ar9003_calib.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173
  1. /*
  2. * Copyright (c) 2010-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "hw.h"
  17. #include "hw-ops.h"
  18. #include "ar9003_phy.h"
  19. #include "ar9003_rtt.h"
  20. #include "ar9003_mci.h"
  21. #define MAX_MEASUREMENT MAX_IQCAL_MEASUREMENT
  22. #define MAX_MAG_DELTA 11
  23. #define MAX_PHS_DELTA 10
  24. struct coeff {
  25. int mag_coeff[AR9300_MAX_CHAINS][MAX_MEASUREMENT];
  26. int phs_coeff[AR9300_MAX_CHAINS][MAX_MEASUREMENT];
  27. int iqc_coeff[2];
  28. };
  29. enum ar9003_cal_types {
  30. IQ_MISMATCH_CAL = BIT(0),
  31. TEMP_COMP_CAL = BIT(1),
  32. };
  33. static void ar9003_hw_setup_calibration(struct ath_hw *ah,
  34. struct ath9k_cal_list *currCal)
  35. {
  36. struct ath_common *common = ath9k_hw_common(ah);
  37. /* Select calibration to run */
  38. switch (currCal->calData->calType) {
  39. case IQ_MISMATCH_CAL:
  40. /*
  41. * Start calibration with
  42. * 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples
  43. */
  44. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  45. AR_PHY_TIMING4_IQCAL_LOG_COUNT_MAX,
  46. currCal->calData->calCountMax);
  47. REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_IQ);
  48. ath_dbg(common, CALIBRATE,
  49. "starting IQ Mismatch Calibration\n");
  50. /* Kick-off cal */
  51. REG_SET_BIT(ah, AR_PHY_TIMING4, AR_PHY_TIMING4_DO_CAL);
  52. break;
  53. case TEMP_COMP_CAL:
  54. REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_THERM,
  55. AR_PHY_65NM_CH0_THERM_LOCAL, 1);
  56. REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_THERM,
  57. AR_PHY_65NM_CH0_THERM_START, 1);
  58. ath_dbg(common, CALIBRATE,
  59. "starting Temperature Compensation Calibration\n");
  60. break;
  61. }
  62. }
  63. /*
  64. * Generic calibration routine.
  65. * Recalibrate the lower PHY chips to account for temperature/environment
  66. * changes.
  67. */
  68. static bool ar9003_hw_per_calibration(struct ath_hw *ah,
  69. struct ath9k_channel *ichan,
  70. u8 rxchainmask,
  71. struct ath9k_cal_list *currCal)
  72. {
  73. struct ath9k_hw_cal_data *caldata = ah->caldata;
  74. /* Cal is assumed not done until explicitly set below */
  75. bool iscaldone = false;
  76. /* Calibration in progress. */
  77. if (currCal->calState == CAL_RUNNING) {
  78. /* Check to see if it has finished. */
  79. if (!(REG_READ(ah, AR_PHY_TIMING4) & AR_PHY_TIMING4_DO_CAL)) {
  80. /*
  81. * Accumulate cal measures for active chains
  82. */
  83. currCal->calData->calCollect(ah);
  84. ah->cal_samples++;
  85. if (ah->cal_samples >=
  86. currCal->calData->calNumSamples) {
  87. unsigned int i, numChains = 0;
  88. for (i = 0; i < AR9300_MAX_CHAINS; i++) {
  89. if (rxchainmask & (1 << i))
  90. numChains++;
  91. }
  92. /*
  93. * Process accumulated data
  94. */
  95. currCal->calData->calPostProc(ah, numChains);
  96. /* Calibration has finished. */
  97. caldata->CalValid |= currCal->calData->calType;
  98. currCal->calState = CAL_DONE;
  99. iscaldone = true;
  100. } else {
  101. /*
  102. * Set-up collection of another sub-sample until we
  103. * get desired number
  104. */
  105. ar9003_hw_setup_calibration(ah, currCal);
  106. }
  107. }
  108. } else if (!(caldata->CalValid & currCal->calData->calType)) {
  109. /* If current cal is marked invalid in channel, kick it off */
  110. ath9k_hw_reset_calibration(ah, currCal);
  111. }
  112. return iscaldone;
  113. }
  114. static bool ar9003_hw_calibrate(struct ath_hw *ah,
  115. struct ath9k_channel *chan,
  116. u8 rxchainmask,
  117. bool longcal)
  118. {
  119. bool iscaldone = true;
  120. struct ath9k_cal_list *currCal = ah->cal_list_curr;
  121. /*
  122. * For given calibration:
  123. * 1. Call generic cal routine
  124. * 2. When this cal is done (isCalDone) if we have more cals waiting
  125. * (eg after reset), mask this to upper layers by not propagating
  126. * isCalDone if it is set to TRUE.
  127. * Instead, change isCalDone to FALSE and setup the waiting cal(s)
  128. * to be run.
  129. */
  130. if (currCal &&
  131. (currCal->calState == CAL_RUNNING ||
  132. currCal->calState == CAL_WAITING)) {
  133. iscaldone = ar9003_hw_per_calibration(ah, chan,
  134. rxchainmask, currCal);
  135. if (iscaldone) {
  136. ah->cal_list_curr = currCal = currCal->calNext;
  137. if (currCal->calState == CAL_WAITING) {
  138. iscaldone = false;
  139. ath9k_hw_reset_calibration(ah, currCal);
  140. }
  141. }
  142. }
  143. /*
  144. * Do NF cal only at longer intervals. Get the value from
  145. * the previous NF cal and update history buffer.
  146. */
  147. if (longcal && ath9k_hw_getnf(ah, chan)) {
  148. /*
  149. * Load the NF from history buffer of the current channel.
  150. * NF is slow time-variant, so it is OK to use a historical
  151. * value.
