disk-io.c 105 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <linux/ratelimit.h>
  32. #include <asm/unaligned.h>
  33. #include "compat.h"
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "async-thread.h"
  41. #include "locking.h"
  42. #include "tree-log.h"
  43. #include "free-space-cache.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. #include "rcu-string.h"
  47. #ifdef CONFIG_X86
  48. #include <asm/cpufeature.h>
  49. #endif
  50. static struct extent_io_ops btree_extent_io_ops;
  51. static void end_workqueue_fn(struct btrfs_work *work);
  52. static void free_fs_root(struct btrfs_root *root);
  53. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  54. int read_only);
  55. static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
  56. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  57. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  58. struct btrfs_root *root);
  59. static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
  60. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  61. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  62. struct extent_io_tree *dirty_pages,
  63. int mark);
  64. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  65. struct extent_io_tree *pinned_extents);
  66. /*
  67. * end_io_wq structs are used to do processing in task context when an IO is
  68. * complete. This is used during reads to verify checksums, and it is used
  69. * by writes to insert metadata for new file extents after IO is complete.
  70. */
  71. struct end_io_wq {
  72. struct bio *bio;
  73. bio_end_io_t *end_io;
  74. void *private;
  75. struct btrfs_fs_info *info;
  76. int error;
  77. int metadata;
  78. struct list_head list;
  79. struct btrfs_work work;
  80. };
  81. /*
  82. * async submit bios are used to offload expensive checksumming
  83. * onto the worker threads. They checksum file and metadata bios
  84. * just before they are sent down the IO stack.
  85. */
  86. struct async_submit_bio {
  87. struct inode *inode;
  88. struct bio *bio;
  89. struct list_head list;
  90. extent_submit_bio_hook_t *submit_bio_start;
  91. extent_submit_bio_hook_t *submit_bio_done;
  92. int rw;
  93. int mirror_num;
  94. unsigned long bio_flags;
  95. /*
  96. * bio_offset is optional, can be used if the pages in the bio
  97. * can't tell us where in the file the bio should go
  98. */
  99. u64 bio_offset;
  100. struct btrfs_work work;
  101. int error;
  102. };
  103. /*
  104. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  105. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  106. * the level the eb occupies in the tree.
  107. *
  108. * Different roots are used for different purposes and may nest inside each
  109. * other and they require separate keysets. As lockdep keys should be
  110. * static, assign keysets according to the purpose of the root as indicated
  111. * by btrfs_root->objectid. This ensures that all special purpose roots
  112. * have separate keysets.
  113. *
  114. * Lock-nesting across peer nodes is always done with the immediate parent
  115. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  116. * subclass to avoid triggering lockdep warning in such cases.
  117. *
  118. * The key is set by the readpage_end_io_hook after the buffer has passed
  119. * csum validation but before the pages are unlocked. It is also set by
  120. * btrfs_init_new_buffer on freshly allocated blocks.
  121. *
  122. * We also add a check to make sure the highest level of the tree is the
  123. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  124. * needs update as well.
  125. */
  126. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  127. # if BTRFS_MAX_LEVEL != 8
  128. # error
  129. # endif
  130. static struct btrfs_lockdep_keyset {
  131. u64 id; /* root objectid */
  132. const char *name_stem; /* lock name stem */
  133. char names[BTRFS_MAX_LEVEL + 1][20];
  134. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  135. } btrfs_lockdep_keysets[] = {
  136. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  137. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  138. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  139. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  140. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  141. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  142. { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
  143. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  144. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  145. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  146. { .id = 0, .name_stem = "tree" },
  147. };
  148. void __init btrfs_init_lockdep(void)
  149. {
  150. int i, j;
  151. /* initialize lockdep class names */
  152. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  153. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  154. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  155. snprintf(ks->names[j], sizeof(ks->names[j]),
  156. "btrfs-%s-%02d", ks->name_stem, j);
  157. }
  158. }
  159. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  160. int level)
  161. {
  162. struct btrfs_lockdep_keyset *ks;
  163. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  164. /* find the matching keyset, id 0 is the default entry */
  165. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  166. if (ks->id == objectid)
  167. break;
  168. lockdep_set_class_and_name(&eb->lock,
  169. &ks->keys[level], ks->names[level]);
  170. }
  171. #endif
  172. /*
  173. * extents on the btree inode are pretty simple, there's one extent
  174. * that covers the entire device
  175. */
  176. static struct extent_map *btree_get_extent(struct inode *inode,
  177. struct page *page, size_t pg_offset, u64 start, u64 len,
  178. int create)
  179. {
  180. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  181. struct extent_map *em;
  182. int ret;
  183. read_lock(&em_tree->lock);
  184. em = lookup_extent_mapping(em_tree, start, len);
  185. if (em) {
  186. em->bdev =
  187. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  188. read_unlock(&em_tree->lock);
  189. goto out;
  190. }
  191. read_unlock(&em_tree->lock);
  192. em = alloc_extent_map();
  193. if (!em) {
  194. em = ERR_PTR(-ENOMEM);
  195. goto out;
  196. }
  197. em->start = 0;
  198. em->len = (u64)-1;
  199. em->block_len = (u64)-1;
  200. em->block_start = 0;
  201. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  202. write_lock(&em_tree->lock);
  203. ret = add_extent_mapping(em_tree, em);
  204. if (ret == -EEXIST) {
  205. free_extent_map(em);
  206. em = lookup_extent_mapping(em_tree, start, len);
  207. if (!em)
  208. em = ERR_PTR(-EIO);
  209. } else if (ret) {
  210. free_extent_map(em);
  211. em = ERR_PTR(ret);
  212. }
  213. write_unlock(&em_tree->lock);
  214. out:
  215. return em;
  216. }
  217. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  218. {
  219. return crc32c(seed, data, len);
  220. }
  221. void btrfs_csum_final(u32 crc, char *result)
  222. {
  223. put_unaligned_le32(~crc, result);
  224. }
  225. /*
  226. * compute the csum for a btree block, and either verify it or write it
  227. * into the csum field of the block.
  228. */
  229. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  230. int verify)
  231. {
  232. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  233. char *result = NULL;
  234. unsigned long len;
  235. unsigned long cur_len;
  236. unsigned long offset = BTRFS_CSUM_SIZE;
  237. char *kaddr;
  238. unsigned long map_start;
  239. unsigned long map_len;
  240. int err;
  241. u32 crc = ~(u32)0;
  242. unsigned long inline_result;
  243. len = buf->len - offset;
  244. while (len > 0) {
  245. err = map_private_extent_buffer(buf, offset, 32,
  246. &kaddr, &map_start, &map_len);
  247. if (err)
  248. return 1;
  249. cur_len = min(len, map_len - (offset - map_start));
  250. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  251. crc, cur_len);
  252. len -= cur_len;
  253. offset += cur_len;
  254. }
  255. if (csum_size > sizeof(inline_result)) {
  256. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  257. if (!result)
  258. return 1;
  259. } else {
  260. result = (char *)&inline_result;
  261. }
  262. btrfs_csum_final(crc, result);
  263. if (verify) {
  264. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  265. u32 val;
  266. u32 found = 0;
  267. memcpy(&found, result, csum_size);
  268. read_extent_buffer(buf, &val, 0, csum_size);
  269. printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
  270. "failed on %llu wanted %X found %X "
  271. "level %d\n",
  272. root->fs_info->sb->s_id,
  273. (unsigned long long)buf->start, val, found,
  274. btrfs_header_level(buf));
  275. if (result != (char *)&inline_result)
  276. kfree(result);
  277. return 1;
  278. }
  279. } else {
  280. write_extent_buffer(buf, result, 0, csum_size);
  281. }
  282. if (result != (char *)&inline_result)
  283. kfree(result);
  284. return 0;
  285. }
  286. /*
  287. * we can't consider a given block up to date unless the transid of the
  288. * block matches the transid in the parent node's pointer. This is how we
  289. * detect blocks that either didn't get written at all or got written
  290. * in the wrong place.
  291. */
  292. static int verify_parent_transid(struct extent_io_tree *io_tree,
  293. struct extent_buffer *eb, u64 parent_transid,
  294. int atomic)
  295. {
  296. struct extent_state *cached_state = NULL;
  297. int ret;
  298. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  299. return 0;
  300. if (atomic)
  301. return -EAGAIN;
  302. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  303. 0, &cached_state);
  304. if (extent_buffer_uptodate(eb) &&
  305. btrfs_header_generation(eb) == parent_transid) {
  306. ret = 0;
  307. goto out;
  308. }
  309. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  310. "found %llu\n",
  311. (unsigned long long)eb->start,
  312. (unsigned long long)parent_transid,
  313. (unsigned long long)btrfs_header_generation(eb));
  314. ret = 1;
  315. clear_extent_buffer_uptodate(eb);
  316. out:
  317. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  318. &cached_state, GFP_NOFS);
  319. return ret;
  320. }
  321. /*
  322. * helper to read a given tree block, doing retries as required when
  323. * the checksums don't match and we have alternate mirrors to try.
  324. */
  325. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  326. struct extent_buffer *eb,
  327. u64 start, u64 parent_transid)
  328. {
  329. struct extent_io_tree *io_tree;
  330. int failed = 0;
  331. int ret;
  332. int num_copies = 0;
  333. int mirror_num = 0;
  334. int failed_mirror = 0;
  335. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  336. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  337. while (1) {
  338. ret = read_extent_buffer_pages(io_tree, eb, start,
  339. WAIT_COMPLETE,
  340. btree_get_extent, mirror_num);
  341. if (!ret) {
  342. if (!verify_parent_transid(io_tree, eb,
  343. parent_transid, 0))
  344. break;
  345. else
  346. ret = -EIO;
  347. }
  348. /*
  349. * This buffer's crc is fine, but its contents are corrupted, so
  350. * there is no reason to read the other copies, they won't be
  351. * any less wrong.
  352. */
  353. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  354. break;
  355. num_copies = btrfs_num_copies(root->fs_info,
  356. eb->start, eb->len);
  357. if (num_copies == 1)
  358. break;
  359. if (!failed_mirror) {
  360. failed = 1;
  361. failed_mirror = eb->read_mirror;
  362. }
  363. mirror_num++;
  364. if (mirror_num == failed_mirror)
  365. mirror_num++;
  366. if (mirror_num > num_copies)
  367. break;
  368. }
  369. if (failed && !ret && failed_mirror)
  370. repair_eb_io_failure(root, eb, failed_mirror);
  371. return ret;
  372. }
  373. /*
  374. * checksum a dirty tree block before IO. This has extra checks to make sure
  375. * we only fill in the checksum field in the first page of a multi-page block
  376. */
  377. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  378. {
  379. struct extent_io_tree *tree;
  380. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  381. u64 found_start;
  382. struct extent_buffer *eb;
  383. tree = &BTRFS_I(page->mapping->host)->io_tree;
  384. eb = (struct extent_buffer *)page->private;
  385. if (page != eb->pages[0])
  386. return 0;
  387. found_start = btrfs_header_bytenr(eb);
  388. if (found_start != start) {
  389. WARN_ON(1);
  390. return 0;
  391. }
  392. if (!PageUptodate(page)) {
  393. WARN_ON(1);
  394. return 0;
  395. }
  396. csum_tree_block(root, eb, 0);
  397. return 0;
  398. }
  399. static int check_tree_block_fsid(struct btrfs_root *root,
  400. struct extent_buffer *eb)
  401. {
  402. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  403. u8 fsid[BTRFS_UUID_SIZE];
  404. int ret = 1;
  405. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  406. BTRFS_FSID_SIZE);
  407. while (fs_devices) {
  408. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  409. ret = 0;
  410. break;
  411. }
  412. fs_devices = fs_devices->seed;
  413. }
  414. return ret;
  415. }
  416. #define CORRUPT(reason, eb, root, slot) \
  417. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  418. "root=%llu, slot=%d\n", reason, \
  419. (unsigned long long)btrfs_header_bytenr(eb), \
  420. (unsigned long long)root->objectid, slot)
  421. static noinline int check_leaf(struct btrfs_root *root,
  422. struct extent_buffer *leaf)
  423. {
  424. struct btrfs_key key;
  425. struct btrfs_key leaf_key;
  426. u32 nritems = btrfs_header_nritems(leaf);
  427. int slot;
  428. if (nritems == 0)
  429. return 0;
  430. /* Check the 0 item */
  431. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  432. BTRFS_LEAF_DATA_SIZE(root)) {
  433. CORRUPT("invalid item offset size pair", leaf, root, 0);
  434. return -EIO;
  435. }
  436. /*
  437. * Check to make sure each items keys are in the correct order and their
  438. * offsets make sense. We only have to loop through nritems-1 because
  439. * we check the current slot against the next slot, which verifies the
  440. * next slot's offset+size makes sense and that the current's slot
  441. * offset is correct.
  442. */
  443. for (slot = 0; slot < nritems - 1; slot++) {
  444. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  445. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  446. /* Make sure the keys are in the right order */
  447. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  448. CORRUPT("bad key order", leaf, root, slot);
  449. return -EIO;
  450. }
  451. /*
  452. * Make sure the offset and ends are right, remember that the
  453. * item data starts at the end of the leaf and grows towards the
  454. * front.
  455. */
  456. if (btrfs_item_offset_nr(leaf, slot) !=
  457. btrfs_item_end_nr(leaf, slot + 1)) {
  458. CORRUPT("slot offset bad", leaf, root, slot);
  459. return -EIO;
  460. }
  461. /*
  462. * Check to make sure that we don't point outside of the leaf,
  463. * just incase all the items are consistent to eachother, but
  464. * all point outside of the leaf.
  465. */
  466. if (btrfs_item_end_nr(leaf, slot) >
  467. BTRFS_LEAF_DATA_SIZE(root)) {
  468. CORRUPT("slot end outside of leaf", leaf, root, slot);
  469. return -EIO;
  470. }
  471. }
  472. return 0;
  473. }
  474. struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
  475. struct page *page, int max_walk)
  476. {
  477. struct extent_buffer *eb;
  478. u64 start = page_offset(page);
  479. u64 target = start;
  480. u64 min_start;
  481. if (start < max_walk)
  482. min_start = 0;
  483. else
  484. min_start = start - max_walk;
  485. while (start >= min_start) {
  486. eb = find_extent_buffer(tree, start, 0);
  487. if (eb) {
  488. /*
  489. * we found an extent buffer and it contains our page
  490. * horray!
