nvme-core.c 53 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141
  1. /*
  2. * NVM Express device driver
  3. * Copyright (c) 2011, Intel Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  17. */
  18. #include <linux/nvme.h>
  19. #include <linux/bio.h>
  20. #include <linux/bitops.h>
  21. #include <linux/blkdev.h>
  22. #include <linux/delay.h>
  23. #include <linux/errno.h>
  24. #include <linux/fs.h>
  25. #include <linux/genhd.h>
  26. #include <linux/idr.h>
  27. #include <linux/init.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/io.h>
  30. #include <linux/kdev_t.h>
  31. #include <linux/kthread.h>
  32. #include <linux/kernel.h>
  33. #include <linux/mm.h>
  34. #include <linux/module.h>
  35. #include <linux/moduleparam.h>
  36. #include <linux/pci.h>
  37. #include <linux/poison.h>
  38. #include <linux/sched.h>
  39. #include <linux/slab.h>
  40. #include <linux/types.h>
  41. #include <scsi/sg.h>
  42. #include <asm-generic/io-64-nonatomic-lo-hi.h>
  43. #define NVME_Q_DEPTH 1024
  44. #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
  45. #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
  46. #define NVME_MINORS 64
  47. #define ADMIN_TIMEOUT (60 * HZ)
  48. static int nvme_major;
  49. module_param(nvme_major, int, 0);
  50. static int use_threaded_interrupts;
  51. module_param(use_threaded_interrupts, int, 0);
  52. static DEFINE_SPINLOCK(dev_list_lock);
  53. static LIST_HEAD(dev_list);
  54. static struct task_struct *nvme_thread;
  55. /*
  56. * An NVM Express queue. Each device has at least two (one for admin
  57. * commands and one for I/O commands).
  58. */
  59. struct nvme_queue {
  60. struct device *q_dmadev;
  61. struct nvme_dev *dev;
  62. spinlock_t q_lock;
  63. struct nvme_command *sq_cmds;
  64. volatile struct nvme_completion *cqes;
  65. dma_addr_t sq_dma_addr;
  66. dma_addr_t cq_dma_addr;
  67. wait_queue_head_t sq_full;
  68. wait_queue_t sq_cong_wait;
  69. struct bio_list sq_cong;
  70. u32 __iomem *q_db;
  71. u16 q_depth;
  72. u16 cq_vector;
  73. u16 sq_head;
  74. u16 sq_tail;
  75. u16 cq_head;
  76. u8 cq_phase;
  77. u8 cqe_seen;
  78. unsigned long cmdid_data[];
  79. };
  80. /*
  81. * Check we didin't inadvertently grow the command struct
  82. */
  83. static inline void _nvme_check_size(void)
  84. {
  85. BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
  86. BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
  87. BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
  88. BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
  89. BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
  90. BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
  91. BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
  92. BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
  93. BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
  94. BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
  95. BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
  96. }
  97. typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
  98. struct nvme_completion *);
  99. struct nvme_cmd_info {
  100. nvme_completion_fn fn;
  101. void *ctx;
  102. unsigned long timeout;
  103. };
  104. static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
  105. {
  106. return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
  107. }
  108. /**
  109. * alloc_cmdid() - Allocate a Command ID
  110. * @nvmeq: The queue that will be used for this command
  111. * @ctx: A pointer that will be passed to the handler
  112. * @handler: The function to call on completion
  113. *
  114. * Allocate a Command ID for a queue. The data passed in will
  115. * be passed to the completion handler. This is implemented by using
  116. * the bottom two bits of the ctx pointer to store the handler ID.
  117. * Passing in a pointer that's not 4-byte aligned will cause a BUG.
  118. * We can change this if it becomes a problem.
  119. *
  120. * May be called with local interrupts disabled and the q_lock held,
  121. * or with interrupts enabled and no locks held.
  122. */
  123. static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
  124. nvme_completion_fn handler, unsigned timeout)
  125. {
  126. int depth = nvmeq->q_depth - 1;
  127. struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
  128. int cmdid;
  129. do {
  130. cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
  131. if (cmdid >= depth)
  132. return -EBUSY;
  133. } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
  134. info[cmdid].fn = handler;
  135. info[cmdid].ctx = ctx;
  136. info[cmdid].timeout = jiffies + timeout;
  137. return cmdid;
  138. }
  139. static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
  140. nvme_completion_fn handler, unsigned timeout)
  141. {
  142. int cmdid;
  143. wait_event_killable(nvmeq->sq_full,
  144. (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
  145. return (cmdid < 0) ? -EINTR : cmdid;
  146. }
  147. /* Special values must be less than 0x1000 */
  148. #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
  149. #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
  150. #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
  151. #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
  152. #define CMD_CTX_FLUSH (0x318 + CMD_CTX_BASE)
  153. static void special_completion(struct nvme_dev *dev, void *ctx,
  154. struct nvme_completion *cqe)
  155. {
  156. if (ctx == CMD_CTX_CANCELLED)
  157. return;
  158. if (ctx == CMD_CTX_FLUSH)
  159. return;
  160. if (ctx == CMD_CTX_COMPLETED) {
  161. dev_warn(&dev->pci_dev->dev,
  162. "completed id %d twice on queue %d\n",
  163. cqe->command_id, le16_to_cpup(&cqe->sq_id));
  164. return;
  165. }
  166. if (ctx == CMD_CTX_INVALID) {
  167. dev_warn(&dev->pci_dev->dev,
  168. "invalid id %d completed on queue %d\n",
  169. cqe->command_id, le16_to_cpup(&cqe->sq_id));
  170. return;
  171. }
  172. dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
  173. }
  174. /*
  175. * Called with local interrupts disabled and the q_lock held. May not sleep.
  176. */
  177. static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
  178. nvme_completion_fn *fn)
  179. {
  180. void *ctx;
  181. struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
  182. if (cmdid >= nvmeq->q_depth) {
  183. *fn = special_completion;
  184. return CMD_CTX_INVALID;
  185. }
  186. if (fn)
  187. *fn = info[cmdid].fn;
  188. ctx = info[cmdid].ctx;
  189. info[cmdid].fn = special_completion;
  190. info[cmdid].ctx = CMD_CTX_COMPLETED;
  191. clear_bit(cmdid, nvmeq->cmdid_data);
  192. wake_up(&nvmeq->sq_full);
  193. return ctx;
  194. }
  195. static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
  196. nvme_completion_fn *fn)
  197. {
  198. void *ctx;
  199. struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
  200. if (fn)
  201. *fn = info[cmdid].fn;
  202. ctx = info[cmdid].ctx;
  203. info[cmdid].fn = special_completion;
  204. info[cmdid].ctx = CMD_CTX_CANCELLED;
  205. return ctx;
  206. }
  207. struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
  208. {
  209. return dev->queues[get_cpu() + 1];
  210. }
  211. void put_nvmeq(struct nvme_queue *nvmeq)
  212. {
  213. put_cpu();
  214. }
  215. /**
  216. * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
  217. * @nvmeq: The queue to use
  218. * @cmd: The command to send
  219. *
  220. * Safe to use from interrupt context
  221. */
  222. static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
  223. {
  224. unsigned long flags;
  225. u16 tail;
  226. spin_lock_irqsave(&nvmeq->q_lock, flags);
  227. tail = nvmeq->sq_tail;
  228. memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
  229. if (++tail == nvmeq->q_depth)
  230. tail = 0;
  231. writel(tail, nvmeq->q_db);
  232. nvmeq->sq_tail = tail;
  233. spin_unlock_irqrestore(&nvmeq->q_lock, flags);
  234. return 0;
  235. }
  236. static __le64 **iod_list(struct nvme_iod *iod)
  237. {
  238. return ((void *)iod) + iod->offset;
  239. }
  240. /*
  241. * Will slightly overestimate the number of pages needed. This is OK
  242. * as it only leads to a small amount of wasted memory for the lifetime of
  243. * the I/O.