  152. */
  153. ath9k_hw_loadnf(ah, ah->curchan);
  154. /* start NF calibration, without updating BB NF register */
  155. ath9k_hw_start_nfcal(ah, false);
  156. }
  157. return iscaldone;
  158. }
  159. static void ar9003_hw_iqcal_collect(struct ath_hw *ah)
  160. {
  161. int i;
  162. /* Accumulate IQ cal measures for active chains */
  163. for (i = 0; i < AR5416_MAX_CHAINS; i++) {
  164. if (ah->txchainmask & BIT(i)) {
  165. ah->totalPowerMeasI[i] +=
  166. REG_READ(ah, AR_PHY_CAL_MEAS_0(i));
  167. ah->totalPowerMeasQ[i] +=
  168. REG_READ(ah, AR_PHY_CAL_MEAS_1(i));
  169. ah->totalIqCorrMeas[i] +=
  170. (int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_2(i));
  171. ath_dbg(ath9k_hw_common(ah), CALIBRATE,
  172. "%d: Chn %d pmi=0x%08x;pmq=0x%08x;iqcm=0x%08x;\n",
  173. ah->cal_samples, i, ah->totalPowerMeasI[i],
  174. ah->totalPowerMeasQ[i],
  175. ah->totalIqCorrMeas[i]);
  176. }
  177. }
  178. }
  179. static void ar9003_hw_iqcalibrate(struct ath_hw *ah, u8 numChains)
  180. {
  181. struct ath_common *common = ath9k_hw_common(ah);
  182. u32 powerMeasQ, powerMeasI, iqCorrMeas;
  183. u32 qCoffDenom, iCoffDenom;
  184. int32_t qCoff, iCoff;
  185. int iqCorrNeg, i;
  186. static const u_int32_t offset_array[3] = {
  187. AR_PHY_RX_IQCAL_CORR_B0,
  188. AR_PHY_RX_IQCAL_CORR_B1,
  189. AR_PHY_RX_IQCAL_CORR_B2,
  190. };
  191. for (i = 0; i < numChains; i++) {
  192. powerMeasI = ah->totalPowerMeasI[i];
  193. powerMeasQ = ah->totalPowerMeasQ[i];
  194. iqCorrMeas = ah->totalIqCorrMeas[i];
  195. ath_dbg(common, CALIBRATE,
  196. "Starting IQ Cal and Correction for Chain %d\n", i);
  197. ath_dbg(common, CALIBRATE,
  198. "Original: Chn %d iq_corr_meas = 0x%08x\n",
  199. i, ah->totalIqCorrMeas[i]);
  200. iqCorrNeg = 0;
  201. if (iqCorrMeas > 0x80000000) {
  202. iqCorrMeas = (0xffffffff - iqCorrMeas) + 1;
  203. iqCorrNeg = 1;
  204. }
  205. ath_dbg(common, CALIBRATE, "Chn %d pwr_meas_i = 0x%08x\n",
  206. i, powerMeasI);
  207. ath_dbg(common, CALIBRATE, "Chn %d pwr_meas_q = 0x%08x\n",
  208. i, powerMeasQ);
  209. ath_dbg(common, CALIBRATE, "iqCorrNeg is 0x%08x\n", iqCorrNeg);
  210. iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 256;
  211. qCoffDenom = powerMeasQ / 64;
  212. if ((iCoffDenom != 0) && (qCoffDenom != 0)) {
  213. iCoff = iqCorrMeas / iCoffDenom;
  214. qCoff = powerMeasI / qCoffDenom - 64;
  215. ath_dbg(common, CALIBRATE, "Chn %d iCoff = 0x%08x\n",
  216. i, iCoff);
  217. ath_dbg(common, CALIBRATE, "Chn %d qCoff = 0x%08x\n",
  218. i, qCoff);
  219. /* Force bounds on iCoff */
  220. if (iCoff >= 63)
  221. iCoff = 63;
  222. else if (iCoff <= -63)
  223. iCoff = -63;
  224. /* Negate iCoff if iqCorrNeg == 0 */
  225. if (iqCorrNeg == 0x0)
  226. iCoff = -iCoff;
  227. /* Force bounds on qCoff */
  228. if (qCoff >= 63)
  229. qCoff = 63;
  230. else if (qCoff <= -63)
  231. qCoff = -63;
  232. iCoff = iCoff & 0x7f;
  233. qCoff = qCoff & 0x7f;
  234. ath_dbg(common, CALIBRATE,
  235. "Chn %d : iCoff = 0x%x qCoff = 0x%x\n",
  236. i, iCoff, qCoff);
  237. ath_dbg(common, CALIBRATE,
  238. "Register offset (0x%04x) before update = 0x%x\n",
  239. offset_array[i],
  240. REG_READ(ah, offset_array[i]));
  241. if (AR_SREV_9565(ah) &&
  242. (iCoff == 63 || qCoff == 63 ||
  243. iCoff == -63 || qCoff == -63))
  244. return;
  245. REG_RMW_FIELD(ah, offset_array[i],
  246. AR_PHY_RX_IQCAL_CORR_IQCORR_Q_I_COFF,
  247. iCoff);
  248. REG_RMW_FIELD(ah, offset_array[i],
  249. AR_PHY_RX_IQCAL_CORR_IQCORR_Q_Q_COFF,
  250. qCoff);
  251. ath_dbg(common, CALIBRATE,
  252. "Register offset (0x%04x) QI COFF (bitfields 0x%08x) after update = 0x%x\n",
  253. offset_array[i],
  254. AR_PHY_RX_IQCAL_CORR_IQCORR_Q_I_COFF,
  255. REG_READ(ah, offset_array[i]));
  256. ath_dbg(common, CALIBRATE,
  257. "Register offset (0x%04x) QQ COFF (bitfields 0x%08x) after update = 0x%x\n",
  258. offset_array[i],
  259. AR_PHY_RX_IQCAL_CORR_IQCORR_Q_Q_COFF,
  260. REG_READ(ah, offset_array[i]));
  261. ath_dbg(common, CALIBRATE,
  262. "IQ Cal and Correction done for Chain %d\n", i);
  263. }
  264. }
  265. REG_SET_BIT(ah, AR_PHY_RX_IQCAL_CORR_B0,
  266. AR_PHY_RX_IQCAL_CORR_IQCORR_ENABLE);
  267. ath_dbg(common, CALIBRATE,
  268. "IQ Cal and Correction (offset 0x%04x) enabled (bit position 0x%08x). New Value 0x%08x\n",
  269. (unsigned) (AR_PHY_RX_IQCAL_CORR_B0),
  270. AR_PHY_RX_IQCAL_CORR_IQCORR_ENABLE,
  271. REG_READ(ah, AR_PHY_RX_IQCAL_CORR_B0));
  272. }
  273. static const struct ath9k_percal_data iq_cal_single_sample = {
  274. IQ_MISMATCH_CAL,
  275. MIN_CAL_SAMPLES,
  276. PER_MAX_LOG_COUNT,
  277. ar9003_hw_iqcal_collect,
  278. ar9003_hw_iqcalibrate
  279. };
  280. static void ar9003_hw_init_cal_settings(struct ath_hw *ah)
  281. {
  282. ah->iq_caldata.calData = &iq_cal_single_sample;
  283. }
  284. /*
  285. * solve 4x4 linear equation used in loopback iq cal.