  491. */
  492. if (eb->start <= target &&
  493. eb->start + eb->len > target)
  494. return eb;
  495. /* we found an extent buffer that wasn't for us */
  496. free_extent_buffer(eb);
  497. return NULL;
  498. }
  499. if (start == 0)
  500. break;
  501. start -= PAGE_CACHE_SIZE;
  502. }
  503. return NULL;
  504. }
  505. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  506. struct extent_state *state, int mirror)
  507. {
  508. struct extent_io_tree *tree;
  509. u64 found_start;
  510. int found_level;
  511. struct extent_buffer *eb;
  512. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  513. int ret = 0;
  514. int reads_done;
  515. if (!page->private)
  516. goto out;
  517. tree = &BTRFS_I(page->mapping->host)->io_tree;
  518. eb = (struct extent_buffer *)page->private;
  519. /* the pending IO might have been the only thing that kept this buffer
  520. * in memory. Make sure we have a ref for all this other checks
  521. */
  522. extent_buffer_get(eb);
  523. reads_done = atomic_dec_and_test(&eb->io_pages);
  524. if (!reads_done)
  525. goto err;
  526. eb->read_mirror = mirror;
  527. if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
  528. ret = -EIO;
  529. goto err;
  530. }
  531. found_start = btrfs_header_bytenr(eb);
  532. if (found_start != eb->start) {
  533. printk_ratelimited(KERN_INFO "btrfs bad tree block start "
  534. "%llu %llu\n",
  535. (unsigned long long)found_start,
  536. (unsigned long long)eb->start);
  537. ret = -EIO;
  538. goto err;
  539. }
  540. if (check_tree_block_fsid(root, eb)) {
  541. printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
  542. (unsigned long long)eb->start);
  543. ret = -EIO;
  544. goto err;
  545. }
  546. found_level = btrfs_header_level(eb);
  547. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  548. eb, found_level);
  549. ret = csum_tree_block(root, eb, 1);
  550. if (ret) {
  551. ret = -EIO;
  552. goto err;
  553. }
  554. /*
  555. * If this is a leaf block and it is corrupt, set the corrupt bit so
  556. * that we don't try and read the other copies of this block, just
  557. * return -EIO.
  558. */
  559. if (found_level == 0 && check_leaf(root, eb)) {
  560. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  561. ret = -EIO;
  562. }
  563. if (!ret)
  564. set_extent_buffer_uptodate(eb);
  565. err:
  566. if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
  567. clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
  568. btree_readahead_hook(root, eb, eb->start, ret);
  569. }
  570. if (ret)
  571. clear_extent_buffer_uptodate(eb);
  572. free_extent_buffer(eb);
  573. out:
  574. return ret;
  575. }
  576. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  577. {
  578. struct extent_buffer *eb;
  579. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  580. eb = (struct extent_buffer *)page->private;
  581. set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
  582. eb->read_mirror = failed_mirror;
  583. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  584. btree_readahead_hook(root, eb, eb->start, -EIO);
  585. return -EIO; /* we fixed nothing */
  586. }
  587. static void end_workqueue_bio(struct bio *bio, int err)
  588. {
  589. struct end_io_wq *end_io_wq = bio->bi_private;
  590. struct btrfs_fs_info *fs_info;
  591. fs_info = end_io_wq->info;
  592. end_io_wq->error = err;
  593. end_io_wq->work.func = end_workqueue_fn;
  594. end_io_wq->work.flags = 0;
  595. if (bio->bi_rw & REQ_WRITE) {
  596. if (end_io_wq->metadata == 1)
  597. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  598. &end_io_wq->work);
  599. else if (end_io_wq->metadata == 2)
  600. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  601. &end_io_wq->work);
  602. else
  603. btrfs_queue_worker(&fs_info->endio_write_workers,
  604. &end_io_wq->work);
  605. } else {
  606. if (end_io_wq->metadata)
  607. btrfs_queue_worker(&fs_info->endio_meta_workers,
  608. &end_io_wq->work);
  609. else
  610. btrfs_queue_worker(&fs_info->endio_workers,
  611. &end_io_wq->work);
  612. }
  613. }
  614. /*
  615. * For the metadata arg you want
  616. *
  617. * 0 - if data
  618. * 1 - if normal metadta
  619. * 2 - if writing to the free space cache area
  620. */
  621. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  622. int metadata)
  623. {
  624. struct end_io_wq *end_io_wq;
  625. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  626. if (!end_io_wq)
  627. return -ENOMEM;
  628. end_io_wq->private = bio->bi_private;
  629. end_io_wq->end_io = bio->bi_end_io;
  630. end_io_wq->info = info;
  631. end_io_wq->error = 0;
  632. end_io_wq->bio = bio;
  633. end_io_wq->metadata = metadata;
  634. bio->bi_private = end_io_wq;
  635. bio->bi_end_io = end_workqueue_bio;
  636. return 0;
  637. }
  638. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  639. {
  640. unsigned long limit = min_t(unsigned long,
  641. info->workers.max_workers,
  642. info->fs_devices->open_devices);
  643. return 256 * limit;
  644. }
  645. static void run_one_async_start(struct btrfs_work *work)
  646. {
  647. struct async_submit_bio *async;
  648. int ret;
  649. async = container_of(work, struct async_submit_bio, work);
  650. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  651. async->mirror_num, async->bio_flags,
  652. async->bio_offset);
  653. if (ret)
  654. async->error = ret;
  655. }
  656. static void run_one_async_done(struct btrfs_work *work)
  657. {
  658. struct btrfs_fs_info *fs_info;
  659. struct async_submit_bio *async;
  660. int limit;
  661. async = container_of(work, struct async_submit_bio, work);
  662. fs_info = BTRFS_I(async->inode)->root->fs_info;
  663. limit = btrfs_async_submit_limit(fs_info);
  664. limit = limit * 2 / 3;
  665. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  666. waitqueue_active(&fs_info->async_submit_wait))
  667. wake_up(&fs_info->async_submit_wait);
  668. /* If an error occured we just want to clean up the bio and move on */
  669. if (async->error) {
  670. bio_endio(async->bio, async->error);
  671. return;
  672. }
  673. async->submit_bio_done(async->inode, async->rw, async->bio,
  674. async->mirror_num, async->bio_flags,
  675. async->bio_offset);
  676. }
  677. static void run_one_async_free(struct btrfs_work *work)
  678. {
  679. struct async_submit_bio *async;
  680. async = container_of(work, struct async_submit_bio, work);
  681. kfree(async);
  682. }
  683. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  684. int rw, struct bio *bio, int mirror_num,
  685. unsigned long bio_flags,
  686. u64 bio_offset,
  687. extent_submit_bio_hook_t *submit_bio_start,
  688. extent_submit_bio_hook_t *submit_bio_done)
  689. {
  690. struct async_submit_bio *async;
  691. async = kmalloc(sizeof(*async), GFP_NOFS);
  692. if (!async)
  693. return -ENOMEM;
  694. async->inode = inode;
  695. async->rw = rw;
  696. async->bio = bio;
  697. async->mirror_num = mirror_num;
  698. async->submit_bio_start = submit_bio_start;
  699. async->submit_bio_done = submit_bio_done;
  700. async->work.func = run_one_async_start;
  701. async->work.ordered_func = run_one_async_done;
  702. async->work.ordered_free = run_one_async_free;
  703. async->work.flags = 0;
  704. async->bio_flags = bio_flags;
  705. async->bio_offset = bio_offset;
  706. async->error = 0;
  707. atomic_inc(&fs_info->nr_async_submits);
  708. if (rw & REQ_SYNC)
  709. btrfs_set_work_high_prio(&async->work);
  710. btrfs_queue_worker(&fs_info->workers, &async->work);
  711. while (atomic_read(&fs_info->async_submit_draining) &&
  712. atomic_read(&fs_info->nr_async_submits)) {
  713. wait_event(fs_info->async_submit_wait,
  714. (atomic_read(&fs_info->nr_async_submits) == 0));
  715. }
  716. return 0;
  717. }
  718. static int btree_csum_one_bio(struct bio *bio)
  719. {
  720. struct bio_vec *bvec = bio->bi_io_vec;
  721. int bio_index = 0;
  722. struct btrfs_root *root;
  723. int ret = 0;
  724. WARN_ON(bio->bi_vcnt <= 0);
  725. while (bio_index < bio->bi_vcnt) {
  726. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  727. ret = csum_dirty_buffer(root, bvec->bv_page);
  728. if (ret)
  729. break;
  730. bio_index++;
  731. bvec++;
  732. }
  733. return ret;
  734. }
  735. static int __btree_submit_bio_start(struct inode *inode, int rw,
  736. struct bio *bio, int mirror_num,
  737. unsigned long bio_flags,
  738. u64 bio_offset)
  739. {
  740. /*
  741. * when we're called for a write, we're already in the async
  742. * submission context. Just jump into btrfs_map_bio
  743. */
  744. return btree_csum_one_bio(bio);
  745. }
  746. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  747. int mirror_num, unsigned long bio_flags,
  748. u64 bio_offset)
  749. {
  750. /*
  751. * when we're called for a write, we're already in the async
  752. * submission context. Just jump into btrfs_map_bio
  753. */
  754. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  755. }
  756. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  757. {
  758. if (bio_flags & EXTENT_BIO_TREE_LOG)
  759. return 0;
  760. #ifdef CONFIG_X86
  761. if (cpu_has_xmm4_2)
  762. return 0;
  763. #endif
  764. return 1;
  765. }
  766. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  767. int mirror_num, unsigned long bio_flags,
  768. u64 bio_offset)
  769. {
  770. int async = check_async_write(inode, bio_flags);
  771. int ret;
  772. if (!(rw & REQ_WRITE)) {
  773. /*
  774. * called for a read, do the setup so that checksum validation
  775. * can happen in the async kernel threads
  776. */
  777. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  778. bio, 1);
  779. if (ret)
  780. return ret;
  781. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  782. mirror_num, 0);
  783. } else if (!async) {
  784. ret = btree_csum_one_bio(bio);
  785. if (ret)
  786. return ret;
  787. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  788. mirror_num, 0);
  789. }
  790. /*
  791. * kthread helpers are used to submit writes so that checksumming
  792. * can happen in parallel across all CPUs
  793. */
  794. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  795. inode, rw, bio, mirror_num, 0,
  796. bio_offset,
  797. __btree_submit_bio_start,
  798. __btree_submit_bio_done);
  799. }
  800. #ifdef CONFIG_MIGRATION
  801. static int btree_migratepage(struct address_space *mapping,
  802. struct page *newpage, struct page *page,
  803. enum migrate_mode mode)
  804. {
  805. /*
  806. * we can't safely write a btree page from here,
  807. * we haven't done the locking hook
  808. */
  809. if (PageDirty(page))
  810. return -EAGAIN;
  811. /*
  812. * Buffers may be managed in a filesystem specific way.
  813. * We must have no buffers or drop them.
  814. */
  815. if (page_has_private(page) &&
  816. !try_to_release_page(page, GFP_KERNEL))
  817. return -EAGAIN;
  818. return migrate_page(mapping, newpage, page, mode);
  819. }
  820. #endif
  821. static int btree_writepages(struct address_space *mapping,
  822. struct writeback_control *wbc)
  823. {
  824. struct extent_io_tree *tree;
  825. tree = &BTRFS_I(mapping->host)->io_tree;
  826. if (wbc->sync_mode == WB_SYNC_NONE) {
  827. struct btrfs_root *root = BTRFS_I(mapping->host)->root;
  828. u64 num_dirty;
  829. unsigned long thresh = 32 * 1024 * 1024;
  830. if (wbc->for_kupdate)
  831. return 0;
  832. /* this is a bit racy, but that's ok */
  833. num_dirty = root->fs_info->dirty_metadata_bytes;
  834. if (num_dirty < thresh)
  835. return 0;
  836. }
  837. return btree_write_cache_pages(mapping, wbc);
  838. }
  839. static int btree_readpage(struct file *file, struct page *page)
  840. {
  841. struct extent_io_tree *tree;
  842. tree = &BTRFS_I(page->mapping->host)->io_tree;
  843. return extent_read_full_page(tree, page, btree_get_extent, 0);
  844. }
  845. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  846. {
  847. if (PageWriteback(page) || PageDirty(page))
  848. return 0;
  849. /*
  850. * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
  851. * slab allocation from alloc_extent_state down the callchain where
  852. * it'd hit a BUG_ON as those flags are not allowed.