  244. */
  245. static int nvme_npages(unsigned size)
  246. {
  247. unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
  248. return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
  249. }
  250. static struct nvme_iod *
  251. nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
  252. {
  253. struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
  254. sizeof(__le64 *) * nvme_npages(nbytes) +
  255. sizeof(struct scatterlist) * nseg, gfp);
  256. if (iod) {
  257. iod->offset = offsetof(struct nvme_iod, sg[nseg]);
  258. iod->npages = -1;
  259. iod->length = nbytes;
  260. iod->nents = 0;
  261. iod->start_time = jiffies;
  262. }
  263. return iod;
  264. }
  265. void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
  266. {
  267. const int last_prp = PAGE_SIZE / 8 - 1;
  268. int i;
  269. __le64 **list = iod_list(iod);
  270. dma_addr_t prp_dma = iod->first_dma;
  271. if (iod->npages == 0)
  272. dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
  273. for (i = 0; i < iod->npages; i++) {
  274. __le64 *prp_list = list[i];
  275. dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
  276. dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
  277. prp_dma = next_prp_dma;
  278. }
  279. kfree(iod);
  280. }
  281. static void nvme_start_io_acct(struct bio *bio)
  282. {
  283. struct gendisk *disk = bio->bi_bdev->bd_disk;
  284. const int rw = bio_data_dir(bio);
  285. int cpu = part_stat_lock();
  286. part_round_stats(cpu, &disk->part0);
  287. part_stat_inc(cpu, &disk->part0, ios[rw]);
  288. part_stat_add(cpu, &disk->part0, sectors[rw], bio_sectors(bio));
  289. part_inc_in_flight(&disk->part0, rw);
  290. part_stat_unlock();
  291. }
  292. static void nvme_end_io_acct(struct bio *bio, unsigned long start_time)
  293. {
  294. struct gendisk *disk = bio->bi_bdev->bd_disk;
  295. const int rw = bio_data_dir(bio);
  296. unsigned long duration = jiffies - start_time;
  297. int cpu = part_stat_lock();
  298. part_stat_add(cpu, &disk->part0, ticks[rw], duration);
  299. part_round_stats(cpu, &disk->part0);
  300. part_dec_in_flight(&disk->part0, rw);
  301. part_stat_unlock();
  302. }
  303. static void bio_completion(struct nvme_dev *dev, void *ctx,
  304. struct nvme_completion *cqe)
  305. {
  306. struct nvme_iod *iod = ctx;
  307. struct bio *bio = iod->private;
  308. u16 status = le16_to_cpup(&cqe->status) >> 1;
  309. if (iod->nents)
  310. dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
  311. bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  312. nvme_end_io_acct(bio, iod->start_time);
  313. nvme_free_iod(dev, iod);
  314. if (status)
  315. bio_endio(bio, -EIO);
  316. else
  317. bio_endio(bio, 0);
  318. }
  319. /* length is in bytes. gfp flags indicates whether we may sleep. */
  320. int nvme_setup_prps(struct nvme_dev *dev, struct nvme_common_command *cmd,
  321. struct nvme_iod *iod, int total_len, gfp_t gfp)
  322. {
  323. struct dma_pool *pool;
  324. int length = total_len;
  325. struct scatterlist *sg = iod->sg;
  326. int dma_len = sg_dma_len(sg);
  327. u64 dma_addr = sg_dma_address(sg);
  328. int offset = offset_in_page(dma_addr);
  329. __le64 *prp_list;
  330. __le64 **list = iod_list(iod);
  331. dma_addr_t prp_dma;
  332. int nprps, i;
  333. cmd->prp1 = cpu_to_le64(dma_addr);
  334. length -= (PAGE_SIZE - offset);
  335. if (length <= 0)
  336. return total_len;
  337. dma_len -= (PAGE_SIZE - offset);
  338. if (dma_len) {
  339. dma_addr += (PAGE_SIZE - offset);
  340. } else {
  341. sg = sg_next(sg);
  342. dma_addr = sg_dma_address(sg);
  343. dma_len = sg_dma_len(sg);
  344. }
  345. if (length <= PAGE_SIZE) {
  346. cmd->prp2 = cpu_to_le64(dma_addr);
  347. return total_len;
  348. }
  349. nprps = DIV_ROUND_UP(length, PAGE_SIZE);
  350. if (nprps <= (256 / 8)) {
  351. pool = dev->prp_small_pool;
  352. iod->npages = 0;
  353. } else {
  354. pool = dev->prp_page_pool;
  355. iod->npages = 1;
  356. }
  357. prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
  358. if (!prp_list) {
  359. cmd->prp2 = cpu_to_le64(dma_addr);
  360. iod->npages = -1;
  361. return (total_len - length) + PAGE_SIZE;
  362. }
  363. list[0] = prp_list;
  364. iod->first_dma = prp_dma;
  365. cmd->prp2 = cpu_to_le64(prp_dma);
  366. i = 0;
  367. for (;;) {
  368. if (i == PAGE_SIZE / 8) {
  369. __le64 *old_prp_list = prp_list;
  370. prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
  371. if (!prp_list)
  372. return total_len - length;
  373. list[iod->npages++] = prp_list;
  374. prp_list[0] = old_prp_list[i - 1];
  375. old_prp_list[i - 1] = cpu_to_le64(prp_dma);
  376. i = 1;
  377. }
  378. prp_list[i++] = cpu_to_le64(dma_addr);
  379. dma_len -= PAGE_SIZE;
  380. dma_addr += PAGE_SIZE;
  381. length -= PAGE_SIZE;
  382. if (length <= 0)
  383. break;
  384. if (dma_len > 0)
  385. continue;
  386. BUG_ON(dma_len < 0);
  387. sg = sg_next(sg);
  388. dma_addr = sg_dma_address(sg);
  389. dma_len = sg_dma_len(sg);
  390. }
  391. return total_len;
  392. }
  393. struct nvme_bio_pair {
  394. struct bio b1, b2, *parent;
  395. struct bio_vec *bv1, *bv2;
  396. int err;
  397. atomic_t cnt;
  398. };
  399. static void nvme_bio_pair_endio(struct bio *bio, int err)
  400. {
  401. struct nvme_bio_pair *bp = bio->bi_private;
  402. if (err)
  403. bp->err = err;
  404. if (atomic_dec_and_test(&bp->cnt)) {
  405. bio_endio(bp->parent, bp->err);
  406. if (bp->bv1)
  407. kfree(bp->bv1);
  408. if (bp->bv2)
  409. kfree(bp->bv2);
  410. kfree(bp);
  411. }
  412. }
  413. static struct nvme_bio_pair *nvme_bio_split(struct bio *bio, int idx,
  414. int len, int offset)
  415. {
  416. struct nvme_bio_pair *bp;
  417. BUG_ON(len > bio->bi_size);
  418. BUG_ON(idx > bio->bi_vcnt);
  419. bp = kmalloc(sizeof(*bp), GFP_ATOMIC);
  420. if (!bp)
  421. return NULL;
  422. bp->err = 0;
  423. bp->b1 = *bio;
  424. bp->b2 = *bio;
  425. bp->b1.bi_size = len;
  426. bp->b2.bi_size -= len;
  427. bp->b1.bi_vcnt = idx;
  428. bp->b2.bi_idx = idx;
  429. bp->b2.bi_sector += len >> 9;
  430. if (offset) {
  431. bp->bv1 = kmalloc(bio->bi_max_vecs * sizeof(struct bio_vec),
  432. GFP_ATOMIC);
  433. if (!bp->bv1)
  434. goto split_fail_1;
  435. bp->bv2 = kmalloc(bio->bi_max_vecs * sizeof(struct bio_vec),
  436. GFP_ATOMIC);
  437. if (!bp->bv2)
  438. goto split_fail_2;
  439. memcpy(bp->bv1, bio->bi_io_vec,
  440. bio->bi_max_vecs * sizeof(struct bio_vec));
  441. memcpy(bp->bv2, bio->bi_io_vec,
  442. bio->bi_max_vecs * sizeof(struct bio_vec));
  443. bp->b1.bi_io_vec = bp->bv1;
  444. bp->b2.bi_io_vec = bp->bv2;
  445. bp->b2.bi_io_vec[idx].bv_offset += offset;
  446. bp->b2.bi_io_vec[idx].bv_len -= offset;
  447. bp->b1.bi_io_vec[idx].bv_len = offset;
  448. bp->b1.bi_vcnt++;
  449. } else
  450. bp->bv1 = bp->bv2 = NULL;
  451. bp->b1.bi_private = bp;
  452. bp->b2.bi_private = bp;
  453. bp->b1.bi_end_io = nvme_bio_pair_endio;
  454. bp->b2.bi_end_io = nvme_bio_pair_endio;
  455. bp->parent = bio;
  456. atomic_set(&bp->cnt, 2);
  457. return bp;
  458. split_fail_2:
  459. kfree(bp->bv1);
  460. split_fail_1:
  461. kfree(bp);
  462. return NULL;
  463. }
  464. static int nvme_split_and_submit(struct bio *bio, struct nvme_queue *nvmeq,
  465. int idx, int len, int offset)
  466. {
  467. struct nvme_bio_pair *bp = nvme_bio_split(bio, idx, len, offset);
  468. if (!bp)
  469. return -ENOMEM;
  470. if (bio_list_empty(&nvmeq->sq_cong))
  471. add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
  472. bio_list_add(&nvmeq->sq_cong, &bp->b1);
  473. bio_list_add(&nvmeq->sq_cong, &bp->b2);
  474. return 0;
  475. }
  476. /* NVMe scatterlists require no holes in the virtual address */
  477. #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2) ((vec2)->bv_offset || \
  478. (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
  479. static int nvme_map_bio(struct nvme_queue *nvmeq, struct nvme_iod *iod,
  480. struct bio *bio, enum dma_data_direction dma_dir, int psegs)
  481. {
  482. struct bio_vec *bvec, *bvprv = NULL;
  483. struct scatterlist *sg = NULL;
  484. int i, length = 0, nsegs = 0, split_len = bio->bi_size;
  485. if (nvmeq->dev->stripe_size)
  486. split_len = nvmeq->dev->stripe_size -
  487. ((bio->bi_sector << 9) & (nvmeq->dev->stripe_size - 1));
  488. sg_init_table(iod->sg, psegs);
  489. bio_for_each_segment(bvec, bio, i) {
  490. if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
  491. sg->length += bvec->bv_len;
  492. } else {
  493. if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
  494. return nvme_split_and_submit(bio, nvmeq, i,
  495. length, 0);
  496. sg = sg ? sg + 1 : iod->sg;
  497. sg_set_page(sg, bvec->bv_page, bvec->bv_len,
  498. bvec->bv_offset);
  499. nsegs++;
  500. }
  501. if (split_len - length < bvec->bv_len)
  502. return nvme_split_and_submit(bio, nvmeq, i, split_len,
  503. split_len - length);
  504. length += bvec->bv_len;
  505. bvprv = bvec;
  506. }
  507. iod->nents = nsegs;
  508. sg_mark_end(sg);
  509. if (dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir) == 0)
  510. return -ENOMEM;
  511. BUG_ON(length != bio->bi_size);
  512. return length;
  513. }
  514. /*
  515. * We reuse the small pool to allocate the 16-byte range here as it is not
  516. * worth having a special pool for these or additional cases to handle freeing
  517. * the iod.