  286. */
  287. static bool ar9003_hw_solve_iq_cal(struct ath_hw *ah,
  288. s32 sin_2phi_1,
  289. s32 cos_2phi_1,
  290. s32 sin_2phi_2,
  291. s32 cos_2phi_2,
  292. s32 mag_a0_d0,
  293. s32 phs_a0_d0,
  294. s32 mag_a1_d0,
  295. s32 phs_a1_d0,
  296. s32 solved_eq[])
  297. {
  298. s32 f1 = cos_2phi_1 - cos_2phi_2,
  299. f3 = sin_2phi_1 - sin_2phi_2,
  300. f2;
  301. s32 mag_tx, phs_tx, mag_rx, phs_rx;
  302. const s32 result_shift = 1 << 15;
  303. struct ath_common *common = ath9k_hw_common(ah);
  304. f2 = (f1 * f1 + f3 * f3) / result_shift;
  305. if (!f2) {
  306. ath_dbg(common, CALIBRATE, "Divide by 0\n");
  307. return false;
  308. }
  309. /* mag mismatch, tx */
  310. mag_tx = f1 * (mag_a0_d0 - mag_a1_d0) + f3 * (phs_a0_d0 - phs_a1_d0);
  311. /* phs mismatch, tx */
  312. phs_tx = f3 * (-mag_a0_d0 + mag_a1_d0) + f1 * (phs_a0_d0 - phs_a1_d0);
  313. mag_tx = (mag_tx / f2);
  314. phs_tx = (phs_tx / f2);
  315. /* mag mismatch, rx */
  316. mag_rx = mag_a0_d0 - (cos_2phi_1 * mag_tx + sin_2phi_1 * phs_tx) /
  317. result_shift;
  318. /* phs mismatch, rx */
  319. phs_rx = phs_a0_d0 + (sin_2phi_1 * mag_tx - cos_2phi_1 * phs_tx) /
  320. result_shift;
  321. solved_eq[0] = mag_tx;
  322. solved_eq[1] = phs_tx;
  323. solved_eq[2] = mag_rx;
  324. solved_eq[3] = phs_rx;
  325. return true;
  326. }
  327. static s32 ar9003_hw_find_mag_approx(struct ath_hw *ah, s32 in_re, s32 in_im)
  328. {
  329. s32 abs_i = abs(in_re),
  330. abs_q = abs(in_im),
  331. max_abs, min_abs;
  332. if (abs_i > abs_q) {
  333. max_abs = abs_i;
  334. min_abs = abs_q;
  335. } else {
  336. max_abs = abs_q;
  337. min_abs = abs_i;
  338. }
  339. return max_abs - (max_abs / 32) + (min_abs / 8) + (min_abs / 4);
  340. }
  341. #define DELPT 32
  342. static bool ar9003_hw_calc_iq_corr(struct ath_hw *ah,
  343. s32 chain_idx,
  344. const s32 iq_res[],
  345. s32 iqc_coeff[])
  346. {
  347. s32 i2_m_q2_a0_d0, i2_p_q2_a0_d0, iq_corr_a0_d0,
  348. i2_m_q2_a0_d1, i2_p_q2_a0_d1, iq_corr_a0_d1,
  349. i2_m_q2_a1_d0, i2_p_q2_a1_d0, iq_corr_a1_d0,
  350. i2_m_q2_a1_d1, i2_p_q2_a1_d1, iq_corr_a1_d1;
  351. s32 mag_a0_d0, mag_a1_d0, mag_a0_d1, mag_a1_d1,
  352. phs_a0_d0, phs_a1_d0, phs_a0_d1, phs_a1_d1,
  353. sin_2phi_1, cos_2phi_1,
  354. sin_2phi_2, cos_2phi_2;
  355. s32 mag_tx, phs_tx, mag_rx, phs_rx;
  356. s32 solved_eq[4], mag_corr_tx, phs_corr_tx, mag_corr_rx, phs_corr_rx,
  357. q_q_coff, q_i_coff;
  358. const s32 res_scale = 1 << 15;
  359. const s32 delpt_shift = 1 << 8;
  360. s32 mag1, mag2;
  361. struct ath_common *common = ath9k_hw_common(ah);
  362. i2_m_q2_a0_d0 = iq_res[0] & 0xfff;
  363. i2_p_q2_a0_d0 = (iq_res[0] >> 12) & 0xfff;
  364. iq_corr_a0_d0 = ((iq_res[0] >> 24) & 0xff) + ((iq_res[1] & 0xf) << 8);
  365. if (i2_m_q2_a0_d0 > 0x800)
  366. i2_m_q2_a0_d0 = -((0xfff - i2_m_q2_a0_d0) + 1);
  367. if (i2_p_q2_a0_d0 > 0x800)
  368. i2_p_q2_a0_d0 = -((0xfff - i2_p_q2_a0_d0) + 1);
  369. if (iq_corr_a0_d0 > 0x800)
  370. iq_corr_a0_d0 = -((0xfff - iq_corr_a0_d0) + 1);
  371. i2_m_q2_a0_d1 = (iq_res[1] >> 4) & 0xfff;
  372. i2_p_q2_a0_d1 = (iq_res[2] & 0xfff);
  373. iq_corr_a0_d1 = (iq_res[2] >> 12) & 0xfff;
  374. if (i2_m_q2_a0_d1 > 0x800)
  375. i2_m_q2_a0_d1 = -((0xfff - i2_m_q2_a0_d1) + 1);
  376. if (i2_p_q2_a0_d1 > 0x800)
  377. i2_p_q2_a0_d1 = -((0xfff - i2_p_q2_a0_d1) + 1);
  378. if (iq_corr_a0_d1 > 0x800)
  379. iq_corr_a0_d1 = -((0xfff - iq_corr_a0_d1) + 1);
  380. i2_m_q2_a1_d0 = ((iq_res[2] >> 24) & 0xff) + ((iq_res[3] & 0xf) << 8);
  381. i2_p_q2_a1_d0 = (iq_res[3] >> 4) & 0xfff;
  382. iq_corr_a1_d0 = iq_res[4] & 0xfff;
  383. if (i2_m_q2_a1_d0 > 0x800)
  384. i2_m_q2_a1_d0 = -((0xfff - i2_m_q2_a1_d0) + 1);
  385. if (i2_p_q2_a1_d0 > 0x800)
  386. i2_p_q2_a1_d0 = -((0xfff - i2_p_q2_a1_d0) + 1);
  387. if (iq_corr_a1_d0 > 0x800)
  388. iq_corr_a1_d0 = -((0xfff - iq_corr_a1_d0) + 1);
  389. i2_m_q2_a1_d1 = (iq_res[4] >> 12) & 0xfff;
  390. i2_p_q2_a1_d1 = ((iq_res[4] >> 24) & 0xff) + ((iq_res[5] & 0xf) << 8);
  391. iq_corr_a1_d1 = (iq_res[5] >> 4) & 0xfff;
  392. if (i2_m_q2_a1_d1 > 0x800)
  393. i2_m_q2_a1_d1 = -((0xfff - i2_m_q2_a1_d1) + 1);
  394. if (i2_p_q2_a1_d1 > 0x800)
  395. i2_p_q2_a1_d1 = -((0xfff - i2_p_q2_a1_d1) + 1);
  396. if (iq_corr_a1_d1 > 0x800)
  397. iq_corr_a1_d1 = -((0xfff - iq_corr_a1_d1) + 1);
  398. if ((i2_p_q2_a0_d0 == 0) || (i2_p_q2_a0_d1 == 0) ||
  399. (i2_p_q2_a1_d0 == 0) || (i2_p_q2_a1_d1 == 0)) {
