ahp = AH5416(ah);
  2871. struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
  2872. u16 capField = 0, eeval;
  2873. eeval = ath9k_hw_get_eeprom(ah, EEP_REG_0);
  2874. ah->ah_currentRD = eeval;
  2875. eeval = ath9k_hw_get_eeprom(ah, EEP_REG_1);
  2876. ah->ah_currentRDExt = eeval;
  2877. capField = ath9k_hw_get_eeprom(ah, EEP_OP_CAP);
  2878. if (ah->ah_opmode != ATH9K_M_HOSTAP &&
  2879. ah->ah_subvendorid == AR_SUBVENDOR_ID_NEW_A) {
  2880. if (ah->ah_currentRD == 0x64 || ah->ah_currentRD == 0x65)
  2881. ah->ah_currentRD += 5;
  2882. else if (ah->ah_currentRD == 0x41)
  2883. ah->ah_currentRD = 0x43;
  2884. DPRINTF(ah->ah_sc, ATH_DBG_REGULATORY,
  2885. "%s: regdomain mapped to 0x%x\n", __func__,
  2886. ah->ah_currentRD);
  2887. }
  2888. eeval = ath9k_hw_get_eeprom(ah, EEP_OP_MODE);
  2889. bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
  2890. if (eeval & AR5416_OPFLAGS_11A) {
  2891. set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
  2892. if (ah->ah_config.ht_enable) {
  2893. if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
  2894. set_bit(ATH9K_MODE_11NA_HT20,
  2895. pCap->wireless_modes);
  2896. if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
  2897. set_bit(ATH9K_MODE_11NA_HT40PLUS,
  2898. pCap->wireless_modes);
  2899. set_bit(ATH9K_MODE_11NA_HT40MINUS,
  2900. pCap->wireless_modes);
  2901. }
  2902. }
  2903. }
  2904. if (eeval & AR5416_OPFLAGS_11G) {
  2905. set_bit(ATH9K_MODE_11B, pCap->wireless_modes);
  2906. set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
  2907. if (ah->ah_config.ht_enable) {
  2908. if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
  2909. set_bit(ATH9K_MODE_11NG_HT20,
  2910. pCap->wireless_modes);
  2911. if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
  2912. set_bit(ATH9K_MODE_11NG_HT40PLUS,
  2913. pCap->wireless_modes);
  2914. set_bit(ATH9K_MODE_11NG_HT40MINUS,
  2915. pCap->wireless_modes);
  2916. }
  2917. }
  2918. }
  2919. pCap->tx_chainmask = ath9k_hw_get_eeprom(ah, EEP_TX_MASK);
  2920. if ((ah->ah_isPciExpress)
  2921. || (eeval & AR5416_OPFLAGS_11A)) {
  2922. pCap->rx_chainmask =
  2923. ath9k_hw_get_eeprom(ah, EEP_RX_MASK);
  2924. } else {
  2925. pCap->rx_chainmask =
  2926. (ath9k_hw_gpio_get(ah, 0)) ? 0x5 : 0x7;
  2927. }
  2928. if (!(AR_SREV_9280(ah) && (ah->ah_macRev == 0)))
  2929. ahp->ah_miscMode |= AR_PCU_MIC_NEW_LOC_ENA;
  2930. pCap->low_2ghz_chan = 2312;
  2931. pCap->high_2ghz_chan = 2732;
  2932. pCap->low_5ghz_chan = 4920;
  2933. pCap->high_5ghz_chan = 6100;
  2934. pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
  2935. pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
  2936. pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
  2937. pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
  2938. pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
  2939. pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
  2940. pCap->hw_caps |= ATH9K_HW_CAP_CHAN_SPREAD;
  2941. if (ah->ah_config.ht_enable)
  2942. pCap->hw_caps |= ATH9K_HW_CAP_HT;
  2943. else
  2944. pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
  2945. pCap->hw_caps |= ATH9K_HW_CAP_GTT;
  2946. pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
  2947. pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
  2948. pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
  2949. if (capField & AR_EEPROM_EEPCAP_MAXQCU)
  2950. pCap->total_queues =
  2951. MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
  2952. else
  2953. pCap->total_queues = ATH9K_NUM_TX_QUEUES;
  2954. if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
  2955. pCap->keycache_size =
  2956. 1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