  518. */
  519. static int nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
  520. struct bio *bio, struct nvme_iod *iod, int cmdid)
  521. {
  522. struct nvme_dsm_range *range;
  523. struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
  524. range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
  525. &iod->first_dma);
  526. if (!range)
  527. return -ENOMEM;
  528. iod_list(iod)[0] = (__le64 *)range;
  529. iod->npages = 0;
  530. range->cattr = cpu_to_le32(0);
  531. range->nlb = cpu_to_le32(bio->bi_size >> ns->lba_shift);
  532. range->slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector));
  533. memset(cmnd, 0, sizeof(*cmnd));
  534. cmnd->dsm.opcode = nvme_cmd_dsm;
  535. cmnd->dsm.command_id = cmdid;
  536. cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
  537. cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
  538. cmnd->dsm.nr = 0;
  539. cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
  540. if (++nvmeq->sq_tail == nvmeq->q_depth)
  541. nvmeq->sq_tail = 0;
  542. writel(nvmeq->sq_tail, nvmeq->q_db);
  543. return 0;
  544. }
  545. static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
  546. int cmdid)
  547. {
  548. struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
  549. memset(cmnd, 0, sizeof(*cmnd));
  550. cmnd->common.opcode = nvme_cmd_flush;
  551. cmnd->common.command_id = cmdid;
  552. cmnd->common.nsid = cpu_to_le32(ns->ns_id);
  553. if (++nvmeq->sq_tail == nvmeq->q_depth)
  554. nvmeq->sq_tail = 0;
  555. writel(nvmeq->sq_tail, nvmeq->q_db);
  556. return 0;
  557. }
  558. int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
  559. {
  560. int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
  561. special_completion, NVME_IO_TIMEOUT);
  562. if (unlikely(cmdid < 0))
  563. return cmdid;
  564. return nvme_submit_flush(nvmeq, ns, cmdid);
  565. }
  566. /*
  567. * Called with local interrupts disabled and the q_lock held. May not sleep.
  568. */
  569. static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
  570. struct bio *bio)
  571. {
  572. struct nvme_command *cmnd;
  573. struct nvme_iod *iod;
  574. enum dma_data_direction dma_dir;
  575. int cmdid, length, result;
  576. u16 control;
  577. u32 dsmgmt;
  578. int psegs = bio_phys_segments(ns->queue, bio);
  579. if ((bio->bi_rw & REQ_FLUSH) && psegs) {
  580. result = nvme_submit_flush_data(nvmeq, ns);
  581. if (result)
  582. return result;
  583. }
  584. result = -ENOMEM;
  585. iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC);
  586. if (!iod)
  587. goto nomem;
  588. iod->private = bio;
  589. result = -EBUSY;
  590. cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
  591. if (unlikely(cmdid < 0))
  592. goto free_iod;
  593. if (bio->bi_rw & REQ_DISCARD) {
  594. result = nvme_submit_discard(nvmeq, ns, bio, iod, cmdid);
  595. if (result)
  596. goto free_cmdid;
  597. return result;
  598. }
  599. if ((bio->bi_rw & REQ_FLUSH) && !psegs)
  600. return nvme_submit_flush(nvmeq, ns, cmdid);
  601. control = 0;
  602. if (bio->bi_rw & REQ_FUA)
  603. control |= NVME_RW_FUA;
  604. if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
  605. control |= NVME_RW_LR;
  606. dsmgmt = 0;
  607. if (bio->bi_rw & REQ_RAHEAD)
  608. dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
  609. cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
  610. memset(cmnd, 0, sizeof(*cmnd));
  611. if (bio_data_dir(bio)) {
  612. cmnd->rw.opcode = nvme_cmd_write;
  613. dma_dir = DMA_TO_DEVICE;
  614. } else {
  615. cmnd->rw.opcode = nvme_cmd_read;
  616. dma_dir = DMA_FROM_DEVICE;
  617. }
  618. result = nvme_map_bio(nvmeq, iod, bio, dma_dir, psegs);
  619. if (result <= 0)
  620. goto free_cmdid;
  621. length = result;
  622. cmnd->rw.command_id = cmdid;
  623. cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
  624. length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length,
  625. GFP_ATOMIC);
  626. cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector));
  627. cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
  628. cmnd->rw.control = cpu_to_le16(control);
  629. cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
  630. nvme_start_io_acct(bio);
  631. if (++nvmeq->sq_tail == nvmeq->q_depth)
  632. nvmeq->sq_tail = 0;
  633. writel(nvmeq->sq_tail, nvmeq->q_db);
  634. return 0;
  635. free_cmdid:
  636. free_cmdid(nvmeq, cmdid, NULL);
  637. free_iod:
  638. nvme_free_iod(nvmeq->dev, iod);
  639. nomem:
  640. return result;
  641. }
  642. static void nvme_make_request(struct request_queue *q, struct bio *bio)
  643. {
  644. struct nvme_ns *ns = q->queuedata;
  645. struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
  646. int result = -EBUSY;
  647. spin_lock_irq(&nvmeq->q_lock);
  648. if (bio_list_empty(&nvmeq->sq_cong))
  649. result = nvme_submit_bio_queue(nvmeq, ns, bio);
  650. if (unlikely(result)) {
  651. if (bio_list_empty(&nvmeq->sq_cong))
  652. add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
  653. bio_list_add(&nvmeq->sq_cong, bio);
  654. }
  655. spin_unlock_irq(&nvmeq->q_lock);
  656. put_nvmeq(nvmeq);
  657. }
  658. static int nvme_process_cq(struct nvme_queue *nvmeq)
  659. {
  660. u16 head, phase;
  661. head = nvmeq->cq_head;
  662. phase = nvmeq->cq_phase;
  663. for (;;) {
  664. void *ctx;
  665. nvme_completion_fn fn;
  666. struct nvme_completion cqe = nvmeq->cqes[head];
  667. if ((le16_to_cpu(cqe.status) & 1) != phase)
  668. break;
  669. nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
  670. if (++head == nvmeq->q_depth) {
  671. head = 0;
  672. phase = !phase;
  673. }
  674. ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
  675. fn(nvmeq->dev, ctx, &cqe);
  676. }
  677. /* If the controller ignores the cq head doorbell and continuously
  678. * writes to the queue, it is theoretically possible to wrap around
  679. * the queue twice and mistakenly return IRQ_NONE. Linux only
  680. * requires that 0.1% of your interrupts are handled, so this isn't
  681. * a big problem.