  400. ath_dbg(common, CALIBRATE,
  401. "Divide by 0:\n"
  402. "a0_d0=%d\n"
  403. "a0_d1=%d\n"
  404. "a2_d0=%d\n"
  405. "a1_d1=%d\n",
  406. i2_p_q2_a0_d0, i2_p_q2_a0_d1,
  407. i2_p_q2_a1_d0, i2_p_q2_a1_d1);
  408. return false;
  409. }
  410. mag_a0_d0 = (i2_m_q2_a0_d0 * res_scale) / i2_p_q2_a0_d0;
  411. phs_a0_d0 = (iq_corr_a0_d0 * res_scale) / i2_p_q2_a0_d0;
  412. mag_a0_d1 = (i2_m_q2_a0_d1 * res_scale) / i2_p_q2_a0_d1;
  413. phs_a0_d1 = (iq_corr_a0_d1 * res_scale) / i2_p_q2_a0_d1;
  414. mag_a1_d0 = (i2_m_q2_a1_d0 * res_scale) / i2_p_q2_a1_d0;
  415. phs_a1_d0 = (iq_corr_a1_d0 * res_scale) / i2_p_q2_a1_d0;
  416. mag_a1_d1 = (i2_m_q2_a1_d1 * res_scale) / i2_p_q2_a1_d1;
  417. phs_a1_d1 = (iq_corr_a1_d1 * res_scale) / i2_p_q2_a1_d1;
  418. /* w/o analog phase shift */
  419. sin_2phi_1 = (((mag_a0_d0 - mag_a0_d1) * delpt_shift) / DELPT);
  420. /* w/o analog phase shift */
  421. cos_2phi_1 = (((phs_a0_d1 - phs_a0_d0) * delpt_shift) / DELPT);
  422. /* w/ analog phase shift */
  423. sin_2phi_2 = (((mag_a1_d0 - mag_a1_d1) * delpt_shift) / DELPT);
  424. /* w/ analog phase shift */
  425. cos_2phi_2 = (((phs_a1_d1 - phs_a1_d0) * delpt_shift) / DELPT);
  426. /*
  427. * force sin^2 + cos^2 = 1;
  428. * find magnitude by approximation
  429. */
  430. mag1 = ar9003_hw_find_mag_approx(ah, cos_2phi_1, sin_2phi_1);
  431. mag2 = ar9003_hw_find_mag_approx(ah, cos_2phi_2, sin_2phi_2);
  432. if ((mag1 == 0) || (mag2 == 0)) {
  433. ath_dbg(common, CALIBRATE, "Divide by 0: mag1=%d, mag2=%d\n",
  434. mag1, mag2);
  435. return false;
  436. }
  437. /* normalization sin and cos by mag */
  438. sin_2phi_1 = (sin_2phi_1 * res_scale / mag1);
  439. cos_2phi_1 = (cos_2phi_1 * res_scale / mag1);
  440. sin_2phi_2 = (sin_2phi_2 * res_scale / mag2);
  441. cos_2phi_2 = (cos_2phi_2 * res_scale / mag2);
  442. /* calculate IQ mismatch */
  443. if (!ar9003_hw_solve_iq_cal(ah,
  444. sin_2phi_1, cos_2phi_1,
  445. sin_2phi_2, cos_2phi_2,
  446. mag_a0_d0, phs_a0_d0,
  447. mag_a1_d0,
  448. phs_a1_d0, solved_eq)) {
  449. ath_dbg(common, CALIBRATE,
  450. "Call to ar9003_hw_solve_iq_cal() failed\n");
  451. return false;
  452. }
  453. mag_tx = solved_eq[0];
  454. phs_tx = solved_eq[1];
  455. mag_rx = solved_eq[2];
  456. phs_rx = solved_eq[3];
  457. ath_dbg(common, CALIBRATE,
  458. "chain %d: mag mismatch=%d phase mismatch=%d\n",
  459. chain_idx, mag_tx/res_scale, phs_tx/res_scale);
  460. if (res_scale == mag_tx) {
  461. ath_dbg(common, CALIBRATE,
  462. "Divide by 0: mag_tx=%d, res_scale=%d\n",
  463. mag_tx, res_scale);
  464. return false;
  465. }
  466. /* calculate and quantize Tx IQ correction factor */
  467. mag_corr_tx = (mag_tx * res_scale) / (res_scale - mag_tx);
  468. phs_corr_tx = -phs_tx;
  469. q_q_coff = (mag_corr_tx * 128 / res_scale);
  470. q_i_coff = (phs_corr_tx * 256 / res_scale);
  471. ath_dbg(common, CALIBRATE, "tx chain %d: mag corr=%d phase corr=%d\n",
  472. chain_idx, q_q_coff, q_i_coff);
  473. if (q_i_coff < -63)
  474. q_i_coff = -63;
  475. if (q_i_coff > 63)
  476. q_i_coff = 63;
  477. if (q_q_coff < -63)
  478. q_q_coff = -63;
  479. if (q_q_coff > 63)
  480. q_q_coff = 63;
  481. iqc_coeff[0] = (q_q_coff * 128) + q_i_coff;
  482. ath_dbg(common, CALIBRATE, "tx chain %d: iq corr coeff=%x\n",
  483. chain_idx, iqc_coeff[0]);
  484. if (-mag_rx == res_scale) {
  485. ath_dbg(common, CALIBRATE,
  486. "Divide by 0: mag_rx=%d, res_scale=%d\n",
  487. mag_rx, res_scale);
  488. return false;
  489. }
  490. /* calculate and quantize Rx IQ correction factors */
  491. mag_corr_rx = (-mag_rx * res_scale) / (res_scale + mag_rx);
  492. phs_corr_rx = -phs_rx;
  493. q_q_coff = (mag_corr_rx * 128 / res_scale);
  494. q_i_coff = (phs_corr_rx * 256 / res_scale);
  495. ath_dbg(common, CALIBRATE, "rx chain %d: mag corr=%d phase corr=%d\n",
  496. chain_idx, q_q_coff, q_i_coff);
  497. if (q_i_coff < -63)
  498. q_i_coff = -63;
  499. if (q_i_coff > 63)
  500. q_i_coff = 63;
  501. if (q_q_coff < -63)
  502. q_q_coff = -63;
  503. if (q_q_coff > 63)
  504. q_q_coff = 63;
  505. iqc_coeff[1] = (q_q_coff * 128) + q_i_coff;
  506. ath_dbg(common, CALIBRATE, "rx chain %d: iq corr coeff=%x\n",
  507. chain_idx, iqc_coeff[1]);
  508. return true;
  509. }
  510. static void ar9003_hw_detect_outlier(int *mp_coeff, int nmeasurement,
  511. int max_delta)
  512. {
  513. int mp_max = -64, max_idx = 0;
