recv.c 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/dma-mapping.h>
  17. #include <linux/relay.h>
  18. #include "ath9k.h"
  19. #include "ar9003_mac.h"
  20. #define SKB_CB_ATHBUF(__skb) (*((struct ath_buf **)__skb->cb))
  21. static inline bool ath9k_check_auto_sleep(struct ath_softc *sc)
  22. {
  23. return sc->ps_enabled &&
  24. (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP);
  25. }
  26. /*
  27. * Setup and link descriptors.
  28. *
  29. * 11N: we can no longer afford to self link the last descriptor.
  30. * MAC acknowledges BA status as long as it copies frames to host
  31. * buffer (or rx fifo). This can incorrectly acknowledge packets
  32. * to a sender if last desc is self-linked.
  33. */
  34. static void ath_rx_buf_link(struct ath_softc *sc, struct ath_buf *bf)
  35. {
  36. struct ath_hw *ah = sc->sc_ah;
  37. struct ath_common *common = ath9k_hw_common(ah);
  38. struct ath_desc *ds;
  39. struct sk_buff *skb;
  40. ds = bf->bf_desc;
  41. ds->ds_link = 0; /* link to null */
  42. ds->ds_data = bf->bf_buf_addr;
  43. /* virtual addr of the beginning of the buffer. */
  44. skb = bf->bf_mpdu;
  45. BUG_ON(skb == NULL);
  46. ds->ds_vdata = skb->data;
  47. /*
  48. * setup rx descriptors. The rx_bufsize here tells the hardware
  49. * how much data it can DMA to us and that we are prepared
  50. * to process
  51. */
  52. ath9k_hw_setuprxdesc(ah, ds,
  53. common->rx_bufsize,
  54. 0);
  55. if (sc->rx.rxlink == NULL)
  56. ath9k_hw_putrxbuf(ah, bf->bf_daddr);
  57. else
  58. *sc->rx.rxlink = bf->bf_daddr;
  59. sc->rx.rxlink = &ds->ds_link;
  60. }
  61. static void ath_rx_buf_relink(struct ath_softc *sc, struct ath_buf *bf)
  62. {
  63. if (sc->rx.buf_hold)
  64. ath_rx_buf_link(sc, sc->rx.buf_hold);
  65. sc->rx.buf_hold = bf;
  66. }
  67. static void ath_setdefantenna(struct ath_softc *sc, u32 antenna)
  68. {
  69. /* XXX block beacon interrupts */
  70. ath9k_hw_setantenna(sc->sc_ah, antenna);
  71. sc->rx.defant = antenna;
  72. sc->rx.rxotherant = 0;
  73. }
  74. static void ath_opmode_init(struct ath_softc *sc)
  75. {
  76. struct ath_hw *ah = sc->sc_ah;
  77. struct ath_common *common = ath9k_hw_common(ah);
  78. u32 rfilt, mfilt[2];
  79. /* configure rx filter */
  80. rfilt = ath_calcrxfilter(sc);
  81. ath9k_hw_setrxfilter(ah, rfilt);
  82. /* configure bssid mask */
  83. ath_hw_setbssidmask(common);
  84. /* configure operational mode */
  85. ath9k_hw_setopmode(ah);
  86. /* calculate and install multicast filter */
  87. mfilt[0] = mfilt[1] = ~0;
  88. ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
  89. }
  90. static bool ath_rx_edma_buf_link(struct ath_softc *sc,
  91. enum ath9k_rx_qtype qtype)
  92. {
  93. struct ath_hw *ah = sc->sc_ah;
  94. struct ath_rx_edma *rx_edma;
  95. struct sk_buff *skb;
  96. struct ath_buf *bf;
  97. rx_edma = &sc->rx.rx_edma[qtype];
  98. if (skb_queue_len(&rx_edma->rx_fifo) >= rx_edma->rx_fifo_hwsize)
  99. return false;
  100. bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
  101. list_del_init(&bf->list);
  102. skb = bf->bf_mpdu;
  103. memset(skb->data, 0, ah->caps.rx_status_len);
  104. dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
  105. ah->caps.rx_status_len, DMA_TO_DEVICE);
  106. SKB_CB_ATHBUF(skb) = bf;
  107. ath9k_hw_addrxbuf_edma(ah, bf->bf_buf_addr, qtype);
  108. __skb_queue_tail(&rx_edma->rx_fifo, skb);
  109. return true;
  110. }
  111. static void ath_rx_addbuffer_edma(struct ath_softc *sc,
  112. enum ath9k_rx_qtype qtype)
  113. {
  114. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  115. struct ath_buf *bf, *tbf;
  116. if (list_empty(&sc->rx.rxbuf)) {
  117. ath_dbg(common, QUEUE, "No free rx buf available\n");
  118. return;
  119. }
  120. list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list)
  121. if (!ath_rx_edma_buf_link(sc, qtype))
  122. break;
  123. }
  124. static void ath_rx_remove_buffer(struct ath_softc *sc,
  125. enum ath9k_rx_qtype qtype)
  126. {
  127. struct ath_buf *bf;
  128. struct ath_rx_edma *rx_edma;
  129. struct sk_buff *skb;
  130. rx_edma = &sc->rx.rx_edma[qtype];
  131. while ((skb = __skb_dequeue(&rx_edma->rx_fifo)) != NULL) {
  132. bf = SKB_CB_ATHBUF(skb);
  133. BUG_ON(!bf);
  134. list_add_tail(&bf->list, &sc->rx.rxbuf);
  135. }
  136. }
  137. static void ath_rx_edma_cleanup(struct ath_softc *sc)
  138. {
  139. struct ath_hw *ah = sc->sc_ah;
  140. struct ath_common *common = ath9k_hw_common(ah);
  141. struct ath_buf *bf;
  142. ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
  143. ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
  144. list_for_each_entry(bf, &sc->rx.rxbuf, list) {
  145. if (bf->bf_mpdu) {
  146. dma_unmap_single(sc->dev, bf->bf_buf_addr,
  147. common->rx_bufsize,
  148. DMA_BIDIRECTIONAL);
  149. dev_kfree_skb_any(bf->bf_mpdu);
  150. bf->bf_buf_addr = 0;
  151. bf->bf_mpdu = NULL;
  152. }
  153. }
  154. }
  155. static void ath_rx_edma_init_queue(struct ath_rx_edma *rx_edma, int size)
  156. {
  157. skb_queue_head_init(&rx_edma->rx_fifo);
  158. rx_edma->rx_fifo_hwsize = size;
  159. }
  160. static int ath_rx_edma_init(struct ath_softc *sc, int nbufs)
  161. {
  162. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  163. struct ath_hw *ah = sc->sc_ah;
  164. struct sk_buff *skb;
  165. struct ath_buf *bf;
  166. int error = 0, i;
  167. u32 size;
  168. ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
  169. ah->caps.rx_status_len);