  853. */
  854. gfp_flags &= ~GFP_SLAB_BUG_MASK;
  855. return try_release_extent_buffer(page, gfp_flags);
  856. }
  857. static void btree_invalidatepage(struct page *page, unsigned long offset)
  858. {
  859. struct extent_io_tree *tree;
  860. tree = &BTRFS_I(page->mapping->host)->io_tree;
  861. extent_invalidatepage(tree, page, offset);
  862. btree_releasepage(page, GFP_NOFS);
  863. if (PagePrivate(page)) {
  864. printk(KERN_WARNING "btrfs warning page private not zero "
  865. "on page %llu\n", (unsigned long long)page_offset(page));
  866. ClearPagePrivate(page);
  867. set_page_private(page, 0);
  868. page_cache_release(page);
  869. }
  870. }
  871. static int btree_set_page_dirty(struct page *page)
  872. {
  873. struct extent_buffer *eb;
  874. BUG_ON(!PagePrivate(page));
  875. eb = (struct extent_buffer *)page->private;
  876. BUG_ON(!eb);
  877. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  878. BUG_ON(!atomic_read(&eb->refs));
  879. btrfs_assert_tree_locked(eb);
  880. return __set_page_dirty_nobuffers(page);
  881. }
  882. static const struct address_space_operations btree_aops = {
  883. .readpage = btree_readpage,
  884. .writepages = btree_writepages,
  885. .releasepage = btree_releasepage,
  886. .invalidatepage = btree_invalidatepage,
  887. #ifdef CONFIG_MIGRATION
  888. .migratepage = btree_migratepage,
  889. #endif
  890. .set_page_dirty = btree_set_page_dirty,
  891. };
  892. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  893. u64 parent_transid)
  894. {
  895. struct extent_buffer *buf = NULL;
  896. struct inode *btree_inode = root->fs_info->btree_inode;
  897. int ret = 0;
  898. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  899. if (!buf)
  900. return 0;
  901. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  902. buf, 0, WAIT_NONE, btree_get_extent, 0);
  903. free_extent_buffer(buf);
  904. return ret;
  905. }
  906. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  907. int mirror_num, struct extent_buffer **eb)
  908. {
  909. struct extent_buffer *buf = NULL;
  910. struct inode *btree_inode = root->fs_info->btree_inode;
  911. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  912. int ret;
  913. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  914. if (!buf)
  915. return 0;
  916. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  917. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  918. btree_get_extent, mirror_num);
  919. if (ret) {
  920. free_extent_buffer(buf);
  921. return ret;
  922. }
  923. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  924. free_extent_buffer(buf);
  925. return -EIO;
  926. } else if (extent_buffer_uptodate(buf)) {
  927. *eb = buf;
  928. } else {
  929. free_extent_buffer(buf);
  930. }
  931. return 0;
  932. }
  933. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  934. u64 bytenr, u32 blocksize)
  935. {
  936. struct inode *btree_inode = root->fs_info->btree_inode;
  937. struct extent_buffer *eb;
  938. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  939. bytenr, blocksize);
  940. return eb;
  941. }
  942. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  943. u64 bytenr, u32 blocksize)
  944. {
  945. struct inode *btree_inode = root->fs_info->btree_inode;
  946. struct extent_buffer *eb;
  947. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  948. bytenr, blocksize);
  949. return eb;
  950. }
  951. int btrfs_write_tree_block(struct extent_buffer *buf)
  952. {
  953. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  954. buf->start + buf->len - 1);
  955. }
  956. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  957. {
  958. return filemap_fdatawait_range(buf->pages[0]->mapping,
  959. buf->start, buf->start + buf->len - 1);
  960. }
  961. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  962. u32 blocksize, u64 parent_transid)
  963. {
  964. struct extent_buffer *buf = NULL;
  965. int ret;
  966. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  967. if (!buf)
  968. return NULL;
  969. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  970. return buf;
  971. }
  972. void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  973. struct extent_buffer *buf)
  974. {
  975. if (btrfs_header_generation(buf) ==
  976. root->fs_info->running_transaction->transid) {
  977. btrfs_assert_tree_locked(buf);
  978. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  979. spin_lock(&root->fs_info->delalloc_lock);
  980. if (root->fs_info->dirty_metadata_bytes >= buf->len)
  981. root->fs_info->dirty_metadata_bytes -= buf->len;
  982. else {
  983. spin_unlock(&root->fs_info->delalloc_lock);
  984. btrfs_panic(root->fs_info, -EOVERFLOW,
  985. "Can't clear %lu bytes from "
  986. " dirty_mdatadata_bytes (%llu)",
  987. buf->len,
  988. root->fs_info->dirty_metadata_bytes);
  989. }
  990. spin_unlock(&root->fs_info->delalloc_lock);
  991. }
  992. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  993. btrfs_set_lock_blocking(buf);
  994. clear_extent_buffer_dirty(buf);
  995. }
  996. }
  997. static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  998. u32 stripesize, struct btrfs_root *root,
  999. struct btrfs_fs_info *fs_info,
  1000. u64 objectid)
  1001. {
  1002. root->node = NULL;
  1003. root->commit_root = NULL;
  1004. root->sectorsize = sectorsize;
  1005. root->nodesize = nodesize;
  1006. root->leafsize = leafsize;
  1007. root->stripesize = stripesize;
  1008. root->ref_cows = 0;
  1009. root->track_dirty = 0;
  1010. root->in_radix = 0;
  1011. root->orphan_item_inserted = 0;
  1012. root->orphan_cleanup_state = 0;
  1013. root->objectid = objectid;
  1014. root->last_trans = 0;
  1015. root->highest_objectid = 0;
  1016. root->name = NULL;
  1017. root->inode_tree = RB_ROOT;
  1018. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1019. root->block_rsv = NULL;
  1020. root->orphan_block_rsv = NULL;
  1021. INIT_LIST_HEAD(&root->dirty_list);
  1022. INIT_LIST_HEAD(&root->root_list);
  1023. spin_lock_init(&root->orphan_lock);
  1024. spin_lock_init(&root->inode_lock);
  1025. spin_lock_init(&root->accounting_lock);
  1026. mutex_init(&root->objectid_mutex);
  1027. mutex_init(&root->log_mutex);
  1028. init_waitqueue_head(&root->log_writer_wait);
  1029. init_waitqueue_head(&root->log_commit_wait[0]);
  1030. init_waitqueue_head(&root->log_commit_wait[1]);
  1031. atomic_set(&root->log_commit[0], 0);
  1032. atomic_set(&root->log_commit[1], 0);
  1033. atomic_set(&root->log_writers, 0);
  1034. atomic_set(&root->log_batch, 0);
  1035. atomic_set(&root->orphan_inodes, 0);
  1036. root->log_transid = 0;
  1037. root->last_log_commit = 0;
  1038. extent_io_tree_init(&root->dirty_log_pages,
  1039. fs_info->btree_inode->i_mapping);
  1040. memset(&root->root_key, 0, sizeof(root->root_key));
  1041. memset(&root->root_item, 0, sizeof(root->root_item));
  1042. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1043. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1044. root->defrag_trans_start = fs_info->generation;
  1045. init_completion(&root->kobj_unregister);
  1046. root->defrag_running = 0;
  1047. root->root_key.objectid = objectid;
  1048. root->anon_dev = 0;
  1049. spin_lock_init(&root->root_times_lock);
  1050. }
  1051. static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
  1052. struct btrfs_fs_info *fs_info,
  1053. u64 objectid,
  1054. struct btrfs_root *root)
  1055. {
  1056. int ret;
  1057. u32 blocksize;
  1058. u64 generation;
  1059. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1060. tree_root->sectorsize, tree_root->stripesize,
  1061. root, fs_info, objectid);
  1062. ret = btrfs_find_last_root(tree_root, objectid,
  1063. &root->root_item, &root->root_key);
  1064. if (ret > 0)
  1065. return -ENOENT;
  1066. else if (ret < 0)
  1067. return ret;
  1068. generation = btrfs_root_generation(&root->root_item);
  1069. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1070. root->commit_root = NULL;
  1071. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1072. blocksize, generation);
  1073. if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
  1074. free_extent_buffer(root->node);
  1075. root->node = NULL;
  1076. return -EIO;
  1077. }
  1078. root->commit_root = btrfs_root_node(root);
  1079. return 0;
  1080. }
  1081. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1082. {
  1083. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1084. if (root)
  1085. root->fs_info = fs_info;
  1086. return root;
  1087. }
  1088. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1089. struct btrfs_fs_info *fs_info,
  1090. u64 objectid)
  1091. {
  1092. struct extent_buffer *leaf;
  1093. struct btrfs_root *tree_root = fs_info->tree_root;
  1094. struct btrfs_root *root;
  1095. struct btrfs_key key;
  1096. int ret = 0;
  1097. u64 bytenr;
  1098. root = btrfs_alloc_root(fs_info);
  1099. if (!root)
  1100. return ERR_PTR(-ENOMEM);
  1101. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1102. tree_root->sectorsize, tree_root->stripesize,
  1103. root, fs_info, objectid);
  1104. root->root_key.objectid = objectid;
  1105. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1106. root->root_key.offset = 0;
  1107. leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
  1108. 0, objectid, NULL, 0, 0, 0);
  1109. if (IS_ERR(leaf)) {
  1110. ret = PTR_ERR(leaf);
  1111. goto fail;
  1112. }
  1113. bytenr = leaf->start;
  1114. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1115. btrfs_set_header_bytenr(leaf, leaf->start);
  1116. btrfs_set_header_generation(leaf, trans->transid);
  1117. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1118. btrfs_set_header_owner(leaf, objectid);
  1119. root->node = leaf;
  1120. write_extent_buffer(leaf, fs_info->fsid,
  1121. (unsigned long)btrfs_header_fsid(leaf),
  1122. BTRFS_FSID_SIZE);
  1123. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1124. (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
  1125. BTRFS_UUID_SIZE);
  1126. btrfs_mark_buffer_dirty(leaf);
  1127. root->commit_root = btrfs_root_node(root);
  1128. root->track_dirty = 1;
  1129. root->root_item.flags = 0;
  1130. root->root_item.byte_limit = 0;
  1131. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1132. btrfs_set_root_generation(&root->root_item, trans->transid);
  1133. btrfs_set_root_level(&root->root_item, 0);
  1134. btrfs_set_root_refs(&root->root_item, 1);
  1135. btrfs_set_root_used(&root->root_item, leaf->len);
  1136. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1137. btrfs_set_root_dirid(&root->root_item, 0);
  1138. root->root_item.drop_level = 0;
  1139. key.objectid = objectid;
  1140. key.type = BTRFS_ROOT_ITEM_KEY;
  1141. key.offset = 0;
  1142. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1143. if (ret)
  1144. goto fail;
  1145. btrfs_tree_unlock(leaf);
  1146. fail:
  1147. if (ret)
  1148. return ERR_PTR(ret);
  1149. return root;
  1150. }
  1151. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1152. struct btrfs_fs_info *fs_info)
  1153. {
  1154. struct btrfs_root *root;
  1155. struct btrfs_root *tree_root = fs_info->tree_root;
  1156. struct extent_buffer *leaf;
  1157. root = btrfs_alloc_root(fs_info);
  1158. if (!root)
  1159. return ERR_PTR(-ENOMEM);
  1160. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1161. tree_root->sectorsize, tree_root->stripesize,
  1162. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1163. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1164. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1165. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1166. /*
  1167. * log trees do not get reference counted because they go away
  1168. * before a real commit is actually done. They do store pointers
  1169. * to file data extents, and those reference counts still get
  1170. * updated (along with back refs to the log tree).
  1171. */
  1172. root->ref_cows = 0;
  1173. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1174. BTRFS_TREE_LOG_OBJECTID, NULL,
  1175. 0, 0, 0);
  1176. if (IS_ERR(leaf)) {
  1177. kfree(root);
  1178. return ERR_CAST(leaf);
  1179. }
  1180. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1181. btrfs_set_header_bytenr(leaf, leaf->start);
  1182. btrfs_set_header_generation(leaf, trans->transid);
  1183. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1184. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1185. root->node = leaf;
  1186. write_extent_buffer(root->node, root->fs_info->fsid,
  1187. (unsigned long)btrfs_header_fsid(root->node),
  1188. BTRFS_FSID_SIZE);
  1189. btrfs_mark_buffer_dirty(root->node);
  1190. btrfs_tree_unlock(root->node);
  1191. return root;
  1192. }
  1193. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1194. struct btrfs_fs_info *fs_info)
  1195. {
  1196. struct btrfs_root *log_root;
  1197. log_root = alloc_log_tree(trans, fs_info);
  1198. if (IS_ERR(log_root))
  1199. return PTR_ERR(log_root);
  1200. WARN_ON(fs_info->log_root_tree);
  1201. fs_info->log_root_tree = log_root;
  1202. return 0;
  1203. }
  1204. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1205. struct btrfs_root *root)
  1206. {
  1207. struct btrfs_root *log_root;
  1208. struct btrfs_inode_item *inode_item;
  1209. log_root = alloc_log_tree(trans, root->fs_info);
  1210. if (IS_ERR(log_root))
  1211. return PTR_ERR(log_root);
  1212. log_root->last_trans = trans->transid;
  1213. log_root->root_key.offset = root->root_key.objectid;
  1214. inode_item = &log_root->root_item.inode;
  1215. inode_item->generation = cpu_to_le64(1);
  1216. inode_item->size = cpu_to_le64(3);
  1217. inode_item->nlink = cpu_to_le32(1);
  1218. inode_item->nbytes = cpu_to_le64(root->leafsize);
  1219. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  1220. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1221. WARN_ON(root->log_root);
  1222. root->log_root = log_root;
  1223. root->log_transid = 0;
  1224. root->last_log_commit = 0;
  1225. return 0;
  1226. }
  1227. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  1228. struct btrfs_key *location)
  1229. {
  1230. struct btrfs_root *root;
  1231. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1232. struct btrfs_path *path;
  1233. struct extent_buffer *l;
  1234. u64 generation;
  1235. u32 blocksize;
  1236. int ret = 0;
  1237. int slot;
  1238. root = btrfs_alloc_root(fs_info);
  1239. if (!root)
  1240. return ERR_PTR(-ENOMEM);
  1241. if (location->offset == (u64)-1) {
  1242. ret = find_and_setup_root(tree_root, fs_info,
  1243. location->objectid, root);
  1244. if (ret) {
  1245. kfree(root);
  1246. return ERR_PTR(ret);
  1247. }
  1248. goto out;
  1249. }
  1250. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1251. tree_root->sectorsize, tree_root->stripesize,
  1252. root, fs_info, location->objectid);
  1253. path = btrfs_alloc_path();
  1254. if (!path) {
  1255. kfree(root);
  1256. return ERR_PTR(-ENOMEM);
  1257. }
  1258. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  1259. if (ret == 0) {
  1260. l = path->nodes[0];
  1261. slot = path->slots[0];
  1262. btrfs_read_root_item(tree_root, l, slot, &root->root_item);
  1263. memcpy(&root->root_key, location, sizeof(*location));
  1264. }
  1265. btrfs_free_path(path);
  1266. if (ret) {
  1267. kfree(root);
  1268. if (ret > 0)
  1269. ret = -ENOENT;
  1270. return ERR_PTR(ret);
  1271. }
  1272. generation = btrfs_root_generation(&root->root_item);
  1273. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1274. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1275. blocksize, generation);
  1276. root->commit_root = btrfs_root_node(root);
  1277. BUG_ON(!root->node); /* -ENOMEM */
  1278. out:
  1279. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  1280. root->ref_cows = 1;
  1281. btrfs_check_and_init_root_item(&root->root_item);
  1282. }
  1283. return root;
  1284. }
  1285. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1286. struct btrfs_key *location)
  1287. {
  1288. struct btrfs_root *root;
  1289. int ret;
  1290. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1291. return fs_info->tree_root;
  1292. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1293. return fs_info->extent_root;
  1294. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1295. return fs_info->chunk_root;
  1296. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1297. return fs_info->dev_root;
  1298. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1299. return fs_info->csum_root;
  1300. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1301. return fs_info->quota_root ? fs_info->quota_root :
  1302. ERR_PTR(-ENOENT);
  1303. again:
  1304. spin_lock(&fs_info->fs_roots_radix_lock);
  1305. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1306. (unsigned long)location->objectid);
  1307. spin_unlock(&fs_info->fs_roots_radix_lock);
  1308. if (root)
  1309. return root;
  1310. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1311. if (IS_ERR(root))
  1312. return root;
  1313. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1314. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1315. GFP_NOFS);
  1316. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1317. ret = -ENOMEM;
  1318. goto fail;
  1319. }
  1320. btrfs_init_free_ino_ctl(root);
  1321. mutex_init(&root->fs_commit_mutex);
  1322. spin_lock_init(&root->cache_lock);
  1323. init_waitqueue_head(&root->cache_wait);
  1324. ret = get_anon_bdev(&root->anon_dev);
  1325. if (ret)
  1326. goto fail;
  1327. if (btrfs_root_refs(&root->root_item) == 0) {
  1328. ret = -ENOENT;
  1329. goto fail;
  1330. }
  1331. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1332. if (ret < 0)
  1333. goto fail;
  1334. if (ret == 0)
  1335. root->orphan_item_inserted = 1;
  1336. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1337. if (ret)
  1338. goto fail;
  1339. spin_lock(&fs_info->fs_roots_radix_lock);
  1340. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1341. (unsigned long)root->root_key.objectid,
  1342. root);
  1343. if (ret == 0)
  1344. root->in_radix = 1;
  1345. spin_unlock(&fs_info->fs_roots_radix_lock);
  1346. radix_tree_preload_end();
  1347. if (ret) {
  1348. if (ret == -EEXIST) {
  1349. free_fs_root(root);
  1350. goto again;
  1351. }
  1352. goto fail;
  1353. }
  1354. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1355. root->root_key.objectid);
  1356. WARN_ON(ret);
  1357. return root;
  1358. fail:
  1359. free_fs_root(root);
  1360. return ERR_PTR(ret);
  1361. }
  1362. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1363. {
  1364. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1365. int ret = 0;
  1366. struct btrfs_device *device;
  1367. struct backing_dev_info *bdi;
  1368. rcu_read_lock();
  1369. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1370. if (!device->bdev)
  1371. continue;
  1372. bdi = blk_get_backing_dev_info(device->bdev);
  1373. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1374. ret = 1;
  1375. break;
  1376. }
  1377. }
  1378. rcu_read_unlock();
  1379. return ret;
  1380. }
  1381. /*
  1382. * If this fails, caller must call bdi_destroy() to get rid of the
  1383. * bdi again.