  514. int mp_min = 63, min_idx = 0;
  515. int mp_avg = 0, i, outlier_idx = 0, mp_count = 0;
  516. /* find min/max mismatch across all calibrated gains */
  517. for (i = 0; i < nmeasurement; i++) {
  518. if (mp_coeff[i] > mp_max) {
  519. mp_max = mp_coeff[i];
  520. max_idx = i;
  521. } else if (mp_coeff[i] < mp_min) {
  522. mp_min = mp_coeff[i];
  523. min_idx = i;
  524. }
  525. }
  526. /* find average (exclude max abs value) */
  527. for (i = 0; i < nmeasurement; i++) {
  528. if ((abs(mp_coeff[i]) < abs(mp_max)) ||
  529. (abs(mp_coeff[i]) < abs(mp_min))) {
  530. mp_avg += mp_coeff[i];
  531. mp_count++;
  532. }
  533. }
  534. /*
  535. * finding mean magnitude/phase if possible, otherwise
  536. * just use the last value as the mean
  537. */
  538. if (mp_count)
  539. mp_avg /= mp_count;
  540. else
  541. mp_avg = mp_coeff[nmeasurement - 1];
  542. /* detect outlier */
  543. if (abs(mp_max - mp_min) > max_delta) {
  544. if (abs(mp_max - mp_avg) > abs(mp_min - mp_avg))
  545. outlier_idx = max_idx;
  546. else
  547. outlier_idx = min_idx;
  548. mp_coeff[outlier_idx] = mp_avg;
  549. }
  550. }
  551. static void ar9003_hw_tx_iqcal_load_avg_2_passes(struct ath_hw *ah,
  552. struct coeff *coeff,
  553. bool is_reusable)
  554. {
  555. int i, im, nmeasurement;
  556. u32 tx_corr_coeff[MAX_MEASUREMENT][AR9300_MAX_CHAINS];
  557. struct ath9k_hw_cal_data *caldata = ah->caldata;
  558. memset(tx_corr_coeff, 0, sizeof(tx_corr_coeff));
  559. for (i = 0; i < MAX_MEASUREMENT / 2; i++) {
  560. tx_corr_coeff[i * 2][0] = tx_corr_coeff[(i * 2) + 1][0] =
  561. AR_PHY_TX_IQCAL_CORR_COEFF_B0(i);
  562. if (!AR_SREV_9485(ah)) {
  563. tx_corr_coeff[i * 2][1] =
  564. tx_corr_coeff[(i * 2) + 1][1] =
  565. AR_PHY_TX_IQCAL_CORR_COEFF_B1(i);
  566. tx_corr_coeff[i * 2][2] =
  567. tx_corr_coeff[(i * 2) + 1][2] =
  568. AR_PHY_TX_IQCAL_CORR_COEFF_B2(i);
  569. }
  570. }
  571. /* Load the average of 2 passes */
  572. for (i = 0; i < AR9300_MAX_CHAINS; i++) {
  573. if (!(ah->txchainmask & (1 << i)))
  574. continue;
  575. nmeasurement = REG_READ_FIELD(ah,
  576. AR_PHY_TX_IQCAL_STATUS_B0,
  577. AR_PHY_CALIBRATED_GAINS_0);
  578. if (nmeasurement > MAX_MEASUREMENT)
  579. nmeasurement = MAX_MEASUREMENT;
  580. /* detect outlier only if nmeasurement > 1 */
  581. if (nmeasurement > 1) {
  582. /* Detect magnitude outlier */
  583. ar9003_hw_detect_outlier(coeff->mag_coeff[i],
  584. nmeasurement, MAX_MAG_DELTA);
  585. /* Detect phase outlier */
  586. ar9003_hw_detect_outlier(coeff->phs_coeff[i],
  587. nmeasurement, MAX_PHS_DELTA);
  588. }
  589. for (im = 0; im < nmeasurement; im++) {
  590. coeff->iqc_coeff[0] = (coeff->mag_coeff[i][im] & 0x7f) |
  591. ((coeff->phs_coeff[i][im] & 0x7f) << 7);
  592. if ((im % 2) == 0)
  593. REG_RMW_FIELD(ah, tx_corr_coeff[im][i],
  594. AR_PHY_TX_IQCAL_CORR_COEFF_00_COEFF_TABLE,
  595. coeff->iqc_coeff[0]);
  596. else
  597. REG_RMW_FIELD(ah, tx_corr_coeff[im][i],
  598. AR_PHY_TX_IQCAL_CORR_COEFF_01_COEFF_TABLE,
  599. coeff->iqc_coeff[0]);
  600. if (caldata)
  601. caldata->tx_corr_coeff[im][i] =
  602. coeff->iqc_coeff[0];
  603. }
  604. if (caldata)
  605. caldata->num_measures[i] = nmeasurement;
  606. }
  607. REG_RMW_FIELD(ah, AR_PHY_TX_IQCAL_CONTROL_3,
  608. AR_PHY_TX_IQCAL_CONTROL_3_IQCORR_EN, 0x1);
  609. REG_RMW_FIELD(ah, AR_PHY_RX_IQCAL_CORR_B0,
  610. AR_PHY_RX_IQCAL_CORR_B0_LOOPBACK_IQCORR_EN, 0x1);
  611. if (caldata)
  612. caldata->done_txiqcal_once = is_reusable;
  613. return;
  614. }
  615. static bool ar9003_hw_tx_iq_cal_run(struct ath_hw *ah)
  616. {
  617. struct ath_common *common = ath9k_hw_common(ah);
  618. u8 tx_gain_forced;
  619. tx_gain_forced = REG_READ_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
  620. AR_PHY_TXGAIN_FORCE);
  621. if (tx_gain_forced)
  622. REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
  623. AR_PHY_TXGAIN_FORCE, 0);
  624. REG_RMW_FIELD(ah, AR_PHY_TX_IQCAL_START,
  625. AR_PHY_TX_IQCAL_START_DO_CAL, 1);
  626. if (!ath9k_hw_wait(ah, AR_PHY_TX_IQCAL_START,
  627. AR_PHY_TX_IQCAL_START_DO_CAL, 0,
  628. AH_WAIT_TIMEOUT)) {
  629. ath_dbg(common, CALIBRATE, "Tx IQ Cal is not completed\n");
  630. return false;
  631. }
  632. return true;
  633. }
  634. static void ar9003_hw_tx_iq_cal_post_proc(struct ath_hw *ah, bool is_reusable)
  635. {
  636. struct ath_common *common = ath9k_hw_common(ah);