  170. ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_LP],
  171. ah->caps.rx_lp_qdepth);
  172. ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_HP],
  173. ah->caps.rx_hp_qdepth);
  174. size = sizeof(struct ath_buf) * nbufs;
  175. bf = devm_kzalloc(sc->dev, size, GFP_KERNEL);
  176. if (!bf)
  177. return -ENOMEM;
  178. INIT_LIST_HEAD(&sc->rx.rxbuf);
  179. for (i = 0; i < nbufs; i++, bf++) {
  180. skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL);
  181. if (!skb) {
  182. error = -ENOMEM;
  183. goto rx_init_fail;
  184. }
  185. memset(skb->data, 0, common->rx_bufsize);
  186. bf->bf_mpdu = skb;
  187. bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
  188. common->rx_bufsize,
  189. DMA_BIDIRECTIONAL);
  190. if (unlikely(dma_mapping_error(sc->dev,
  191. bf->bf_buf_addr))) {
  192. dev_kfree_skb_any(skb);
  193. bf->bf_mpdu = NULL;
  194. bf->bf_buf_addr = 0;
  195. ath_err(common,
  196. "dma_mapping_error() on RX init\n");
  197. error = -ENOMEM;
  198. goto rx_init_fail;
  199. }
  200. list_add_tail(&bf->list, &sc->rx.rxbuf);
  201. }
  202. return 0;
  203. rx_init_fail:
  204. ath_rx_edma_cleanup(sc);
  205. return error;
  206. }
  207. static void ath_edma_start_recv(struct ath_softc *sc)
  208. {
  209. ath9k_hw_rxena(sc->sc_ah);
  210. ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_HP);
  211. ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_LP);
  212. ath_opmode_init(sc);
  213. ath9k_hw_startpcureceive(sc->sc_ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL));
  214. }
  215. static void ath_edma_stop_recv(struct ath_softc *sc)
  216. {
  217. ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
  218. ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
  219. }
  220. int ath_rx_init(struct ath_softc *sc, int nbufs)
  221. {
  222. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  223. struct sk_buff *skb;
  224. struct ath_buf *bf;
  225. int error = 0;
  226. spin_lock_init(&sc->sc_pcu_lock);
  227. common->rx_bufsize = IEEE80211_MAX_MPDU_LEN / 2 +
  228. sc->sc_ah->caps.rx_status_len;
  229. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
  230. return ath_rx_edma_init(sc, nbufs);
  231. ath_dbg(common, CONFIG, "cachelsz %u rxbufsize %u\n",
  232. common->cachelsz, common->rx_bufsize);
  233. /* Initialize rx descriptors */
  234. error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf,
  235. "rx", nbufs, 1, 0);
  236. if (error != 0) {
  237. ath_err(common,
  238. "failed to allocate rx descriptors: %d\n",
  239. error);
  240. goto err;
  241. }
  242. list_for_each_entry(bf, &sc->rx.rxbuf, list) {
  243. skb = ath_rxbuf_alloc(common, common->rx_bufsize,
  244. GFP_KERNEL);
  245. if (skb == NULL) {
  246. error = -ENOMEM;
  247. goto err;
  248. }
  249. bf->bf_mpdu = skb;
  250. bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
  251. common->rx_bufsize,
  252. DMA_FROM_DEVICE);
  253. if (unlikely(dma_mapping_error(sc->dev,
  254. bf->bf_buf_addr))) {
  255. dev_kfree_skb_any(skb);
  256. bf->bf_mpdu = NULL;
  257. bf->bf_buf_addr = 0;
  258. ath_err(common,
  259. "dma_mapping_error() on RX init\n");
  260. error = -ENOMEM;
  261. goto err;
  262. }
  263. }
  264. sc->rx.rxlink = NULL;
  265. err:
  266. if (error)
  267. ath_rx_cleanup(sc);
  268. return error;
  269. }
  270. void ath_rx_cleanup(struct ath_softc *sc)
  271. {
  272. struct ath_hw *ah = sc->sc_ah;
  273. struct ath_common *common = ath9k_hw_common(ah);
  274. struct sk_buff *skb;
  275. struct ath_buf *bf;
  276. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  277. ath_rx_edma_cleanup(sc);
  278. return;
  279. }
  280. list_for_each_entry(bf, &sc->rx.rxbuf, list) {
  281. skb = bf->bf_mpdu;
  282. if (skb) {
  283. dma_unmap_single(sc->dev, bf->bf_buf_addr,
  284. common->rx_bufsize,
  285. DMA_FROM_DEVICE);
  286. dev_kfree_skb(skb);
  287. bf->bf_buf_addr = 0;
  288. bf->bf_mpdu = NULL;
  289. }
  290. }
  291. }
  292. /*
  293. * Calculate the receive filter according to the
  294. * operating mode and state:
  295. *
  296. * o always accept unicast, broadcast, and multicast traffic
  297. * o maintain current state of phy error reception (the hal
  298. * may enable phy error frames for noise immunity work)
  299. * o probe request frames are accepted only when operating in
  300. * hostap, adhoc, or monitor modes
  301. * o enable promiscuous mode according to the interface state
  302. * o accept beacons:
  303. * - when operating in adhoc mode so the 802.11 layer creates
  304. * node table entries for peers,
  305. * - when operating in station mode for collecting rssi data when
  306. * the station is otherwise quiet, or
  307. * - when operating as a repeater so we see repeater-sta beacons
  308. * - when scanning
  309. */
  310. u32 ath_calcrxfilter(struct ath_softc *sc)
  311. {
  312. u32 rfilt;
  313. rfilt = ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST
  314. | ATH9K_RX_FILTER_MCAST;
  315. /* if operating on a DFS channel, enable radar pulse detection */
  316. if (sc->hw->conf.radar_enabled)
  317. rfilt |= ATH9K_RX_FILTER_PHYRADAR | ATH9K_RX_FILTER_PHYERR;
  318. if (sc->rx.rxfilter & FIF_PROBE_REQ)
  319. rfilt |= ATH9K_RX_FILTER_PROBEREQ;
  320. /*
  321. * Set promiscuous mode when FIF_PROMISC_IN_BSS is enabled for station
  322. * mode interface or when in monitor mode. AP mode does not need this
  323. * since it receives all in-BSS frames anyway.
