fork.c 42 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/smp_lock.h>
  16. #include <linux/module.h>
  17. #include <linux/vmalloc.h>
  18. #include <linux/completion.h>
  19. #include <linux/namespace.h>
  20. #include <linux/personality.h>
  21. #include <linux/mempolicy.h>
  22. #include <linux/sem.h>
  23. #include <linux/file.h>
  24. #include <linux/key.h>
  25. #include <linux/binfmts.h>
  26. #include <linux/mman.h>
  27. #include <linux/fs.h>
  28. #include <linux/nsproxy.h>
  29. #include <linux/capability.h>
  30. #include <linux/cpu.h>
  31. #include <linux/cpuset.h>
  32. #include <linux/security.h>
  33. #include <linux/swap.h>
  34. #include <linux/syscalls.h>
  35. #include <linux/jiffies.h>
  36. #include <linux/futex.h>
  37. #include <linux/rcupdate.h>
  38. #include <linux/ptrace.h>
  39. #include <linux/mount.h>
  40. #include <linux/audit.h>
  41. #include <linux/profile.h>
  42. #include <linux/rmap.h>
  43. #include <linux/acct.h>
  44. #include <linux/tsacct_kern.h>
  45. #include <linux/cn_proc.h>
  46. #include <linux/delayacct.h>
  47. #include <linux/taskstats_kern.h>
  48. #include <linux/random.h>
  49. #include <asm/pgtable.h>
  50. #include <asm/pgalloc.h>
  51. #include <asm/uaccess.h>
  52. #include <asm/mmu_context.h>
  53. #include <asm/cacheflush.h>
  54. #include <asm/tlbflush.h>
  55. /*
  56. * Protected counters by write_lock_irq(&tasklist_lock)
  57. */
  58. unsigned long total_forks; /* Handle normal Linux uptimes. */
  59. int nr_threads; /* The idle threads do not count.. */
  60. int max_threads; /* tunable limit on nr_threads */
  61. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  62. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  63. int nr_processes(void)
  64. {
  65. int cpu;
  66. int total = 0;
  67. for_each_online_cpu(cpu)
  68. total += per_cpu(process_counts, cpu);
  69. return total;
  70. }
  71. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  72. # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
  73. # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
  74. static kmem_cache_t *task_struct_cachep;
  75. #endif
  76. /* SLAB cache for signal_struct structures (tsk->signal) */
  77. static kmem_cache_t *signal_cachep;
  78. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  79. kmem_cache_t *sighand_cachep;
  80. /* SLAB cache for files_struct structures (tsk->files) */
  81. kmem_cache_t *files_cachep;
  82. /* SLAB cache for fs_struct structures (tsk->fs) */
  83. kmem_cache_t *fs_cachep;
  84. /* SLAB cache for vm_area_struct structures */
  85. kmem_cache_t *vm_area_cachep;
  86. /* SLAB cache for mm_struct structures (tsk->mm) */
  87. static kmem_cache_t *mm_cachep;
  88. void free_task(struct task_struct *tsk)
  89. {
  90. free_thread_info(tsk->thread_info);
  91. rt_mutex_debug_task_free(tsk);
  92. free_task_struct(tsk);
  93. }
  94. EXPORT_SYMBOL(free_task);
  95. void __put_task_struct(struct task_struct *tsk)
  96. {
  97. WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
  98. WARN_ON(atomic_read(&tsk->usage));
  99. WARN_ON(tsk == current);
  100. security_task_free(tsk);
  101. free_uid(tsk->user);
  102. put_group_info(tsk->group_info);
  103. delayacct_tsk_free(tsk);
  104. if (!profile_handoff_task(tsk))
  105. free_task(tsk);
  106. }
  107. void __init fork_init(unsigned long mempages)
  108. {
  109. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  110. #ifndef ARCH_MIN_TASKALIGN
  111. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  112. #endif
  113. /* create a slab on which task_structs can be allocated */
  114. task_struct_cachep =
  115. kmem_cache_create("task_struct", sizeof(struct task_struct),
  116. ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
  117. #endif
  118. /*
  119. * The default maximum number of threads is set to a safe
  120. * value: the thread structures can take up at most half
  121. * of memory.
  122. */
  123. max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
  124. /*
  125. * we need to allow at least 20 threads to boot a system
  126. */
  127. if(max_threads < 20)
  128. max_threads = 20;
  129. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  130. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  131. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  132. init_task.signal->rlim[RLIMIT_NPROC];
  133. }
  134. static struct task_struct *dup_task_struct(struct task_struct *orig)
  135. {
  136. struct task_struct *tsk;
  137. struct thread_info *ti;
  138. prepare_to_copy(orig);
  139. tsk = alloc_task_struct();
  140. if (!tsk)
  141. return NULL;
  142. ti = alloc_thread_info(tsk);
  143. if (!ti) {
  144. free_task_struct(tsk);
  145. return NULL;
  146. }
  147. *tsk = *orig;
  148. tsk->thread_info = ti;
  149. setup_thread_stack(tsk, orig);
  150. #ifdef CONFIG_CC_STACKPROTECTOR
  151. tsk->stack_canary = get_random_int();
  152. #endif
  153. /* One for us, one for whoever does the "release_task()" (usually parent) */
  154. atomic_set(&tsk->usage,2);
  155. atomic_set(&tsk->fs_excl, 0);
  156. #ifdef CONFIG_BLK_DEV_IO_TRACE
  157. tsk->btrace_seq = 0;
  158. #endif
  159. tsk->splice_pipe = NULL;
  160. return tsk;
  161. }
  162. #ifdef CONFIG_MMU
  163. static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  164. {
  165. struct vm_area_struct *mpnt, *tmp, **pprev;
  166. struct rb_node **rb_link, *rb_parent;
  167. int retval;
  168. unsigned long charge;
  169. struct mempolicy *pol;
  170. down_write(&oldmm->mmap_sem);
  171. flush_cache_mm(oldmm);
  172. /*
  173. * Not linked in yet - no deadlock potential:
  174. */
  175. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  176. mm->locked_vm = 0;
  177. mm->mmap = NULL;
  178. mm->mmap_cache = NULL;
  179. mm->free_area_cache = oldmm->mmap_base;
  180. mm->cached_hole_size = ~0UL;
  181. mm->map_count = 0;
  182. cpus_clear(mm->cpu_vm_mask);
  183. mm->mm_rb = RB_ROOT;
  184. rb_link = &mm->mm_rb.rb_node;
  185. rb_parent = NULL;
  186. pprev = &mm->mmap;
  187. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  188. struct file *file;
  189. if (mpnt->vm_flags & VM_DONTCOPY) {
  190. long pages = vma_pages(mpnt);
  191. mm->total_vm -= pages;
  192. vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
  193. -pages);
  194. continue;
  195. }
  196. charge = 0;
  197. if (mpnt->vm_flags & VM_ACCOUNT) {
  198. unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
  199. if (security_vm_enough_memory(len))
  200. goto fail_nomem;
  201. charge = len;
  202. }
  203. tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  204. if (!tmp)
  205. goto fail_nomem;
  206. *tmp = *mpnt;
  207. pol = mpol_copy(vma_policy(mpnt));
  208. retval = PTR_ERR(pol);
  209. if (IS_ERR(pol))
  210. goto fail_nomem_policy;
  211. vma_set_policy(tmp, pol);
  212. tmp->vm_flags &= ~VM_LOCKED;
  213. tmp->vm_mm = mm;
  214. tmp->vm_next = NULL;
  215. anon_vma_link(tmp);
  216. file = tmp->vm_file;
  217. if (file) {
  218. struct inode *inode = file->f_dentry->d_inode;
  219. get_file(file);
  220. if (tmp->vm_flags & VM_DENYWRITE)
  221. atomic_dec(&inode->i_writecount);
  222. /* insert tmp into the share list, just after mpnt */
  223. spin_lock(&file->f_mapping->i_mmap_lock);
  224. tmp->vm_truncate_count = mpnt->vm_truncate_count;
  225. flush_dcache_mmap_lock(file->f_mapping);
  226. vma_prio_tree_add(tmp, mpnt);
  227. flush_dcache_mmap_unlock(file->f_mapping);
  228. spin_unlock(&file->f_mapping->i_mmap_lock);
  229. }
  230. /*
  231. * Link in the new vma and copy the page table entries.