  637. const u32 txiqcal_status[AR9300_MAX_CHAINS] = {
  638. AR_PHY_TX_IQCAL_STATUS_B0,
  639. AR_PHY_TX_IQCAL_STATUS_B1,
  640. AR_PHY_TX_IQCAL_STATUS_B2,
  641. };
  642. const u_int32_t chan_info_tab[] = {
  643. AR_PHY_CHAN_INFO_TAB_0,
  644. AR_PHY_CHAN_INFO_TAB_1,
  645. AR_PHY_CHAN_INFO_TAB_2,
  646. };
  647. struct coeff coeff;
  648. s32 iq_res[6];
  649. int i, im, j;
  650. int nmeasurement;
  651. for (i = 0; i < AR9300_MAX_CHAINS; i++) {
  652. if (!(ah->txchainmask & (1 << i)))
  653. continue;
  654. nmeasurement = REG_READ_FIELD(ah,
  655. AR_PHY_TX_IQCAL_STATUS_B0,
  656. AR_PHY_CALIBRATED_GAINS_0);
  657. if (nmeasurement > MAX_MEASUREMENT)
  658. nmeasurement = MAX_MEASUREMENT;
  659. for (im = 0; im < nmeasurement; im++) {
  660. ath_dbg(common, CALIBRATE,
  661. "Doing Tx IQ Cal for chain %d\n", i);
  662. if (REG_READ(ah, txiqcal_status[i]) &
  663. AR_PHY_TX_IQCAL_STATUS_FAILED) {
  664. ath_dbg(common, CALIBRATE,
  665. "Tx IQ Cal failed for chain %d\n", i);
  666. goto tx_iqcal_fail;
  667. }
  668. for (j = 0; j < 3; j++) {
  669. u32 idx = 2 * j, offset = 4 * (3 * im + j);
  670. REG_RMW_FIELD(ah,
  671. AR_PHY_CHAN_INFO_MEMORY,
  672. AR_PHY_CHAN_INFO_TAB_S2_READ,
  673. 0);
  674. /* 32 bits */
  675. iq_res[idx] = REG_READ(ah,
  676. chan_info_tab[i] +
  677. offset);
  678. REG_RMW_FIELD(ah,
  679. AR_PHY_CHAN_INFO_MEMORY,
  680. AR_PHY_CHAN_INFO_TAB_S2_READ,
  681. 1);
  682. /* 16 bits */
  683. iq_res[idx + 1] = 0xffff & REG_READ(ah,
  684. chan_info_tab[i] + offset);
  685. ath_dbg(common, CALIBRATE,
  686. "IQ_RES[%d]=0x%x IQ_RES[%d]=0x%x\n",
  687. idx, iq_res[idx], idx + 1,
  688. iq_res[idx + 1]);
  689. }
  690. if (!ar9003_hw_calc_iq_corr(ah, i, iq_res,
  691. coeff.iqc_coeff)) {
  692. ath_dbg(common, CALIBRATE,
  693. "Failed in calculation of IQ correction\n");
  694. goto tx_iqcal_fail;
  695. }
  696. coeff.mag_coeff[i][im] = coeff.iqc_coeff[0] & 0x7f;
  697. coeff.phs_coeff[i][im] =
  698. (coeff.iqc_coeff[0] >> 7) & 0x7f;
  699. if (coeff.mag_coeff[i][im] > 63)
  700. coeff.mag_coeff[i][im] -= 128;
  701. if (coeff.phs_coeff[i][im] > 63)
  702. coeff.phs_coeff[i][im] -= 128;
  703. }
  704. }
  705. ar9003_hw_tx_iqcal_load_avg_2_passes(ah, &coeff, is_reusable);
  706. return;
  707. tx_iqcal_fail:
  708. ath_dbg(common, CALIBRATE, "Tx IQ Cal failed\n");
  709. return;
  710. }
  711. static void ar9003_hw_tx_iq_cal_reload(struct ath_hw *ah)
  712. {
  713. struct ath9k_hw_cal_data *caldata = ah->caldata;
  714. u32 tx_corr_coeff[MAX_MEASUREMENT][AR9300_MAX_CHAINS];
  715. int i, im;
  716. memset(tx_corr_coeff, 0, sizeof(tx_corr_coeff));
  717. for (i = 0; i < MAX_MEASUREMENT / 2; i++) {
  718. tx_corr_coeff[i * 2][0] = tx_corr_coeff[(i * 2) + 1][0] =
  719. AR_PHY_TX_IQCAL_CORR_COEFF_B0(i);
  720. if (!AR_SREV_9485(ah)) {
  721. tx_corr_coeff[i * 2][1] =
  722. tx_corr_coeff[(i * 2) + 1][1] =
  723. AR_PHY_TX_IQCAL_CORR_COEFF_B1(i);
  724. tx_corr_coeff[i * 2][2] =
  725. tx_corr_coeff[(i * 2) + 1][2] =
  726. AR_PHY_TX_IQCAL_CORR_COEFF_B2(i);
  727. }
  728. }
  729. for (i = 0; i < AR9300_MAX_CHAINS; i++) {
  730. if (!(ah->txchainmask & (1 << i)))
  731. continue;
  732. for (im = 0; im < caldata->num_measures[i]; im++) {
  733. if ((im % 2) == 0)
  734. REG_RMW_FIELD(ah, tx_corr_coeff[im][i],
  735. AR_PHY_TX_IQCAL_CORR_COEFF_00_COEFF_TABLE,
  736. caldata->tx_corr_coeff[im][i]);
  737. else
  738. REG_RMW_FIELD(ah, tx_corr_coeff[im][i],
  739. AR_PHY_TX_IQCAL_CORR_COEFF_01_COEFF_TABLE,
  740. caldata->tx_corr_coeff[im][i]);
  741. }
  742. }
  743. REG_RMW_FIELD(ah, AR_PHY_TX_IQCAL_CONTROL_3,
  744. AR_PHY_TX_IQCAL_CONTROL_3_IQCORR_EN, 0x1);
  745. REG_RMW_FIELD(ah, AR_PHY_RX_IQCAL_CORR_B0,
  746. AR_PHY_RX_IQCAL_CORR_B0_LOOPBACK_IQCORR_EN, 0x1);
  747. }
  748. static void ar9003_hw_manual_peak_cal(struct ath_hw *ah, u8 chain, bool is_2g)
  749. {
  750. int offset[8], total = 0, test;
  751. int agc_out, i;
  752. REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_GAINSTAGES(chain),
  753. AR_PHY_65NM_RXRF_GAINSTAGES_RX_OVERRIDE, 0x1);
  754. REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_GAINSTAGES(chain),
  755. AR_PHY_65NM_RXRF_GAINSTAGES_LNAON_CALDC, 0x0);
  756. if (is_2g)
  757. REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_GAINSTAGES(chain),
  758. AR_PHY_65NM_RXRF_GAINSTAGES_LNA2G_GAIN_OVR, 0x0);
  759. else