  324. */
  325. if (sc->sc_ah->is_monitoring)
  326. rfilt |= ATH9K_RX_FILTER_PROM;
  327. if (sc->rx.rxfilter & FIF_CONTROL)
  328. rfilt |= ATH9K_RX_FILTER_CONTROL;
  329. if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) &&
  330. (sc->nvifs <= 1) &&
  331. !(sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC))
  332. rfilt |= ATH9K_RX_FILTER_MYBEACON;
  333. else
  334. rfilt |= ATH9K_RX_FILTER_BEACON;
  335. if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
  336. (sc->rx.rxfilter & FIF_PSPOLL))
  337. rfilt |= ATH9K_RX_FILTER_PSPOLL;
  338. if (conf_is_ht(&sc->hw->conf))
  339. rfilt |= ATH9K_RX_FILTER_COMP_BAR;
  340. if (sc->nvifs > 1 || (sc->rx.rxfilter & FIF_OTHER_BSS)) {
  341. /* This is needed for older chips */
  342. if (sc->sc_ah->hw_version.macVersion <= AR_SREV_VERSION_9160)
  343. rfilt |= ATH9K_RX_FILTER_PROM;
  344. rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL;
  345. }
  346. if (AR_SREV_9550(sc->sc_ah))
  347. rfilt |= ATH9K_RX_FILTER_4ADDRESS;
  348. return rfilt;
  349. }
  350. int ath_startrecv(struct ath_softc *sc)
  351. {
  352. struct ath_hw *ah = sc->sc_ah;
  353. struct ath_buf *bf, *tbf;
  354. if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  355. ath_edma_start_recv(sc);
  356. return 0;
  357. }
  358. if (list_empty(&sc->rx.rxbuf))
  359. goto start_recv;
  360. sc->rx.buf_hold = NULL;
  361. sc->rx.rxlink = NULL;
  362. list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) {
  363. ath_rx_buf_link(sc, bf);
  364. }
  365. /* We could have deleted elements so the list may be empty now */
  366. if (list_empty(&sc->rx.rxbuf))
  367. goto start_recv;
  368. bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
  369. ath9k_hw_putrxbuf(ah, bf->bf_daddr);
  370. ath9k_hw_rxena(ah);
  371. start_recv:
  372. ath_opmode_init(sc);
  373. ath9k_hw_startpcureceive(ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL));
  374. return 0;
  375. }
  376. static void ath_flushrecv(struct ath_softc *sc)
  377. {
  378. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
  379. ath_rx_tasklet(sc, 1, true);
  380. ath_rx_tasklet(sc, 1, false);
  381. }
  382. bool ath_stoprecv(struct ath_softc *sc)
  383. {
  384. struct ath_hw *ah = sc->sc_ah;
  385. bool stopped, reset = false;
  386. ath9k_hw_abortpcurecv(ah);
  387. ath9k_hw_setrxfilter(ah, 0);
  388. stopped = ath9k_hw_stopdmarecv(ah, &reset);
  389. ath_flushrecv(sc);
  390. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
  391. ath_edma_stop_recv(sc);
  392. else
  393. sc->rx.rxlink = NULL;
  394. if (!(ah->ah_flags & AH_UNPLUGGED) &&
  395. unlikely(!stopped)) {
  396. ath_err(ath9k_hw_common(sc->sc_ah),
  397. "Could not stop RX, we could be "
  398. "confusing the DMA engine when we start RX up\n");
  399. ATH_DBG_WARN_ON_ONCE(!stopped);
  400. }
  401. return stopped && !reset;
  402. }
  403. static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb)
  404. {
  405. /* Check whether the Beacon frame has DTIM indicating buffered bc/mc */
  406. struct ieee80211_mgmt *mgmt;
  407. u8 *pos, *end, id, elen;
  408. struct ieee80211_tim_ie *tim;
  409. mgmt = (struct ieee80211_mgmt *)skb->data;
  410. pos = mgmt->u.beacon.variable;
  411. end = skb->data + skb->len;
  412. while (pos + 2 < end) {
  413. id = *pos++;
  414. elen = *pos++;
  415. if (pos + elen > end)
  416. break;
  417. if (id == WLAN_EID_TIM) {
  418. if (elen < sizeof(*tim))
  419. break;
  420. tim = (struct ieee80211_tim_ie *) pos;
  421. if (tim->dtim_count != 0)
  422. break;
  423. return tim->bitmap_ctrl & 0x01;
  424. }
  425. pos += elen;
  426. }
  427. return false;
  428. }
  429. static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb)
  430. {
  431. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  432. if (skb->len < 24 + 8 + 2 + 2)
  433. return;
  434. sc->ps_flags &= ~PS_WAIT_FOR_BEACON;
  435. if (sc->ps_flags & PS_BEACON_SYNC) {
  436. sc->ps_flags &= ~PS_BEACON_SYNC;
  437. ath_dbg(common, PS,
  438. "Reconfigure beacon timers based on synchronized timestamp\n");
  439. ath9k_set_beacon(sc);
  440. }
  441. if (ath_beacon_dtim_pending_cab(skb)) {
  442. /*
  443. * Remain awake waiting for buffered broadcast/multicast
  444. * frames. If the last broadcast/multicast frame is not
  445. * received properly, the next beacon frame will work as
  446. * a backup trigger for returning into NETWORK SLEEP state,
  447. * so we are waiting for it as well.
  448. */
  449. ath_dbg(common, PS,
  450. "Received DTIM beacon indicating buffered broadcast/multicast frame(s)\n");
  451. sc->ps_flags |= PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON;
  452. return;
  453. }
  454. if (sc->ps_flags & PS_WAIT_FOR_CAB) {
  455. /*
  456. * This can happen if a broadcast frame is dropped or the AP
  457. * fails to send a frame indicating that all CAB frames have
  458. * been delivered.
  459. */
  460. sc->ps_flags &= ~PS_WAIT_FOR_CAB;
  461. ath_dbg(common, PS, "PS wait for CAB frames timed out\n");
  462. }
  463. }
  464. static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb, bool mybeacon)
  465. {
  466. struct ieee80211_hdr *hdr;
  467. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  468. hdr = (struct ieee80211_hdr *)skb->data;
  469. /* Process Beacon and CAB receive in PS state */
  470. if (((sc->ps_flags & PS_WAIT_FOR_BEACON) || ath9k_check_auto_sleep(sc))
  471. && mybeacon) {
  472. ath_rx_ps_beacon(sc, skb);
  473. } else if ((sc->ps_flags & PS_WAIT_FOR_CAB) &&
  474. (ieee80211_is_data(hdr->frame_control) ||
  475. ieee80211_is_action(hdr->frame_control)) &&
  476. is_multicast_ether_addr(hdr->addr1) &&
  477. !ieee80211_has_moredata(hdr->frame_control)) {
  478. /*
  479. * No more broadcast/multicast frames to be received at this
  480. * point.