  232. */
  233. *pprev = tmp;
  234. pprev = &tmp->vm_next;
  235. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  236. rb_link = &tmp->vm_rb.rb_right;
  237. rb_parent = &tmp->vm_rb;
  238. mm->map_count++;
  239. retval = copy_page_range(mm, oldmm, mpnt);
  240. if (tmp->vm_ops && tmp->vm_ops->open)
  241. tmp->vm_ops->open(tmp);
  242. if (retval)
  243. goto out;
  244. }
  245. retval = 0;
  246. out:
  247. up_write(&mm->mmap_sem);
  248. flush_tlb_mm(oldmm);
  249. up_write(&oldmm->mmap_sem);
  250. return retval;
  251. fail_nomem_policy:
  252. kmem_cache_free(vm_area_cachep, tmp);
  253. fail_nomem:
  254. retval = -ENOMEM;
  255. vm_unacct_memory(charge);
  256. goto out;
  257. }
  258. static inline int mm_alloc_pgd(struct mm_struct * mm)
  259. {
  260. mm->pgd = pgd_alloc(mm);
  261. if (unlikely(!mm->pgd))
  262. return -ENOMEM;
  263. return 0;
  264. }
  265. static inline void mm_free_pgd(struct mm_struct * mm)
  266. {
  267. pgd_free(mm->pgd);
  268. }
  269. #else
  270. #define dup_mmap(mm, oldmm) (0)
  271. #define mm_alloc_pgd(mm) (0)
  272. #define mm_free_pgd(mm)
  273. #endif /* CONFIG_MMU */
  274. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  275. #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
  276. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  277. #include <linux/init_task.h>
  278. static struct mm_struct * mm_init(struct mm_struct * mm)
  279. {
  280. atomic_set(&mm->mm_users, 1);
  281. atomic_set(&mm->mm_count, 1);
  282. init_rwsem(&mm->mmap_sem);
  283. INIT_LIST_HEAD(&mm->mmlist);
  284. mm->core_waiters = 0;
  285. mm->nr_ptes = 0;
  286. set_mm_counter(mm, file_rss, 0);
  287. set_mm_counter(mm, anon_rss, 0);
  288. spin_lock_init(&mm->page_table_lock);
  289. rwlock_init(&mm->ioctx_list_lock);
  290. mm->ioctx_list = NULL;
  291. mm->free_area_cache = TASK_UNMAPPED_BASE;
  292. mm->cached_hole_size = ~0UL;
  293. if (likely(!mm_alloc_pgd(mm))) {
  294. mm->def_flags = 0;
  295. return mm;
  296. }
  297. free_mm(mm);
  298. return NULL;
  299. }
  300. /*
  301. * Allocate and initialize an mm_struct.
  302. */
  303. struct mm_struct * mm_alloc(void)
  304. {
  305. struct mm_struct * mm;
  306. mm = allocate_mm();
  307. if (mm) {
  308. memset(mm, 0, sizeof(*mm));
  309. mm = mm_init(mm);
  310. }
  311. return mm;
  312. }
  313. /*
  314. * Called when the last reference to the mm
  315. * is dropped: either by a lazy thread or by
  316. * mmput. Free the page directory and the mm.
  317. */
  318. void fastcall __mmdrop(struct mm_struct *mm)
  319. {
  320. BUG_ON(mm == &init_mm);
  321. mm_free_pgd(mm);
  322. destroy_context(mm);
  323. free_mm(mm);
  324. }
  325. /*
  326. * Decrement the use count and release all resources for an mm.
  327. */
  328. void mmput(struct mm_struct *mm)
  329. {
  330. might_sleep();
  331. if (atomic_dec_and_test(&mm->mm_users)) {
  332. exit_aio(mm);
  333. exit_mmap(mm);
  334. if (!list_empty(&mm->mmlist)) {
  335. spin_lock(&mmlist_lock);
  336. list_del(&mm->mmlist);
  337. spin_unlock(&mmlist_lock);
  338. }
  339. put_swap_token(mm);
  340. mmdrop(mm);
  341. }
  342. }
  343. EXPORT_SYMBOL_GPL(mmput);
  344. /**
  345. * get_task_mm - acquire a reference to the task's mm
  346. *
  347. * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
  348. * this kernel workthread has transiently adopted a user mm with use_mm,
  349. * to do its AIO) is not set and if so returns a reference to it, after
  350. * bumping up the use count. User must release the mm via mmput()
  351. * after use. Typically used by /proc and ptrace.
  352. */
  353. struct mm_struct *get_task_mm(struct task_struct *task)
  354. {
  355. struct mm_struct *mm;
  356. task_lock(task);
  357. mm = task->mm;
  358. if (mm) {
  359. if (task->flags & PF_BORROWED_MM)
  360. mm = NULL;
  361. else
  362. atomic_inc(&mm->mm_users);
  363. }
  364. task_unlock(task);
  365. return mm;
  366. }
  367. EXPORT_SYMBOL_GPL(get_task_mm);
  368. /* Please note the differences between mmput and mm_release.
  369. * mmput is called whenever we stop holding onto a mm_struct,
  370. * error success whatever.
  371. *
  372. * mm_release is called after a mm_struct has been removed
  373. * from the current process.
  374. *
  375. * This difference is important for error handling, when we
  376. * only half set up a mm_struct for a new process and need to restore
  377. * the old one. Because we mmput the new mm_struct before
  378. * restoring the old one. . .
  379. * Eric Biederman 10 January 1998
  380. */
  381. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  382. {
  383. struct completion *vfork_done = tsk->vfork_done;
  384. /* Get rid of any cached register state */
  385. deactivate_mm(tsk, mm);
  386. /* notify parent sleeping on vfork() */
  387. if (vfork_done) {
  388. tsk->vfork_done = NULL;
  389. complete(vfork_done);
  390. }
  391. if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
  392. u32 __user * tidptr = tsk->clear_child_tid;
  393. tsk->clear_child_tid = NULL;
  394. /*
  395. * We don't check the error code - if userspace has
  396. * not set up a proper pointer then tough luck.