  2957. else
  2958. pCap->keycache_size = AR_KEYTABLE_SIZE;
  2959. pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
  2960. pCap->num_mr_retries = 4;
  2961. pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
  2962. if (AR_SREV_9280_10_OR_LATER(ah))
  2963. pCap->num_gpio_pins = AR928X_NUM_GPIO;
  2964. else
  2965. pCap->num_gpio_pins = AR_NUM_GPIO;
  2966. if (AR_SREV_9280_10_OR_LATER(ah)) {
  2967. pCap->hw_caps |= ATH9K_HW_CAP_WOW;
  2968. pCap->hw_caps |= ATH9K_HW_CAP_WOW_MATCHPATTERN_EXACT;
  2969. } else {
  2970. pCap->hw_caps &= ~ATH9K_HW_CAP_WOW;
  2971. pCap->hw_caps &= ~ATH9K_HW_CAP_WOW_MATCHPATTERN_EXACT;
  2972. }
  2973. if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
  2974. pCap->hw_caps |= ATH9K_HW_CAP_CST;
  2975. pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
  2976. } else {
  2977. pCap->rts_aggr_limit = (8 * 1024);
  2978. }
  2979. pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
  2980. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  2981. ah->ah_rfsilent = ath9k_hw_get_eeprom(ah, EEP_RF_SILENT);
  2982. if (ah->ah_rfsilent & EEP_RFSILENT_ENABLED) {
  2983. ah->ah_rfkill_gpio =
  2984. MS(ah->ah_rfsilent, EEP_RFSILENT_GPIO_SEL);
  2985. ah->ah_rfkill_polarity =
  2986. MS(ah->ah_rfsilent, EEP_RFSILENT_POLARITY);
  2987. pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
  2988. }
  2989. #endif
  2990. if ((ah->ah_macVersion == AR_SREV_VERSION_5416_PCI) ||
  2991. (ah->ah_macVersion == AR_SREV_VERSION_5416_PCIE) ||
  2992. (ah->ah_macVersion == AR_SREV_VERSION_9160) ||
  2993. (ah->ah_macVersion == AR_SREV_VERSION_9100) ||
  2994. (ah->ah_macVersion == AR_SREV_VERSION_9280))
  2995. pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
  2996. else
  2997. pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
  2998. if (AR_SREV_9280(ah))
  2999. pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
  3000. else
  3001. pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
  3002. if (ah->ah_currentRDExt & (1 << REG_EXT_JAPAN_MIDBAND)) {
  3003. pCap->reg_cap =
  3004. AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
  3005. AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
  3006. AR_EEPROM_EEREGCAP_EN_KK_U2 |
  3007. AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
  3008. } else {
  3009. pCap->reg_cap =
  3010. AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
  3011. AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
  3012. }
  3013. pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
  3014. pCap->num_antcfg_5ghz =
  3015. ath9k_hw_get_num_ant_config(ah, IEEE80211_BAND_5GHZ);
  3016. pCap->num_antcfg_2ghz =
  3017. ath9k_hw_get_num_ant_config(ah, IEEE80211_BAND_2GHZ);
  3018. return true;
  3019. }
  3020. bool ath9k_hw_getcapability(struct ath_hal *ah, enum ath9k_capability_type type,
  3021. u32 capability, u32 *result)
  3022. {
  3023. struct ath_hal_5416 *ahp = AH5416(ah);
  3024. const struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
  3025. switch (type) {
  3026. case ATH9K_CAP_CIPHER:
  3027. switch (capability) {
  3028. case ATH9K_CIPHER_AES_CCM:
  3029. case ATH9K_CIPHER_AES_OCB:
  3030. case ATH9K_CIPHER_TKIP:
  3031. case ATH9K_CIPHER_WEP:
  3032. case ATH9K_CIPHER_MIC:
  3033. case ATH9K_CIPHER_CLR:
  3034. return true;
  3035. default:
  3036. return false;
  3037. }
  3038. case ATH9K_CAP_TKIP_MIC:
  3039. switch (capability) {
  3040. case 0:
  3041. return true;
  3042. case 1:
  3043. return (ahp->ah_staId1Defaults &
  3044. AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
  3045. false;
  3046. }
  3047. case ATH9K_CAP_TKIP_SPLIT:
  3048. return (ahp->ah_miscMode & AR_PCU_MIC_NEW_LOC_ENA) ?