  682. */
  683. if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
  684. return 0;
  685. writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride));
  686. nvmeq->cq_head = head;
  687. nvmeq->cq_phase = phase;
  688. nvmeq->cqe_seen = 1;
  689. return 1;
  690. }
  691. static irqreturn_t nvme_irq(int irq, void *data)
  692. {
  693. irqreturn_t result;
  694. struct nvme_queue *nvmeq = data;
  695. spin_lock(&nvmeq->q_lock);
  696. nvme_process_cq(nvmeq);
  697. result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
  698. nvmeq->cqe_seen = 0;
  699. spin_unlock(&nvmeq->q_lock);
  700. return result;
  701. }
  702. static irqreturn_t nvme_irq_check(int irq, void *data)
  703. {
  704. struct nvme_queue *nvmeq = data;
  705. struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
  706. if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
  707. return IRQ_NONE;
  708. return IRQ_WAKE_THREAD;
  709. }
  710. static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
  711. {
  712. spin_lock_irq(&nvmeq->q_lock);
  713. cancel_cmdid(nvmeq, cmdid, NULL);
  714. spin_unlock_irq(&nvmeq->q_lock);
  715. }
  716. struct sync_cmd_info {
  717. struct task_struct *task;
  718. u32 result;
  719. int status;
  720. };
  721. static void sync_completion(struct nvme_dev *dev, void *ctx,
  722. struct nvme_completion *cqe)
  723. {
  724. struct sync_cmd_info *cmdinfo = ctx;
  725. cmdinfo->result = le32_to_cpup(&cqe->result);
  726. cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
  727. wake_up_process(cmdinfo->task);
  728. }
  729. /*
  730. * Returns 0 on success. If the result is negative, it's a Linux error code;
  731. * if the result is positive, it's an NVM Express status code
  732. */
  733. int nvme_submit_sync_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
  734. u32 *result, unsigned timeout)
  735. {
  736. int cmdid;
  737. struct sync_cmd_info cmdinfo;
  738. cmdinfo.task = current;
  739. cmdinfo.status = -EINTR;
  740. cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
  741. timeout);
  742. if (cmdid < 0)
  743. return cmdid;
  744. cmd->common.command_id = cmdid;
  745. set_current_state(TASK_KILLABLE);
  746. nvme_submit_cmd(nvmeq, cmd);
  747. schedule_timeout(timeout);
  748. if (cmdinfo.status == -EINTR) {
  749. nvme_abort_command(nvmeq, cmdid);
  750. return -EINTR;
  751. }
  752. if (result)
  753. *result = cmdinfo.result;
  754. return cmdinfo.status;
  755. }
  756. int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
  757. u32 *result)
  758. {
  759. return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
  760. }
  761. static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
  762. {
  763. int status;
  764. struct nvme_command c;
  765. memset(&c, 0, sizeof(c));
  766. c.delete_queue.opcode = opcode;
  767. c.delete_queue.qid = cpu_to_le16(id);
  768. status = nvme_submit_admin_cmd(dev, &c, NULL);
  769. if (status)
  770. return -EIO;
  771. return 0;
  772. }
  773. static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
  774. struct nvme_queue *nvmeq)
  775. {
  776. int status;
  777. struct nvme_command c;
  778. int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
  779. memset(&c, 0, sizeof(c));
  780. c.create_cq.opcode = nvme_admin_create_cq;
  781. c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
  782. c.create_cq.cqid = cpu_to_le16(qid);
  783. c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
  784. c.create_cq.cq_flags = cpu_to_le16(flags);
  785. c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
  786. status = nvme_submit_admin_cmd(dev, &c, NULL);
  787. if (status)
  788. return -EIO;
  789. return 0;
  790. }
  791. static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
  792. struct nvme_queue *nvmeq)
  793. {
  794. int status;
  795. struct nvme_command c;
  796. int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
  797. memset(&c, 0, sizeof(c));
  798. c.create_sq.opcode = nvme_admin_create_sq;
  799. c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
  800. c.create_sq.sqid = cpu_to_le16(qid);
  801. c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
  802. c.create_sq.sq_flags = cpu_to_le16(flags);
  803. c.create_sq.cqid = cpu_to_le16(qid);
  804. status = nvme_submit_admin_cmd(dev, &c, NULL);
  805. if (status)
  806. return -EIO;
  807. return 0;
  808. }
  809. static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
  810. {
  811. return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
  812. }
  813. static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
  814. {
  815. return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
  816. }
  817. int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
  818. dma_addr_t dma_addr)
  819. {
  820. struct nvme_command c;
  821. memset(&c, 0, sizeof(c));
  822. c.identify.opcode = nvme_admin_identify;
  823. c.identify.nsid = cpu_to_le32(nsid);
  824. c.identify.prp1 = cpu_to_le64(dma_addr);
  825. c.identify.cns = cpu_to_le32(cns);
  826. return nvme_submit_admin_cmd(dev, &c, NULL);
  827. }
  828. int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
  829. dma_addr_t dma_addr, u32 *result)
  830. {
  831. struct nvme_command c;
  832. memset(&c, 0, sizeof(c));
  833. c.features.opcode = nvme_admin_get_features;
  834. c.features.nsid = cpu_to_le32(nsid);
  835. c.features.prp1 = cpu_to_le64(dma_addr);
  836. c.features.fid = cpu_to_le32(fid);
  837. return nvme_submit_admin_cmd(dev, &c, result);
  838. }
  839. int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
  840. dma_addr_t dma_addr, u32 *result)
  841. {
  842. struct nvme_command c;
  843. memset(&c, 0, sizeof(c));
  844. c.features.opcode = nvme_admin_set_features;
  845. c.features.prp1 = cpu_to_le64(dma_addr);
  846. c.features.fid = cpu_to_le32(fid);
  847. c.features.dword11 = cpu_to_le32(dword11);
  848. return nvme_submit_admin_cmd(dev, &c, result);
  849. }
  850. /**
  851. * nvme_cancel_ios - Cancel outstanding I/Os
  852. * @queue: The queue to cancel I/Os on
  853. * @timeout: True to only cancel I/Os which have timed out
  854. */
  855. static void nvme_cancel_ios(struct nvme_queue *nvmeq, bool timeout)
  856. {
  857. int depth = nvmeq->q_depth - 1;
  858. struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
  859. unsigned long now = jiffies;
  860. int cmdid;
  861. for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
  862. void *ctx;
  863. nvme_completion_fn fn;
  864. static struct nvme_completion cqe = {
  865. .status = cpu_to_le16(NVME_SC_ABORT_REQ << 1),
  866. };
  867. if (timeout && !time_after(now, info[cmdid].timeout))
  868. continue;
  869. if (info[cmdid].ctx == CMD_CTX_CANCELLED)
  870. continue;
  871. dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d\n", cmdid);
  872. ctx = cancel_cmdid(nvmeq, cmdid, &fn);
  873. fn(nvmeq->dev, ctx, &cqe);
  874. }
  875. }
  876. static void nvme_free_queue_mem(struct nvme_queue *nvmeq)
  877. {
  878. dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
  879. (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
  880. dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
  881. nvmeq->sq_cmds, nvmeq->sq_dma_addr);
  882. kfree(nvmeq);
  883. }
  884. static void nvme_free_queue(struct nvme_dev *dev, int qid)
  885. {
  886. struct nvme_queue *nvmeq = dev->queues[qid];
  887. int vector = dev->entry[nvmeq->cq_vector].vector;
  888. spin_lock_irq(&nvmeq->q_lock);
  889. nvme_cancel_ios(nvmeq, false);
  890. while (bio_list_peek(&nvmeq->sq_cong)) {
  891. struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
  892. bio_endio(bio, -EIO);
  893. }
  894. spin_unlock_irq(&nvmeq->q_lock);
  895. irq_set_affinity_hint(vector, NULL);
  896. free_irq(vector, nvmeq);
  897. /* Don't tell the adapter to delete the admin queue */
  898. if (qid) {
  899. adapter_delete_sq(dev, qid);
  900. adapter_delete_cq(dev, qid);
  901. }
  902. nvme_free_queue_mem(nvmeq);
  903. }
  904. static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
  905. int depth, int vector)
  906. {
  907. struct device *dmadev = &dev->pci_dev->dev;
  908. unsigned extra = DIV_ROUND_UP(depth, 8) + (depth *
  909. sizeof(struct nvme_cmd_info));
  910. struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
  911. if (!nvmeq)
  912. return NULL;
  913. nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
  914. &nvmeq->cq_dma_addr, GFP_KERNEL);
  915. if (!nvmeq->cqes)
  916. goto free_nvmeq;
  917. memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
  918. nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
  919. &nvmeq->sq_dma_addr, GFP_KERNEL);
  920. if (!nvmeq->sq_cmds)
  921. goto free_cqdma;
  922. nvmeq->q_dmadev = dmadev;
  923. nvmeq->dev = dev;
  924. spin_lock_init(&nvmeq->q_lock);
  925. nvmeq->cq_head = 0;
  926. nvmeq->cq_phase = 1;
  927. init_waitqueue_head(&nvmeq->sq_full);
  928. init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
  929. bio_list_init(&nvmeq->sq_cong);
  930. nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
  931. nvmeq->q_depth = depth;
  932. nvmeq->cq_vector = vector;
  933. return nvmeq;
  934. free_cqdma:
  935. dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
  936. nvmeq->cq_dma_addr);
  937. free_nvmeq:
  938. kfree(nvmeq);
  939. return NULL;
  940. }
  941. static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
  942. const char *name)
  943. {
  944. if (use_threaded_interrupts)
  945. return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
  946. nvme_irq_check, nvme_irq,
  947. IRQF_DISABLED | IRQF_SHARED,
  948. name, nvmeq);
  949. return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
  950. IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
  951. }
  952. static struct nvme_queue *nvme_create_queue(struct nvme_dev *dev, int qid,
  953. int cq_size, int vector)
  954. {
  955. int result;
  956. struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
  957. if (!nvmeq)
  958. return ERR_PTR(-ENOMEM);
  959. result = adapter_alloc_cq(dev, qid, nvmeq);
  960. if (result < 0)
  961. goto free_nvmeq;
  962. result = adapter_alloc_sq(dev, qid, nvmeq);
  963. if (result < 0)
  964. goto release_cq;
  965. result = queue_request_irq(dev, nvmeq, "nvme");
  966. if (result < 0)
  967. goto release_sq;
  968. return nvmeq;
  969. release_sq:
  970. adapter_delete_sq(dev, qid);
  971. release_cq:
  972. adapter_delete_cq(dev, qid);
  973. free_nvmeq:
  974. dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
  975. (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
  976. dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
  977. nvmeq->sq_cmds, nvmeq->sq_dma_addr);
  978. kfree(nvmeq);
  979. return ERR_PTR(result);
  980. }
  981. static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
  982. {
  983. unsigned long timeout;
  984. u32 bit = enabled ? NVME_CSTS_RDY : 0;
  985. timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
  986. while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
  987. msleep(100);
  988. if (fatal_signal_pending(current))
  989. return -EINTR;
  990. if (time_after(jiffies, timeout)) {
  991. dev_err(&dev->pci_dev->dev,
  992. "Device not ready; aborting initialisation\n");
  993. return -ENODEV;
  994. }
  995. }
  996. return 0;
  997. }
  998. /*
  999. * If the device has been passed off to us in an enabled state, just clear
  1000. * the enabled bit. The spec says we should set the 'shutdown notification
  1001. * bits', but doing so may cause the device to complete commands to the
  1002. * admin queue ... and we don't know what memory that might be pointing at!