  397. */
  398. put_user(0, tidptr);
  399. sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
  400. }
  401. }
  402. /*
  403. * Allocate a new mm structure and copy contents from the
  404. * mm structure of the passed in task structure.
  405. */
  406. static struct mm_struct *dup_mm(struct task_struct *tsk)
  407. {
  408. struct mm_struct *mm, *oldmm = current->mm;
  409. int err;
  410. if (!oldmm)
  411. return NULL;
  412. mm = allocate_mm();
  413. if (!mm)
  414. goto fail_nomem;
  415. memcpy(mm, oldmm, sizeof(*mm));
  416. /* Initializing for Swap token stuff */
  417. mm->token_priority = 0;
  418. mm->last_interval = 0;
  419. if (!mm_init(mm))
  420. goto fail_nomem;
  421. if (init_new_context(tsk, mm))
  422. goto fail_nocontext;
  423. err = dup_mmap(mm, oldmm);
  424. if (err)
  425. goto free_pt;
  426. mm->hiwater_rss = get_mm_rss(mm);
  427. mm->hiwater_vm = mm->total_vm;
  428. return mm;
  429. free_pt:
  430. mmput(mm);
  431. fail_nomem:
  432. return NULL;
  433. fail_nocontext:
  434. /*
  435. * If init_new_context() failed, we cannot use mmput() to free the mm
  436. * because it calls destroy_context()
  437. */
  438. mm_free_pgd(mm);
  439. free_mm(mm);
  440. return NULL;
  441. }
  442. static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
  443. {
  444. struct mm_struct * mm, *oldmm;
  445. int retval;
  446. tsk->min_flt = tsk->maj_flt = 0;
  447. tsk->nvcsw = tsk->nivcsw = 0;
  448. tsk->mm = NULL;
  449. tsk->active_mm = NULL;
  450. /*
  451. * Are we cloning a kernel thread?
  452. *
  453. * We need to steal a active VM for that..
  454. */
  455. oldmm = current->mm;
  456. if (!oldmm)
  457. return 0;
  458. if (clone_flags & CLONE_VM) {
  459. atomic_inc(&oldmm->mm_users);
  460. mm = oldmm;
  461. goto good_mm;
  462. }
  463. retval = -ENOMEM;
  464. mm = dup_mm(tsk);
  465. if (!mm)
  466. goto fail_nomem;
  467. good_mm:
  468. /* Initializing for Swap token stuff */
  469. mm->token_priority = 0;
  470. mm->last_interval = 0;
  471. tsk->mm = mm;
  472. tsk->active_mm = mm;
  473. return 0;
  474. fail_nomem:
  475. return retval;
  476. }
  477. static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
  478. {
  479. struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
  480. /* We don't need to lock fs - think why ;-) */
  481. if (fs) {
  482. atomic_set(&fs->count, 1);
  483. rwlock_init(&fs->lock);
  484. fs->umask = old->umask;
  485. read_lock(&old->lock);
  486. fs->rootmnt = mntget(old->rootmnt);
  487. fs->root = dget(old->root);
  488. fs->pwdmnt = mntget(old->pwdmnt);
  489. fs->pwd = dget(old->pwd);
  490. if (old->altroot) {
  491. fs->altrootmnt = mntget(old->altrootmnt);
  492. fs->altroot = dget(old->altroot);
  493. } else {
  494. fs->altrootmnt = NULL;
  495. fs->altroot = NULL;
  496. }
  497. read_unlock(&old->lock);
  498. }
  499. return fs;
  500. }
  501. struct fs_struct *copy_fs_struct(struct fs_struct *old)
  502. {
  503. return __copy_fs_struct(old);
  504. }
  505. EXPORT_SYMBOL_GPL(copy_fs_struct);
  506. static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
  507. {
  508. if (clone_flags & CLONE_FS) {
  509. atomic_inc(&current->fs->count);
  510. return 0;
  511. }
  512. tsk->fs = __copy_fs_struct(current->fs);
  513. if (!tsk->fs)
  514. return -ENOMEM;
  515. return 0;
  516. }
  517. static int count_open_files(struct fdtable *fdt)
  518. {
  519. int size = fdt->max_fdset;
  520. int i;
  521. /* Find the last open fd */
  522. for (i = size/(8*sizeof(long)); i > 0; ) {
  523. if (fdt->open_fds->fds_bits[--i])
  524. break;
  525. }
  526. i = (i+1) * 8 * sizeof(long);
  527. return i;
  528. }
  529. static struct files_struct *alloc_files(void)
  530. {
  531. struct files_struct *newf;
  532. struct fdtable *fdt;
  533. newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
  534. if (!newf)
  535. goto out;
  536. atomic_set(&newf->count, 1);
  537. spin_lock_init(&newf->file_lock);
  538. newf->next_fd = 0;
  539. fdt = &newf->fdtab;
  540. fdt->max_fds = NR_OPEN_DEFAULT;
  541. fdt->max_fdset = EMBEDDED_FD_SET_SIZE;
  542. fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
  543. fdt->open_fds = (fd_set *)&newf->open_fds_init;
  544. fdt->fd = &newf->fd_array[0];
  545. INIT_RCU_HEAD(&fdt->rcu);
  546. fdt->free_files = NULL;
  547. fdt->next = NULL;
  548. rcu_assign_pointer(newf->fdt, fdt);
  549. out:
  550. return newf;
  551. }
  552. /*
  553. * Allocate a new files structure and copy contents from the
  554. * passed in files structure.
  555. * errorp will be valid only when the returned files_struct is NULL.
  556. */
  557. static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
  558. {
  559. struct files_struct *newf;
  560. struct file **old_fds, **new_fds;
  561. int open_files, size, i, expand;
  562. struct fdtable *old_fdt, *new_fdt;
  563. *errorp = -ENOMEM;
  564. newf = alloc_files();
  565. if (!newf)
  566. goto out;
  567. spin_lock(&oldf->file_lock);
  568. old_fdt = files_fdtable(oldf);
  569. new_fdt = files_fdtable(newf);
  570. size = old_fdt->max_fdset;
  571. open_files = count_open_files(old_fdt);
  572. expand = 0;
  573. /*
  574. * Check whether we need to allocate a larger fd array or fd set.
  575. * Note: we're not a clone task, so the open count won't change.
  576. */
  577. if (open_files > new_fdt->max_fdset) {
  578. new_fdt->max_fdset = 0;
  579. expand = 1;
  580. }
  581. if (open_files > new_fdt->max_fds) {
  582. new_fdt->max_fds = 0;
  583. expand = 1;
  584. }
  585. /* if the old fdset gets grown now, we'll only copy up to "size" fds */
  586. if (expand) {
  587. spin_unlock(&oldf->file_lock);
  588. spin_lock(&newf->file_lock);
  589. *errorp = expand_files(newf, open_files-1);
  590. spin_unlock(&newf->file_lock);
  591. if (*errorp < 0)
  592. goto out_release;
  593. new_fdt = files_fdtable(newf);
  594. /*
  595. * Reacquire the oldf lock and a pointer to its fd table
  596. * who knows it may have a new bigger fd table. We need
  597. * the latest pointer.