  481. */
  482. sc->ps_flags &= ~(PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON);
  483. ath_dbg(common, PS,
  484. "All PS CAB frames received, back to sleep\n");
  485. } else if ((sc->ps_flags & PS_WAIT_FOR_PSPOLL_DATA) &&
  486. !is_multicast_ether_addr(hdr->addr1) &&
  487. !ieee80211_has_morefrags(hdr->frame_control)) {
  488. sc->ps_flags &= ~PS_WAIT_FOR_PSPOLL_DATA;
  489. ath_dbg(common, PS,
  490. "Going back to sleep after having received PS-Poll data (0x%lx)\n",
  491. sc->ps_flags & (PS_WAIT_FOR_BEACON |
  492. PS_WAIT_FOR_CAB |
  493. PS_WAIT_FOR_PSPOLL_DATA |
  494. PS_WAIT_FOR_TX_ACK));
  495. }
  496. }
  497. static bool ath_edma_get_buffers(struct ath_softc *sc,
  498. enum ath9k_rx_qtype qtype,
  499. struct ath_rx_status *rs,
  500. struct ath_buf **dest)
  501. {
  502. struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype];
  503. struct ath_hw *ah = sc->sc_ah;
  504. struct ath_common *common = ath9k_hw_common(ah);
  505. struct sk_buff *skb;
  506. struct ath_buf *bf;
  507. int ret;
  508. skb = skb_peek(&rx_edma->rx_fifo);
  509. if (!skb)
  510. return false;
  511. bf = SKB_CB_ATHBUF(skb);
  512. BUG_ON(!bf);
  513. dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
  514. common->rx_bufsize, DMA_FROM_DEVICE);
  515. ret = ath9k_hw_process_rxdesc_edma(ah, rs, skb->data);
  516. if (ret == -EINPROGRESS) {
  517. /*let device gain the buffer again*/
  518. dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
  519. common->rx_bufsize, DMA_FROM_DEVICE);
  520. return false;
  521. }
  522. __skb_unlink(skb, &rx_edma->rx_fifo);
  523. if (ret == -EINVAL) {
  524. /* corrupt descriptor, skip this one and the following one */
  525. list_add_tail(&bf->list, &sc->rx.rxbuf);
  526. ath_rx_edma_buf_link(sc, qtype);
  527. skb = skb_peek(&rx_edma->rx_fifo);
  528. if (skb) {
  529. bf = SKB_CB_ATHBUF(skb);
  530. BUG_ON(!bf);
  531. __skb_unlink(skb, &rx_edma->rx_fifo);
  532. list_add_tail(&bf->list, &sc->rx.rxbuf);
  533. ath_rx_edma_buf_link(sc, qtype);
  534. }
  535. bf = NULL;
  536. }
  537. *dest = bf;
  538. return true;
  539. }
  540. static struct ath_buf *ath_edma_get_next_rx_buf(struct ath_softc *sc,
  541. struct ath_rx_status *rs,
  542. enum ath9k_rx_qtype qtype)
  543. {
  544. struct ath_buf *bf = NULL;
  545. while (ath_edma_get_buffers(sc, qtype, rs, &bf)) {
  546. if (!bf)
  547. continue;
  548. return bf;
  549. }
  550. return NULL;
  551. }
  552. static struct ath_buf *ath_get_next_rx_buf(struct ath_softc *sc,
  553. struct ath_rx_status *rs)
  554. {
  555. struct ath_hw *ah = sc->sc_ah;
  556. struct ath_common *common = ath9k_hw_common(ah);
  557. struct ath_desc *ds;
  558. struct ath_buf *bf;
  559. int ret;
  560. if (list_empty(&sc->rx.rxbuf)) {
  561. sc->rx.rxlink = NULL;
  562. return NULL;
  563. }
  564. bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
  565. if (bf == sc->rx.buf_hold)
  566. return NULL;
  567. ds = bf->bf_desc;
  568. /*
  569. * Must provide the virtual address of the current
  570. * descriptor, the physical address, and the virtual
  571. * address of the next descriptor in the h/w chain.
  572. * This allows the HAL to look ahead to see if the
  573. * hardware is done with a descriptor by checking the
  574. * done bit in the following descriptor and the address
  575. * of the current descriptor the DMA engine is working
  576. * on. All this is necessary because of our use of
  577. * a self-linked list to avoid rx overruns.
  578. */
  579. ret = ath9k_hw_rxprocdesc(ah, ds, rs);
  580. if (ret == -EINPROGRESS) {
  581. struct ath_rx_status trs;
  582. struct ath_buf *tbf;
  583. struct ath_desc *tds;
  584. memset(&trs, 0, sizeof(trs));
  585. if (list_is_last(&bf->list, &sc->rx.rxbuf)) {
  586. sc->rx.rxlink = NULL;
  587. return NULL;
  588. }
  589. tbf = list_entry(bf->list.next, struct ath_buf, list);
  590. /*
  591. * On some hardware the descriptor status words could
  592. * get corrupted, including the done bit. Because of
  593. * this, check if the next descriptor's done bit is
  594. * set or not.
  595. *
  596. * If the next descriptor's done bit is set, the current
  597. * descriptor has been corrupted. Force s/w to discard
  598. * this descriptor and continue...
  599. */
  600. tds = tbf->bf_desc;
  601. ret = ath9k_hw_rxprocdesc(ah, tds, &trs);
  602. if (ret == -EINPROGRESS)
  603. return NULL;
  604. /*
  605. * mark descriptor as zero-length and set the 'more'
  606. * flag to ensure that both buffers get discarded
  607. */
  608. rs->rs_datalen = 0;
  609. rs->rs_more = true;
  610. }
  611. list_del(&bf->list);
  612. if (!bf->bf_mpdu)
  613. return bf;
  614. /*
  615. * Synchronize the DMA transfer with CPU before
  616. * 1. accessing the frame
  617. * 2. requeueing the same buffer to h/w
  618. */
  619. dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
  620. common->rx_bufsize,
  621. DMA_FROM_DEVICE);
  622. return bf;
  623. }
  624. /* Assumes you've already done the endian to CPU conversion */
  625. static bool ath9k_rx_accept(struct ath_common *common,
  626. struct ieee80211_hdr *hdr,
  627. struct ieee80211_rx_status *rxs,
  628. struct ath_rx_status *rx_stats,
  629. bool *decrypt_error)
  630. {
  631. struct ath_softc *sc = (struct ath_softc *) common->priv;
  632. bool is_mc, is_valid_tkip, strip_mic, mic_error;
  633. struct ath_hw *ah = common->ah;
  634. __le16 fc;
  635. u8 rx_status_len = ah->caps.rx_status_len;
  636. fc = hdr->frame_control;
  637. is_mc = !!is_multicast_ether_addr(hdr->addr1);
  638. is_valid_tkip = rx_stats->rs_keyix != ATH9K_RXKEYIX_INVALID &&
  639. test_bit(rx_stats->rs_keyix, common->tkip_keymap);
  640. strip_mic = is_valid_tkip && ieee80211_is_data(fc) &&
  641. ieee80211_has_protected(fc) &&
  642. !(rx_stats->rs_status &
  643. (ATH9K_RXERR_DECRYPT | ATH9K_RXERR_CRC | ATH9K_RXERR_MIC |
  644. ATH9K_RXERR_KEYMISS));
  645. /*
  646. * Key miss events are only relevant for pairwise keys where the
  647. * descriptor does contain a valid key index. This has been observed
  648. * mostly with CCMP encryption.
