123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520 |
- /*
- * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
- * policies)
- */
- /*
- * Update the current task's runtime statistics. Skip current tasks that
- * are not in our scheduling class.
- */
- static void update_curr_rt(struct rq *rq)
- {
- struct task_struct *curr = rq->curr;
- u64 delta_exec;
- if (!task_has_rt_policy(curr))
- return;
- delta_exec = rq->clock - curr->se.exec_start;
- if (unlikely((s64)delta_exec < 0))
- delta_exec = 0;
- schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
- curr->se.sum_exec_runtime += delta_exec;
- curr->se.exec_start = rq->clock;
- cpuacct_charge(curr, delta_exec);
- }
- static inline void inc_rt_tasks(struct task_struct *p, struct rq *rq)
- {
- WARN_ON(!rt_task(p));
- rq->rt.rt_nr_running++;
- #ifdef CONFIG_SMP
- if (p->prio < rq->rt.highest_prio)
- rq->rt.highest_prio = p->prio;
- #endif /* CONFIG_SMP */
- }
- static inline void dec_rt_tasks(struct task_struct *p, struct rq *rq)
- {
- WARN_ON(!rt_task(p));
- WARN_ON(!rq->rt.rt_nr_running);
- rq->rt.rt_nr_running--;
- #ifdef CONFIG_SMP
- if (rq->rt.rt_nr_running) {
- struct rt_prio_array *array;
- WARN_ON(p->prio < rq->rt.highest_prio);
- if (p->prio == rq->rt.highest_prio) {
- /* recalculate */
- array = &rq->rt.active;
- rq->rt.highest_prio =
- sched_find_first_bit(array->bitmap);
- } /* otherwise leave rq->highest prio alone */
- } else
- rq->rt.highest_prio = MAX_RT_PRIO;
- #endif /* CONFIG_SMP */
- }
- static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
- {
- struct rt_prio_array *array = &rq->rt.active;
- list_add_tail(&p->run_list, array->queue + p->prio);
- __set_bit(p->prio, array->bitmap);
- inc_cpu_load(rq, p->se.load.weight);
- inc_rt_tasks(p, rq);
- }
- /*
- * Adding/removing a task to/from a priority array:
- */
- static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
- {
- struct rt_prio_array *array = &rq->rt.active;
- update_curr_rt(rq);
- list_del(&p->run_list);
- if (list_empty(array->queue + p->prio))
- __clear_bit(p->prio, array->bitmap);
- dec_cpu_load(rq, p->se.load.weight);
- dec_rt_tasks(p, rq);
- }
- /*
- * Put task to the end of the run list without the overhead of dequeue
- * followed by enqueue.
- */
- static void requeue_task_rt(struct rq *rq, struct task_struct *p)
- {
- struct rt_prio_array *array = &rq->rt.active;
- list_move_tail(&p->run_list, array->queue + p->prio);
- }
- static void
- yield_task_rt(struct rq *rq)
- {
- requeue_task_rt(rq, rq->curr);
- }
- /*
- * Preempt the current task with a newly woken task if needed:
- */
- static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
- {
- if (p->prio < rq->curr->prio)
- resched_task(rq->curr);
- }
- static struct task_struct *pick_next_task_rt(struct rq *rq)
- {
- struct rt_prio_array *array = &rq->rt.active;
- struct task_struct *next;
- struct list_head *queue;
- int idx;
- idx = sched_find_first_bit(array->bitmap);
- if (idx >= MAX_RT_PRIO)
- return NULL;
- queue = array->queue + idx;
- next = list_entry(queue->next, struct task_struct, run_list);
- next->se.exec_start = rq->clock;
- return next;
- }
- static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
- {
- update_curr_rt(rq);
- p->se.exec_start = 0;
- }
- #ifdef CONFIG_SMP
- /* Only try algorithms three times */
- #define RT_MAX_TRIES 3
- static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
- static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
- /* Return the second highest RT task, NULL otherwise */
- static struct task_struct *pick_next_highest_task_rt(struct rq *rq)
- {
- struct rt_prio_array *array = &rq->rt.active;
- struct task_struct *next;
- struct list_head *queue;
- int idx;
- assert_spin_locked(&rq->lock);
- if (likely(rq->rt.rt_nr_running < 2))
- return NULL;
- idx = sched_find_first_bit(array->bitmap);
- if (unlikely(idx >= MAX_RT_PRIO)) {
- WARN_ON(1); /* rt_nr_running is bad */
- return NULL;
- }
- queue = array->queue + idx;
- next = list_entry(queue->next, struct task_struct, run_list);
- if (unlikely(next != rq->curr))
- return next;
- if (queue->next->next != queue) {
- /* same prio task */
- next = list_entry(queue->next->next, struct task_struct, run_list);
- return next;
- }
- /* slower, but more flexible */
- idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
- if (unlikely(idx >= MAX_RT_PRIO)) {
- WARN_ON(1); /* rt_nr_running was 2 and above! */
- return NULL;
- }
- queue = array->queue + idx;
- next = list_entry(queue->next, struct task_struct, run_list);
- return next;
- }
- static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
- /* Will lock the rq it finds */
- static struct rq *find_lock_lowest_rq(struct task_struct *task,
- struct rq *this_rq)
- {
- struct rq *lowest_rq = NULL;
- int cpu;
- int tries;
- cpumask_t *cpu_mask = &__get_cpu_var(local_cpu_mask);
- cpus_and(*cpu_mask, cpu_online_map, task->cpus_allowed);
- for (tries = 0; tries < RT_MAX_TRIES; tries++) {
- /*
- * Scan each rq for the lowest prio.