  1384. */
  1385. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1386. {
  1387. int err;
  1388. bdi->capabilities = BDI_CAP_MAP_COPY;
  1389. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1390. if (err)
  1391. return err;
  1392. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1393. bdi->congested_fn = btrfs_congested_fn;
  1394. bdi->congested_data = info;
  1395. return 0;
  1396. }
  1397. /*
  1398. * called by the kthread helper functions to finally call the bio end_io
  1399. * functions. This is where read checksum verification actually happens
  1400. */
  1401. static void end_workqueue_fn(struct btrfs_work *work)
  1402. {
  1403. struct bio *bio;
  1404. struct end_io_wq *end_io_wq;
  1405. struct btrfs_fs_info *fs_info;
  1406. int error;
  1407. end_io_wq = container_of(work, struct end_io_wq, work);
  1408. bio = end_io_wq->bio;
  1409. fs_info = end_io_wq->info;
  1410. error = end_io_wq->error;
  1411. bio->bi_private = end_io_wq->private;
  1412. bio->bi_end_io = end_io_wq->end_io;
  1413. kfree(end_io_wq);
  1414. bio_endio(bio, error);
  1415. }
  1416. static int cleaner_kthread(void *arg)
  1417. {
  1418. struct btrfs_root *root = arg;
  1419. do {
  1420. if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
  1421. mutex_trylock(&root->fs_info->cleaner_mutex)) {
  1422. btrfs_run_delayed_iputs(root);
  1423. btrfs_clean_old_snapshots(root);
  1424. mutex_unlock(&root->fs_info->cleaner_mutex);
  1425. btrfs_run_defrag_inodes(root->fs_info);
  1426. }
  1427. if (!try_to_freeze()) {
  1428. set_current_state(TASK_INTERRUPTIBLE);
  1429. if (!kthread_should_stop())
  1430. schedule();
  1431. __set_current_state(TASK_RUNNING);
  1432. }
  1433. } while (!kthread_should_stop());
  1434. return 0;
  1435. }
  1436. static int transaction_kthread(void *arg)
  1437. {
  1438. struct btrfs_root *root = arg;
  1439. struct btrfs_trans_handle *trans;
  1440. struct btrfs_transaction *cur;
  1441. u64 transid;
  1442. unsigned long now;
  1443. unsigned long delay;
  1444. bool cannot_commit;
  1445. do {
  1446. cannot_commit = false;
  1447. delay = HZ * 30;
  1448. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1449. spin_lock(&root->fs_info->trans_lock);
  1450. cur = root->fs_info->running_transaction;
  1451. if (!cur) {
  1452. spin_unlock(&root->fs_info->trans_lock);
  1453. goto sleep;
  1454. }
  1455. now = get_seconds();
  1456. if (!cur->blocked &&
  1457. (now < cur->start_time || now - cur->start_time < 30)) {
  1458. spin_unlock(&root->fs_info->trans_lock);
  1459. delay = HZ * 5;
  1460. goto sleep;
  1461. }
  1462. transid = cur->transid;
  1463. spin_unlock(&root->fs_info->trans_lock);
  1464. /* If the file system is aborted, this will always fail. */
  1465. trans = btrfs_attach_transaction(root);
  1466. if (IS_ERR(trans)) {
  1467. if (PTR_ERR(trans) != -ENOENT)
  1468. cannot_commit = true;
  1469. goto sleep;
  1470. }
  1471. if (transid == trans->transid) {
  1472. btrfs_commit_transaction(trans, root);
  1473. } else {
  1474. btrfs_end_transaction(trans, root);
  1475. }
  1476. sleep:
  1477. wake_up_process(root->fs_info->cleaner_kthread);
  1478. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1479. if (!try_to_freeze()) {
  1480. set_current_state(TASK_INTERRUPTIBLE);
  1481. if (!kthread_should_stop() &&
  1482. (!btrfs_transaction_blocked(root->fs_info) ||
  1483. cannot_commit))
  1484. schedule_timeout(delay);
  1485. __set_current_state(TASK_RUNNING);
  1486. }
  1487. } while (!kthread_should_stop());
  1488. return 0;
  1489. }
  1490. /*
  1491. * this will find the highest generation in the array of
  1492. * root backups. The index of the highest array is returned,
  1493. * or -1 if we can't find anything.
  1494. *
  1495. * We check to make sure the array is valid by comparing the
  1496. * generation of the latest root in the array with the generation
  1497. * in the super block. If they don't match we pitch it.
  1498. */
  1499. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1500. {
  1501. u64 cur;
  1502. int newest_index = -1;
  1503. struct btrfs_root_backup *root_backup;
  1504. int i;
  1505. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1506. root_backup = info->super_copy->super_roots + i;
  1507. cur = btrfs_backup_tree_root_gen(root_backup);
  1508. if (cur == newest_gen)
  1509. newest_index = i;
  1510. }
  1511. /* check to see if we actually wrapped around */
  1512. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1513. root_backup = info->super_copy->super_roots;
  1514. cur = btrfs_backup_tree_root_gen(root_backup);
  1515. if (cur == newest_gen)
  1516. newest_index = 0;
  1517. }
  1518. return newest_index;
  1519. }
  1520. /*
  1521. * find the oldest backup so we know where to store new entries
  1522. * in the backup array. This will set the backup_root_index
  1523. * field in the fs_info struct
  1524. */
  1525. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1526. u64 newest_gen)
  1527. {
  1528. int newest_index = -1;
  1529. newest_index = find_newest_super_backup(info, newest_gen);
  1530. /* if there was garbage in there, just move along */
  1531. if (newest_index == -1) {
  1532. info->backup_root_index = 0;
  1533. } else {
  1534. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1535. }
  1536. }
  1537. /*
  1538. * copy all the root pointers into the super backup array.
  1539. * this will bump the backup pointer by one when it is
  1540. * done
  1541. */
  1542. static void backup_super_roots(struct btrfs_fs_info *info)
  1543. {
  1544. int next_backup;
  1545. struct btrfs_root_backup *root_backup;
  1546. int last_backup;
  1547. next_backup = info->backup_root_index;
  1548. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1549. BTRFS_NUM_BACKUP_ROOTS;
  1550. /*
  1551. * just overwrite the last backup if we're at the same generation
  1552. * this happens only at umount
  1553. */
  1554. root_backup = info->super_for_commit->super_roots + last_backup;
  1555. if (btrfs_backup_tree_root_gen(root_backup) ==
  1556. btrfs_header_generation(info->tree_root->node))
  1557. next_backup = last_backup;
  1558. root_backup = info->super_for_commit->super_roots + next_backup;
  1559. /*
  1560. * make sure all of our padding and empty slots get zero filled
  1561. * regardless of which ones we use today
  1562. */
  1563. memset(root_backup, 0, sizeof(*root_backup));
  1564. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1565. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1566. btrfs_set_backup_tree_root_gen(root_backup,
  1567. btrfs_header_generation(info->tree_root->node));
  1568. btrfs_set_backup_tree_root_level(root_backup,
  1569. btrfs_header_level(info->tree_root->node));
  1570. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1571. btrfs_set_backup_chunk_root_gen(root_backup,
  1572. btrfs_header_generation(info->chunk_root->node));
  1573. btrfs_set_backup_chunk_root_level(root_backup,
  1574. btrfs_header_level(info->chunk_root->node));
  1575. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1576. btrfs_set_backup_extent_root_gen(root_backup,
  1577. btrfs_header_generation(info->extent_root->node));
  1578. btrfs_set_backup_extent_root_level(root_backup,
  1579. btrfs_header_level(info->extent_root->node));
  1580. /*
  1581. * we might commit during log recovery, which happens before we set
  1582. * the fs_root. Make sure it is valid before we fill it in.
  1583. */
  1584. if (info->fs_root && info->fs_root->node) {
  1585. btrfs_set_backup_fs_root(root_backup,
  1586. info->fs_root->node->start);
  1587. btrfs_set_backup_fs_root_gen(root_backup,
  1588. btrfs_header_generation(info->fs_root->node));
  1589. btrfs_set_backup_fs_root_level(root_backup,
  1590. btrfs_header_level(info->fs_root->node));
  1591. }
  1592. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1593. btrfs_set_backup_dev_root_gen(root_backup,
  1594. btrfs_header_generation(info->dev_root->node));
  1595. btrfs_set_backup_dev_root_level(root_backup,
  1596. btrfs_header_level(info->dev_root->node));
  1597. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1598. btrfs_set_backup_csum_root_gen(root_backup,
  1599. btrfs_header_generation(info->csum_root->node));
  1600. btrfs_set_backup_csum_root_level(root_backup,
  1601. btrfs_header_level(info->csum_root->node));
  1602. btrfs_set_backup_total_bytes(root_backup,
  1603. btrfs_super_total_bytes(info->super_copy));
  1604. btrfs_set_backup_bytes_used(root_backup,
  1605. btrfs_super_bytes_used(info->super_copy));
  1606. btrfs_set_backup_num_devices(root_backup,
  1607. btrfs_super_num_devices(info->super_copy));
  1608. /*
  1609. * if we don't copy this out to the super_copy, it won't get remembered
  1610. * for the next commit
  1611. */
  1612. memcpy(&info->super_copy->super_roots,
  1613. &info->super_for_commit->super_roots,
  1614. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1615. }
  1616. /*
  1617. * this copies info out of the root backup array and back into
  1618. * the in-memory super block. It is meant to help iterate through
  1619. * the array, so you send it the number of backups you've already
  1620. * tried and the last backup index you used.
  1621. *
  1622. * this returns -1 when it has tried all the backups
  1623. */
  1624. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1625. struct btrfs_super_block *super,
  1626. int *num_backups_tried, int *backup_index)
  1627. {
  1628. struct btrfs_root_backup *root_backup;
  1629. int newest = *backup_index;
  1630. if (*num_backups_tried == 0) {
  1631. u64 gen = btrfs_super_generation(super);
  1632. newest = find_newest_super_backup(info, gen);
  1633. if (newest == -1)
  1634. return -1;
  1635. *backup_index = newest;
  1636. *num_backups_tried = 1;
  1637. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1638. /* we've tried all the backups, all done */
  1639. return -1;
  1640. } else {
  1641. /* jump to the next oldest backup */
  1642. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1643. BTRFS_NUM_BACKUP_ROOTS;
  1644. *backup_index = newest;
  1645. *num_backups_tried += 1;
  1646. }
  1647. root_backup = super->super_roots + newest;
  1648. btrfs_set_super_generation(super,
  1649. btrfs_backup_tree_root_gen(root_backup));
  1650. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1651. btrfs_set_super_root_level(super,
  1652. btrfs_backup_tree_root_level(root_backup));
  1653. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1654. /*
  1655. * fixme: the total bytes and num_devices need to match or we should
  1656. * need a fsck
  1657. */
  1658. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1659. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1660. return 0;
  1661. }
  1662. /* helper to cleanup tree roots */
  1663. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1664. {
  1665. free_extent_buffer(info->tree_root->node);
  1666. free_extent_buffer(info->tree_root->commit_root);
  1667. free_extent_buffer(info->dev_root->node);
  1668. free_extent_buffer(info->dev_root->commit_root);
  1669. free_extent_buffer(info->extent_root->node);
  1670. free_extent_buffer(info->extent_root->commit_root);
  1671. free_extent_buffer(info->csum_root->node);
  1672. free_extent_buffer(info->csum_root->commit_root);
  1673. if (info->quota_root) {
  1674. free_extent_buffer(info->quota_root->node);
  1675. free_extent_buffer(info->quota_root->commit_root);
  1676. }
  1677. info->tree_root->node = NULL;
  1678. info->tree_root->commit_root = NULL;
  1679. info->dev_root->node = NULL;
  1680. info->dev_root->commit_root = NULL;
  1681. info->extent_root->node = NULL;
  1682. info->extent_root->commit_root = NULL;
  1683. info->csum_root->node = NULL;
  1684. info->csum_root->commit_root = NULL;
  1685. if (info->quota_root) {
  1686. info->quota_root->node = NULL;
  1687. info->quota_root->commit_root = NULL;
  1688. }
  1689. if (chunk_root) {
  1690. free_extent_buffer(info->chunk_root->node);
  1691. free_extent_buffer(info->chunk_root->commit_root);
  1692. info->chunk_root->node = NULL;
  1693. info->chunk_root->commit_root = NULL;
  1694. }
  1695. }
  1696. int open_ctree(struct super_block *sb,
  1697. struct btrfs_fs_devices *fs_devices,
  1698. char *options)
  1699. {
  1700. u32 sectorsize;
  1701. u32 nodesize;
  1702. u32 leafsize;
  1703. u32 blocksize;
  1704. u32 stripesize;
  1705. u64 generation;
  1706. u64 features;
  1707. struct btrfs_key location;
  1708. struct buffer_head *bh;
  1709. struct btrfs_super_block *disk_super;
  1710. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1711. struct btrfs_root *tree_root;
  1712. struct btrfs_root *extent_root;
  1713. struct btrfs_root *csum_root;
  1714. struct btrfs_root *chunk_root;
  1715. struct btrfs_root *dev_root;
  1716. struct btrfs_root *quota_root;
  1717. struct btrfs_root *log_tree_root;
  1718. int ret;
  1719. int err = -EINVAL;
  1720. int num_backups_tried = 0;
  1721. int backup_index = 0;
  1722. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1723. extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
  1724. csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
  1725. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1726. dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
  1727. quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
  1728. if (!tree_root || !extent_root || !csum_root ||
  1729. !chunk_root || !dev_root || !quota_root) {
  1730. err = -ENOMEM;
  1731. goto fail;
  1732. }
  1733. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1734. if (ret) {
  1735. err = ret;
  1736. goto fail;
  1737. }
  1738. ret = setup_bdi(fs_info, &fs_info->bdi);
  1739. if (ret) {
  1740. err = ret;
  1741. goto fail_srcu;
  1742. }
  1743. fs_info->btree_inode = new_inode(sb);
  1744. if (!fs_info->btree_inode) {
  1745. err = -ENOMEM;
  1746. goto fail_bdi;
  1747. }
  1748. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1749. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1750. INIT_LIST_HEAD(&fs_info->trans_list);
  1751. INIT_LIST_HEAD(&fs_info->dead_roots);
  1752. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1753. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1754. INIT_LIST_HEAD(&fs_info->ordered_operations);
  1755. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1756. spin_lock_init(&fs_info->delalloc_lock);
  1757. spin_lock_init(&fs_info->trans_lock);
  1758. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1759. spin_lock_init(&fs_info->delayed_iput_lock);
  1760. spin_lock_init(&fs_info->defrag_inodes_lock);
  1761. spin_lock_init(&fs_info->free_chunk_lock);
  1762. spin_lock_init(&fs_info->tree_mod_seq_lock);
  1763. rwlock_init(&fs_info->tree_mod_log_lock);
  1764. mutex_init(&fs_info->reloc_mutex);
  1765. init_completion(&fs_info->kobj_unregister);
  1766. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1767. INIT_LIST_HEAD(&fs_info->space_info);
  1768. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  1769. btrfs_mapping_init(&fs_info->mapping_tree);
  1770. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  1771. BTRFS_BLOCK_RSV_GLOBAL);
  1772. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  1773. BTRFS_BLOCK_RSV_DELALLOC);
  1774. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  1775. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  1776. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  1777. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  1778. BTRFS_BLOCK_RSV_DELOPS);
  1779. atomic_set(&fs_info->nr_async_submits, 0);
  1780. atomic_set(&fs_info->async_delalloc_pages, 0);
  1781. atomic_set(&fs_info->async_submit_draining, 0);
  1782. atomic_set(&fs_info->nr_async_bios, 0);
  1783. atomic_set(&fs_info->defrag_running, 0);
  1784. atomic_set(&fs_info->tree_mod_seq, 0);
  1785. fs_info->sb = sb;
  1786. fs_info->max_inline = 8192 * 1024;
  1787. fs_info->metadata_ratio = 0;
  1788. fs_info->defrag_inodes = RB_ROOT;
  1789. fs_info->trans_no_join = 0;
  1790. fs_info->free_chunk_space = 0;
  1791. fs_info->tree_mod_log = RB_ROOT;
  1792. /* readahead state */
  1793. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1794. spin_lock_init(&fs_info->reada_lock);
  1795. fs_info->thread_pool_size = min_t(unsigned long,
  1796. num_online_cpus() + 2, 8);
  1797. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1798. spin_lock_init(&fs_info->ordered_extent_lock);
  1799. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1800. GFP_NOFS);
  1801. if (!fs_info->delayed_root) {
  1802. err = -ENOMEM;
  1803. goto fail_iput;
  1804. }
  1805. btrfs_init_delayed_root(fs_info->delayed_root);
  1806. mutex_init(&fs_info->scrub_lock);
  1807. atomic_set(&fs_info->scrubs_running, 0);
  1808. atomic_set(&fs_info->scrub_pause_req, 0);
  1809. atomic_set(&fs_info->scrubs_paused, 0);
  1810. atomic_set(&fs_info->scrub_cancel_req, 0);
  1811. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1812. init_rwsem(&fs_info->scrub_super_lock);
  1813. fs_info->scrub_workers_refcnt = 0;
  1814. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  1815. fs_info->check_integrity_print_mask = 0;
  1816. #endif
  1817. spin_lock_init(&fs_info->balance_lock);
  1818. mutex_init(&fs_info->balance_mutex);
  1819. atomic_set(&fs_info->balance_running, 0);
  1820. atomic_set(&fs_info->balance_pause_req, 0);
  1821. atomic_set(&fs_info->balance_cancel_req, 0);
  1822. fs_info->balance_ctl = NULL;
  1823. init_waitqueue_head(&fs_info->balance_wait_q);
  1824. sb->s_blocksize = 4096;
  1825. sb->s_blocksize_bits = blksize_bits(4096);
  1826. sb->s_bdi = &fs_info->bdi;
  1827. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1828. set_nlink(fs_info->btree_inode, 1);
  1829. /*
  1830. * we set the i_size on the btree inode to the max possible int.