  598. */
  599. spin_lock(&oldf->file_lock);
  600. old_fdt = files_fdtable(oldf);
  601. }
  602. old_fds = old_fdt->fd;
  603. new_fds = new_fdt->fd;
  604. memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
  605. memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
  606. for (i = open_files; i != 0; i--) {
  607. struct file *f = *old_fds++;
  608. if (f) {
  609. get_file(f);
  610. } else {
  611. /*
  612. * The fd may be claimed in the fd bitmap but not yet
  613. * instantiated in the files array if a sibling thread
  614. * is partway through open(). So make sure that this
  615. * fd is available to the new process.
  616. */
  617. FD_CLR(open_files - i, new_fdt->open_fds);
  618. }
  619. rcu_assign_pointer(*new_fds++, f);
  620. }
  621. spin_unlock(&oldf->file_lock);
  622. /* compute the remainder to be cleared */
  623. size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
  624. /* This is long word aligned thus could use a optimized version */
  625. memset(new_fds, 0, size);
  626. if (new_fdt->max_fdset > open_files) {
  627. int left = (new_fdt->max_fdset-open_files)/8;
  628. int start = open_files / (8 * sizeof(unsigned long));
  629. memset(&new_fdt->open_fds->fds_bits[start], 0, left);
  630. memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
  631. }
  632. out:
  633. return newf;
  634. out_release:
  635. free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
  636. free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
  637. free_fd_array(new_fdt->fd, new_fdt->max_fds);
  638. kmem_cache_free(files_cachep, newf);
  639. return NULL;
  640. }
  641. static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
  642. {
  643. struct files_struct *oldf, *newf;
  644. int error = 0;
  645. /*
  646. * A background process may not have any files ...
  647. */
  648. oldf = current->files;
  649. if (!oldf)
  650. goto out;
  651. if (clone_flags & CLONE_FILES) {
  652. atomic_inc(&oldf->count);
  653. goto out;
  654. }
  655. /*
  656. * Note: we may be using current for both targets (See exec.c)
  657. * This works because we cache current->files (old) as oldf. Don't
  658. * break this.
  659. */
  660. tsk->files = NULL;
  661. newf = dup_fd(oldf, &error);
  662. if (!newf)
  663. goto out;
  664. tsk->files = newf;
  665. error = 0;
  666. out:
  667. return error;
  668. }
  669. /*
  670. * Helper to unshare the files of the current task.
  671. * We don't want to expose copy_files internals to
  672. * the exec layer of the kernel.
  673. */
  674. int unshare_files(void)
  675. {
  676. struct files_struct *files = current->files;
  677. int rc;
  678. BUG_ON(!files);
  679. /* This can race but the race causes us to copy when we don't
  680. need to and drop the copy */
  681. if(atomic_read(&files->count) == 1)
  682. {
  683. atomic_inc(&files->count);
  684. return 0;
  685. }
  686. rc = copy_files(0, current);
  687. if(rc)
  688. current->files = files;
  689. return rc;
  690. }
  691. EXPORT_SYMBOL(unshare_files);
  692. static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
  693. {
  694. struct sighand_struct *sig;
  695. if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
  696. atomic_inc(&current->sighand->count);
  697. return 0;
  698. }
  699. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  700. rcu_assign_pointer(tsk->sighand, sig);
  701. if (!sig)
  702. return -ENOMEM;
  703. atomic_set(&sig->count, 1);
  704. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  705. return 0;
  706. }
  707. void __cleanup_sighand(struct sighand_struct *sighand)
  708. {
  709. if (atomic_dec_and_test(&sighand->count))
  710. kmem_cache_free(sighand_cachep, sighand);
  711. }
  712. static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
  713. {
  714. struct signal_struct *sig;
  715. int ret;
  716. if (clone_flags & CLONE_THREAD) {
  717. atomic_inc(&current->signal->count);
  718. atomic_inc(&current->signal->live);
  719. taskstats_tgid_alloc(current);
  720. return 0;
  721. }
  722. sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
  723. tsk->signal = sig;
  724. if (!sig)
  725. return -ENOMEM;
  726. ret = copy_thread_group_keys(tsk);
  727. if (ret < 0) {
  728. kmem_cache_free(signal_cachep, sig);
  729. return ret;
  730. }
  731. atomic_set(&sig->count, 1);
  732. atomic_set(&sig->live, 1);
  733. init_waitqueue_head(&sig->wait_chldexit);
  734. sig->flags = 0;
  735. sig->group_exit_code = 0;
  736. sig->group_exit_task = NULL;
  737. sig->group_stop_count = 0;
  738. sig->curr_target = NULL;
  739. init_sigpending(&sig->shared_pending);
  740. INIT_LIST_HEAD(&sig->posix_timers);
  741. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_REL);
  742. sig->it_real_incr.tv64 = 0;
  743. sig->real_timer.function = it_real_fn;
  744. sig->tsk = tsk;
  745. sig->it_virt_expires = cputime_zero;
  746. sig->it_virt_incr = cputime_zero;
  747. sig->it_prof_expires = cputime_zero;
  748. sig->it_prof_incr = cputime_zero;
  749. sig->leader = 0; /* session leadership doesn't inherit */
  750. sig->tty_old_pgrp = 0;
  751. sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
  752. sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
  753. sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
  754. sig->sched_time = 0;
  755. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  756. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  757. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  758. taskstats_tgid_init(sig);
  759. task_lock(current->group_leader);
  760. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  761. task_unlock(current->group_leader);
  762. if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
  763. /*
  764. * New sole thread in the process gets an expiry time
  765. * of the whole CPU time limit.
  766. */
  767. tsk->it_prof_expires =
  768. secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
  769. }
  770. acct_init_pacct(&sig->pacct);
  771. return 0;
  772. }
  773. void __cleanup_signal(struct signal_struct *sig)
  774. {
  775. exit_thread_group_keys(sig);
  776. kmem_cache_free(signal_cachep, sig);
  777. }
  778. static inline void cleanup_signal(struct task_struct *tsk)
  779. {
  780. struct signal_struct *sig = tsk->signal;
  781. atomic_dec(&sig->live);
  782. if (atomic_dec_and_test(&sig->count))
  783. __cleanup_signal(sig);
  784. }
  785. static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
  786. {
  787. unsigned long new_flags = p->flags;
  788. new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
  789. new_flags |= PF_FORKNOEXEC;
  790. if (!(clone_flags & CLONE_PTRACE))
  791. p->ptrace = 0;
  792. p->flags = new_flags;
  793. }
  794. asmlinkage long sys_set_tid_address(int __user *tidptr)
  795. {
  796. current->clear_child_tid = tidptr;
  797. return current->pid;
  798. }
  799. static inline void rt_mutex_init_task(struct task_struct *p)
  800. {
  801. #ifdef CONFIG_RT_MUTEXES
  802. spin_lock_init(&p->pi_lock);
  803. plist_head_init(&p->pi_waiters, &p->pi_lock);
  804. p->pi_blocked_on = NULL;
  805. #endif
  806. }
  807. /*
  808. * This creates a new process as a copy of the old one,
  809. * but does not actually start it yet.
  810. *
  811. * It copies the registers, and all the appropriate
  812. * parts of the process environment (as per the clone
  813. * flags). The actual kick-off is left to the caller.