  1003. */
  1004. static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
  1005. {
  1006. u32 cc = readl(&dev->bar->cc);
  1007. if (cc & NVME_CC_ENABLE)
  1008. writel(cc & ~NVME_CC_ENABLE, &dev->bar->cc);
  1009. return nvme_wait_ready(dev, cap, false);
  1010. }
  1011. static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
  1012. {
  1013. return nvme_wait_ready(dev, cap, true);
  1014. }
  1015. static int nvme_configure_admin_queue(struct nvme_dev *dev)
  1016. {
  1017. int result;
  1018. u32 aqa;
  1019. u64 cap = readq(&dev->bar->cap);
  1020. struct nvme_queue *nvmeq;
  1021. dev->dbs = ((void __iomem *)dev->bar) + 4096;
  1022. dev->db_stride = NVME_CAP_STRIDE(cap);
  1023. result = nvme_disable_ctrl(dev, cap);
  1024. if (result < 0)
  1025. return result;
  1026. nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
  1027. if (!nvmeq)
  1028. return -ENOMEM;
  1029. aqa = nvmeq->q_depth - 1;
  1030. aqa |= aqa << 16;
  1031. dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
  1032. dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
  1033. dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
  1034. dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
  1035. writel(aqa, &dev->bar->aqa);
  1036. writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
  1037. writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
  1038. writel(dev->ctrl_config, &dev->bar->cc);
  1039. result = nvme_enable_ctrl(dev, cap);
  1040. if (result)
  1041. goto free_q;
  1042. result = queue_request_irq(dev, nvmeq, "nvme admin");
  1043. if (result)
  1044. goto free_q;
  1045. dev->queues[0] = nvmeq;
  1046. return result;
  1047. free_q:
  1048. nvme_free_queue_mem(nvmeq);
  1049. return result;
  1050. }
  1051. struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
  1052. unsigned long addr, unsigned length)
  1053. {
  1054. int i, err, count, nents, offset;
  1055. struct scatterlist *sg;
  1056. struct page **pages;
  1057. struct nvme_iod *iod;
  1058. if (addr & 3)
  1059. return ERR_PTR(-EINVAL);
  1060. if (!length || length > INT_MAX - PAGE_SIZE)
  1061. return ERR_PTR(-EINVAL);
  1062. offset = offset_in_page(addr);
  1063. count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
  1064. pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
  1065. if (!pages)
  1066. return ERR_PTR(-ENOMEM);
  1067. err = get_user_pages_fast(addr, count, 1, pages);
  1068. if (err < count) {
  1069. count = err;
  1070. err = -EFAULT;
  1071. goto put_pages;
  1072. }
  1073. iod = nvme_alloc_iod(count, length, GFP_KERNEL);
  1074. sg = iod->sg;
  1075. sg_init_table(sg, count);
  1076. for (i = 0; i < count; i++) {
  1077. sg_set_page(&sg[i], pages[i],
  1078. min_t(unsigned, length, PAGE_SIZE - offset),
  1079. offset);
  1080. length -= (PAGE_SIZE - offset);
  1081. offset = 0;
  1082. }
  1083. sg_mark_end(&sg[i - 1]);
  1084. iod->nents = count;
  1085. err = -ENOMEM;
  1086. nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
  1087. write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  1088. if (!nents)
  1089. goto free_iod;
  1090. kfree(pages);
  1091. return iod;
  1092. free_iod:
  1093. kfree(iod);
  1094. put_pages:
  1095. for (i = 0; i < count; i++)
  1096. put_page(pages[i]);
  1097. kfree(pages);
  1098. return ERR_PTR(err);
  1099. }
  1100. void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
  1101. struct nvme_iod *iod)
  1102. {
  1103. int i;
  1104. dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
  1105. write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  1106. for (i = 0; i < iod->nents; i++)
  1107. put_page(sg_page(&iod->sg[i]));
  1108. }
  1109. static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
  1110. {
  1111. struct nvme_dev *dev = ns->dev;
  1112. struct nvme_queue *nvmeq;
  1113. struct nvme_user_io io;
  1114. struct nvme_command c;
  1115. unsigned length, meta_len;
  1116. int status, i;
  1117. struct nvme_iod *iod, *meta_iod = NULL;
  1118. dma_addr_t meta_dma_addr;
  1119. void *meta, *uninitialized_var(meta_mem);
  1120. if (copy_from_user(&io, uio, sizeof(io)))
  1121. return -EFAULT;
  1122. length = (io.nblocks + 1) << ns->lba_shift;
  1123. meta_len = (io.nblocks + 1) * ns->ms;
  1124. if (meta_len && ((io.metadata & 3) || !io.metadata))
  1125. return -EINVAL;
  1126. switch (io.opcode) {
  1127. case nvme_cmd_write:
  1128. case nvme_cmd_read:
  1129. case nvme_cmd_compare:
  1130. iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
  1131. break;
  1132. default:
  1133. return -EINVAL;
  1134. }
  1135. if (IS_ERR(iod))
  1136. return PTR_ERR(iod);
  1137. memset(&c, 0, sizeof(c));
  1138. c.rw.opcode = io.opcode;
  1139. c.rw.flags = io.flags;
  1140. c.rw.nsid = cpu_to_le32(ns->ns_id);
  1141. c.rw.slba = cpu_to_le64(io.slba);
  1142. c.rw.length = cpu_to_le16(io.nblocks);
  1143. c.rw.control = cpu_to_le16(io.control);
  1144. c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
  1145. c.rw.reftag = cpu_to_le32(io.reftag);
  1146. c.rw.apptag = cpu_to_le16(io.apptag);
  1147. c.rw.appmask = cpu_to_le16(io.appmask);
  1148. if (meta_len) {
  1149. meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata, meta_len);
  1150. if (IS_ERR(meta_iod)) {
  1151. status = PTR_ERR(meta_iod);
  1152. meta_iod = NULL;
  1153. goto unmap;
  1154. }
  1155. meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
  1156. &meta_dma_addr, GFP_KERNEL);
  1157. if (!meta_mem) {
  1158. status = -ENOMEM;
  1159. goto unmap;
  1160. }
  1161. if (io.opcode & 1) {
  1162. int meta_offset = 0;
  1163. for (i = 0; i < meta_iod->nents; i++) {
  1164. meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
  1165. meta_iod->sg[i].offset;
  1166. memcpy(meta_mem + meta_offset, meta,
  1167. meta_iod->sg[i].length);
  1168. kunmap_atomic(meta);
  1169. meta_offset += meta_iod->sg[i].length;
  1170. }
  1171. }
  1172. c.rw.metadata = cpu_to_le64(meta_dma_addr);
  1173. }
  1174. length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL);
  1175. nvmeq = get_nvmeq(dev);
  1176. /*
  1177. * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
  1178. * disabled. We may be preempted at any point, and be rescheduled
  1179. * to a different CPU. That will cause cacheline bouncing, but no
  1180. * additional races since q_lock already protects against other CPUs.