  1831. * the real end of the address space is determined by all of
  1832. * the devices in the system
  1833. */
  1834. fs_info->btree_inode->i_size = OFFSET_MAX;
  1835. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1836. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1837. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1838. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1839. fs_info->btree_inode->i_mapping);
  1840. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1841. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1842. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1843. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1844. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1845. sizeof(struct btrfs_key));
  1846. set_bit(BTRFS_INODE_DUMMY,
  1847. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1848. insert_inode_hash(fs_info->btree_inode);
  1849. spin_lock_init(&fs_info->block_group_cache_lock);
  1850. fs_info->block_group_cache_tree = RB_ROOT;
  1851. extent_io_tree_init(&fs_info->freed_extents[0],
  1852. fs_info->btree_inode->i_mapping);
  1853. extent_io_tree_init(&fs_info->freed_extents[1],
  1854. fs_info->btree_inode->i_mapping);
  1855. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1856. fs_info->do_barriers = 1;
  1857. mutex_init(&fs_info->ordered_operations_mutex);
  1858. mutex_init(&fs_info->tree_log_mutex);
  1859. mutex_init(&fs_info->chunk_mutex);
  1860. mutex_init(&fs_info->transaction_kthread_mutex);
  1861. mutex_init(&fs_info->cleaner_mutex);
  1862. mutex_init(&fs_info->volume_mutex);
  1863. init_rwsem(&fs_info->extent_commit_sem);
  1864. init_rwsem(&fs_info->cleanup_work_sem);
  1865. init_rwsem(&fs_info->subvol_sem);
  1866. fs_info->dev_replace.lock_owner = 0;
  1867. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  1868. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  1869. mutex_init(&fs_info->dev_replace.lock_management_lock);
  1870. mutex_init(&fs_info->dev_replace.lock);
  1871. spin_lock_init(&fs_info->qgroup_lock);
  1872. fs_info->qgroup_tree = RB_ROOT;
  1873. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  1874. fs_info->qgroup_seq = 1;
  1875. fs_info->quota_enabled = 0;
  1876. fs_info->pending_quota_state = 0;
  1877. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1878. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1879. init_waitqueue_head(&fs_info->transaction_throttle);
  1880. init_waitqueue_head(&fs_info->transaction_wait);
  1881. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  1882. init_waitqueue_head(&fs_info->async_submit_wait);
  1883. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1884. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1885. invalidate_bdev(fs_devices->latest_bdev);
  1886. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1887. if (!bh) {
  1888. err = -EINVAL;
  1889. goto fail_alloc;
  1890. }
  1891. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  1892. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  1893. sizeof(*fs_info->super_for_commit));
  1894. brelse(bh);
  1895. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  1896. disk_super = fs_info->super_copy;
  1897. if (!btrfs_super_root(disk_super))
  1898. goto fail_alloc;
  1899. /* check FS state, whether FS is broken. */
  1900. fs_info->fs_state |= btrfs_super_flags(disk_super);
  1901. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  1902. if (ret) {
  1903. printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
  1904. err = ret;
  1905. goto fail_alloc;
  1906. }
  1907. /*
  1908. * run through our array of backup supers and setup
  1909. * our ring pointer to the oldest one
  1910. */
  1911. generation = btrfs_super_generation(disk_super);
  1912. find_oldest_super_backup(fs_info, generation);
  1913. /*
  1914. * In the long term, we'll store the compression type in the super
  1915. * block, and it'll be used for per file compression control.
  1916. */
  1917. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  1918. ret = btrfs_parse_options(tree_root, options);
  1919. if (ret) {
  1920. err = ret;
  1921. goto fail_alloc;
  1922. }
  1923. features = btrfs_super_incompat_flags(disk_super) &
  1924. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1925. if (features) {
  1926. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1927. "unsupported optional features (%Lx).\n",
  1928. (unsigned long long)features);
  1929. err = -EINVAL;
  1930. goto fail_alloc;
  1931. }
  1932. if (btrfs_super_leafsize(disk_super) !=
  1933. btrfs_super_nodesize(disk_super)) {
  1934. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  1935. "blocksizes don't match. node %d leaf %d\n",
  1936. btrfs_super_nodesize(disk_super),
  1937. btrfs_super_leafsize(disk_super));
  1938. err = -EINVAL;
  1939. goto fail_alloc;
  1940. }
  1941. if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  1942. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  1943. "blocksize (%d) was too large\n",
  1944. btrfs_super_leafsize(disk_super));
  1945. err = -EINVAL;
  1946. goto fail_alloc;
  1947. }
  1948. features = btrfs_super_incompat_flags(disk_super);
  1949. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  1950. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  1951. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  1952. /*
  1953. * flag our filesystem as having big metadata blocks if
  1954. * they are bigger than the page size
  1955. */
  1956. if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
  1957. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  1958. printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
  1959. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  1960. }
  1961. nodesize = btrfs_super_nodesize(disk_super);
  1962. leafsize = btrfs_super_leafsize(disk_super);
  1963. sectorsize = btrfs_super_sectorsize(disk_super);
  1964. stripesize = btrfs_super_stripesize(disk_super);
  1965. /*
  1966. * mixed block groups end up with duplicate but slightly offset
  1967. * extent buffers for the same range. It leads to corruptions
  1968. */
  1969. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  1970. (sectorsize != leafsize)) {
  1971. printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
  1972. "are not allowed for mixed block groups on %s\n",
  1973. sb->s_id);
  1974. goto fail_alloc;
  1975. }
  1976. btrfs_set_super_incompat_flags(disk_super, features);
  1977. features = btrfs_super_compat_ro_flags(disk_super) &
  1978. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  1979. if (!(sb->s_flags & MS_RDONLY) && features) {
  1980. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  1981. "unsupported option features (%Lx).\n",
  1982. (unsigned long long)features);
  1983. err = -EINVAL;
  1984. goto fail_alloc;
  1985. }
  1986. btrfs_init_workers(&fs_info->generic_worker,
  1987. "genwork", 1, NULL);
  1988. btrfs_init_workers(&fs_info->workers, "worker",
  1989. fs_info->thread_pool_size,
  1990. &fs_info->generic_worker);
  1991. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  1992. fs_info->thread_pool_size,
  1993. &fs_info->generic_worker);
  1994. btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
  1995. fs_info->thread_pool_size,
  1996. &fs_info->generic_worker);
  1997. btrfs_init_workers(&fs_info->submit_workers, "submit",
  1998. min_t(u64, fs_devices->num_devices,
  1999. fs_info->thread_pool_size),
  2000. &fs_info->generic_worker);
  2001. btrfs_init_workers(&fs_info->caching_workers, "cache",
  2002. 2, &fs_info->generic_worker);
  2003. /* a higher idle thresh on the submit workers makes it much more
  2004. * likely that bios will be send down in a sane order to the
  2005. * devices
  2006. */
  2007. fs_info->submit_workers.idle_thresh = 64;
  2008. fs_info->workers.idle_thresh = 16;
  2009. fs_info->workers.ordered = 1;
  2010. fs_info->delalloc_workers.idle_thresh = 2;
  2011. fs_info->delalloc_workers.ordered = 1;
  2012. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  2013. &fs_info->generic_worker);
  2014. btrfs_init_workers(&fs_info->endio_workers, "endio",
  2015. fs_info->thread_pool_size,
  2016. &fs_info->generic_worker);
  2017. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  2018. fs_info->thread_pool_size,
  2019. &fs_info->generic_worker);
  2020. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  2021. "endio-meta-write", fs_info->thread_pool_size,
  2022. &fs_info->generic_worker);
  2023. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  2024. fs_info->thread_pool_size,
  2025. &fs_info->generic_worker);
  2026. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  2027. 1, &fs_info->generic_worker);
  2028. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  2029. fs_info->thread_pool_size,
  2030. &fs_info->generic_worker);
  2031. btrfs_init_workers(&fs_info->readahead_workers, "readahead",
  2032. fs_info->thread_pool_size,
  2033. &fs_info->generic_worker);
  2034. /*
  2035. * endios are largely parallel and should have a very
  2036. * low idle thresh
  2037. */
  2038. fs_info->endio_workers.idle_thresh = 4;
  2039. fs_info->endio_meta_workers.idle_thresh = 4;
  2040. fs_info->endio_write_workers.idle_thresh = 2;
  2041. fs_info->endio_meta_write_workers.idle_thresh = 2;
  2042. fs_info->readahead_workers.idle_thresh = 2;
  2043. /*
  2044. * btrfs_start_workers can really only fail because of ENOMEM so just
  2045. * return -ENOMEM if any of these fail.