  649. */
  650. if (rx_stats->rs_keyix == ATH9K_RXKEYIX_INVALID ||
  651. !test_bit(rx_stats->rs_keyix, common->ccmp_keymap))
  652. rx_stats->rs_status &= ~ATH9K_RXERR_KEYMISS;
  653. if (!rx_stats->rs_datalen) {
  654. RX_STAT_INC(rx_len_err);
  655. return false;
  656. }
  657. /*
  658. * rs_status follows rs_datalen so if rs_datalen is too large
  659. * we can take a hint that hardware corrupted it, so ignore
  660. * those frames.
  661. */
  662. if (rx_stats->rs_datalen > (common->rx_bufsize - rx_status_len)) {
  663. RX_STAT_INC(rx_len_err);
  664. return false;
  665. }
  666. /* Only use error bits from the last fragment */
  667. if (rx_stats->rs_more)
  668. return true;
  669. mic_error = is_valid_tkip && !ieee80211_is_ctl(fc) &&
  670. !ieee80211_has_morefrags(fc) &&
  671. !(le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG) &&
  672. (rx_stats->rs_status & ATH9K_RXERR_MIC);
  673. /*
  674. * The rx_stats->rs_status will not be set until the end of the
  675. * chained descriptors so it can be ignored if rs_more is set. The
  676. * rs_more will be false at the last element of the chained
  677. * descriptors.
  678. */
  679. if (rx_stats->rs_status != 0) {
  680. u8 status_mask;
  681. if (rx_stats->rs_status & ATH9K_RXERR_CRC) {
  682. rxs->flag |= RX_FLAG_FAILED_FCS_CRC;
  683. mic_error = false;
  684. }
  685. if (rx_stats->rs_status & ATH9K_RXERR_PHY)
  686. return false;
  687. if ((rx_stats->rs_status & ATH9K_RXERR_DECRYPT) ||
  688. (!is_mc && (rx_stats->rs_status & ATH9K_RXERR_KEYMISS))) {
  689. *decrypt_error = true;
  690. mic_error = false;
  691. }
  692. /*
  693. * Reject error frames with the exception of
  694. * decryption and MIC failures. For monitor mode,
  695. * we also ignore the CRC error.
  696. */
  697. status_mask = ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC |
  698. ATH9K_RXERR_KEYMISS;
  699. if (ah->is_monitoring && (sc->rx.rxfilter & FIF_FCSFAIL))
  700. status_mask |= ATH9K_RXERR_CRC;
  701. if (rx_stats->rs_status & ~status_mask)
  702. return false;
  703. }
  704. /*
  705. * For unicast frames the MIC error bit can have false positives,
  706. * so all MIC error reports need to be validated in software.
  707. * False negatives are not common, so skip software verification
  708. * if the hardware considers the MIC valid.
  709. */
  710. if (strip_mic)
  711. rxs->flag |= RX_FLAG_MMIC_STRIPPED;
  712. else if (is_mc && mic_error)
  713. rxs->flag |= RX_FLAG_MMIC_ERROR;
  714. return true;
  715. }
  716. static int ath9k_process_rate(struct ath_common *common,
  717. struct ieee80211_hw *hw,
  718. struct ath_rx_status *rx_stats,
  719. struct ieee80211_rx_status *rxs)
  720. {
  721. struct ieee80211_supported_band *sband;
  722. enum ieee80211_band band;
  723. unsigned int i = 0;
  724. struct ath_softc __maybe_unused *sc = common->priv;
  725. band = hw->conf.chandef.chan->band;
  726. sband = hw->wiphy->bands[band];
  727. if (rx_stats->rs_rate & 0x80) {
  728. /* HT rate */
  729. rxs->flag |= RX_FLAG_HT;
  730. rxs->flag |= rx_stats->flag;
  731. rxs->rate_idx = rx_stats->rs_rate & 0x7f;
  732. return 0;
  733. }
  734. for (i = 0; i < sband->n_bitrates; i++) {
  735. if (sband->bitrates[i].hw_value == rx_stats->rs_rate) {
  736. rxs->rate_idx = i;
  737. return 0;
  738. }
  739. if (sband->bitrates[i].hw_value_short == rx_stats->rs_rate) {
  740. rxs->flag |= RX_FLAG_SHORTPRE;
  741. rxs->rate_idx = i;
  742. return 0;
  743. }
  744. }
  745. /*
  746. * No valid hardware bitrate found -- we should not get here
  747. * because hardware has already validated this frame as OK.
  748. */
  749. ath_dbg(common, ANY,
  750. "unsupported hw bitrate detected 0x%02x using 1 Mbit\n",
  751. rx_stats->rs_rate);
  752. RX_STAT_INC(rx_rate_err);
  753. return -EINVAL;
  754. }
  755. static void ath9k_process_rssi(struct ath_common *common,
  756. struct ieee80211_hw *hw,
  757. struct ieee80211_hdr *hdr,
  758. struct ath_rx_status *rx_stats)
  759. {
  760. struct ath_softc *sc = hw->priv;
  761. struct ath_hw *ah = common->ah;
  762. int last_rssi;
  763. int rssi = rx_stats->rs_rssi;
  764. if (!rx_stats->is_mybeacon ||
  765. ((ah->opmode != NL80211_IFTYPE_STATION) &&
  766. (ah->opmode != NL80211_IFTYPE_ADHOC)))
  767. return;
  768. if (rx_stats->rs_rssi != ATH9K_RSSI_BAD && !rx_stats->rs_moreaggr)
  769. ATH_RSSI_LPF(sc->last_rssi, rx_stats->rs_rssi);
  770. last_rssi = sc->last_rssi;
  771. if (likely(last_rssi != ATH_RSSI_DUMMY_MARKER))
  772. rssi = ATH_EP_RND(last_rssi, ATH_RSSI_EP_MULTIPLIER);
  773. if (rssi < 0)
  774. rssi = 0;
  775. /* Update Beacon RSSI, this is used by ANI. */
  776. ah->stats.avgbrssi = rssi;
  777. }
  778. /*
  779. * For Decrypt or Demic errors, we only mark packet status here and always push
  780. * up the frame up to let mac80211 handle the actual error case, be it no
  781. * decryption key or real decryption error. This let us keep statistics there.