  1181. */
  1182. put_nvmeq(nvmeq);
  1183. if (length != (io.nblocks + 1) << ns->lba_shift)
  1184. status = -ENOMEM;
  1185. else
  1186. status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
  1187. if (meta_len) {
  1188. if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
  1189. int meta_offset = 0;
  1190. for (i = 0; i < meta_iod->nents; i++) {
  1191. meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
  1192. meta_iod->sg[i].offset;
  1193. memcpy(meta, meta_mem + meta_offset,
  1194. meta_iod->sg[i].length);
  1195. kunmap_atomic(meta);
  1196. meta_offset += meta_iod->sg[i].length;
  1197. }
  1198. }
  1199. dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
  1200. meta_dma_addr);
  1201. }
  1202. unmap:
  1203. nvme_unmap_user_pages(dev, io.opcode & 1, iod);
  1204. nvme_free_iod(dev, iod);
  1205. if (meta_iod) {
  1206. nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
  1207. nvme_free_iod(dev, meta_iod);
  1208. }
  1209. return status;
  1210. }
  1211. static int nvme_user_admin_cmd(struct nvme_dev *dev,
  1212. struct nvme_admin_cmd __user *ucmd)
  1213. {
  1214. struct nvme_admin_cmd cmd;
  1215. struct nvme_command c;
  1216. int status, length;
  1217. struct nvme_iod *uninitialized_var(iod);
  1218. unsigned timeout;
  1219. if (!capable(CAP_SYS_ADMIN))
  1220. return -EACCES;
  1221. if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
  1222. return -EFAULT;
  1223. memset(&c, 0, sizeof(c));
  1224. c.common.opcode = cmd.opcode;
  1225. c.common.flags = cmd.flags;
  1226. c.common.nsid = cpu_to_le32(cmd.nsid);
  1227. c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
  1228. c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
  1229. c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
  1230. c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
  1231. c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
  1232. c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
  1233. c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
  1234. c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
  1235. length = cmd.data_len;
  1236. if (cmd.data_len) {
  1237. iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
  1238. length);
  1239. if (IS_ERR(iod))
  1240. return PTR_ERR(iod);
  1241. length = nvme_setup_prps(dev, &c.common, iod, length,
  1242. GFP_KERNEL);
  1243. }
  1244. timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
  1245. ADMIN_TIMEOUT;
  1246. if (length != cmd.data_len)
  1247. status = -ENOMEM;
  1248. else
  1249. status = nvme_submit_sync_cmd(dev->queues[0], &c, &cmd.result,
  1250. timeout);
  1251. if (cmd.data_len) {
  1252. nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
  1253. nvme_free_iod(dev, iod);
  1254. }
  1255. if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
  1256. sizeof(cmd.result)))
  1257. status = -EFAULT;
  1258. return status;
  1259. }
  1260. static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
  1261. unsigned long arg)
  1262. {
  1263. struct nvme_ns *ns = bdev->bd_disk->private_data;
  1264. switch (cmd) {
  1265. case NVME_IOCTL_ID:
  1266. return ns->ns_id;
  1267. case NVME_IOCTL_ADMIN_CMD:
  1268. return nvme_user_admin_cmd(ns->dev, (void __user *)arg);
  1269. case NVME_IOCTL_SUBMIT_IO:
  1270. return nvme_submit_io(ns, (void __user *)arg);
  1271. case SG_GET_VERSION_NUM:
  1272. return nvme_sg_get_version_num((void __user *)arg);
  1273. case SG_IO:
  1274. return nvme_sg_io(ns, (void __user *)arg);
  1275. default:
  1276. return -ENOTTY;
  1277. }
  1278. }
  1279. static const struct block_device_operations nvme_fops = {
  1280. .owner = THIS_MODULE,
  1281. .ioctl = nvme_ioctl,
  1282. .compat_ioctl = nvme_ioctl,
  1283. };
  1284. static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
  1285. {
  1286. while (bio_list_peek(&nvmeq->sq_cong)) {
  1287. struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
  1288. struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
  1289. if (bio_list_empty(&nvmeq->sq_cong))
  1290. remove_wait_queue(&nvmeq->sq_full,
  1291. &nvmeq->sq_cong_wait);
  1292. if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
  1293. if (bio_list_empty(&nvmeq->sq_cong))
  1294. add_wait_queue(&nvmeq->sq_full,
  1295. &nvmeq->sq_cong_wait);
  1296. bio_list_add_head(&nvmeq->sq_cong, bio);
  1297. break;
  1298. }
  1299. }
  1300. }
  1301. static int nvme_kthread(void *data)
  1302. {
  1303. struct nvme_dev *dev;
  1304. while (!kthread_should_stop()) {
  1305. set_current_state(TASK_INTERRUPTIBLE);
  1306. spin_lock(&dev_list_lock);
  1307. list_for_each_entry(dev, &dev_list, node) {
  1308. int i;
  1309. for (i = 0; i < dev->queue_count; i++) {
  1310. struct nvme_queue *nvmeq = dev->queues[i];
  1311. if (!nvmeq)
  1312. continue;
  1313. spin_lock_irq(&nvmeq->q_lock);
  1314. if (nvme_process_cq(nvmeq))
  1315. printk("process_cq did something\n");
  1316. nvme_cancel_ios(nvmeq, true);
  1317. nvme_resubmit_bios(nvmeq);
  1318. spin_unlock_irq(&nvmeq->q_lock);
  1319. }
  1320. }
  1321. spin_unlock(&dev_list_lock);
  1322. schedule_timeout(round_jiffies_relative(HZ));
  1323. }
  1324. return 0;
  1325. }
  1326. static DEFINE_IDA(nvme_index_ida);
  1327. static int nvme_get_ns_idx(void)
  1328. {
  1329. int index, error;
  1330. do {
  1331. if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
  1332. return -1;
  1333. spin_lock(&dev_list_lock);
  1334. error = ida_get_new(&nvme_index_ida, &index);
  1335. spin_unlock(&dev_list_lock);
  1336. } while (error == -EAGAIN);
  1337. if (error)
  1338. index = -1;
  1339. return index;
  1340. }
  1341. static void nvme_put_ns_idx(int index)
  1342. {
  1343. spin_lock(&dev_list_lock);
  1344. ida_remove(&nvme_index_ida, index);
  1345. spin_unlock(&dev_list_lock);
  1346. }
  1347. static void nvme_config_discard(struct nvme_ns *ns)
  1348. {
  1349. u32 logical_block_size = queue_logical_block_size(ns->queue);
  1350. ns->queue->limits.discard_zeroes_data = 0;
  1351. ns->queue->limits.discard_alignment = logical_block_size;
  1352. ns->queue->limits.discard_granularity = logical_block_size;
  1353. ns->queue->limits.max_discard_sectors = 0xffffffff;
  1354. queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
  1355. }
  1356. static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid,
  1357. struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
  1358. {
  1359. struct nvme_ns *ns;
  1360. struct gendisk *disk;
  1361. int lbaf;
  1362. if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
  1363. return NULL;
  1364. ns = kzalloc(sizeof(*ns), GFP_KERNEL);
  1365. if (!ns)
  1366. return NULL;
  1367. ns->queue = blk_alloc_queue(GFP_KERNEL);
  1368. if (!ns->queue)
  1369. goto out_free_ns;
  1370. ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
  1371. queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
  1372. queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
  1373. blk_queue_make_request(ns->queue, nvme_make_request);
  1374. ns->dev = dev;
  1375. ns->queue->queuedata = ns;
  1376. disk = alloc_disk(NVME_MINORS);
  1377. if (!disk)
  1378. goto out_free_queue;
  1379. ns->ns_id = nsid;
  1380. ns->disk = disk;
  1381. lbaf = id->flbas & 0xf;
  1382. ns->lba_shift = id->lbaf[lbaf].ds;
  1383. ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
  1384. blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
  1385. if (dev->max_hw_sectors)
  1386. blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