  3049. false : true;
  3050. case ATH9K_CAP_WME_TKIPMIC:
  3051. return 0;
  3052. case ATH9K_CAP_PHYCOUNTERS:
  3053. return ahp->ah_hasHwPhyCounters ? 0 : -ENXIO;
  3054. case ATH9K_CAP_DIVERSITY:
  3055. return (REG_READ(ah, AR_PHY_CCK_DETECT) &
  3056. AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
  3057. true : false;
  3058. case ATH9K_CAP_PHYDIAG:
  3059. return true;
  3060. case ATH9K_CAP_MCAST_KEYSRCH:
  3061. switch (capability) {
  3062. case 0:
  3063. return true;
  3064. case 1:
  3065. if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
  3066. return false;
  3067. } else {
  3068. return (ahp->ah_staId1Defaults &
  3069. AR_STA_ID1_MCAST_KSRCH) ? true :
  3070. false;
  3071. }
  3072. }
  3073. return false;
  3074. case ATH9K_CAP_TSF_ADJUST:
  3075. return (ahp->ah_miscMode & AR_PCU_TX_ADD_TSF) ?
  3076. true : false;
  3077. case ATH9K_CAP_RFSILENT:
  3078. if (capability == 3)
  3079. return false;
  3080. case ATH9K_CAP_ANT_CFG_2GHZ:
  3081. *result = pCap->num_antcfg_2ghz;
  3082. return true;
  3083. case ATH9K_CAP_ANT_CFG_5GHZ:
  3084. *result = pCap->num_antcfg_5ghz;
  3085. return true;
  3086. case ATH9K_CAP_TXPOW:
  3087. switch (capability) {
  3088. case 0:
  3089. return 0;
  3090. case 1:
  3091. *result = ah->ah_powerLimit;
  3092. return 0;
  3093. case 2:
  3094. *result = ah->ah_maxPowerLevel;
  3095. return 0;
  3096. case 3:
  3097. *result = ah->ah_tpScale;
  3098. return 0;
  3099. }
  3100. return false;
  3101. default:
  3102. return false;
  3103. }
  3104. }
  3105. bool ath9k_hw_setcapability(struct ath_hal *ah, enum ath9k_capability_type type,
  3106. u32 capability, u32 setting, int *status)
  3107. {
  3108. struct ath_hal_5416 *ahp = AH5416(ah);
  3109. u32 v;
  3110. switch (type) {
  3111. case ATH9K_CAP_TKIP_MIC:
  3112. if (setting)
  3113. ahp->ah_staId1Defaults |=
  3114. AR_STA_ID1_CRPT_MIC_ENABLE;
  3115. else
  3116. ahp->ah_staId1Defaults &=
  3117. ~AR_STA_ID1_CRPT_MIC_ENABLE;
  3118. return true;
  3119. case ATH9K_CAP_DIVERSITY:
  3120. v = REG_READ(ah, AR_PHY_CCK_DETECT);
  3121. if (setting)
  3122. v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
  3123. else
  3124. v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
  3125. REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
  3126. return true;
  3127. case ATH9K_CAP_MCAST_KEYSRCH:
  3128. if (setting)
  3129. ahp->ah_staId1Defaults |= AR_STA_ID1_MCAST_KSRCH;
  3130. else
  3131. ahp->ah_staId1Defaults &= ~AR_STA_ID1_MCAST_KSRCH;
  3132. return true;
  3133. case ATH9K_CAP_TSF_ADJUST:
  3134. if (setting)
  3135. ahp->ah_miscMode |= AR_PCU_TX_ADD_TSF;
  3136. else
  3137. ahp->ah_miscMode &= ~AR_PCU_TX_ADD_TSF;
  3138. return true;
  3139. default:
  3140. return false;
  3141. }
  3142. }
  3143. /****************************/
  3144. /* GPIO / RFKILL / Antennae */
  3145. /****************************/