  814. */
  815. static struct task_struct *copy_process(unsigned long clone_flags,
  816. unsigned long stack_start,
  817. struct pt_regs *regs,
  818. unsigned long stack_size,
  819. int __user *parent_tidptr,
  820. int __user *child_tidptr,
  821. int pid)
  822. {
  823. int retval;
  824. struct task_struct *p = NULL;
  825. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  826. return ERR_PTR(-EINVAL);
  827. /*
  828. * Thread groups must share signals as well, and detached threads
  829. * can only be started up within the thread group.
  830. */
  831. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  832. return ERR_PTR(-EINVAL);
  833. /*
  834. * Shared signal handlers imply shared VM. By way of the above,
  835. * thread groups also imply shared VM. Blocking this case allows
  836. * for various simplifications in other code.
  837. */
  838. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  839. return ERR_PTR(-EINVAL);
  840. retval = security_task_create(clone_flags);
  841. if (retval)
  842. goto fork_out;
  843. retval = -ENOMEM;
  844. p = dup_task_struct(current);
  845. if (!p)
  846. goto fork_out;
  847. rt_mutex_init_task(p);
  848. #ifdef CONFIG_TRACE_IRQFLAGS
  849. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  850. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  851. #endif
  852. retval = -EAGAIN;
  853. if (atomic_read(&p->user->processes) >=
  854. p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
  855. if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
  856. p->user != &root_user)
  857. goto bad_fork_free;
  858. }
  859. atomic_inc(&p->user->__count);
  860. atomic_inc(&p->user->processes);
  861. get_group_info(p->group_info);
  862. /*
  863. * If multiple threads are within copy_process(), then this check
  864. * triggers too late. This doesn't hurt, the check is only there
  865. * to stop root fork bombs.
  866. */
  867. if (nr_threads >= max_threads)
  868. goto bad_fork_cleanup_count;
  869. if (!try_module_get(task_thread_info(p)->exec_domain->module))
  870. goto bad_fork_cleanup_count;
  871. if (p->binfmt && !try_module_get(p->binfmt->module))
  872. goto bad_fork_cleanup_put_domain;
  873. p->did_exec = 0;
  874. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  875. copy_flags(clone_flags, p);
  876. p->pid = pid;
  877. retval = -EFAULT;
  878. if (clone_flags & CLONE_PARENT_SETTID)
  879. if (put_user(p->pid, parent_tidptr))
  880. goto bad_fork_cleanup_delays_binfmt;
  881. INIT_LIST_HEAD(&p->children);
  882. INIT_LIST_HEAD(&p->sibling);
  883. p->vfork_done = NULL;
  884. spin_lock_init(&p->alloc_lock);
  885. clear_tsk_thread_flag(p, TIF_SIGPENDING);
  886. init_sigpending(&p->pending);
  887. p->utime = cputime_zero;
  888. p->stime = cputime_zero;
  889. p->sched_time = 0;
  890. p->rchar = 0; /* I/O counter: bytes read */
  891. p->wchar = 0; /* I/O counter: bytes written */
  892. p->syscr = 0; /* I/O counter: read syscalls */
  893. p->syscw = 0; /* I/O counter: write syscalls */
  894. acct_clear_integrals(p);
  895. p->it_virt_expires = cputime_zero;
  896. p->it_prof_expires = cputime_zero;
  897. p->it_sched_expires = 0;
  898. INIT_LIST_HEAD(&p->cpu_timers[0]);
  899. INIT_LIST_HEAD(&p->cpu_timers[1]);
  900. INIT_LIST_HEAD(&p->cpu_timers[2]);
  901. p->lock_depth = -1; /* -1 = no lock */
  902. do_posix_clock_monotonic_gettime(&p->start_time);
  903. p->security = NULL;
  904. p->io_context = NULL;
  905. p->io_wait = NULL;
  906. p->audit_context = NULL;
  907. cpuset_fork(p);
  908. #ifdef CONFIG_NUMA
  909. p->mempolicy = mpol_copy(p->mempolicy);
  910. if (IS_ERR(p->mempolicy)) {
  911. retval = PTR_ERR(p->mempolicy);
  912. p->mempolicy = NULL;
  913. goto bad_fork_cleanup_cpuset;
  914. }
  915. mpol_fix_fork_child_flag(p);
  916. #endif
  917. #ifdef CONFIG_TRACE_IRQFLAGS
  918. p->irq_events = 0;
  919. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  920. p->hardirqs_enabled = 1;
  921. #else
  922. p->hardirqs_enabled = 0;
  923. #endif
  924. p->hardirq_enable_ip = 0;
  925. p->hardirq_enable_event = 0;
  926. p->hardirq_disable_ip = _THIS_IP_;
  927. p->hardirq_disable_event = 0;
  928. p->softirqs_enabled = 1;
  929. p->softirq_enable_ip = _THIS_IP_;
  930. p->softirq_enable_event = 0;
  931. p->softirq_disable_ip = 0;
  932. p->softirq_disable_event = 0;
  933. p->hardirq_context = 0;
  934. p->softirq_context = 0;
  935. #endif
  936. #ifdef CONFIG_LOCKDEP
  937. p->lockdep_depth = 0; /* no locks held yet */
  938. p->curr_chain_key = 0;
  939. p->lockdep_recursion = 0;
  940. #endif
  941. #ifdef CONFIG_DEBUG_MUTEXES
  942. p->blocked_on = NULL; /* not blocked yet */
  943. #endif
  944. p->tgid = p->pid;
  945. if (clone_flags & CLONE_THREAD)
  946. p->tgid = current->tgid;
  947. if ((retval = security_task_alloc(p)))
  948. goto bad_fork_cleanup_policy;
  949. if ((retval = audit_alloc(p)))
  950. goto bad_fork_cleanup_security;
  951. /* copy all the process information */
  952. if ((retval = copy_semundo(clone_flags, p)))
  953. goto bad_fork_cleanup_audit;
  954. if ((retval = copy_files(clone_flags, p)))
  955. goto bad_fork_cleanup_semundo;
  956. if ((retval = copy_fs(clone_flags, p)))
  957. goto bad_fork_cleanup_files;
  958. if ((retval = copy_sighand(clone_flags, p)))
  959. goto bad_fork_cleanup_fs;
  960. if ((retval = copy_signal(clone_flags, p)))
  961. goto bad_fork_cleanup_sighand;
  962. if ((retval = copy_mm(clone_flags, p)))
  963. goto bad_fork_cleanup_signal;
  964. if ((retval = copy_keys(clone_flags, p)))
  965. goto bad_fork_cleanup_mm;
  966. if ((retval = copy_namespaces(clone_flags, p)))
  967. goto bad_fork_cleanup_keys;
  968. retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
  969. if (retval)
  970. goto bad_fork_cleanup_namespaces;
  971. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  972. /*
  973. * Clear TID on mm_release()?
  974. */
  975. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
  976. p->robust_list = NULL;
  977. #ifdef CONFIG_COMPAT
  978. p->compat_robust_list = NULL;
  979. #endif
  980. INIT_LIST_HEAD(&p->pi_state_list);
  981. p->pi_state_cache = NULL;
  982. /*
  983. * sigaltstack should be cleared when sharing the same VM
  984. */
  985. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  986. p->sas_ss_sp = p->sas_ss_size = 0;
  987. /*
  988. * Syscall tracing should be turned off in the child regardless
  989. * of CLONE_PTRACE.