  782. */
  783. static int ath9k_rx_skb_preprocess(struct ath_softc *sc,
  784. struct ieee80211_hdr *hdr,
  785. struct ath_rx_status *rx_stats,
  786. struct ieee80211_rx_status *rx_status,
  787. bool *decrypt_error)
  788. {
  789. struct ieee80211_hw *hw = sc->hw;
  790. struct ath_hw *ah = sc->sc_ah;
  791. struct ath_common *common = ath9k_hw_common(ah);
  792. bool discard_current = sc->rx.discard_next;
  793. sc->rx.discard_next = rx_stats->rs_more;
  794. if (discard_current)
  795. return -EINVAL;
  796. /*
  797. * everything but the rate is checked here, the rate check is done
  798. * separately to avoid doing two lookups for a rate for each frame.
  799. */
  800. if (!ath9k_rx_accept(common, hdr, rx_status, rx_stats, decrypt_error))
  801. return -EINVAL;
  802. /* Only use status info from the last fragment */
  803. if (rx_stats->rs_more)
  804. return 0;
  805. if (ath9k_process_rate(common, hw, rx_stats, rx_status))
  806. return -EINVAL;
  807. ath9k_process_rssi(common, hw, hdr, rx_stats);
  808. rx_status->band = hw->conf.chandef.chan->band;
  809. rx_status->freq = hw->conf.chandef.chan->center_freq;
  810. rx_status->signal = ah->noise + rx_stats->rs_rssi;
  811. rx_status->antenna = rx_stats->rs_antenna;
  812. rx_status->flag |= RX_FLAG_MACTIME_END;
  813. if (rx_stats->rs_moreaggr)
  814. rx_status->flag |= RX_FLAG_NO_SIGNAL_VAL;
  815. sc->rx.discard_next = false;
  816. return 0;
  817. }
  818. static void ath9k_rx_skb_postprocess(struct ath_common *common,
  819. struct sk_buff *skb,
  820. struct ath_rx_status *rx_stats,
  821. struct ieee80211_rx_status *rxs,
  822. bool decrypt_error)
  823. {
  824. struct ath_hw *ah = common->ah;
  825. struct ieee80211_hdr *hdr;
  826. int hdrlen, padpos, padsize;
  827. u8 keyix;
  828. __le16 fc;
  829. /* see if any padding is done by the hw and remove it */
  830. hdr = (struct ieee80211_hdr *) skb->data;
  831. hdrlen = ieee80211_get_hdrlen_from_skb(skb);
  832. fc = hdr->frame_control;
  833. padpos = ieee80211_hdrlen(fc);
  834. /* The MAC header is padded to have 32-bit boundary if the
  835. * packet payload is non-zero. The general calculation for
  836. * padsize would take into account odd header lengths:
  837. * padsize = (4 - padpos % 4) % 4; However, since only
  838. * even-length headers are used, padding can only be 0 or 2
  839. * bytes and we can optimize this a bit. In addition, we must
  840. * not try to remove padding from short control frames that do
  841. * not have payload. */
  842. padsize = padpos & 3;
  843. if (padsize && skb->len>=padpos+padsize+FCS_LEN) {
  844. memmove(skb->data + padsize, skb->data, padpos);
  845. skb_pull(skb, padsize);
  846. }
  847. keyix = rx_stats->rs_keyix;
  848. if (!(keyix == ATH9K_RXKEYIX_INVALID) && !decrypt_error &&
  849. ieee80211_has_protected(fc)) {
  850. rxs->flag |= RX_FLAG_DECRYPTED;
  851. } else if (ieee80211_has_protected(fc)
  852. && !decrypt_error && skb->len >= hdrlen + 4) {
  853. keyix = skb->data[hdrlen + 3] >> 6;
  854. if (test_bit(keyix, common->keymap))
  855. rxs->flag |= RX_FLAG_DECRYPTED;
  856. }
  857. if (ah->sw_mgmt_crypto &&
  858. (rxs->flag & RX_FLAG_DECRYPTED) &&
  859. ieee80211_is_mgmt(fc))
  860. /* Use software decrypt for management frames. */
  861. rxs->flag &= ~RX_FLAG_DECRYPTED;
  862. }
  863. #ifdef CONFIG_ATH9K_DEBUGFS
  864. static s8 fix_rssi_inv_only(u8 rssi_val)
  865. {
  866. if (rssi_val == 128)
  867. rssi_val = 0;
  868. return (s8) rssi_val;
  869. }
  870. #endif
  871. /* returns 1 if this was a spectral frame, even if not handled. */
  872. static int ath_process_fft(struct ath_softc *sc, struct ieee80211_hdr *hdr,
  873. struct ath_rx_status *rs, u64 tsf)
  874. {
  875. #ifdef CONFIG_ATH9K_DEBUGFS
  876. struct ath_hw *ah = sc->sc_ah;
  877. u8 bins[SPECTRAL_HT20_NUM_BINS];
  878. u8 *vdata = (u8 *)hdr;
  879. struct fft_sample_ht20 fft_sample;
  880. struct ath_radar_info *radar_info;
  881. struct ath_ht20_mag_info *mag_info;
  882. int len = rs->rs_datalen;
  883. int dc_pos;
  884. u16 length, max_magnitude;
  885. /* AR9280 and before report via ATH9K_PHYERR_RADAR, AR93xx and newer
  886. * via ATH9K_PHYERR_SPECTRAL. Haven't seen ATH9K_PHYERR_FALSE_RADAR_EXT
  887. * yet, but this is supposed to be possible as well.
  888. */
  889. if (rs->rs_phyerr != ATH9K_PHYERR_RADAR &&
  890. rs->rs_phyerr != ATH9K_PHYERR_FALSE_RADAR_EXT &&
  891. rs->rs_phyerr != ATH9K_PHYERR_SPECTRAL)
  892. return 0;
  893. /* check if spectral scan bit is set. This does not have to be checked
  894. * if received through a SPECTRAL phy error, but shouldn't hurt.
  895. */
  896. radar_info = ((struct ath_radar_info *)&vdata[len]) - 1;
  897. if (!(radar_info->pulse_bw_info & SPECTRAL_SCAN_BITMASK))
  898. return 0;
  899. /* Variation in the data length is possible and will be fixed later.
  900. * Note that we only support HT20 for now.
  901. *
  902. * TODO: add HT20_40 support as well.