- */
- for_each_cpu_mask(cpu, *cpu_mask) {
- struct rq *rq = &per_cpu(runqueues, cpu);
- if (cpu == this_rq->cpu)
- continue;
- /* We look for lowest RT prio or non-rt CPU */
- if (rq->rt.highest_prio >= MAX_RT_PRIO) {
- lowest_rq = rq;
- break;
- }
- /* no locking for now */
- if (rq->rt.highest_prio > task->prio &&
- (!lowest_rq || rq->rt.highest_prio > lowest_rq->rt.highest_prio)) {
- lowest_rq = rq;
- }
- }
- if (!lowest_rq)
- break;
- /* if the prio of this runqueue changed, try again */
- if (double_lock_balance(this_rq, lowest_rq)) {
- /*
- * We had to unlock the run queue. In
- * the mean time, task could have
- * migrated already or had its affinity changed.
- * Also make sure that it wasn't scheduled on its rq.
- */
- if (unlikely(task_rq(task) != this_rq ||
- !cpu_isset(lowest_rq->cpu, task->cpus_allowed) ||
- task_running(this_rq, task) ||
- !task->se.on_rq)) {
- spin_unlock(&lowest_rq->lock);
- lowest_rq = NULL;
- break;
- }
- }
- /* If this rq is still suitable use it. */
- if (lowest_rq->rt.highest_prio > task->prio)
- break;
- /* try again */
- spin_unlock(&lowest_rq->lock);
- lowest_rq = NULL;
- }
- return lowest_rq;
- }
- /*
- * If the current CPU has more than one RT task, see if the non
- * running task can migrate over to a CPU that is running a task
- * of lesser priority.
- */
- static int push_rt_task(struct rq *this_rq)
- {
- struct task_struct *next_task;
- struct rq *lowest_rq;
- int ret = 0;
- int paranoid = RT_MAX_TRIES;
- assert_spin_locked(&this_rq->lock);
- next_task = pick_next_highest_task_rt(this_rq);
- if (!next_task)
- return 0;
- retry:
- if (unlikely(next_task == this_rq->curr))
- return 0;
- /*
- * It's possible that the next_task slipped in of
- * higher priority than current. If that's the case
- * just reschedule current.
- */
- if (unlikely(next_task->prio < this_rq->curr->prio)) {
- resched_task(this_rq->curr);
- return 0;
- }
- /* We might release this_rq lock */
- get_task_struct(next_task);
- /* find_lock_lowest_rq locks the rq if found */
- lowest_rq = find_lock_lowest_rq(next_task, this_rq);
- if (!lowest_rq) {
- struct task_struct *task;
- /*
- * find lock_lowest_rq releases this_rq->lock
- * so it is possible that next_task has changed.
- * If it has, then try again.
- */
- task = pick_next_highest_task_rt(this_rq);
- if (unlikely(task != next_task) && task && paranoid--) {
- put_task_struct(next_task);
- next_task = task;
- goto retry;
- }
- goto out;
- }
- assert_spin_locked(&lowest_rq->lock);
- deactivate_task(this_rq, next_task, 0);
- set_task_cpu(next_task, lowest_rq->cpu);
- activate_task(lowest_rq, next_task, 0);
- resched_task(lowest_rq->curr);
- spin_unlock(&lowest_rq->lock);
- ret = 1;
- out:
- put_task_struct(next_task);
- return ret;
- }
- /*
- * TODO: Currently we just use the second highest prio task on
- * the queue, and stop when it can't migrate (or there's
- * no more RT tasks). There may be a case where a lower
- * priority RT task has a different affinity than the
- * higher RT task. In this case the lower RT task could
- * possibly be able to migrate where as the higher priority
- * RT task could not. We currently ignore this issue.
- * Enhancements are welcome!
- */
- static void push_rt_tasks(struct rq *rq)
- {
- /* push_rt_task will return true if it moved an RT */
- while (push_rt_task(rq))
- ;
- }
- static void schedule_tail_balance_rt(struct rq *rq)
- {
- /*
- * If we have more than one rt_task queued, then
- * see if we can push the other rt_tasks off to other CPUS.