  990. */
  991. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  992. #ifdef TIF_SYSCALL_EMU
  993. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  994. #endif
  995. /* Our parent execution domain becomes current domain
  996. These must match for thread signalling to apply */
  997. p->parent_exec_id = p->self_exec_id;
  998. /* ok, now we should be set up.. */
  999. p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
  1000. p->pdeath_signal = 0;
  1001. p->exit_state = 0;
  1002. /*
  1003. * Ok, make it visible to the rest of the system.
  1004. * We dont wake it up yet.
  1005. */
  1006. p->group_leader = p;
  1007. INIT_LIST_HEAD(&p->thread_group);
  1008. INIT_LIST_HEAD(&p->ptrace_children);
  1009. INIT_LIST_HEAD(&p->ptrace_list);
  1010. /* Perform scheduler related setup. Assign this task to a CPU. */
  1011. sched_fork(p, clone_flags);
  1012. /* Need tasklist lock for parent etc handling! */
  1013. write_lock_irq(&tasklist_lock);
  1014. /* for sys_ioprio_set(IOPRIO_WHO_PGRP) */
  1015. p->ioprio = current->ioprio;
  1016. /*
  1017. * The task hasn't been attached yet, so its cpus_allowed mask will
  1018. * not be changed, nor will its assigned CPU.
  1019. *
  1020. * The cpus_allowed mask of the parent may have changed after it was
  1021. * copied first time - so re-copy it here, then check the child's CPU
  1022. * to ensure it is on a valid CPU (and if not, just force it back to
  1023. * parent's CPU). This avoids alot of nasty races.
  1024. */
  1025. p->cpus_allowed = current->cpus_allowed;
  1026. if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
  1027. !cpu_online(task_cpu(p))))
  1028. set_task_cpu(p, smp_processor_id());
  1029. /* CLONE_PARENT re-uses the old parent */
  1030. if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
  1031. p->real_parent = current->real_parent;
  1032. else
  1033. p->real_parent = current;
  1034. p->parent = p->real_parent;
  1035. spin_lock(&current->sighand->siglock);
  1036. /*
  1037. * Process group and session signals need to be delivered to just the
  1038. * parent before the fork or both the parent and the child after the
  1039. * fork. Restart if a signal comes in before we add the new process to
  1040. * it's process group.
  1041. * A fatal signal pending means that current will exit, so the new
  1042. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1043. */
  1044. recalc_sigpending();
  1045. if (signal_pending(current)) {
  1046. spin_unlock(&current->sighand->siglock);
  1047. write_unlock_irq(&tasklist_lock);
  1048. retval = -ERESTARTNOINTR;
  1049. goto bad_fork_cleanup_namespaces;
  1050. }
  1051. if (clone_flags & CLONE_THREAD) {
  1052. p->group_leader = current->group_leader;
  1053. list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
  1054. if (!cputime_eq(current->signal->it_virt_expires,
  1055. cputime_zero) ||
  1056. !cputime_eq(current->signal->it_prof_expires,
  1057. cputime_zero) ||
  1058. current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
  1059. !list_empty(&current->signal->cpu_timers[0]) ||
  1060. !list_empty(&current->signal->cpu_timers[1]) ||
  1061. !list_empty(&current->signal->cpu_timers[2])) {
  1062. /*
  1063. * Have child wake up on its first tick to check
  1064. * for process CPU timers.
  1065. */
  1066. p->it_prof_expires = jiffies_to_cputime(1);
  1067. }
  1068. }
  1069. if (likely(p->pid)) {
  1070. add_parent(p);
  1071. if (unlikely(p->ptrace & PT_PTRACED))
  1072. __ptrace_link(p, current->parent);
  1073. if (thread_group_leader(p)) {
  1074. p->signal->tty = current->signal->tty;
  1075. p->signal->pgrp = process_group(current);
  1076. p->signal->session = current->signal->session;
  1077. attach_pid(p, PIDTYPE_PGID, process_group(p));
  1078. attach_pid(p, PIDTYPE_SID, p->signal->session);
  1079. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1080. __get_cpu_var(process_counts)++;
  1081. }
  1082. attach_pid(p, PIDTYPE_PID, p->pid);
  1083. nr_threads++;
  1084. }
  1085. total_forks++;
  1086. spin_unlock(&current->sighand->siglock);
  1087. write_unlock_irq(&tasklist_lock);
  1088. proc_fork_connector(p);
  1089. return p;
  1090. bad_fork_cleanup_namespaces:
  1091. exit_task_namespaces(p);
  1092. bad_fork_cleanup_keys:
  1093. exit_keys(p);
  1094. bad_fork_cleanup_mm:
  1095. if (p->mm)
  1096. mmput(p->mm);
  1097. bad_fork_cleanup_signal:
  1098. cleanup_signal(p);
  1099. bad_fork_cleanup_sighand:
  1100. __cleanup_sighand(p->sighand);
  1101. bad_fork_cleanup_fs:
  1102. exit_fs(p); /* blocking */
  1103. bad_fork_cleanup_files:
  1104. exit_files(p); /* blocking */
  1105. bad_fork_cleanup_semundo:
  1106. exit_sem(p);
  1107. bad_fork_cleanup_audit:
  1108. audit_free(p);
  1109. bad_fork_cleanup_security:
  1110. security_task_free(p);
  1111. bad_fork_cleanup_policy:
  1112. #ifdef CONFIG_NUMA
  1113. mpol_free(p->mempolicy);
  1114. bad_fork_cleanup_cpuset:
  1115. #endif
  1116. cpuset_exit(p);
  1117. bad_fork_cleanup_delays_binfmt:
  1118. delayacct_tsk_free(p);
  1119. if (p->binfmt)
  1120. module_put(p->binfmt->module);
  1121. bad_fork_cleanup_put_domain:
  1122. module_put(task_thread_info(p)->exec_domain->module);
  1123. bad_fork_cleanup_count:
  1124. put_group_info(p->group_info);
  1125. atomic_dec(&p->user->processes);
  1126. free_uid(p->user);
  1127. bad_fork_free:
  1128. free_task(p);
  1129. fork_out:
  1130. return ERR_PTR(retval);
  1131. }
  1132. struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
  1133. {
  1134. memset(regs, 0, sizeof(struct pt_regs));
  1135. return regs;
  1136. }
  1137. struct task_struct * __devinit fork_idle(int cpu)
  1138. {
  1139. struct task_struct *task;
  1140. struct pt_regs regs;
  1141. task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
  1142. if (!IS_ERR(task))
  1143. init_idle(task, cpu);
  1144. return task;
  1145. }
  1146. static inline int fork_traceflag (unsigned clone_flags)
  1147. {
  1148. if (clone_flags & CLONE_UNTRACED)
  1149. return 0;
  1150. else if (clone_flags & CLONE_VFORK) {
  1151. if (current->ptrace & PT_TRACE_VFORK)
  1152. return PTRACE_EVENT_VFORK;
  1153. } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
  1154. if (current->ptrace & PT_TRACE_CLONE)
  1155. return PTRACE_EVENT_CLONE;
  1156. } else if (current->ptrace & PT_TRACE_FORK)
  1157. return PTRACE_EVENT_FORK;
  1158. return 0;
  1159. }
  1160. /*
  1161. * Ok, this is the main fork-routine.