  2046. */
  2047. ret = btrfs_start_workers(&fs_info->workers);
  2048. ret |= btrfs_start_workers(&fs_info->generic_worker);
  2049. ret |= btrfs_start_workers(&fs_info->submit_workers);
  2050. ret |= btrfs_start_workers(&fs_info->delalloc_workers);
  2051. ret |= btrfs_start_workers(&fs_info->fixup_workers);
  2052. ret |= btrfs_start_workers(&fs_info->endio_workers);
  2053. ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
  2054. ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
  2055. ret |= btrfs_start_workers(&fs_info->endio_write_workers);
  2056. ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
  2057. ret |= btrfs_start_workers(&fs_info->delayed_workers);
  2058. ret |= btrfs_start_workers(&fs_info->caching_workers);
  2059. ret |= btrfs_start_workers(&fs_info->readahead_workers);
  2060. ret |= btrfs_start_workers(&fs_info->flush_workers);
  2061. if (ret) {
  2062. err = -ENOMEM;
  2063. goto fail_sb_buffer;
  2064. }
  2065. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2066. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2067. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2068. tree_root->nodesize = nodesize;
  2069. tree_root->leafsize = leafsize;
  2070. tree_root->sectorsize = sectorsize;
  2071. tree_root->stripesize = stripesize;
  2072. sb->s_blocksize = sectorsize;
  2073. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2074. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  2075. sizeof(disk_super->magic))) {
  2076. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  2077. goto fail_sb_buffer;
  2078. }
  2079. if (sectorsize != PAGE_SIZE) {
  2080. printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
  2081. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2082. goto fail_sb_buffer;
  2083. }
  2084. mutex_lock(&fs_info->chunk_mutex);
  2085. ret = btrfs_read_sys_array(tree_root);
  2086. mutex_unlock(&fs_info->chunk_mutex);
  2087. if (ret) {
  2088. printk(KERN_WARNING "btrfs: failed to read the system "
  2089. "array on %s\n", sb->s_id);
  2090. goto fail_sb_buffer;
  2091. }
  2092. blocksize = btrfs_level_size(tree_root,
  2093. btrfs_super_chunk_root_level(disk_super));
  2094. generation = btrfs_super_chunk_root_generation(disk_super);
  2095. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2096. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2097. chunk_root->node = read_tree_block(chunk_root,
  2098. btrfs_super_chunk_root(disk_super),
  2099. blocksize, generation);
  2100. BUG_ON(!chunk_root->node); /* -ENOMEM */
  2101. if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  2102. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  2103. sb->s_id);
  2104. goto fail_tree_roots;
  2105. }
  2106. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2107. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2108. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2109. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  2110. BTRFS_UUID_SIZE);
  2111. ret = btrfs_read_chunk_tree(chunk_root);
  2112. if (ret) {
  2113. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  2114. sb->s_id);
  2115. goto fail_tree_roots;
  2116. }
  2117. btrfs_close_extra_devices(fs_devices);
  2118. if (!fs_devices->latest_bdev) {
  2119. printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
  2120. sb->s_id);
  2121. goto fail_tree_roots;
  2122. }
  2123. retry_root_backup:
  2124. blocksize = btrfs_level_size(tree_root,
  2125. btrfs_super_root_level(disk_super));
  2126. generation = btrfs_super_generation(disk_super);
  2127. tree_root->node = read_tree_block(tree_root,
  2128. btrfs_super_root(disk_super),
  2129. blocksize, generation);
  2130. if (!tree_root->node ||
  2131. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2132. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  2133. sb->s_id);
  2134. goto recovery_tree_root;
  2135. }
  2136. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2137. tree_root->commit_root = btrfs_root_node(tree_root);
  2138. ret = find_and_setup_root(tree_root, fs_info,
  2139. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  2140. if (ret)
  2141. goto recovery_tree_root;
  2142. extent_root->track_dirty = 1;
  2143. ret = find_and_setup_root(tree_root, fs_info,
  2144. BTRFS_DEV_TREE_OBJECTID, dev_root);
  2145. if (ret)
  2146. goto recovery_tree_root;
  2147. dev_root->track_dirty = 1;
  2148. ret = find_and_setup_root(tree_root, fs_info,
  2149. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  2150. if (ret)
  2151. goto recovery_tree_root;
  2152. csum_root->track_dirty = 1;
  2153. ret = find_and_setup_root(tree_root, fs_info,
  2154. BTRFS_QUOTA_TREE_OBJECTID, quota_root);
  2155. if (ret) {
  2156. kfree(quota_root);
  2157. quota_root = fs_info->quota_root = NULL;
  2158. } else {
  2159. quota_root->track_dirty = 1;
  2160. fs_info->quota_enabled = 1;
  2161. fs_info->pending_quota_state = 1;
  2162. }
  2163. fs_info->generation = generation;
  2164. fs_info->last_trans_committed = generation;
  2165. ret = btrfs_recover_balance(fs_info);
  2166. if (ret) {
  2167. printk(KERN_WARNING "btrfs: failed to recover balance\n");
  2168. goto fail_block_groups;
  2169. }
  2170. ret = btrfs_init_dev_stats(fs_info);
  2171. if (ret) {
  2172. printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
  2173. ret);
  2174. goto fail_block_groups;
  2175. }
  2176. ret = btrfs_init_space_info(fs_info);
  2177. if (ret) {
  2178. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  2179. goto fail_block_groups;
  2180. }
  2181. ret = btrfs_read_block_groups(extent_root);
  2182. if (ret) {
  2183. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  2184. goto fail_block_groups;
  2185. }
  2186. fs_info->num_tolerated_disk_barrier_failures =
  2187. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2188. if (fs_info->fs_devices->missing_devices >
  2189. fs_info->num_tolerated_disk_barrier_failures &&
  2190. !(sb->s_flags & MS_RDONLY)) {
  2191. printk(KERN_WARNING
  2192. "Btrfs: too many missing devices, writeable mount is not allowed\n");
  2193. goto fail_block_groups;
  2194. }
  2195. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2196. "btrfs-cleaner");
  2197. if (IS_ERR(fs_info->cleaner_kthread))
  2198. goto fail_block_groups;
  2199. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2200. tree_root,
  2201. "btrfs-transaction");
  2202. if (IS_ERR(fs_info->transaction_kthread))
  2203. goto fail_cleaner;
  2204. if (!btrfs_test_opt(tree_root, SSD) &&
  2205. !btrfs_test_opt(tree_root, NOSSD) &&
  2206. !fs_info->fs_devices->rotating) {
  2207. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  2208. "mode\n");
  2209. btrfs_set_opt(fs_info->mount_opt, SSD);
  2210. }
  2211. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2212. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2213. ret = btrfsic_mount(tree_root, fs_devices,
  2214. btrfs_test_opt(tree_root,
  2215. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2216. 1 : 0,
  2217. fs_info->check_integrity_print_mask);
  2218. if (ret)
  2219. printk(KERN_WARNING "btrfs: failed to initialize"
  2220. " integrity check module %s\n", sb->s_id);
  2221. }
  2222. #endif
  2223. ret = btrfs_read_qgroup_config(fs_info);
  2224. if (ret)
  2225. goto fail_trans_kthread;
  2226. /* do not make disk changes in broken FS */
  2227. if (btrfs_super_log_root(disk_super) != 0) {
  2228. u64 bytenr = btrfs_super_log_root(disk_super);
  2229. if (fs_devices->rw_devices == 0) {
  2230. printk(KERN_WARNING "Btrfs log replay required "
  2231. "on RO media\n");
  2232. err = -EIO;
  2233. goto fail_qgroup;
  2234. }
  2235. blocksize =
  2236. btrfs_level_size(tree_root,
  2237. btrfs_super_log_root_level(disk_super));
  2238. log_tree_root = btrfs_alloc_root(fs_info);
  2239. if (!log_tree_root) {
  2240. err = -ENOMEM;
  2241. goto fail_qgroup;
  2242. }
  2243. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2244. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2245. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2246. blocksize,
  2247. generation + 1);
  2248. /* returns with log_tree_root freed on success */
  2249. ret = btrfs_recover_log_trees(log_tree_root);
  2250. if (ret) {
  2251. btrfs_error(tree_root->fs_info, ret,
  2252. "Failed to recover log tree");
  2253. free_extent_buffer(log_tree_root->node);
  2254. kfree(log_tree_root);
  2255. goto fail_trans_kthread;
  2256. }
  2257. if (sb->s_flags & MS_RDONLY) {
  2258. ret = btrfs_commit_super(tree_root);
  2259. if (ret)
  2260. goto fail_trans_kthread;
  2261. }
  2262. }
  2263. ret = btrfs_find_orphan_roots(tree_root);
  2264. if (ret)
  2265. goto fail_trans_kthread;
  2266. if (!(sb->s_flags & MS_RDONLY)) {
  2267. ret = btrfs_cleanup_fs_roots(fs_info);
  2268. if (ret)
  2269. goto fail_trans_kthread;
  2270. ret = btrfs_recover_relocation(tree_root);
  2271. if (ret < 0) {
  2272. printk(KERN_WARNING
  2273. "btrfs: failed to recover relocation\n");
  2274. err = -EINVAL;
  2275. goto fail_qgroup;
  2276. }
  2277. }
  2278. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2279. location.type = BTRFS_ROOT_ITEM_KEY;
  2280. location.offset = (u64)-1;
  2281. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2282. if (!fs_info->fs_root)
  2283. goto fail_qgroup;
  2284. if (IS_ERR(fs_info->fs_root)) {
  2285. err = PTR_ERR(fs_info->fs_root);
  2286. goto fail_qgroup;
  2287. }
  2288. if (sb->s_flags & MS_RDONLY)
  2289. return 0;
  2290. down_read(&fs_info->cleanup_work_sem);
  2291. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2292. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2293. up_read(&fs_info->cleanup_work_sem);
  2294. close_ctree(tree_root);
  2295. return ret;
  2296. }
  2297. up_read(&fs_info->cleanup_work_sem);
  2298. ret = btrfs_resume_balance_async(fs_info);
  2299. if (ret) {
  2300. printk(KERN_WARNING "btrfs: failed to resume balance\n");
  2301. close_ctree(tree_root);
  2302. return ret;
  2303. }
  2304. return 0;
  2305. fail_qgroup:
  2306. btrfs_free_qgroup_config(fs_info);
  2307. fail_trans_kthread:
  2308. kthread_stop(fs_info->transaction_kthread);
  2309. fail_cleaner:
  2310. kthread_stop(fs_info->cleaner_kthread);
  2311. /*
  2312. * make sure we're done with the btree inode before we stop our
  2313. * kthreads
  2314. */
  2315. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2316. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2317. fail_block_groups:
  2318. btrfs_free_block_groups(fs_info);
  2319. fail_tree_roots:
  2320. free_root_pointers(fs_info, 1);
  2321. fail_sb_buffer:
  2322. btrfs_stop_workers(&fs_info->generic_worker);
  2323. btrfs_stop_workers(&fs_info->readahead_workers);
  2324. btrfs_stop_workers(&fs_info->fixup_workers);
  2325. btrfs_stop_workers(&fs_info->delalloc_workers);
  2326. btrfs_stop_workers(&fs_info->workers);
  2327. btrfs_stop_workers(&fs_info->endio_workers);
  2328. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2329. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2330. btrfs_stop_workers(&fs_info->endio_write_workers);
  2331. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2332. btrfs_stop_workers(&fs_info->submit_workers);
  2333. btrfs_stop_workers(&fs_info->delayed_workers);
  2334. btrfs_stop_workers(&fs_info->caching_workers);
  2335. btrfs_stop_workers(&fs_info->flush_workers);
  2336. fail_alloc:
  2337. fail_iput:
  2338. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2339. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2340. iput(fs_info->btree_inode);
  2341. fail_bdi:
  2342. bdi_destroy(&fs_info->bdi);
  2343. fail_srcu:
  2344. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2345. fail:
  2346. btrfs_close_devices(fs_info->fs_devices);
  2347. return err;
  2348. recovery_tree_root:
  2349. if (!btrfs_test_opt(tree_root, RECOVERY))
  2350. goto fail_tree_roots;
  2351. free_root_pointers(fs_info, 0);
  2352. /* don't use the log in recovery mode, it won't be valid */
  2353. btrfs_set_super_log_root(disk_super, 0);
  2354. /* we can't trust the free space cache either */
  2355. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2356. ret = next_root_backup(fs_info, fs_info->super_copy,
  2357. &num_backups_tried, &backup_index);
  2358. if (ret == -1)
  2359. goto fail_block_groups;
  2360. goto retry_root_backup;
  2361. }
  2362. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2363. {
  2364. if (uptodate) {
  2365. set_buffer_uptodate(bh);
  2366. } else {
  2367. struct btrfs_device *device = (struct btrfs_device *)
  2368. bh->b_private;
  2369. printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
  2370. "I/O error on %s\n",
  2371. rcu_str_deref(device->name));
  2372. /* note, we dont' set_buffer_write_io_error because we have
  2373. * our own ways of dealing with the IO errors
  2374. */
  2375. clear_buffer_uptodate(bh);
  2376. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2377. }
  2378. unlock_buffer(bh);
  2379. put_bh(bh);
  2380. }
  2381. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2382. {
  2383. struct buffer_head *bh;
  2384. struct buffer_head *latest = NULL;
  2385. struct btrfs_super_block *super;
  2386. int i;
  2387. u64 transid = 0;
  2388. u64 bytenr;
  2389. /* we would like to check all the supers, but that would make
  2390. * a btrfs mount succeed after a mkfs from a different FS.
  2391. * So, we need to add a special mount option to scan for
  2392. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2393. */
  2394. for (i = 0; i < 1; i++) {
  2395. bytenr = btrfs_sb_offset(i);
  2396. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  2397. break;
  2398. bh = __bread(bdev, bytenr / 4096, 4096);
  2399. if (!bh)
  2400. continue;
  2401. super = (struct btrfs_super_block *)bh->b_data;
  2402. if (btrfs_super_bytenr(super) != bytenr ||
  2403. strncmp((char *)(&super->magic), BTRFS_MAGIC,
  2404. sizeof(super->magic))) {
  2405. brelse(bh);
  2406. continue;
  2407. }
  2408. if (!latest || btrfs_super_generation(super) > transid) {
  2409. brelse(latest);
  2410. latest = bh;
  2411. transid = btrfs_super_generation(super);
  2412. } else {
  2413. brelse(bh);
  2414. }
  2415. }
  2416. return latest;
  2417. }
  2418. /*
  2419. * this should be called twice, once with wait == 0 and
  2420. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2421. * we write are pinned.
  2422. *
  2423. * They are released when wait == 1 is done.
  2424. * max_mirrors must be the same for both runs, and it indicates how
  2425. * many supers on this one device should be written.
  2426. *
  2427. * max_mirrors == 0 means to write them all.
  2428. */
  2429. static int write_dev_supers(struct btrfs_device *device,
  2430. struct btrfs_super_block *sb,
  2431. int do_barriers, int wait, int max_mirrors)
  2432. {
  2433. struct buffer_head *bh;
  2434. int i;
  2435. int ret;
  2436. int errors = 0;
  2437. u32 crc;
  2438. u64 bytenr;
  2439. if (max_mirrors == 0)
  2440. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2441. for (i = 0; i < max_mirrors; i++) {
  2442. bytenr = btrfs_sb_offset(i);
  2443. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2444. break;
  2445. if (wait) {
  2446. bh = __find_get_block(device->bdev, bytenr / 4096,
  2447. BTRFS_SUPER_INFO_SIZE);
  2448. BUG_ON(!bh);
  2449. wait_on_buffer(bh);
  2450. if (!buffer_uptodate(bh))
  2451. errors++;
  2452. /* drop our reference */
  2453. brelse(bh);
  2454. /* drop the reference from the wait == 0 run */
  2455. brelse(bh);
  2456. continue;
  2457. } else {
  2458. btrfs_set_super_bytenr(sb, bytenr);
  2459. crc = ~(u32)0;
  2460. crc = btrfs_csum_data(NULL, (char *)sb +
  2461. BTRFS_CSUM_SIZE, crc,
  2462. BTRFS_SUPER_INFO_SIZE -
  2463. BTRFS_CSUM_SIZE);
  2464. btrfs_csum_final(crc, sb->csum);
  2465. /*
  2466. * one reference for us, and we leave it for the
  2467. * caller
  2468. */
  2469. bh = __getblk(device->bdev, bytenr / 4096,
  2470. BTRFS_SUPER_INFO_SIZE);
  2471. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2472. /* one reference for submit_bh */
  2473. get_bh(bh);
  2474. set_buffer_uptodate(bh);
  2475. lock_buffer(bh);
  2476. bh->b_end_io = btrfs_end_buffer_write_sync;
  2477. bh->b_private = device;
  2478. }
  2479. /*
  2480. * we fua the first super. The others we allow
  2481. * to go down lazy.
  2482. */
  2483. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2484. if (ret)
  2485. errors++;
  2486. }
  2487. return errors < i ? 0 : -1;
  2488. }
  2489. /*
  2490. * endio for the write_dev_flush, this will wake anyone waiting
  2491. * for the barrier when it is done
  2492. */
  2493. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2494. {
  2495. if (err) {
  2496. if (err == -EOPNOTSUPP)
  2497. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2498. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2499. }
  2500. if (bio->bi_private)
  2501. complete(bio->bi_private);
  2502. bio_put(bio);
  2503. }
  2504. /*
  2505. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2506. * sent down. With wait == 1, it waits for the previous flush.