  3146. static void ath9k_hw_gpio_cfg_output_mux(struct ath_hal *ah,
  3147. u32 gpio, u32 type)
  3148. {
  3149. int addr;
  3150. u32 gpio_shift, tmp;
  3151. if (gpio > 11)
  3152. addr = AR_GPIO_OUTPUT_MUX3;
  3153. else if (gpio > 5)
  3154. addr = AR_GPIO_OUTPUT_MUX2;
  3155. else
  3156. addr = AR_GPIO_OUTPUT_MUX1;
  3157. gpio_shift = (gpio % 6) * 5;
  3158. if (AR_SREV_9280_20_OR_LATER(ah)
  3159. || (addr != AR_GPIO_OUTPUT_MUX1)) {
  3160. REG_RMW(ah, addr, (type << gpio_shift),
  3161. (0x1f << gpio_shift));
  3162. } else {
  3163. tmp = REG_READ(ah, addr);
  3164. tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
  3165. tmp &= ~(0x1f << gpio_shift);
  3166. tmp |= (type << gpio_shift);
  3167. REG_WRITE(ah, addr, tmp);
  3168. }
  3169. }
  3170. void ath9k_hw_cfg_gpio_input(struct ath_hal *ah, u32 gpio)
  3171. {
  3172. u32 gpio_shift;
  3173. ASSERT(gpio < ah->ah_caps.num_gpio_pins);
  3174. gpio_shift = gpio << 1;
  3175. REG_RMW(ah,
  3176. AR_GPIO_OE_OUT,
  3177. (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
  3178. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  3179. }
  3180. u32 ath9k_hw_gpio_get(struct ath_hal *ah, u32 gpio)
  3181. {
  3182. if (gpio >= ah->ah_caps.num_gpio_pins)
  3183. return 0xffffffff;
  3184. if (AR_SREV_9280_10_OR_LATER(ah)) {
  3185. return (MS
  3186. (REG_READ(ah, AR_GPIO_IN_OUT),
  3187. AR928X_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) != 0;
  3188. } else {
  3189. return (MS(REG_READ(ah, AR_GPIO_IN_OUT), AR_GPIO_IN_VAL) &
  3190. AR_GPIO_BIT(gpio)) != 0;
  3191. }
  3192. }
  3193. void ath9k_hw_cfg_output(struct ath_hal *ah, u32 gpio,
  3194. u32 ah_signal_type)
  3195. {
  3196. u32 gpio_shift;
  3197. ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
  3198. gpio_shift = 2 * gpio;
  3199. REG_RMW(ah,
  3200. AR_GPIO_OE_OUT,
  3201. (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
  3202. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  3203. }
  3204. void ath9k_hw_set_gpio(struct ath_hal *ah, u32 gpio, u32 val)
  3205. {
  3206. REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
  3207. AR_GPIO_BIT(gpio));
  3208. }
  3209. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  3210. void ath9k_enable_rfkill(struct ath_hal *ah)
  3211. {
  3212. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
  3213. AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
  3214. REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
  3215. AR_GPIO_INPUT_MUX2_RFSILENT);
  3216. ath9k_hw_cfg_gpio_input(ah, ah->ah_rfkill_gpio);
  3217. REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
  3218. }
  3219. #endif
  3220. int ath9k_hw_select_antconfig(struct ath_hal *ah, u32 cfg)
  3221. {
  3222. struct ath9k_channel *chan = ah->ah_curchan;
  3223. const struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
  3224. u16 ant_config;
  3225. u32 halNumAntConfig;
  3226. halNumAntConfig = IS_CHAN_2GHZ(chan) ?