  1387. disk->major = nvme_major;
  1388. disk->minors = NVME_MINORS;
  1389. disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
  1390. disk->fops = &nvme_fops;
  1391. disk->private_data = ns;
  1392. disk->queue = ns->queue;
  1393. disk->driverfs_dev = &dev->pci_dev->dev;
  1394. sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
  1395. set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
  1396. if (dev->oncs & NVME_CTRL_ONCS_DSM)
  1397. nvme_config_discard(ns);
  1398. return ns;
  1399. out_free_queue:
  1400. blk_cleanup_queue(ns->queue);
  1401. out_free_ns:
  1402. kfree(ns);
  1403. return NULL;
  1404. }
  1405. static void nvme_ns_free(struct nvme_ns *ns)
  1406. {
  1407. int index = ns->disk->first_minor / NVME_MINORS;
  1408. put_disk(ns->disk);
  1409. nvme_put_ns_idx(index);
  1410. blk_cleanup_queue(ns->queue);
  1411. kfree(ns);
  1412. }
  1413. static int set_queue_count(struct nvme_dev *dev, int count)
  1414. {
  1415. int status;
  1416. u32 result;
  1417. u32 q_count = (count - 1) | ((count - 1) << 16);
  1418. status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
  1419. &result);
  1420. if (status)
  1421. return -EIO;
  1422. return min(result & 0xffff, result >> 16) + 1;
  1423. }
  1424. static int nvme_setup_io_queues(struct nvme_dev *dev)
  1425. {
  1426. struct pci_dev *pdev = dev->pci_dev;
  1427. int result, cpu, i, vecs, nr_io_queues, db_bar_size, q_depth;
  1428. nr_io_queues = num_online_cpus();
  1429. result = set_queue_count(dev, nr_io_queues);
  1430. if (result < 0)
  1431. return result;
  1432. if (result < nr_io_queues)
  1433. nr_io_queues = result;
  1434. /* Deregister the admin queue's interrupt */
  1435. free_irq(dev->entry[0].vector, dev->queues[0]);
  1436. db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3));
  1437. if (db_bar_size > 8192) {
  1438. iounmap(dev->bar);
  1439. dev->bar = ioremap(pci_resource_start(pdev, 0), db_bar_size);
  1440. dev->dbs = ((void __iomem *)dev->bar) + 4096;
  1441. dev->queues[0]->q_db = dev->dbs;
  1442. }
  1443. vecs = nr_io_queues;
  1444. for (i = 0; i < vecs; i++)
  1445. dev->entry[i].entry = i;
  1446. for (;;) {
  1447. result = pci_enable_msix(pdev, dev->entry, vecs);
  1448. if (result <= 0)
  1449. break;
  1450. vecs = result;
  1451. }
  1452. if (result < 0) {
  1453. vecs = nr_io_queues;
  1454. if (vecs > 32)
  1455. vecs = 32;
  1456. for (;;) {
  1457. result = pci_enable_msi_block(pdev, vecs);
  1458. if (result == 0) {
  1459. for (i = 0; i < vecs; i++)
  1460. dev->entry[i].vector = i + pdev->irq;
  1461. break;
  1462. } else if (result < 0) {
  1463. vecs = 1;
  1464. break;
  1465. }
  1466. vecs = result;
  1467. }
  1468. }
  1469. /*
  1470. * Should investigate if there's a performance win from allocating
  1471. * more queues than interrupt vectors; it might allow the submission
  1472. * path to scale better, even if the receive path is limited by the
  1473. * number of interrupts.
  1474. */
  1475. nr_io_queues = vecs;
  1476. result = queue_request_irq(dev, dev->queues[0], "nvme admin");
  1477. /* XXX: handle failure here */
  1478. cpu = cpumask_first(cpu_online_mask);
  1479. for (i = 0; i < nr_io_queues; i++) {
  1480. irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
  1481. cpu = cpumask_next(cpu, cpu_online_mask);
  1482. }
  1483. q_depth = min_t(int, NVME_CAP_MQES(readq(&dev->bar->cap)) + 1,
  1484. NVME_Q_DEPTH);
  1485. for (i = 0; i < nr_io_queues; i++) {
  1486. dev->queues[i + 1] = nvme_create_queue(dev, i + 1, q_depth, i);
  1487. if (IS_ERR(dev->queues[i + 1]))
  1488. return PTR_ERR(dev->queues[i + 1]);
  1489. dev->queue_count++;
  1490. }
  1491. for (; i < num_possible_cpus(); i++) {
  1492. int target = i % rounddown_pow_of_two(dev->queue_count - 1);
  1493. dev->queues[i + 1] = dev->queues[target + 1];
  1494. }
  1495. return 0;
  1496. }
  1497. static void nvme_free_queues(struct nvme_dev *dev)
  1498. {
  1499. int i;
  1500. for (i = dev->queue_count - 1; i >= 0; i--)
  1501. nvme_free_queue(dev, i);
  1502. }
  1503. /*
  1504. * Return: error value if an error occurred setting up the queues or calling
  1505. * Identify Device. 0 if these succeeded, even if adding some of the
  1506. * namespaces failed. At the moment, these failures are silent. TBD which
  1507. * failures should be reported.
  1508. */
  1509. static int nvme_dev_add(struct nvme_dev *dev)
  1510. {
  1511. int res, nn, i;
  1512. struct nvme_ns *ns;
  1513. struct nvme_id_ctrl *ctrl;
  1514. struct nvme_id_ns *id_ns;
  1515. void *mem;
  1516. dma_addr_t dma_addr;
  1517. int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
  1518. res = nvme_setup_io_queues(dev);
  1519. if (res)
  1520. return res;
  1521. mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
  1522. GFP_KERNEL);
  1523. if (!mem)
  1524. return -ENOMEM;
  1525. res = nvme_identify(dev, 0, 1, dma_addr);
  1526. if (res) {
  1527. res = -EIO;
  1528. goto out;
  1529. }
  1530. ctrl = mem;
  1531. nn = le32_to_cpup(&ctrl->nn);
  1532. dev->oncs = le16_to_cpup(&ctrl->oncs);
  1533. memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
  1534. memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
  1535. memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
  1536. if (ctrl->mdts)
  1537. dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
  1538. if ((dev->pci_dev->vendor == PCI_VENDOR_ID_INTEL) &&
  1539. (dev->pci_dev->device == 0x0953) && ctrl->vs[3])
  1540. dev->stripe_size = 1 << (ctrl->vs[3] + shift);
  1541. id_ns = mem;
  1542. for (i = 1; i <= nn; i++) {
  1543. res = nvme_identify(dev, i, 0, dma_addr);
  1544. if (res)
  1545. continue;
  1546. if (id_ns->ncap == 0)
  1547. continue;
  1548. res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
  1549. dma_addr + 4096, NULL);
  1550. if (res)
  1551. memset(mem + 4096, 0, 4096);
  1552. ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
  1553. if (ns)
  1554. list_add_tail(&ns->list, &dev->namespaces);
  1555. }
  1556. list_for_each_entry(ns, &dev->namespaces, list)
  1557. add_disk(ns->disk);
  1558. res = 0;
  1559. out:
  1560. dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
  1561. return res;
  1562. }
  1563. static int nvme_dev_remove(struct nvme_dev *dev)
  1564. {
  1565. struct nvme_ns *ns, *next;
  1566. spin_lock(&dev_list_lock);
  1567. list_del(&dev->node);
  1568. spin_unlock(&dev_list_lock);
  1569. list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
  1570. list_del(&ns->list);
  1571. del_gendisk(ns->disk);
  1572. nvme_ns_free(ns);
  1573. }
  1574. nvme_free_queues(dev);
  1575. return 0;
  1576. }
  1577. static int nvme_setup_prp_pools(struct nvme_dev *dev)
  1578. {
  1579. struct device *dmadev = &dev->pci_dev->dev;
  1580. dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
  1581. PAGE_SIZE, PAGE_SIZE, 0);
  1582. if (!dev->prp_page_pool)
  1583. return -ENOMEM;
  1584. /* Optimisation for I/Os between 4k and 128k */
  1585. dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
  1586. 256, 256, 0);
  1587. if (!dev->prp_small_pool) {
  1588. dma_pool_destroy(dev->prp_page_pool);
  1589. return -ENOMEM;
  1590. }
  1591. return 0;
  1592. }
  1593. static void nvme_release_prp_pools(struct nvme_dev *dev)
  1594. {
  1595. dma_pool_destroy(dev->prp_page_pool);
  1596. dma_pool_destroy(dev->prp_small_pool);
  1597. }
  1598. static DEFINE_IDA(nvme_instance_ida);
  1599. static int nvme_set_instance(struct nvme_dev *dev)
  1600. {
  1601. int instance, error;