  2507. *
  2508. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2509. * capable
  2510. */
  2511. static int write_dev_flush(struct btrfs_device *device, int wait)
  2512. {
  2513. struct bio *bio;
  2514. int ret = 0;
  2515. if (device->nobarriers)
  2516. return 0;
  2517. if (wait) {
  2518. bio = device->flush_bio;
  2519. if (!bio)
  2520. return 0;
  2521. wait_for_completion(&device->flush_wait);
  2522. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2523. printk_in_rcu("btrfs: disabling barriers on dev %s\n",
  2524. rcu_str_deref(device->name));
  2525. device->nobarriers = 1;
  2526. } else if (!bio_flagged(bio, BIO_UPTODATE)) {
  2527. ret = -EIO;
  2528. btrfs_dev_stat_inc_and_print(device,
  2529. BTRFS_DEV_STAT_FLUSH_ERRS);
  2530. }
  2531. /* drop the reference from the wait == 0 run */
  2532. bio_put(bio);
  2533. device->flush_bio = NULL;
  2534. return ret;
  2535. }
  2536. /*
  2537. * one reference for us, and we leave it for the
  2538. * caller
  2539. */
  2540. device->flush_bio = NULL;
  2541. bio = bio_alloc(GFP_NOFS, 0);
  2542. if (!bio)
  2543. return -ENOMEM;
  2544. bio->bi_end_io = btrfs_end_empty_barrier;
  2545. bio->bi_bdev = device->bdev;
  2546. init_completion(&device->flush_wait);
  2547. bio->bi_private = &device->flush_wait;
  2548. device->flush_bio = bio;
  2549. bio_get(bio);
  2550. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2551. return 0;
  2552. }
  2553. /*
  2554. * send an empty flush down to each device in parallel,
  2555. * then wait for them
  2556. */
  2557. static int barrier_all_devices(struct btrfs_fs_info *info)
  2558. {
  2559. struct list_head *head;
  2560. struct btrfs_device *dev;
  2561. int errors_send = 0;
  2562. int errors_wait = 0;
  2563. int ret;
  2564. /* send down all the barriers */
  2565. head = &info->fs_devices->devices;
  2566. list_for_each_entry_rcu(dev, head, dev_list) {
  2567. if (!dev->bdev) {
  2568. errors_send++;
  2569. continue;
  2570. }
  2571. if (!dev->in_fs_metadata || !dev->writeable)
  2572. continue;
  2573. ret = write_dev_flush(dev, 0);
  2574. if (ret)
  2575. errors_send++;
  2576. }
  2577. /* wait for all the barriers */
  2578. list_for_each_entry_rcu(dev, head, dev_list) {
  2579. if (!dev->bdev) {
  2580. errors_wait++;
  2581. continue;
  2582. }
  2583. if (!dev->in_fs_metadata || !dev->writeable)
  2584. continue;
  2585. ret = write_dev_flush(dev, 1);
  2586. if (ret)
  2587. errors_wait++;
  2588. }
  2589. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  2590. errors_wait > info->num_tolerated_disk_barrier_failures)
  2591. return -EIO;
  2592. return 0;
  2593. }
  2594. int btrfs_calc_num_tolerated_disk_barrier_failures(
  2595. struct btrfs_fs_info *fs_info)
  2596. {
  2597. struct btrfs_ioctl_space_info space;
  2598. struct btrfs_space_info *sinfo;
  2599. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  2600. BTRFS_BLOCK_GROUP_SYSTEM,
  2601. BTRFS_BLOCK_GROUP_METADATA,
  2602. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  2603. int num_types = 4;
  2604. int i;
  2605. int c;
  2606. int num_tolerated_disk_barrier_failures =
  2607. (int)fs_info->fs_devices->num_devices;
  2608. for (i = 0; i < num_types; i++) {
  2609. struct btrfs_space_info *tmp;
  2610. sinfo = NULL;
  2611. rcu_read_lock();
  2612. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  2613. if (tmp->flags == types[i]) {
  2614. sinfo = tmp;
  2615. break;
  2616. }
  2617. }
  2618. rcu_read_unlock();
  2619. if (!sinfo)
  2620. continue;
  2621. down_read(&sinfo->groups_sem);
  2622. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  2623. if (!list_empty(&sinfo->block_groups[c])) {
  2624. u64 flags;
  2625. btrfs_get_block_group_info(
  2626. &sinfo->block_groups[c], &space);
  2627. if (space.total_bytes == 0 ||
  2628. space.used_bytes == 0)
  2629. continue;
  2630. flags = space.flags;
  2631. /*
  2632. * return
  2633. * 0: if dup, single or RAID0 is configured for
  2634. * any of metadata, system or data, else
  2635. * 1: if RAID5 is configured, or if RAID1 or
  2636. * RAID10 is configured and only two mirrors
  2637. * are used, else
  2638. * 2: if RAID6 is configured, else
  2639. * num_mirrors - 1: if RAID1 or RAID10 is
  2640. * configured and more than
  2641. * 2 mirrors are used.
  2642. */
  2643. if (num_tolerated_disk_barrier_failures > 0 &&
  2644. ((flags & (BTRFS_BLOCK_GROUP_DUP |
  2645. BTRFS_BLOCK_GROUP_RAID0)) ||
  2646. ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
  2647. == 0)))
  2648. num_tolerated_disk_barrier_failures = 0;
  2649. else if (num_tolerated_disk_barrier_failures > 1
  2650. &&
  2651. (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2652. BTRFS_BLOCK_GROUP_RAID10)))
  2653. num_tolerated_disk_barrier_failures = 1;
  2654. }
  2655. }
  2656. up_read(&sinfo->groups_sem);
  2657. }
  2658. return num_tolerated_disk_barrier_failures;
  2659. }
  2660. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2661. {
  2662. struct list_head *head;
  2663. struct btrfs_device *dev;
  2664. struct btrfs_super_block *sb;
  2665. struct btrfs_dev_item *dev_item;
  2666. int ret;
  2667. int do_barriers;
  2668. int max_errors;
  2669. int total_errors = 0;
  2670. u64 flags;
  2671. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2672. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2673. backup_super_roots(root->fs_info);
  2674. sb = root->fs_info->super_for_commit;
  2675. dev_item = &sb->dev_item;
  2676. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2677. head = &root->fs_info->fs_devices->devices;
  2678. if (do_barriers) {
  2679. ret = barrier_all_devices(root->fs_info);
  2680. if (ret) {
  2681. mutex_unlock(
  2682. &root->fs_info->fs_devices->device_list_mutex);
  2683. btrfs_error(root->fs_info, ret,
  2684. "errors while submitting device barriers.");
  2685. return ret;
  2686. }
  2687. }
  2688. list_for_each_entry_rcu(dev, head, dev_list) {
  2689. if (!dev->bdev) {
  2690. total_errors++;
  2691. continue;
  2692. }
  2693. if (!dev->in_fs_metadata || !dev->writeable)
  2694. continue;
  2695. btrfs_set_stack_device_generation(dev_item, 0);
  2696. btrfs_set_stack_device_type(dev_item, dev->type);
  2697. btrfs_set_stack_device_id(dev_item, dev->devid);
  2698. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2699. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2700. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2701. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2702. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2703. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2704. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2705. flags = btrfs_super_flags(sb);
  2706. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2707. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2708. if (ret)
  2709. total_errors++;
  2710. }
  2711. if (total_errors > max_errors) {
  2712. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2713. total_errors);
  2714. /* This shouldn't happen. FUA is masked off if unsupported */
  2715. BUG();
  2716. }
  2717. total_errors = 0;
  2718. list_for_each_entry_rcu(dev, head, dev_list) {
  2719. if (!dev->bdev)
  2720. continue;
  2721. if (!dev->in_fs_metadata || !dev->writeable)
  2722. continue;
  2723. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2724. if (ret)
  2725. total_errors++;
  2726. }
  2727. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2728. if (total_errors > max_errors) {
  2729. btrfs_error(root->fs_info, -EIO,
  2730. "%d errors while writing supers", total_errors);
  2731. return -EIO;
  2732. }
  2733. return 0;
  2734. }
  2735. int write_ctree_super(struct btrfs_trans_handle *trans,
  2736. struct btrfs_root *root, int max_mirrors)
  2737. {
  2738. int ret;
  2739. ret = write_all_supers(root, max_mirrors);
  2740. return ret;
  2741. }
  2742. void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  2743. {
  2744. spin_lock(&fs_info->fs_roots_radix_lock);
  2745. radix_tree_delete(&fs_info->fs_roots_radix,
  2746. (unsigned long)root->root_key.objectid);
  2747. spin_unlock(&fs_info->fs_roots_radix_lock);
  2748. if (btrfs_root_refs(&root->root_item) == 0)
  2749. synchronize_srcu(&fs_info->subvol_srcu);
  2750. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  2751. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  2752. free_fs_root(root);
  2753. }
  2754. static void free_fs_root(struct btrfs_root *root)
  2755. {
  2756. iput(root->cache_inode);
  2757. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  2758. if (root->anon_dev)
  2759. free_anon_bdev(root->anon_dev);
  2760. free_extent_buffer(root->node);
  2761. free_extent_buffer(root->commit_root);
  2762. kfree(root->free_ino_ctl);
  2763. kfree(root->free_ino_pinned);
  2764. kfree(root->name);
  2765. kfree(root);
  2766. }
  2767. static void del_fs_roots(struct btrfs_fs_info *fs_info)
  2768. {
  2769. int ret;
  2770. struct btrfs_root *gang[8];
  2771. int i;
  2772. while (!list_empty(&fs_info->dead_roots)) {
  2773. gang[0] = list_entry(fs_info->dead_roots.next,
  2774. struct btrfs_root, root_list);
  2775. list_del(&gang[0]->root_list);
  2776. if (gang[0]->in_radix) {
  2777. btrfs_free_fs_root(fs_info, gang[0]);
  2778. } else {
  2779. free_extent_buffer(gang[0]->node);
  2780. free_extent_buffer(gang[0]->commit_root);
  2781. kfree(gang[0]);
  2782. }
  2783. }
  2784. while (1) {
  2785. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2786. (void **)gang, 0,
  2787. ARRAY_SIZE(gang));
  2788. if (!ret)
  2789. break;
  2790. for (i = 0; i < ret; i++)
  2791. btrfs_free_fs_root(fs_info, gang[i]);
  2792. }
  2793. }
  2794. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  2795. {
  2796. u64 root_objectid = 0;
  2797. struct btrfs_root *gang[8];
  2798. int i;
  2799. int ret;
  2800. while (1) {
  2801. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2802. (void **)gang, root_objectid,
  2803. ARRAY_SIZE(gang));
  2804. if (!ret)
  2805. break;
  2806. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2807. for (i = 0; i < ret; i++) {
  2808. int err;
  2809. root_objectid = gang[i]->root_key.objectid;
  2810. err = btrfs_orphan_cleanup(gang[i]);
  2811. if (err)
  2812. return err;
  2813. }
  2814. root_objectid++;
  2815. }
  2816. return 0;
  2817. }
  2818. int btrfs_commit_super(struct btrfs_root *root)
  2819. {
  2820. struct btrfs_trans_handle *trans;
  2821. int ret;
  2822. mutex_lock(&root->fs_info->cleaner_mutex);
  2823. btrfs_run_delayed_iputs(root);
  2824. btrfs_clean_old_snapshots(root);
  2825. mutex_unlock(&root->fs_info->cleaner_mutex);
  2826. /* wait until ongoing cleanup work done */
  2827. down_write(&root->fs_info->cleanup_work_sem);
  2828. up_write(&root->fs_info->cleanup_work_sem);
  2829. trans = btrfs_join_transaction(root);
  2830. if (IS_ERR(trans))
  2831. return PTR_ERR(trans);
  2832. ret = btrfs_commit_transaction(trans, root);
  2833. if (ret)
  2834. return ret;
  2835. /* run commit again to drop the original snapshot */
  2836. trans = btrfs_join_transaction(root);
  2837. if (IS_ERR(trans))
  2838. return PTR_ERR(trans);
  2839. ret = btrfs_commit_transaction(trans, root);
  2840. if (ret)
  2841. return ret;
  2842. ret = btrfs_write_and_wait_transaction(NULL, root);
  2843. if (ret) {
  2844. btrfs_error(root->fs_info, ret,
  2845. "Failed to sync btree inode to disk.");
  2846. return ret;
  2847. }
  2848. ret = write_ctree_super(NULL, root, 0);
  2849. return ret;
  2850. }
  2851. int close_ctree(struct btrfs_root *root)
  2852. {
  2853. struct btrfs_fs_info *fs_info = root->fs_info;
  2854. int ret;
  2855. fs_info->closing = 1;
  2856. smp_mb();
  2857. /* pause restriper - we want to resume on mount */
  2858. btrfs_pause_balance(fs_info);
  2859. btrfs_scrub_cancel(fs_info);
  2860. /* wait for any defraggers to finish */
  2861. wait_event(fs_info->transaction_wait,
  2862. (atomic_read(&fs_info->defrag_running) == 0));
  2863. /* clear out the rbtree of defraggable inodes */
  2864. btrfs_run_defrag_inodes(fs_info);
  2865. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  2866. ret = btrfs_commit_super(root);
  2867. if (ret)
  2868. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2869. }
  2870. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
  2871. btrfs_error_commit_super(root);
  2872. btrfs_put_block_group_cache(fs_info);
  2873. kthread_stop(fs_info->transaction_kthread);
  2874. kthread_stop(fs_info->cleaner_kthread);
  2875. fs_info->closing = 2;
  2876. smp_mb();
  2877. btrfs_free_qgroup_config(root->fs_info);
  2878. if (fs_info->delalloc_bytes) {
  2879. printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
  2880. (unsigned long long)fs_info->delalloc_bytes);
  2881. }
  2882. free_extent_buffer(fs_info->extent_root->node);
  2883. free_extent_buffer(fs_info->extent_root->commit_root);
  2884. free_extent_buffer(fs_info->tree_root->node);
  2885. free_extent_buffer(fs_info->tree_root->commit_root);
  2886. free_extent_buffer(fs_info->chunk_root->node);
  2887. free_extent_buffer(fs_info->chunk_root->commit_root);
  2888. free_extent_buffer(fs_info->dev_root->node);
  2889. free_extent_buffer(fs_info->dev_root->commit_root);
  2890. free_extent_buffer(fs_info->csum_root->node);
  2891. free_extent_buffer(fs_info->csum_root->commit_root);
  2892. if (fs_info->quota_root) {
  2893. free_extent_buffer(fs_info->quota_root->node);
  2894. free_extent_buffer(fs_info->quota_root->commit_root);
  2895. }
  2896. btrfs_free_block_groups(fs_info);
  2897. del_fs_roots(fs_info);
  2898. iput(fs_info->btree_inode);
  2899. btrfs_stop_workers(&fs_info->generic_worker);
  2900. btrfs_stop_workers(&fs_info->fixup_workers);
  2901. btrfs_stop_workers(&fs_info->delalloc_workers);
  2902. btrfs_stop_workers(&fs_info->workers);
  2903. btrfs_stop_workers(&fs_info->endio_workers);
  2904. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2905. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2906. btrfs_stop_workers(&fs_info->endio_write_workers);
  2907. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2908. btrfs_stop_workers(&fs_info->submit_workers);
  2909. btrfs_stop_workers(&fs_info->delayed_workers);
  2910. btrfs_stop_workers(&fs_info->caching_workers);
  2911. btrfs_stop_workers(&fs_info->readahead_workers);