  760. REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_GAINSTAGES(chain),
  761. AR_PHY_65NM_RXRF_GAINSTAGES_LNA5G_GAIN_OVR, 0x0);
  762. REG_RMW_FIELD(ah, AR_PHY_65NM_RXTX2(chain),
  763. AR_PHY_65NM_RXTX2_RXON_OVR, 0x1);
  764. REG_RMW_FIELD(ah, AR_PHY_65NM_RXTX2(chain),
  765. AR_PHY_65NM_RXTX2_RXON, 0x0);
  766. REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain),
  767. AR_PHY_65NM_RXRF_AGC_AGC_OVERRIDE, 0x1);
  768. REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain),
  769. AR_PHY_65NM_RXRF_AGC_AGC_ON_OVR, 0x1);
  770. REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain),
  771. AR_PHY_65NM_RXRF_AGC_AGC_CAL_OVR, 0x1);
  772. if (is_2g)
  773. REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain),
  774. AR_PHY_65NM_RXRF_AGC_AGC2G_DBDAC_OVR, 0x0);
  775. else
  776. REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain),
  777. AR_PHY_65NM_RXRF_AGC_AGC5G_DBDAC_OVR, 0x0);
  778. for (i = 6; i > 0; i--) {
  779. offset[i] = BIT(i - 1);
  780. test = total + offset[i];
  781. if (is_2g)
  782. REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain),
  783. AR_PHY_65NM_RXRF_AGC_AGC2G_CALDAC_OVR,
  784. test);
  785. else
  786. REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain),
  787. AR_PHY_65NM_RXRF_AGC_AGC5G_CALDAC_OVR,
  788. test);
  789. udelay(100);
  790. agc_out = REG_READ_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain),
  791. AR_PHY_65NM_RXRF_AGC_AGC_OUT);
  792. offset[i] = (agc_out) ? 0 : 1;
  793. total += (offset[i] << (i - 1));
  794. }
  795. if (is_2g)
  796. REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain),
  797. AR_PHY_65NM_RXRF_AGC_AGC2G_CALDAC_OVR, total);
  798. else
  799. REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain),
  800. AR_PHY_65NM_RXRF_AGC_AGC5G_CALDAC_OVR, total);
  801. REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_GAINSTAGES(chain),
  802. AR_PHY_65NM_RXRF_GAINSTAGES_RX_OVERRIDE, 0);
  803. REG_RMW_FIELD(ah, AR_PHY_65NM_RXTX2(chain),
  804. AR_PHY_65NM_RXTX2_RXON_OVR, 0);
  805. REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain),
  806. AR_PHY_65NM_RXRF_AGC_AGC_CAL_OVR, 0);
  807. }
  808. static bool ar9003_hw_init_cal(struct ath_hw *ah,
  809. struct ath9k_channel *chan)
  810. {
  811. struct ath_common *common = ath9k_hw_common(ah);
  812. struct ath9k_hw_cal_data *caldata = ah->caldata;
  813. bool txiqcal_done = false, txclcal_done = false;
  814. bool is_reusable = true, status = true;
  815. bool run_rtt_cal = false, run_agc_cal;
  816. bool rtt = !!(ah->caps.hw_caps & ATH9K_HW_CAP_RTT);
  817. u32 agc_ctrl = 0, agc_supp_cals = AR_PHY_AGC_CONTROL_OFFSET_CAL |
  818. AR_PHY_AGC_CONTROL_FLTR_CAL |
  819. AR_PHY_AGC_CONTROL_PKDET_CAL;
  820. int i, j;
  821. u32 cl_idx[AR9300_MAX_CHAINS] = { AR_PHY_CL_TAB_0,
  822. AR_PHY_CL_TAB_1,
  823. AR_PHY_CL_TAB_2 };
  824. ar9003_hw_set_chain_masks(ah, ah->caps.rx_chainmask, ah->caps.tx_chainmask);
  825. if (rtt) {
  826. if (!ar9003_hw_rtt_restore(ah, chan))
  827. run_rtt_cal = true;
  828. if (run_rtt_cal)
  829. ath_dbg(common, CALIBRATE, "RTT calibration to be done\n");
  830. }
  831. run_agc_cal = run_rtt_cal;
  832. if (run_rtt_cal) {
  833. ar9003_hw_rtt_enable(ah);
  834. ar9003_hw_rtt_set_mask(ah, 0x00);
  835. ar9003_hw_rtt_clear_hist(ah);
  836. }
  837. if (rtt && !run_rtt_cal) {
  838. agc_ctrl = REG_READ(ah, AR_PHY_AGC_CONTROL);
  839. agc_supp_cals &= agc_ctrl;
  840. agc_ctrl &= ~(AR_PHY_AGC_CONTROL_OFFSET_CAL |
  841. AR_PHY_AGC_CONTROL_FLTR_CAL |
  842. AR_PHY_AGC_CONTROL_PKDET_CAL);
  843. REG_WRITE(ah, AR_PHY_AGC_CONTROL, agc_ctrl);
  844. }
  845. if (ah->enabled_cals & TX_CL_CAL) {
  846. if (caldata && caldata->done_txclcal_once)
  847. REG_CLR_BIT(ah, AR_PHY_CL_CAL_CTL,
  848. AR_PHY_CL_CAL_ENABLE);
  849. else {
  850. REG_SET_BIT(ah, AR_PHY_CL_CAL_CTL,
  851. AR_PHY_CL_CAL_ENABLE);
  852. run_agc_cal = true;
  853. }
  854. }
  855. if (!(ah->enabled_cals & TX_IQ_CAL))
  856. goto skip_tx_iqcal;
  857. /* Do Tx IQ Calibration */
  858. REG_RMW_FIELD(ah, AR_PHY_TX_IQCAL_CONTROL_1,
  859. AR_PHY_TX_IQCAL_CONTROL_1_IQCORR_I_Q_COFF_DELPT,
  860. DELPT);
  861. /*
  862. * For AR9485 or later chips, TxIQ cal runs as part of
  863. * AGC calibration
  864. */
  865. if (ah->enabled_cals & TX_IQ_ON_AGC_CAL) {
  866. if (caldata && !caldata->done_txiqcal_once)
  867. REG_SET_BIT(ah, AR_PHY_TX_IQCAL_CONTROL_0,
  868. AR_PHY_TX_IQCAL_CONTROL_0_ENABLE_TXIQ_CAL);