  1602. do {
  1603. if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
  1604. return -ENODEV;
  1605. spin_lock(&dev_list_lock);
  1606. error = ida_get_new(&nvme_instance_ida, &instance);
  1607. spin_unlock(&dev_list_lock);
  1608. } while (error == -EAGAIN);
  1609. if (error)
  1610. return -ENODEV;
  1611. dev->instance = instance;
  1612. return 0;
  1613. }
  1614. static void nvme_release_instance(struct nvme_dev *dev)
  1615. {
  1616. spin_lock(&dev_list_lock);
  1617. ida_remove(&nvme_instance_ida, dev->instance);
  1618. spin_unlock(&dev_list_lock);
  1619. }
  1620. static void nvme_free_dev(struct kref *kref)
  1621. {
  1622. struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
  1623. nvme_dev_remove(dev);
  1624. if (dev->pci_dev->msi_enabled)
  1625. pci_disable_msi(dev->pci_dev);
  1626. else if (dev->pci_dev->msix_enabled)
  1627. pci_disable_msix(dev->pci_dev);
  1628. iounmap(dev->bar);
  1629. nvme_release_instance(dev);
  1630. nvme_release_prp_pools(dev);
  1631. pci_disable_device(dev->pci_dev);
  1632. pci_release_regions(dev->pci_dev);
  1633. kfree(dev->queues);
  1634. kfree(dev->entry);
  1635. kfree(dev);
  1636. }
  1637. static int nvme_dev_open(struct inode *inode, struct file *f)
  1638. {
  1639. struct nvme_dev *dev = container_of(f->private_data, struct nvme_dev,
  1640. miscdev);
  1641. kref_get(&dev->kref);
  1642. f->private_data = dev;
  1643. return 0;
  1644. }
  1645. static int nvme_dev_release(struct inode *inode, struct file *f)
  1646. {
  1647. struct nvme_dev *dev = f->private_data;
  1648. kref_put(&dev->kref, nvme_free_dev);
  1649. return 0;
  1650. }
  1651. static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
  1652. {
  1653. struct nvme_dev *dev = f->private_data;
  1654. switch (cmd) {
  1655. case NVME_IOCTL_ADMIN_CMD:
  1656. return nvme_user_admin_cmd(dev, (void __user *)arg);
  1657. default:
  1658. return -ENOTTY;
  1659. }
  1660. }
  1661. static const struct file_operations nvme_dev_fops = {
  1662. .owner = THIS_MODULE,
  1663. .open = nvme_dev_open,
  1664. .release = nvme_dev_release,
  1665. .unlocked_ioctl = nvme_dev_ioctl,
  1666. .compat_ioctl = nvme_dev_ioctl,
  1667. };
  1668. static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
  1669. {
  1670. int bars, result = -ENOMEM;
  1671. struct nvme_dev *dev;
  1672. dev = kzalloc(sizeof(*dev), GFP_KERNEL);
  1673. if (!dev)
  1674. return -ENOMEM;
  1675. dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
  1676. GFP_KERNEL);
  1677. if (!dev->entry)
  1678. goto free;
  1679. dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
  1680. GFP_KERNEL);
  1681. if (!dev->queues)
  1682. goto free;
  1683. if (pci_enable_device_mem(pdev))
  1684. goto free;
  1685. pci_set_master(pdev);
  1686. bars = pci_select_bars(pdev, IORESOURCE_MEM);
  1687. if (pci_request_selected_regions(pdev, bars, "nvme"))
  1688. goto disable;
  1689. INIT_LIST_HEAD(&dev->namespaces);
  1690. dev->pci_dev = pdev;
  1691. pci_set_drvdata(pdev, dev);
  1692. if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)))
  1693. dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
  1694. else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))
  1695. dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
  1696. else
  1697. goto disable;
  1698. result = nvme_set_instance(dev);
  1699. if (result)
  1700. goto disable;
  1701. dev->entry[0].vector = pdev->irq;
  1702. result = nvme_setup_prp_pools(dev);
  1703. if (result)
  1704. goto disable_msix;
  1705. dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
  1706. if (!dev->bar) {
  1707. result = -ENOMEM;
  1708. goto disable_msix;
  1709. }
  1710. result = nvme_configure_admin_queue(dev);
  1711. if (result)
  1712. goto unmap;
  1713. dev->queue_count++;
  1714. spin_lock(&dev_list_lock);
  1715. list_add(&dev->node, &dev_list);
  1716. spin_unlock(&dev_list_lock);
  1717. result = nvme_dev_add(dev);
  1718. if (result)
  1719. goto delete;
  1720. scnprintf(dev->name, sizeof(dev->name), "nvme%d", dev->instance);
  1721. dev->miscdev.minor = MISC_DYNAMIC_MINOR;
  1722. dev->miscdev.parent = &pdev->dev;
  1723. dev->miscdev.name = dev->name;
  1724. dev->miscdev.fops = &nvme_dev_fops;
  1725. result = misc_register(&dev->miscdev);
  1726. if (result)
  1727. goto remove;
  1728. kref_init(&dev->kref);
  1729. return 0;
  1730. remove:
  1731. nvme_dev_remove(dev);
  1732. delete:
  1733. spin_lock(&dev_list_lock);
  1734. list_del(&dev->node);
  1735. spin_unlock(&dev_list_lock);
  1736. nvme_free_queues(dev);
  1737. unmap:
  1738. iounmap(dev->bar);
  1739. disable_msix:
  1740. if (dev->pci_dev->msi_enabled)
  1741. pci_disable_msi(dev->pci_dev);
  1742. else if (dev->pci_dev->msix_enabled)
  1743. pci_disable_msix(dev->pci_dev);
  1744. nvme_release_instance(dev);
  1745. nvme_release_prp_pools(dev);
  1746. disable:
  1747. pci_disable_device(pdev);
  1748. pci_release_regions(pdev);
  1749. free:
  1750. kfree(dev->queues);
  1751. kfree(dev->entry);
  1752. kfree(dev);
  1753. return result;
  1754. }
  1755. static void nvme_remove(struct pci_dev *pdev)
  1756. {
  1757. struct nvme_dev *dev = pci_get_drvdata(pdev);
  1758. misc_deregister(&dev->miscdev);
  1759. kref_put(&dev->kref, nvme_free_dev);
  1760. }
  1761. /* These functions are yet to be implemented */
  1762. #define nvme_error_detected NULL
  1763. #define nvme_dump_registers NULL
  1764. #define nvme_link_reset NULL
  1765. #define nvme_slot_reset NULL
  1766. #define nvme_error_resume NULL
  1767. #define nvme_suspend NULL
  1768. #define nvme_resume NULL
  1769. static const struct pci_error_handlers nvme_err_handler = {
  1770. .error_detected = nvme_error_detected,
  1771. .mmio_enabled = nvme_dump_registers,
  1772. .link_reset = nvme_link_reset,
  1773. .slot_reset = nvme_slot_reset,
  1774. .resume = nvme_error_resume,
  1775. };
  1776. /* Move to pci_ids.h later */
  1777. #define PCI_CLASS_STORAGE_EXPRESS 0x010802
  1778. static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
  1779. { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
  1780. { 0, }
  1781. };
  1782. MODULE_DEVICE_TABLE(pci, nvme_id_table);
  1783. static struct pci_driver nvme_driver = {
  1784. .name = "nvme",
  1785. .id_table = nvme_id_table,
  1786. .probe = nvme_probe,
  1787. .remove = nvme_remove,
  1788. .suspend = nvme_suspend,
  1789. .resume = nvme_resume,
  1790. .err_handler = &nvme_err_handler,
  1791. };
  1792. static int __init nvme_init(void)
  1793. {
  1794. int result;
  1795. nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
  1796. if (IS_ERR(nvme_thread))
  1797. return PTR_ERR(nvme_thread);
  1798. result = register_blkdev(nvme_major, "nvme");
  1799. if (result < 0)
  1800. goto kill_kthread;
  1801. else if (result > 0)
  1802. nvme_major = result;
  1803. result = pci_register_driver(&nvme_driver);
  1804. if (result)
  1805. goto unregister_blkdev;
  1806. return 0;
  1807. unregister_blkdev:
  1808. unregister_blkdev(nvme_major, "nvme");
  1809. kill_kthread:
  1810. kthread_stop(nvme_thread);
  1811. return result;
  1812. }
  1813. static void __exit nvme_exit(void)
  1814. {
  1815. pci_unregister_driver(&nvme_driver);
  1816. unregister_blkdev(nvme_major, "nvme");
  1817. kthread_stop(nvme_thread);
  1818. }
  1819. MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
  1820. MODULE_LICENSE("GPL");
  1821. MODULE_VERSION("0.8");
  1822. module_init(nvme_init);
  1823. module_exit(nvme_exit);