  2912. btrfs_stop_workers(&fs_info->flush_workers);
  2913. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2914. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  2915. btrfsic_unmount(root, fs_info->fs_devices);
  2916. #endif
  2917. btrfs_close_devices(fs_info->fs_devices);
  2918. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2919. bdi_destroy(&fs_info->bdi);
  2920. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2921. return 0;
  2922. }
  2923. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  2924. int atomic)
  2925. {
  2926. int ret;
  2927. struct inode *btree_inode = buf->pages[0]->mapping->host;
  2928. ret = extent_buffer_uptodate(buf);
  2929. if (!ret)
  2930. return ret;
  2931. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  2932. parent_transid, atomic);
  2933. if (ret == -EAGAIN)
  2934. return ret;
  2935. return !ret;
  2936. }
  2937. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  2938. {
  2939. return set_extent_buffer_uptodate(buf);
  2940. }
  2941. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  2942. {
  2943. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  2944. u64 transid = btrfs_header_generation(buf);
  2945. int was_dirty;
  2946. btrfs_assert_tree_locked(buf);
  2947. if (transid != root->fs_info->generation)
  2948. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  2949. "found %llu running %llu\n",
  2950. (unsigned long long)buf->start,
  2951. (unsigned long long)transid,
  2952. (unsigned long long)root->fs_info->generation);
  2953. was_dirty = set_extent_buffer_dirty(buf);
  2954. if (!was_dirty) {
  2955. spin_lock(&root->fs_info->delalloc_lock);
  2956. root->fs_info->dirty_metadata_bytes += buf->len;
  2957. spin_unlock(&root->fs_info->delalloc_lock);
  2958. }
  2959. }
  2960. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  2961. int flush_delayed)
  2962. {
  2963. /*
  2964. * looks as though older kernels can get into trouble with
  2965. * this code, they end up stuck in balance_dirty_pages forever
  2966. */
  2967. u64 num_dirty;
  2968. unsigned long thresh = 32 * 1024 * 1024;
  2969. if (current->flags & PF_MEMALLOC)
  2970. return;
  2971. if (flush_delayed)
  2972. btrfs_balance_delayed_items(root);
  2973. num_dirty = root->fs_info->dirty_metadata_bytes;
  2974. if (num_dirty > thresh) {
  2975. balance_dirty_pages_ratelimited_nr(
  2976. root->fs_info->btree_inode->i_mapping, 1);
  2977. }
  2978. return;
  2979. }
  2980. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  2981. {
  2982. __btrfs_btree_balance_dirty(root, 1);
  2983. }
  2984. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  2985. {
  2986. __btrfs_btree_balance_dirty(root, 0);
  2987. }
  2988. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  2989. {
  2990. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  2991. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  2992. }
  2993. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  2994. int read_only)
  2995. {
  2996. if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
  2997. printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
  2998. return -EINVAL;
  2999. }
  3000. if (read_only)
  3001. return 0;
  3002. return 0;
  3003. }
  3004. void btrfs_error_commit_super(struct btrfs_root *root)
  3005. {
  3006. mutex_lock(&root->fs_info->cleaner_mutex);
  3007. btrfs_run_delayed_iputs(root);
  3008. mutex_unlock(&root->fs_info->cleaner_mutex);
  3009. down_write(&root->fs_info->cleanup_work_sem);
  3010. up_write(&root->fs_info->cleanup_work_sem);
  3011. /* cleanup FS via transaction */
  3012. btrfs_cleanup_transaction(root);
  3013. }
  3014. static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
  3015. {
  3016. struct btrfs_inode *btrfs_inode;
  3017. struct list_head splice;
  3018. INIT_LIST_HEAD(&splice);
  3019. mutex_lock(&root->fs_info->ordered_operations_mutex);
  3020. spin_lock(&root->fs_info->ordered_extent_lock);
  3021. list_splice_init(&root->fs_info->ordered_operations, &splice);
  3022. while (!list_empty(&splice)) {
  3023. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3024. ordered_operations);
  3025. list_del_init(&btrfs_inode->ordered_operations);
  3026. btrfs_invalidate_inodes(btrfs_inode->root);
  3027. }
  3028. spin_unlock(&root->fs_info->ordered_extent_lock);
  3029. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  3030. }
  3031. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3032. {
  3033. struct list_head splice;
  3034. struct btrfs_ordered_extent *ordered;
  3035. struct inode *inode;
  3036. INIT_LIST_HEAD(&splice);
  3037. spin_lock(&root->fs_info->ordered_extent_lock);
  3038. list_splice_init(&root->fs_info->ordered_extents, &splice);
  3039. while (!list_empty(&splice)) {
  3040. ordered = list_entry(splice.next, struct btrfs_ordered_extent,
  3041. root_extent_list);
  3042. list_del_init(&ordered->root_extent_list);
  3043. atomic_inc(&ordered->refs);
  3044. /* the inode may be getting freed (in sys_unlink path). */
  3045. inode = igrab(ordered->inode);
  3046. spin_unlock(&root->fs_info->ordered_extent_lock);
  3047. if (inode)
  3048. iput(inode);
  3049. atomic_set(&ordered->refs, 1);
  3050. btrfs_put_ordered_extent(ordered);
  3051. spin_lock(&root->fs_info->ordered_extent_lock);
  3052. }
  3053. spin_unlock(&root->fs_info->ordered_extent_lock);
  3054. }
  3055. int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3056. struct btrfs_root *root)
  3057. {
  3058. struct rb_node *node;
  3059. struct btrfs_delayed_ref_root *delayed_refs;
  3060. struct btrfs_delayed_ref_node *ref;
  3061. int ret = 0;
  3062. delayed_refs = &trans->delayed_refs;
  3063. spin_lock(&delayed_refs->lock);
  3064. if (delayed_refs->num_entries == 0) {
  3065. spin_unlock(&delayed_refs->lock);
  3066. printk(KERN_INFO "delayed_refs has NO entry\n");
  3067. return ret;
  3068. }
  3069. while ((node = rb_first(&delayed_refs->root)) != NULL) {
  3070. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  3071. atomic_set(&ref->refs, 1);
  3072. if (btrfs_delayed_ref_is_head(ref)) {
  3073. struct btrfs_delayed_ref_head *head;
  3074. head = btrfs_delayed_node_to_head(ref);
  3075. if (!mutex_trylock(&head->mutex)) {
  3076. atomic_inc(&ref->refs);
  3077. spin_unlock(&delayed_refs->lock);
  3078. /* Need to wait for the delayed ref to run */
  3079. mutex_lock(&head->mutex);
  3080. mutex_unlock(&head->mutex);
  3081. btrfs_put_delayed_ref(ref);
  3082. spin_lock(&delayed_refs->lock);
  3083. continue;
  3084. }
  3085. kfree(head->extent_op);
  3086. delayed_refs->num_heads--;
  3087. if (list_empty(&head->cluster))
  3088. delayed_refs->num_heads_ready--;
  3089. list_del_init(&head->cluster);
  3090. }
  3091. ref->in_tree = 0;
  3092. rb_erase(&ref->rb_node, &delayed_refs->root);
  3093. delayed_refs->num_entries--;
  3094. spin_unlock(&delayed_refs->lock);
  3095. btrfs_put_delayed_ref(ref);
  3096. cond_resched();
  3097. spin_lock(&delayed_refs->lock);
  3098. }
  3099. spin_unlock(&delayed_refs->lock);
  3100. return ret;
  3101. }
  3102. static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
  3103. {
  3104. struct btrfs_pending_snapshot *snapshot;
  3105. struct list_head splice;
  3106. INIT_LIST_HEAD(&splice);
  3107. list_splice_init(&t->pending_snapshots, &splice);
  3108. while (!list_empty(&splice)) {
  3109. snapshot = list_entry(splice.next,
  3110. struct btrfs_pending_snapshot,
  3111. list);
  3112. list_del_init(&snapshot->list);
  3113. kfree(snapshot);
  3114. }
  3115. }
  3116. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3117. {
  3118. struct btrfs_inode *btrfs_inode;
  3119. struct list_head splice;
  3120. INIT_LIST_HEAD(&splice);
  3121. spin_lock(&root->fs_info->delalloc_lock);
  3122. list_splice_init(&root->fs_info->delalloc_inodes, &splice);
  3123. while (!list_empty(&splice)) {
  3124. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3125. delalloc_inodes);
  3126. list_del_init(&btrfs_inode->delalloc_inodes);
  3127. btrfs_invalidate_inodes(btrfs_inode->root);
  3128. }
  3129. spin_unlock(&root->fs_info->delalloc_lock);
  3130. }
  3131. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3132. struct extent_io_tree *dirty_pages,
  3133. int mark)
  3134. {
  3135. int ret;
  3136. struct page *page;
  3137. struct inode *btree_inode = root->fs_info->btree_inode;
  3138. struct extent_buffer *eb;
  3139. u64 start = 0;
  3140. u64 end;
  3141. u64 offset;
  3142. unsigned long index;
  3143. while (1) {
  3144. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3145. mark, NULL);
  3146. if (ret)
  3147. break;
  3148. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3149. while (start <= end) {
  3150. index = start >> PAGE_CACHE_SHIFT;
  3151. start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
  3152. page = find_get_page(btree_inode->i_mapping, index);
  3153. if (!page)
  3154. continue;
  3155. offset = page_offset(page);
  3156. spin_lock(&dirty_pages->buffer_lock);
  3157. eb = radix_tree_lookup(
  3158. &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
  3159. offset >> PAGE_CACHE_SHIFT);
  3160. spin_unlock(&dirty_pages->buffer_lock);
  3161. if (eb)
  3162. ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3163. &eb->bflags);
  3164. if (PageWriteback(page))
  3165. end_page_writeback(page);
  3166. lock_page(page);
  3167. if (PageDirty(page)) {
  3168. clear_page_dirty_for_io(page);
  3169. spin_lock_irq(&page->mapping->tree_lock);
  3170. radix_tree_tag_clear(&page->mapping->page_tree,
  3171. page_index(page),
  3172. PAGECACHE_TAG_DIRTY);
  3173. spin_unlock_irq(&page->mapping->tree_lock);
  3174. }
  3175. unlock_page(page);
  3176. page_cache_release(page);
  3177. }
  3178. }
  3179. return ret;
  3180. }
  3181. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3182. struct extent_io_tree *pinned_extents)
  3183. {
  3184. struct extent_io_tree *unpin;
  3185. u64 start;
  3186. u64 end;
  3187. int ret;
  3188. bool loop = true;
  3189. unpin = pinned_extents;
  3190. again:
  3191. while (1) {
  3192. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3193. EXTENT_DIRTY, NULL);
  3194. if (ret)
  3195. break;
  3196. /* opt_discard */
  3197. if (btrfs_test_opt(root, DISCARD))
  3198. ret = btrfs_error_discard_extent(root, start,
  3199. end + 1 - start,
  3200. NULL);
  3201. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3202. btrfs_error_unpin_extent_range(root, start, end);
  3203. cond_resched();
  3204. }
  3205. if (loop) {
  3206. if (unpin == &root->fs_info->freed_extents[0])
  3207. unpin = &root->fs_info->freed_extents[1];
  3208. else
  3209. unpin = &root->fs_info->freed_extents[0];
  3210. loop = false;
  3211. goto again;
  3212. }
  3213. return 0;
  3214. }
  3215. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3216. struct btrfs_root *root)
  3217. {
  3218. btrfs_destroy_delayed_refs(cur_trans, root);
  3219. btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
  3220. cur_trans->dirty_pages.dirty_bytes);
  3221. /* FIXME: cleanup wait for commit */
  3222. cur_trans->in_commit = 1;
  3223. cur_trans->blocked = 1;
  3224. wake_up(&root->fs_info->transaction_blocked_wait);
  3225. cur_trans->blocked = 0;
  3226. wake_up(&root->fs_info->transaction_wait);
  3227. cur_trans->commit_done = 1;
  3228. wake_up(&cur_trans->commit_wait);
  3229. btrfs_destroy_delayed_inodes(root);
  3230. btrfs_assert_delayed_root_empty(root);
  3231. btrfs_destroy_pending_snapshots(cur_trans);
  3232. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3233. EXTENT_DIRTY);
  3234. btrfs_destroy_pinned_extent(root,
  3235. root->fs_info->pinned_extents);
  3236. /*
  3237. memset(cur_trans, 0, sizeof(*cur_trans));
  3238. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3239. */
  3240. }
  3241. int btrfs_cleanup_transaction(struct btrfs_root *root)
  3242. {
  3243. struct btrfs_transaction *t;
  3244. LIST_HEAD(list);
  3245. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3246. spin_lock(&root->fs_info->trans_lock);
  3247. list_splice_init(&root->fs_info->trans_list, &list);
  3248. root->fs_info->trans_no_join = 1;
  3249. spin_unlock(&root->fs_info->trans_lock);
  3250. while (!list_empty(&list)) {
  3251. t = list_entry(list.next, struct btrfs_transaction, list);
  3252. if (!t)
  3253. break;
  3254. btrfs_destroy_ordered_operations(root);
  3255. btrfs_destroy_ordered_extents(root);
  3256. btrfs_destroy_delayed_refs(t, root);
  3257. btrfs_block_rsv_release(root,
  3258. &root->fs_info->trans_block_rsv,
  3259. t->dirty_pages.dirty_bytes);
  3260. /* FIXME: cleanup wait for commit */
  3261. t->in_commit = 1;
  3262. t->blocked = 1;
  3263. smp_mb();
  3264. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  3265. wake_up(&root->fs_info->transaction_blocked_wait);
  3266. t->blocked = 0;
  3267. smp_mb();
  3268. if (waitqueue_active(&root->fs_info->transaction_wait))
  3269. wake_up(&root->fs_info->transaction_wait);
  3270. t->commit_done = 1;
  3271. smp_mb();
  3272. if (waitqueue_active(&t->commit_wait))
  3273. wake_up(&t->commit_wait);
  3274. btrfs_destroy_delayed_inodes(root);
  3275. btrfs_assert_delayed_root_empty(root);
  3276. btrfs_destroy_pending_snapshots(t);
  3277. btrfs_destroy_delalloc_inodes(root);
  3278. spin_lock(&root->fs_info->trans_lock);
  3279. root->fs_info->running_transaction = NULL;
  3280. spin_unlock(&root->fs_info->trans_lock);
  3281. btrfs_destroy_marked_extents(root, &t->dirty_pages,
  3282. EXTENT_DIRTY);
  3283. btrfs_destroy_pinned_extent(root,
  3284. root->fs_info->pinned_extents);
  3285. atomic_set(&t->use_count, 0);
  3286. list_del_init(&t->list);
  3287. memset(t, 0, sizeof(*t));
  3288. kmem_cache_free(btrfs_transaction_cachep, t);
  3289. }
  3290. spin_lock(&root->fs_info->trans_lock);
  3291. root->fs_info->trans_no_join = 0;
  3292. spin_unlock(&root->fs_info->trans_lock);
  3293. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3294. return 0;
  3295. }
  3296. static struct extent_io_ops btree_extent_io_ops = {
  3297. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3298. .readpage_io_failed_hook = btree_io_failed_hook,
  3299. .submit_bio_hook = btree_submit_bio_hook,
  3300. /* note we're sharing with inode.c for the merge bio hook */
  3301. .merge_bio_hook = btrfs_merge_bio_hook,
  3302. };