  903. */
  904. if ((len > SPECTRAL_HT20_TOTAL_DATA_LEN + 2) ||
  905. (len < SPECTRAL_HT20_TOTAL_DATA_LEN - 1))
  906. return 1;
  907. fft_sample.tlv.type = ATH_FFT_SAMPLE_HT20;
  908. length = sizeof(fft_sample) - sizeof(fft_sample.tlv);
  909. fft_sample.tlv.length = __cpu_to_be16(length);
  910. fft_sample.freq = __cpu_to_be16(ah->curchan->chan->center_freq);
  911. fft_sample.rssi = fix_rssi_inv_only(rs->rs_rssi_ctl0);
  912. fft_sample.noise = ah->noise;
  913. switch (len - SPECTRAL_HT20_TOTAL_DATA_LEN) {
  914. case 0:
  915. /* length correct, nothing to do. */
  916. memcpy(bins, vdata, SPECTRAL_HT20_NUM_BINS);
  917. break;
  918. case -1:
  919. /* first byte missing, duplicate it. */
  920. memcpy(&bins[1], vdata, SPECTRAL_HT20_NUM_BINS - 1);
  921. bins[0] = vdata[0];
  922. break;
  923. case 2:
  924. /* MAC added 2 extra bytes at bin 30 and 32, remove them. */
  925. memcpy(bins, vdata, 30);
  926. bins[30] = vdata[31];
  927. memcpy(&bins[31], &vdata[33], SPECTRAL_HT20_NUM_BINS - 31);
  928. break;
  929. case 1:
  930. /* MAC added 2 extra bytes AND first byte is missing. */
  931. bins[0] = vdata[0];
  932. memcpy(&bins[0], vdata, 30);
  933. bins[31] = vdata[31];
  934. memcpy(&bins[32], &vdata[33], SPECTRAL_HT20_NUM_BINS - 32);
  935. break;
  936. default:
  937. return 1;
  938. }
  939. /* DC value (value in the middle) is the blind spot of the spectral
  940. * sample and invalid, interpolate it.
  941. */
  942. dc_pos = SPECTRAL_HT20_NUM_BINS / 2;
  943. bins[dc_pos] = (bins[dc_pos + 1] + bins[dc_pos - 1]) / 2;
  944. /* mag data is at the end of the frame, in front of radar_info */
  945. mag_info = ((struct ath_ht20_mag_info *)radar_info) - 1;
  946. /* copy raw bins without scaling them */
  947. memcpy(fft_sample.data, bins, SPECTRAL_HT20_NUM_BINS);
  948. fft_sample.max_exp = mag_info->max_exp & 0xf;
  949. max_magnitude = spectral_max_magnitude(mag_info->all_bins);
  950. fft_sample.max_magnitude = __cpu_to_be16(max_magnitude);
  951. fft_sample.max_index = spectral_max_index(mag_info->all_bins);
  952. fft_sample.bitmap_weight = spectral_bitmap_weight(mag_info->all_bins);
  953. fft_sample.tsf = __cpu_to_be64(tsf);
  954. ath_debug_send_fft_sample(sc, &fft_sample.tlv);
  955. return 1;
  956. #else
  957. return 0;
  958. #endif
  959. }
  960. static void ath9k_apply_ampdu_details(struct ath_softc *sc,
  961. struct ath_rx_status *rs, struct ieee80211_rx_status *rxs)
  962. {
  963. if (rs->rs_isaggr) {
  964. rxs->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
  965. rxs->ampdu_reference = sc->rx.ampdu_ref;
  966. if (!rs->rs_moreaggr) {
  967. rxs->flag |= RX_FLAG_AMPDU_IS_LAST;
  968. sc->rx.ampdu_ref++;
  969. }
  970. if (rs->rs_flags & ATH9K_RX_DELIM_CRC_PRE)
  971. rxs->flag |= RX_FLAG_AMPDU_DELIM_CRC_ERROR;
  972. }
  973. }
  974. int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp)
  975. {
  976. struct ath_buf *bf;
  977. struct sk_buff *skb = NULL, *requeue_skb, *hdr_skb;
  978. struct ieee80211_rx_status *rxs;
  979. struct ath_hw *ah = sc->sc_ah;
  980. struct ath9k_hw_capabilities *pCap = &ah->caps;
  981. struct ath_common *common = ath9k_hw_common(ah);
  982. struct ieee80211_hw *hw = sc->hw;
  983. struct ieee80211_hdr *hdr;
  984. int retval;
  985. struct ath_rx_status rs;
  986. enum ath9k_rx_qtype qtype;
  987. bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
  988. int dma_type;
  989. u8 rx_status_len = ah->caps.rx_status_len;
  990. u64 tsf = 0;
  991. u32 tsf_lower = 0;
  992. unsigned long flags;
  993. dma_addr_t new_buf_addr;
  994. if (edma)
  995. dma_type = DMA_BIDIRECTIONAL;
  996. else
  997. dma_type = DMA_FROM_DEVICE;
  998. qtype = hp ? ATH9K_RX_QUEUE_HP : ATH9K_RX_QUEUE_LP;
  999. tsf = ath9k_hw_gettsf64(ah);
  1000. tsf_lower = tsf & 0xffffffff;
  1001. do {
  1002. bool decrypt_error = false;
  1003. memset(&rs, 0, sizeof(rs));
  1004. if (edma)
  1005. bf = ath_edma_get_next_rx_buf(sc, &rs, qtype);
  1006. else
  1007. bf = ath_get_next_rx_buf(sc, &rs);
  1008. if (!bf)
  1009. break;
  1010. skb = bf->bf_mpdu;
  1011. if (!skb)
  1012. continue;
  1013. /*
  1014. * Take frame header from the first fragment and RX status from
  1015. * the last one.