  3227. pCap->num_antcfg_2ghz : pCap->num_antcfg_5ghz;
  3228. if (cfg < halNumAntConfig) {
  3229. if (!ath9k_hw_get_eeprom_antenna_cfg(ah, chan,
  3230. cfg, &ant_config)) {
  3231. REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config);
  3232. return 0;
  3233. }
  3234. }
  3235. return -EINVAL;
  3236. }
  3237. u32 ath9k_hw_getdefantenna(struct ath_hal *ah)
  3238. {
  3239. return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
  3240. }
  3241. void ath9k_hw_setantenna(struct ath_hal *ah, u32 antenna)
  3242. {
  3243. REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
  3244. }
  3245. bool ath9k_hw_setantennaswitch(struct ath_hal *ah,
  3246. enum ath9k_ant_setting settings,
  3247. struct ath9k_channel *chan,
  3248. u8 *tx_chainmask,
  3249. u8 *rx_chainmask,
  3250. u8 *antenna_cfgd)
  3251. {
  3252. struct ath_hal_5416 *ahp = AH5416(ah);
  3253. static u8 tx_chainmask_cfg, rx_chainmask_cfg;
  3254. if (AR_SREV_9280(ah)) {
  3255. if (!tx_chainmask_cfg) {
  3256. tx_chainmask_cfg = *tx_chainmask;
  3257. rx_chainmask_cfg = *rx_chainmask;
  3258. }
  3259. switch (settings) {
  3260. case ATH9K_ANT_FIXED_A:
  3261. *tx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
  3262. *rx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
  3263. *antenna_cfgd = true;
  3264. break;
  3265. case ATH9K_ANT_FIXED_B:
  3266. if (ah->ah_caps.tx_chainmask >
  3267. ATH9K_ANTENNA1_CHAINMASK) {
  3268. *tx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
  3269. }
  3270. *rx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
  3271. *antenna_cfgd = true;
  3272. break;
  3273. case ATH9K_ANT_VARIABLE:
  3274. *tx_chainmask = tx_chainmask_cfg;
  3275. *rx_chainmask = rx_chainmask_cfg;
  3276. *antenna_cfgd = true;
  3277. break;
  3278. default:
  3279. break;
  3280. }
  3281. } else {
  3282. ahp->ah_diversityControl = settings;
  3283. }
  3284. return true;
  3285. }
  3286. /*********************/
  3287. /* General Operation */
  3288. /*********************/
  3289. u32 ath9k_hw_getrxfilter(struct ath_hal *ah)
  3290. {
  3291. u32 bits = REG_READ(ah, AR_RX_FILTER);
  3292. u32 phybits = REG_READ(ah, AR_PHY_ERR);
  3293. if (phybits & AR_PHY_ERR_RADAR)
  3294. bits |= ATH9K_RX_FILTER_PHYRADAR;
  3295. if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
  3296. bits |= ATH9K_RX_FILTER_PHYERR;
  3297. return bits;
  3298. }
  3299. void ath9k_hw_setrxfilter(struct ath_hal *ah, u32 bits)
  3300. {
  3301. u32 phybits;
  3302. REG_WRITE(ah, AR_RX_FILTER, (bits & 0xffff) | AR_RX_COMPR_BAR);
  3303. phybits = 0;
  3304. if (bits & ATH9K_RX_FILTER_PHYRADAR)
  3305. phybits |= AR_PHY_ERR_RADAR;
  3306. if (bits & ATH9K_RX_FILTER_PHYERR)
  3307. phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
  3308. REG_WRITE(ah, AR_PHY_ERR, phybits);
  3309. if (phybits)
  3310. REG_WRITE(ah, AR_RXCFG,
  3311. REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
  3312. else
  3313. REG_WRITE(ah, AR_RXCFG,
  3314. REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
  3315. }
  3316. bool ath9k_hw_phy_disable(struct ath_hal *ah)
  3317. {
  3318. return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM);
  3319. }
  3320. bool ath9k_hw_disable(struct ath_hal *ah)
  3321. {
  3322. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  3323. return false;
  3324. return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD);
  3325. }
  3326. bool ath9k_hw_set_txpowerlimit(struct ath_hal *ah, u32 limit)
  3327. {
  3328. struct ath9k_channel *chan = ah->ah_curchan;
  3329. ah->ah_powerLimit = min(limit, (u32) MAX_RATE_POWER);
  3330. if (ath9k_hw_set_txpower(ah, chan,
  3331. ath9k_regd_get_ctl(ah, chan),
  3332. ath9k_regd_get_antenna_allowed(ah, chan),