  1162. *
  1163. * It copies the process, and if successful kick-starts
  1164. * it and waits for it to finish using the VM if required.
  1165. */
  1166. long do_fork(unsigned long clone_flags,
  1167. unsigned long stack_start,
  1168. struct pt_regs *regs,
  1169. unsigned long stack_size,
  1170. int __user *parent_tidptr,
  1171. int __user *child_tidptr)
  1172. {
  1173. struct task_struct *p;
  1174. int trace = 0;
  1175. struct pid *pid = alloc_pid();
  1176. long nr;
  1177. if (!pid)
  1178. return -EAGAIN;
  1179. nr = pid->nr;
  1180. if (unlikely(current->ptrace)) {
  1181. trace = fork_traceflag (clone_flags);
  1182. if (trace)
  1183. clone_flags |= CLONE_PTRACE;
  1184. }
  1185. p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, nr);
  1186. /*
  1187. * Do this prior waking up the new thread - the thread pointer
  1188. * might get invalid after that point, if the thread exits quickly.
  1189. */
  1190. if (!IS_ERR(p)) {
  1191. struct completion vfork;
  1192. if (clone_flags & CLONE_VFORK) {
  1193. p->vfork_done = &vfork;
  1194. init_completion(&vfork);
  1195. }
  1196. if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
  1197. /*
  1198. * We'll start up with an immediate SIGSTOP.
  1199. */
  1200. sigaddset(&p->pending.signal, SIGSTOP);
  1201. set_tsk_thread_flag(p, TIF_SIGPENDING);
  1202. }
  1203. if (!(clone_flags & CLONE_STOPPED))
  1204. wake_up_new_task(p, clone_flags);
  1205. else
  1206. p->state = TASK_STOPPED;
  1207. if (unlikely (trace)) {
  1208. current->ptrace_message = nr;
  1209. ptrace_notify ((trace << 8) | SIGTRAP);
  1210. }
  1211. if (clone_flags & CLONE_VFORK) {
  1212. wait_for_completion(&vfork);
  1213. if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
  1214. current->ptrace_message = nr;
  1215. ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
  1216. }
  1217. }
  1218. } else {
  1219. free_pid(pid);
  1220. nr = PTR_ERR(p);
  1221. }
  1222. return nr;
  1223. }
  1224. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1225. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1226. #endif
  1227. static void sighand_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
  1228. {
  1229. struct sighand_struct *sighand = data;
  1230. if ((flags & (SLAB_CTOR_VERIFY | SLAB_CTOR_CONSTRUCTOR)) ==
  1231. SLAB_CTOR_CONSTRUCTOR)
  1232. spin_lock_init(&sighand->siglock);
  1233. }
  1234. void __init proc_caches_init(void)
  1235. {
  1236. sighand_cachep = kmem_cache_create("sighand_cache",
  1237. sizeof(struct sighand_struct), 0,
  1238. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
  1239. sighand_ctor, NULL);
  1240. signal_cachep = kmem_cache_create("signal_cache",
  1241. sizeof(struct signal_struct), 0,
  1242. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  1243. files_cachep = kmem_cache_create("files_cache",
  1244. sizeof(struct files_struct), 0,
  1245. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  1246. fs_cachep = kmem_cache_create("fs_cache",
  1247. sizeof(struct fs_struct), 0,
  1248. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  1249. vm_area_cachep = kmem_cache_create("vm_area_struct",
  1250. sizeof(struct vm_area_struct), 0,
  1251. SLAB_PANIC, NULL, NULL);
  1252. mm_cachep = kmem_cache_create("mm_struct",
  1253. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1254. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  1255. }
  1256. /*
  1257. * Check constraints on flags passed to the unshare system call and
  1258. * force unsharing of additional process context as appropriate.
  1259. */
  1260. static inline void check_unshare_flags(unsigned long *flags_ptr)
  1261. {
  1262. /*
  1263. * If unsharing a thread from a thread group, must also
  1264. * unshare vm.
  1265. */
  1266. if (*flags_ptr & CLONE_THREAD)
  1267. *flags_ptr |= CLONE_VM;
  1268. /*
  1269. * If unsharing vm, must also unshare signal handlers.
  1270. */
  1271. if (*flags_ptr & CLONE_VM)
  1272. *flags_ptr |= CLONE_SIGHAND;
  1273. /*
  1274. * If unsharing signal handlers and the task was created
  1275. * using CLONE_THREAD, then must unshare the thread
  1276. */
  1277. if ((*flags_ptr & CLONE_SIGHAND) &&
  1278. (atomic_read(&current->signal->count) > 1))
  1279. *flags_ptr |= CLONE_THREAD;
  1280. /*
  1281. * If unsharing namespace, must also unshare filesystem information.
  1282. */
  1283. if (*flags_ptr & CLONE_NEWNS)
  1284. *flags_ptr |= CLONE_FS;
  1285. }
  1286. /*
  1287. * Unsharing of tasks created with CLONE_THREAD is not supported yet
  1288. */
  1289. static int unshare_thread(unsigned long unshare_flags)
  1290. {
  1291. if (unshare_flags & CLONE_THREAD)
  1292. return -EINVAL;
  1293. return 0;
  1294. }
  1295. /*
  1296. * Unshare the filesystem structure if it is being shared
  1297. */
  1298. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1299. {
  1300. struct fs_struct *fs = current->fs;
  1301. if ((unshare_flags & CLONE_FS) &&
  1302. (fs && atomic_read(&fs->count) > 1)) {
  1303. *new_fsp = __copy_fs_struct(current->fs);
  1304. if (!*new_fsp)
  1305. return -ENOMEM;
  1306. }
  1307. return 0;
  1308. }
  1309. /*
  1310. * Unshare the namespace structure if it is being shared
  1311. */
  1312. static int unshare_namespace(unsigned long unshare_flags, struct namespace **new_nsp, struct fs_struct *new_fs)
  1313. {
  1314. struct namespace *ns = current->nsproxy->namespace;
  1315. if ((unshare_flags & CLONE_NEWNS) && ns) {
  1316. if (!capable(CAP_SYS_ADMIN))
  1317. return -EPERM;
  1318. *new_nsp = dup_namespace(current, new_fs ? new_fs : current->fs);
  1319. if (!*new_nsp)
  1320. return -ENOMEM;
  1321. }
  1322. return 0;
  1323. }
  1324. /*
  1325. * Unsharing of sighand for tasks created with CLONE_SIGHAND is not
  1326. * supported yet
  1327. */
  1328. static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
  1329. {
  1330. struct sighand_struct *sigh = current->sighand;
  1331. if ((unshare_flags & CLONE_SIGHAND) &&
  1332. (sigh && atomic_read(&sigh->count) > 1))
  1333. return -EINVAL;
  1334. else
  1335. return 0;
  1336. }
  1337. /*
  1338. * Unshare vm if it is being shared
  1339. */
  1340. static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
  1341. {
  1342. struct mm_struct *mm = current->mm;
  1343. if ((unshare_flags & CLONE_VM) &&
  1344. (mm && atomic_read(&mm->mm_users) > 1)) {
  1345. return -EINVAL;
  1346. }
  1347. return 0;
  1348. }
  1349. /*
  1350. * Unshare file descriptor table if it is being shared
  1351. */
  1352. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1353. {
  1354. struct files_struct *fd = current->files;
  1355. int error = 0;
  1356. if ((unshare_flags & CLONE_FILES) &&
  1357. (fd && atomic_read(&fd->count) > 1)) {
  1358. *new_fdp = dup_fd(fd, &error);
  1359. if (!*new_fdp)
  1360. return error;
  1361. }
  1362. return 0;
  1363. }
  1364. /*
  1365. * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
  1366. * supported yet
  1367. */
  1368. static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
  1369. {
  1370. if (unshare_flags & CLONE_SYSVSEM)
  1371. return -EINVAL;
  1372. return 0;
  1373. }
  1374. #ifndef CONFIG_IPC_NS
  1375. static inline int unshare_ipcs(unsigned long flags, struct ipc_namespace **ns)
  1376. {
  1377. if (flags & CLONE_NEWIPC)
  1378. return -EINVAL;
  1379. return 0;
  1380. }
  1381. #endif
  1382. /*
  1383. * unshare allows a process to 'unshare' part of the process
  1384. * context which was originally shared using clone. copy_*
  1385. * functions used by do_fork() cannot be used here directly
  1386. * because they modify an inactive task_struct that is being
  1387. * constructed. Here we are modifying the current, active,
  1388. * task_struct.