  1016. */
  1017. if (sc->rx.frag)
  1018. hdr_skb = sc->rx.frag;
  1019. else
  1020. hdr_skb = skb;
  1021. hdr = (struct ieee80211_hdr *) (hdr_skb->data + rx_status_len);
  1022. rxs = IEEE80211_SKB_RXCB(hdr_skb);
  1023. if (ieee80211_is_beacon(hdr->frame_control)) {
  1024. RX_STAT_INC(rx_beacons);
  1025. if (!is_zero_ether_addr(common->curbssid) &&
  1026. ether_addr_equal(hdr->addr3, common->curbssid))
  1027. rs.is_mybeacon = true;
  1028. else
  1029. rs.is_mybeacon = false;
  1030. }
  1031. else
  1032. rs.is_mybeacon = false;
  1033. if (ieee80211_is_data_present(hdr->frame_control) &&
  1034. !ieee80211_is_qos_nullfunc(hdr->frame_control))
  1035. sc->rx.num_pkts++;
  1036. ath_debug_stat_rx(sc, &rs);
  1037. memset(rxs, 0, sizeof(struct ieee80211_rx_status));
  1038. rxs->mactime = (tsf & ~0xffffffffULL) | rs.rs_tstamp;
  1039. if (rs.rs_tstamp > tsf_lower &&
  1040. unlikely(rs.rs_tstamp - tsf_lower > 0x10000000))
  1041. rxs->mactime -= 0x100000000ULL;
  1042. if (rs.rs_tstamp < tsf_lower &&
  1043. unlikely(tsf_lower - rs.rs_tstamp > 0x10000000))
  1044. rxs->mactime += 0x100000000ULL;
  1045. if (rs.rs_phyerr == ATH9K_PHYERR_RADAR)
  1046. ath9k_dfs_process_phyerr(sc, hdr, &rs, rxs->mactime);
  1047. if (rs.rs_status & ATH9K_RXERR_PHY) {
  1048. if (ath_process_fft(sc, hdr, &rs, rxs->mactime)) {
  1049. RX_STAT_INC(rx_spectral);
  1050. goto requeue_drop_frag;
  1051. }
  1052. }
  1053. retval = ath9k_rx_skb_preprocess(sc, hdr, &rs, rxs,
  1054. &decrypt_error);
  1055. if (retval)
  1056. goto requeue_drop_frag;
  1057. if (rs.is_mybeacon) {
  1058. sc->hw_busy_count = 0;
  1059. ath_start_rx_poll(sc, 3);
  1060. }
  1061. /* Ensure we always have an skb to requeue once we are done
  1062. * processing the current buffer's skb */
  1063. requeue_skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_ATOMIC);
  1064. /* If there is no memory we ignore the current RX'd frame,
  1065. * tell hardware it can give us a new frame using the old
  1066. * skb and put it at the tail of the sc->rx.rxbuf list for
  1067. * processing. */
  1068. if (!requeue_skb) {
  1069. RX_STAT_INC(rx_oom_err);
  1070. goto requeue_drop_frag;
  1071. }
  1072. /* We will now give hardware our shiny new allocated skb */
  1073. new_buf_addr = dma_map_single(sc->dev, requeue_skb->data,
  1074. common->rx_bufsize, dma_type);
  1075. if (unlikely(dma_mapping_error(sc->dev, new_buf_addr))) {
  1076. dev_kfree_skb_any(requeue_skb);
  1077. goto requeue_drop_frag;
  1078. }
  1079. /* Unmap the frame */
  1080. dma_unmap_single(sc->dev, bf->bf_buf_addr,
  1081. common->rx_bufsize, dma_type);
  1082. bf->bf_mpdu = requeue_skb;
  1083. bf->bf_buf_addr = new_buf_addr;
  1084. skb_put(skb, rs.rs_datalen + ah->caps.rx_status_len);
  1085. if (ah->caps.rx_status_len)
  1086. skb_pull(skb, ah->caps.rx_status_len);
  1087. if (!rs.rs_more)
  1088. ath9k_rx_skb_postprocess(common, hdr_skb, &rs,
  1089. rxs, decrypt_error);
  1090. if (rs.rs_more) {
  1091. RX_STAT_INC(rx_frags);
  1092. /*
  1093. * rs_more indicates chained descriptors which can be
  1094. * used to link buffers together for a sort of
  1095. * scatter-gather operation.
  1096. */
  1097. if (sc->rx.frag) {
  1098. /* too many fragments - cannot handle frame */
  1099. dev_kfree_skb_any(sc->rx.frag);
  1100. dev_kfree_skb_any(skb);
  1101. RX_STAT_INC(rx_too_many_frags_err);
  1102. skb = NULL;
  1103. }
  1104. sc->rx.frag = skb;
  1105. goto requeue;
  1106. }
  1107. if (rs.rs_status & ATH9K_RXERR_CORRUPT_DESC)
  1108. goto requeue_drop_frag;
  1109. if (sc->rx.frag) {
  1110. int space = skb->len - skb_tailroom(hdr_skb);
  1111. if (pskb_expand_head(hdr_skb, 0, space, GFP_ATOMIC) < 0) {
  1112. dev_kfree_skb(skb);
  1113. RX_STAT_INC(rx_oom_err);
  1114. goto requeue_drop_frag;
  1115. }
  1116. sc->rx.frag = NULL;
  1117. skb_copy_from_linear_data(skb, skb_put(hdr_skb, skb->len),
  1118. skb->len);
  1119. dev_kfree_skb_any(skb);
  1120. skb = hdr_skb;
  1121. }
  1122. if (rxs->flag & RX_FLAG_MMIC_STRIPPED)
  1123. skb_trim(skb, skb->len - 8);
  1124. spin_lock_irqsave(&sc->sc_pm_lock, flags);
  1125. if ((sc->ps_flags & (PS_WAIT_FOR_BEACON |
  1126. PS_WAIT_FOR_CAB |
  1127. PS_WAIT_FOR_PSPOLL_DATA)) ||
  1128. ath9k_check_auto_sleep(sc))
  1129. ath_rx_ps(sc, skb, rs.is_mybeacon);
  1130. spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
  1131. /*
  1132. * Run the LNA combining algorithm only in these cases:
  1133. *
  1134. * Standalone WLAN cards with both LNA/Antenna diversity
  1135. * enabled in the EEPROM.
  1136. *
  1137. * WLAN+BT cards which are in the supported card list
  1138. * in ath_pci_id_table and the user has loaded the
  1139. * driver with "bt_ant_diversity" set to true.
  1140. */
  1141. if (ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) {
  1142. /*
  1143. * Change the default rx antenna if rx diversity
  1144. * chooses the other antenna 3 times in a row.
  1145. */
  1146. if (sc->rx.defant != rs.rs_antenna) {
  1147. if (++sc->rx.rxotherant >= 3)
  1148. ath_setdefantenna(sc, rs.rs_antenna);
  1149. } else {
  1150. sc->rx.rxotherant = 0;
  1151. }
  1152. if (pCap->hw_caps & ATH9K_HW_CAP_BT_ANT_DIV) {
  1153. if (common->bt_ant_diversity)
  1154. ath_ant_comb_scan(sc, &rs);
  1155. } else {
  1156. ath_ant_comb_scan(sc, &rs);
  1157. }
  1158. }
  1159. ath9k_apply_ampdu_details(sc, &rs, rxs);
  1160. ieee80211_rx(hw, skb);
  1161. requeue_drop_frag:
  1162. if (sc->rx.frag) {
  1163. dev_kfree_skb_any(sc->rx.frag);
  1164. sc->rx.frag = NULL;
  1165. }
  1166. requeue:
  1167. list_add_tail(&bf->list, &sc->rx.rxbuf);
  1168. if (flush)
  1169. continue;
  1170. if (edma) {
  1171. ath_rx_edma_buf_link(sc, qtype);
  1172. } else {
  1173. ath_rx_buf_relink(sc, bf);
  1174. ath9k_hw_rxena(ah);
  1175. }
  1176. } while (1);
  1177. if (!(ah->imask & ATH9K_INT_RXEOL)) {
  1178. ah->imask |= (ATH9K_INT_RXEOL | ATH9K_INT_RXORN);
  1179. ath9k_hw_set_interrupts(ah);
  1180. }
  1181. return 0;
  1182. }