- * Note we may release the rq lock, and since
- * the lock was owned by prev, we need to release it
- * first via finish_lock_switch and then reaquire it here.
- */
- if (unlikely(rq->rt.rt_nr_running > 1)) {
- spin_lock_irq(&rq->lock);
- push_rt_tasks(rq);
- spin_unlock_irq(&rq->lock);
- }
- }
- /*
- * Load-balancing iterator. Note: while the runqueue stays locked
- * during the whole iteration, the current task might be
- * dequeued so the iterator has to be dequeue-safe. Here we
- * achieve that by always pre-iterating before returning
- * the current task:
- */
- static struct task_struct *load_balance_start_rt(void *arg)
- {
- struct rq *rq = arg;
- struct rt_prio_array *array = &rq->rt.active;
- struct list_head *head, *curr;
- struct task_struct *p;
- int idx;
- idx = sched_find_first_bit(array->bitmap);
- if (idx >= MAX_RT_PRIO)
- return NULL;
- head = array->queue + idx;
- curr = head->prev;
- p = list_entry(curr, struct task_struct, run_list);
- curr = curr->prev;
- rq->rt.rt_load_balance_idx = idx;
- rq->rt.rt_load_balance_head = head;
- rq->rt.rt_load_balance_curr = curr;
- return p;
- }
- static struct task_struct *load_balance_next_rt(void *arg)
- {
- struct rq *rq = arg;
- struct rt_prio_array *array = &rq->rt.active;
- struct list_head *head, *curr;
- struct task_struct *p;
- int idx;
- idx = rq->rt.rt_load_balance_idx;
- head = rq->rt.rt_load_balance_head;
- curr = rq->rt.rt_load_balance_curr;
- /*
- * If we arrived back to the head again then
- * iterate to the next queue (if any):
- */
- if (unlikely(head == curr)) {
- int next_idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
- if (next_idx >= MAX_RT_PRIO)
- return NULL;
- idx = next_idx;
- head = array->queue + idx;
- curr = head->prev;
- rq->rt.rt_load_balance_idx = idx;
- rq->rt.rt_load_balance_head = head;
- }
- p = list_entry(curr, struct task_struct, run_list);
- curr = curr->prev;
- rq->rt.rt_load_balance_curr = curr;
- return p;
- }
- static unsigned long
- load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
- unsigned long max_load_move,
- struct sched_domain *sd, enum cpu_idle_type idle,
- int *all_pinned, int *this_best_prio)
- {
- struct rq_iterator rt_rq_iterator;
- rt_rq_iterator.start = load_balance_start_rt;
- rt_rq_iterator.next = load_balance_next_rt;
- /* pass 'busiest' rq argument into
- * load_balance_[start|next]_rt iterators
- */
- rt_rq_iterator.arg = busiest;
- return balance_tasks(this_rq, this_cpu, busiest, max_load_move, sd,
- idle, all_pinned, this_best_prio, &rt_rq_iterator);
- }
- static int
- move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
- struct sched_domain *sd, enum cpu_idle_type idle)
- {
- struct rq_iterator rt_rq_iterator;
- rt_rq_iterator.start = load_balance_start_rt;
- rt_rq_iterator.next = load_balance_next_rt;
- rt_rq_iterator.arg = busiest;
- return iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
- &rt_rq_iterator);
- }
- #else /* CONFIG_SMP */
- # define schedule_tail_balance_rt(rq) do { } while (0)
- #endif /* CONFIG_SMP */
- static void task_tick_rt(struct rq *rq, struct task_struct *p)
- {
- update_curr_rt(rq);
- /*
- * RR tasks need a special form of timeslice management.
- * FIFO tasks have no timeslices.
- */
- if (p->policy != SCHED_RR)
- return;
- if (--p->time_slice)
- return;
- p->time_slice = DEF_TIMESLICE;
- /*
- * Requeue to the end of queue if we are not the only element
- * on the queue:
- */
- if (p->run_list.prev != p->run_list.next) {
- requeue_task_rt(rq, p);
- set_tsk_need_resched(p);
- }
- }
- static void set_curr_task_rt(struct rq *rq)
- {
- struct task_struct *p = rq->curr;
- p->se.exec_start = rq->clock;
- }
- const struct sched_class rt_sched_class = {
- .next = &fair_sched_class,
- .enqueue_task = enqueue_task_rt,
- .dequeue_task = dequeue_task_rt,
- .yield_task = yield_task_rt,
- .check_preempt_curr = check_preempt_curr_rt,
- .pick_next_task = pick_next_task_rt,
- .put_prev_task = put_prev_task_rt,
- #ifdef CONFIG_SMP
- .load_balance = load_balance_rt,
- .move_one_task = move_one_task_rt,
- #endif
- .set_curr_task = set_curr_task_rt,
- .task_tick = task_tick_rt,
- };
|