  1389. */
  1390. asmlinkage long sys_unshare(unsigned long unshare_flags)
  1391. {
  1392. int err = 0;
  1393. struct fs_struct *fs, *new_fs = NULL;
  1394. struct namespace *ns, *new_ns = NULL;
  1395. struct sighand_struct *sigh, *new_sigh = NULL;
  1396. struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
  1397. struct files_struct *fd, *new_fd = NULL;
  1398. struct sem_undo_list *new_ulist = NULL;
  1399. struct nsproxy *new_nsproxy = NULL, *old_nsproxy = NULL;
  1400. struct uts_namespace *uts, *new_uts = NULL;
  1401. struct ipc_namespace *ipc, *new_ipc = NULL;
  1402. check_unshare_flags(&unshare_flags);
  1403. /* Return -EINVAL for all unsupported flags */
  1404. err = -EINVAL;
  1405. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1406. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1407. CLONE_NEWUTS|CLONE_NEWIPC))
  1408. goto bad_unshare_out;
  1409. if ((err = unshare_thread(unshare_flags)))
  1410. goto bad_unshare_out;
  1411. if ((err = unshare_fs(unshare_flags, &new_fs)))
  1412. goto bad_unshare_cleanup_thread;
  1413. if ((err = unshare_namespace(unshare_flags, &new_ns, new_fs)))
  1414. goto bad_unshare_cleanup_fs;
  1415. if ((err = unshare_sighand(unshare_flags, &new_sigh)))
  1416. goto bad_unshare_cleanup_ns;
  1417. if ((err = unshare_vm(unshare_flags, &new_mm)))
  1418. goto bad_unshare_cleanup_sigh;
  1419. if ((err = unshare_fd(unshare_flags, &new_fd)))
  1420. goto bad_unshare_cleanup_vm;
  1421. if ((err = unshare_semundo(unshare_flags, &new_ulist)))
  1422. goto bad_unshare_cleanup_fd;
  1423. if ((err = unshare_utsname(unshare_flags, &new_uts)))
  1424. goto bad_unshare_cleanup_semundo;
  1425. if ((err = unshare_ipcs(unshare_flags, &new_ipc)))
  1426. goto bad_unshare_cleanup_uts;
  1427. if (new_ns || new_uts || new_ipc) {
  1428. old_nsproxy = current->nsproxy;
  1429. new_nsproxy = dup_namespaces(old_nsproxy);
  1430. if (!new_nsproxy) {
  1431. err = -ENOMEM;
  1432. goto bad_unshare_cleanup_ipc;
  1433. }
  1434. }
  1435. if (new_fs || new_ns || new_sigh || new_mm || new_fd || new_ulist ||
  1436. new_uts || new_ipc) {
  1437. task_lock(current);
  1438. if (new_nsproxy) {
  1439. current->nsproxy = new_nsproxy;
  1440. new_nsproxy = old_nsproxy;
  1441. }
  1442. if (new_fs) {
  1443. fs = current->fs;
  1444. current->fs = new_fs;
  1445. new_fs = fs;
  1446. }
  1447. if (new_ns) {
  1448. ns = current->nsproxy->namespace;
  1449. current->nsproxy->namespace = new_ns;
  1450. new_ns = ns;
  1451. }
  1452. if (new_sigh) {
  1453. sigh = current->sighand;
  1454. rcu_assign_pointer(current->sighand, new_sigh);
  1455. new_sigh = sigh;
  1456. }
  1457. if (new_mm) {
  1458. mm = current->mm;
  1459. active_mm = current->active_mm;
  1460. current->mm = new_mm;
  1461. current->active_mm = new_mm;
  1462. activate_mm(active_mm, new_mm);
  1463. new_mm = mm;
  1464. }
  1465. if (new_fd) {
  1466. fd = current->files;
  1467. current->files = new_fd;
  1468. new_fd = fd;
  1469. }
  1470. if (new_uts) {
  1471. uts = current->nsproxy->uts_ns;
  1472. current->nsproxy->uts_ns = new_uts;
  1473. new_uts = uts;
  1474. }
  1475. if (new_ipc) {
  1476. ipc = current->nsproxy->ipc_ns;
  1477. current->nsproxy->ipc_ns = new_ipc;
  1478. new_ipc = ipc;
  1479. }
  1480. task_unlock(current);
  1481. }
  1482. if (new_nsproxy)
  1483. put_nsproxy(new_nsproxy);
  1484. bad_unshare_cleanup_ipc:
  1485. if (new_ipc)
  1486. put_ipc_ns(new_ipc);
  1487. bad_unshare_cleanup_uts:
  1488. if (new_uts)
  1489. put_uts_ns(new_uts);
  1490. bad_unshare_cleanup_semundo:
  1491. bad_unshare_cleanup_fd:
  1492. if (new_fd)
  1493. put_files_struct(new_fd);
  1494. bad_unshare_cleanup_vm:
  1495. if (new_mm)
  1496. mmput(new_mm);
  1497. bad_unshare_cleanup_sigh:
  1498. if (new_sigh)
  1499. if (atomic_dec_and_test(&new_sigh->count))
  1500. kmem_cache_free(sighand_cachep, new_sigh);
  1501. bad_unshare_cleanup_ns:
  1502. if (new_ns)
  1503. put_namespace(new_ns);
  1504. bad_unshare_cleanup_fs:
  1505. if (new_fs)
  1506. put_fs_struct(new_fs);
  1507. bad_unshare_cleanup_thread:
  1508. bad_unshare_out:
  1509. return err;
  1510. }