  869. else
  870. REG_CLR_BIT(ah, AR_PHY_TX_IQCAL_CONTROL_0,
  871. AR_PHY_TX_IQCAL_CONTROL_0_ENABLE_TXIQ_CAL);
  872. txiqcal_done = run_agc_cal = true;
  873. goto skip_tx_iqcal;
  874. } else if (caldata && !caldata->done_txiqcal_once)
  875. run_agc_cal = true;
  876. if (ath9k_hw_mci_is_enabled(ah) && IS_CHAN_2GHZ(chan) && run_agc_cal)
  877. ar9003_mci_init_cal_req(ah, &is_reusable);
  878. if (!(IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan))) {
  879. txiqcal_done = ar9003_hw_tx_iq_cal_run(ah);
  880. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
  881. udelay(5);
  882. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
  883. }
  884. skip_tx_iqcal:
  885. if (run_agc_cal || !(ah->ah_flags & AH_FASTCC)) {
  886. /* Calibrate the AGC */
  887. REG_WRITE(ah, AR_PHY_AGC_CONTROL,
  888. REG_READ(ah, AR_PHY_AGC_CONTROL) |
  889. AR_PHY_AGC_CONTROL_CAL);
  890. /* Poll for offset calibration complete */
  891. status = ath9k_hw_wait(ah, AR_PHY_AGC_CONTROL,
  892. AR_PHY_AGC_CONTROL_CAL,
  893. 0, AH_WAIT_TIMEOUT);
  894. if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
  895. for (i = 0; i < AR9300_MAX_CHAINS; i++) {
  896. if (!(ah->rxchainmask & (1 << i)))
  897. continue;
  898. ar9003_hw_manual_peak_cal(ah, i,
  899. IS_CHAN_2GHZ(chan));
  900. }
  901. }
  902. }
  903. if (ath9k_hw_mci_is_enabled(ah) && IS_CHAN_2GHZ(chan) && run_agc_cal)
  904. ar9003_mci_init_cal_done(ah);
  905. if (rtt && !run_rtt_cal) {
  906. agc_ctrl |= agc_supp_cals;
  907. REG_WRITE(ah, AR_PHY_AGC_CONTROL, agc_ctrl);
  908. }
  909. if (!status) {
  910. if (run_rtt_cal)
  911. ar9003_hw_rtt_disable(ah);
  912. ath_dbg(common, CALIBRATE,
  913. "offset calibration failed to complete in 1ms; noisy environment?\n");
  914. return false;
  915. }
  916. if (txiqcal_done)
  917. ar9003_hw_tx_iq_cal_post_proc(ah, is_reusable);
  918. else if (caldata && caldata->done_txiqcal_once)
  919. ar9003_hw_tx_iq_cal_reload(ah);
  920. #define CL_TAB_ENTRY(reg_base) (reg_base + (4 * j))
  921. if (caldata && (ah->enabled_cals & TX_CL_CAL)) {
  922. txclcal_done = !!(REG_READ(ah, AR_PHY_AGC_CONTROL) &
  923. AR_PHY_AGC_CONTROL_CLC_SUCCESS);
  924. if (caldata->done_txclcal_once) {
  925. for (i = 0; i < AR9300_MAX_CHAINS; i++) {
  926. if (!(ah->txchainmask & (1 << i)))
  927. continue;
  928. for (j = 0; j < MAX_CL_TAB_ENTRY; j++)
  929. REG_WRITE(ah, CL_TAB_ENTRY(cl_idx[i]),
  930. caldata->tx_clcal[i][j]);
  931. }
  932. } else if (is_reusable && txclcal_done) {
  933. for (i = 0; i < AR9300_MAX_CHAINS; i++) {
  934. if (!(ah->txchainmask & (1 << i)))
  935. continue;
  936. for (j = 0; j < MAX_CL_TAB_ENTRY; j++)
  937. caldata->tx_clcal[i][j] =
  938. REG_READ(ah,
  939. CL_TAB_ENTRY(cl_idx[i]));
  940. }
  941. caldata->done_txclcal_once = true;
  942. }
  943. }
  944. #undef CL_TAB_ENTRY
  945. if (run_rtt_cal && caldata) {
  946. if (is_reusable) {
  947. if (!ath9k_hw_rfbus_req(ah))
  948. ath_err(ath9k_hw_common(ah),
  949. "Could not stop baseband\n");
  950. else
  951. ar9003_hw_rtt_fill_hist(ah);
  952. ath9k_hw_rfbus_done(ah);
  953. }
  954. ar9003_hw_rtt_disable(ah);
  955. }
  956. /* Initialize list pointers */
  957. ah->cal_list = ah->cal_list_last = ah->cal_list_curr = NULL;
  958. ah->supp_cals = IQ_MISMATCH_CAL;
  959. if (ah->supp_cals & IQ_MISMATCH_CAL) {
  960. INIT_CAL(&ah->iq_caldata);
  961. INSERT_CAL(ah, &ah->iq_caldata);
  962. ath_dbg(common, CALIBRATE, "enabling IQ Calibration\n");
  963. }
  964. if (ah->supp_cals & TEMP_COMP_CAL) {
  965. INIT_CAL(&ah->tempCompCalData);
  966. INSERT_CAL(ah, &ah->tempCompCalData);
  967. ath_dbg(common, CALIBRATE,
  968. "enabling Temperature Compensation Calibration\n");
  969. }
  970. /* Initialize current pointer to first element in list */
  971. ah->cal_list_curr = ah->cal_list;
  972. if (ah->cal_list_curr)
  973. ath9k_hw_reset_calibration(ah, ah->cal_list_curr);
  974. if (caldata)
  975. caldata->CalValid = 0;
  976. return true;
  977. }
  978. void ar9003_hw_attach_calib_ops(struct ath_hw *ah)
  979. {
  980. struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
  981. struct ath_hw_ops *ops = ath9k_hw_ops(ah);
  982. priv_ops->init_cal_settings = ar9003_hw_init_cal_settings;
  983. priv_ops->init_cal = ar9003_hw_init_cal;
  984. priv_ops->setup_calibration = ar9003_hw_setup_calibration;
  985. ops->calibrate = ar9003_hw_calibrate;
  986. }