  3333. chan->maxRegTxPower * 2,
  3334. min((u32) MAX_RATE_POWER,
  3335. (u32) ah->ah_powerLimit)) != 0)
  3336. return false;
  3337. return true;
  3338. }
  3339. void ath9k_hw_getmac(struct ath_hal *ah, u8 *mac)
  3340. {
  3341. struct ath_hal_5416 *ahp = AH5416(ah);
  3342. memcpy(mac, ahp->ah_macaddr, ETH_ALEN);
  3343. }
  3344. bool ath9k_hw_setmac(struct ath_hal *ah, const u8 *mac)
  3345. {
  3346. struct ath_hal_5416 *ahp = AH5416(ah);
  3347. memcpy(ahp->ah_macaddr, mac, ETH_ALEN);
  3348. return true;
  3349. }
  3350. void ath9k_hw_setopmode(struct ath_hal *ah)
  3351. {
  3352. ath9k_hw_set_operating_mode(ah, ah->ah_opmode);
  3353. }
  3354. void ath9k_hw_setmcastfilter(struct ath_hal *ah, u32 filter0, u32 filter1)
  3355. {
  3356. REG_WRITE(ah, AR_MCAST_FIL0, filter0);
  3357. REG_WRITE(ah, AR_MCAST_FIL1, filter1);
  3358. }
  3359. void ath9k_hw_getbssidmask(struct ath_hal *ah, u8 *mask)
  3360. {
  3361. struct ath_hal_5416 *ahp = AH5416(ah);
  3362. memcpy(mask, ahp->ah_bssidmask, ETH_ALEN);
  3363. }
  3364. bool ath9k_hw_setbssidmask(struct ath_hal *ah, const u8 *mask)
  3365. {
  3366. struct ath_hal_5416 *ahp = AH5416(ah);
  3367. memcpy(ahp->ah_bssidmask, mask, ETH_ALEN);
  3368. REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(ahp->ah_bssidmask));
  3369. REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(ahp->ah_bssidmask + 4));
  3370. return true;
  3371. }
  3372. void ath9k_hw_write_associd(struct ath_hal *ah, const u8 *bssid, u16 assocId)
  3373. {
  3374. struct ath_hal_5416 *ahp = AH5416(ah);
  3375. memcpy(ahp->ah_bssid, bssid, ETH_ALEN);
  3376. ahp->ah_assocId = assocId;
  3377. REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(ahp->ah_bssid));
  3378. REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(ahp->ah_bssid + 4) |
  3379. ((assocId & 0x3fff) << AR_BSS_ID1_AID_S));
  3380. }
  3381. u64 ath9k_hw_gettsf64(struct ath_hal *ah)
  3382. {
  3383. u64 tsf;
  3384. tsf = REG_READ(ah, AR_TSF_U32);
  3385. tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
  3386. return tsf;
  3387. }
  3388. void ath9k_hw_reset_tsf(struct ath_hal *ah)
  3389. {
  3390. int count;
  3391. count = 0;
  3392. while (REG_READ(ah, AR_SLP32_MODE) & AR_SLP32_TSF_WRITE_STATUS) {
  3393. count++;
  3394. if (count > 10) {
  3395. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  3396. "%s: AR_SLP32_TSF_WRITE_STATUS limit exceeded\n",
  3397. __func__);
  3398. break;
  3399. }
  3400. udelay(10);
  3401. }
  3402. REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
  3403. }
  3404. bool ath9k_hw_set_tsfadjust(struct ath_hal *ah, u32 setting)
  3405. {
  3406. struct ath_hal_5416 *ahp = AH5416(ah);
  3407. if (setting)
  3408. ahp->ah_miscMode |= AR_PCU_TX_ADD_TSF;
  3409. else
  3410. ahp->ah_miscMode &= ~AR_PCU_TX_ADD_TSF;
  3411. return true;
  3412. }
  3413. bool ath9k_hw_setslottime(struct ath_hal *ah, u32 us)
  3414. {
  3415. struct ath_hal_5416 *ahp = AH5416(ah);
  3416. if (us < ATH9K_SLOT_TIME_9 || us > ath9k_hw_mac_to_usec(ah, 0xffff)) {
  3417. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: bad slot time %u\n",
  3418. __func__, us);
  3419. ahp->ah_slottime = (u32) -1;
  3420. return false;
  3421. } else {
  3422. REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath9k_hw_mac_to_clks(ah, us));
  3423. ahp->ah_slottime = us;
  3424. return true;
  3425. }
  3426. }
  3427. void ath9k_hw_set11nmac2040(struct ath_hal *ah, enum ath9k_ht_macmode mode)
  3428. {
  3429. u32 macmode;
  3430. if (mode == ATH9K_HT_MACMODE_2040 &&
  3431. !ah->ah_config.cwm_ignore_extcca)
  3432. macmode = AR_2040_JOINED_RX_CLEAR;
  3433. else
  3434. macmode = 0;
  3435. REG_WRITE(ah, AR_2040_MODE, macmode);
  3436. }