messenger.c 61 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484
  1. #include <linux/ceph/ceph_debug.h>
  2. #include <linux/crc32c.h>
  3. #include <linux/ctype.h>
  4. #include <linux/highmem.h>
  5. #include <linux/inet.h>
  6. #include <linux/kthread.h>
  7. #include <linux/net.h>
  8. #include <linux/slab.h>
  9. #include <linux/socket.h>
  10. #include <linux/string.h>
  11. #include <linux/bio.h>
  12. #include <linux/blkdev.h>
  13. #include <net/tcp.h>
  14. #include <linux/ceph/libceph.h>
  15. #include <linux/ceph/messenger.h>
  16. #include <linux/ceph/decode.h>
  17. #include <linux/ceph/pagelist.h>
  18. /*
  19. * Ceph uses the messenger to exchange ceph_msg messages with other
  20. * hosts in the system. The messenger provides ordered and reliable
  21. * delivery. We tolerate TCP disconnects by reconnecting (with
  22. * exponential backoff) in the case of a fault (disconnection, bad
  23. * crc, protocol error). Acks allow sent messages to be discarded by
  24. * the sender.
  25. */
  26. /* static tag bytes (protocol control messages) */
  27. static char tag_msg = CEPH_MSGR_TAG_MSG;
  28. static char tag_ack = CEPH_MSGR_TAG_ACK;
  29. static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
  30. #ifdef CONFIG_LOCKDEP
  31. static struct lock_class_key socket_class;
  32. #endif
  33. static void queue_con(struct ceph_connection *con);
  34. static void con_work(struct work_struct *);
  35. static void ceph_fault(struct ceph_connection *con);
  36. /*
  37. * nicely render a sockaddr as a string.
  38. */
  39. #define MAX_ADDR_STR 20
  40. #define MAX_ADDR_STR_LEN 60
  41. static char addr_str[MAX_ADDR_STR][MAX_ADDR_STR_LEN];
  42. static DEFINE_SPINLOCK(addr_str_lock);
  43. static int last_addr_str;
  44. const char *ceph_pr_addr(const struct sockaddr_storage *ss)
  45. {
  46. int i;
  47. char *s;
  48. struct sockaddr_in *in4 = (void *)ss;
  49. struct sockaddr_in6 *in6 = (void *)ss;
  50. spin_lock(&addr_str_lock);
  51. i = last_addr_str++;
  52. if (last_addr_str == MAX_ADDR_STR)
  53. last_addr_str = 0;
  54. spin_unlock(&addr_str_lock);
  55. s = addr_str[i];
  56. switch (ss->ss_family) {
  57. case AF_INET:
  58. snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%u", &in4->sin_addr,
  59. (unsigned int)ntohs(in4->sin_port));
  60. break;
  61. case AF_INET6:
  62. snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%u", &in6->sin6_addr,
  63. (unsigned int)ntohs(in6->sin6_port));
  64. break;
  65. default:
  66. sprintf(s, "(unknown sockaddr family %d)", (int)ss->ss_family);
  67. }
  68. return s;
  69. }
  70. EXPORT_SYMBOL(ceph_pr_addr);
  71. static void encode_my_addr(struct ceph_messenger *msgr)
  72. {
  73. memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
  74. ceph_encode_addr(&msgr->my_enc_addr);
  75. }
  76. /*
  77. * work queue for all reading and writing to/from the socket.
  78. */
  79. struct workqueue_struct *ceph_msgr_wq;
  80. int ceph_msgr_init(void)
  81. {
  82. ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
  83. if (!ceph_msgr_wq) {
  84. pr_err("msgr_init failed to create workqueue\n");
  85. return -ENOMEM;
  86. }
  87. return 0;
  88. }
  89. EXPORT_SYMBOL(ceph_msgr_init);
  90. void ceph_msgr_exit(void)
  91. {
  92. destroy_workqueue(ceph_msgr_wq);
  93. }
  94. EXPORT_SYMBOL(ceph_msgr_exit);
  95. void ceph_msgr_flush(void)
  96. {
  97. flush_workqueue(ceph_msgr_wq);
  98. }
  99. EXPORT_SYMBOL(ceph_msgr_flush);
  100. /*
  101. * socket callback functions
  102. */
  103. /* data available on socket, or listen socket received a connect */
  104. static void ceph_data_ready(struct sock *sk, int count_unused)
  105. {
  106. struct ceph_connection *con =
  107. (struct ceph_connection *)sk->sk_user_data;
  108. if (sk->sk_state != TCP_CLOSE_WAIT) {
  109. dout("ceph_data_ready on %p state = %lu, queueing work\n",
  110. con, con->state);
  111. queue_con(con);
  112. }
  113. }
  114. /* socket has buffer space for writing */
  115. static void ceph_write_space(struct sock *sk)
  116. {
  117. struct ceph_connection *con =
  118. (struct ceph_connection *)sk->sk_user_data;
  119. /* only queue to workqueue if there is data we want to write. */
  120. if (test_bit(WRITE_PENDING, &con->state)) {
  121. dout("ceph_write_space %p queueing write work\n", con);
  122. queue_con(con);
  123. } else {
  124. dout("ceph_write_space %p nothing to write\n", con);
  125. }
  126. /* since we have our own write_space, clear the SOCK_NOSPACE flag */
  127. clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  128. }
  129. /* socket's state has changed */
  130. static void ceph_state_change(struct sock *sk)
  131. {
  132. struct ceph_connection *con =
  133. (struct ceph_connection *)sk->sk_user_data;
  134. dout("ceph_state_change %p state = %lu sk_state = %u\n",
  135. con, con->state, sk->sk_state);
  136. if (test_bit(CLOSED, &con->state))
  137. return;
  138. switch (sk->sk_state) {
  139. case TCP_CLOSE:
  140. dout("ceph_state_change TCP_CLOSE\n");
  141. case TCP_CLOSE_WAIT:
  142. dout("ceph_state_change TCP_CLOSE_WAIT\n");
  143. if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
  144. if (test_bit(CONNECTING, &con->state))
  145. con->error_msg = "connection failed";
  146. else
  147. con->error_msg = "socket closed";
  148. queue_con(con);
  149. }
  150. break;
  151. case TCP_ESTABLISHED:
  152. dout("ceph_state_change TCP_ESTABLISHED\n");
  153. queue_con(con);
  154. break;
  155. }
  156. }
  157. /*
  158. * set up socket callbacks
  159. */
  160. static void set_sock_callbacks(struct socket *sock,
  161. struct ceph_connection *con)
  162. {
  163. struct sock *sk = sock->sk;
  164. sk->sk_user_data = (void *)con;
  165. sk->sk_data_ready = ceph_data_ready;
  166. sk->sk_write_space = ceph_write_space;
  167. sk->sk_state_change = ceph_state_change;
  168. }
  169. /*
  170. * socket helpers
  171. */
  172. /*
  173. * initiate connection to a remote socket.
  174. */
  175. static struct socket *ceph_tcp_connect(struct ceph_connection *con)
  176. {
  177. struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
  178. struct socket *sock;
  179. int ret;
  180. BUG_ON(con->sock);
  181. ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
  182. IPPROTO_TCP, &sock);
  183. if (ret)
  184. return ERR_PTR(ret);
  185. con->sock = sock;
  186. sock->sk->sk_allocation = GFP_NOFS;
  187. #ifdef CONFIG_LOCKDEP
  188. lockdep_set_class(&sock->sk->sk_lock, &socket_class);
  189. #endif
  190. set_sock_callbacks(sock, con);
  191. dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
  192. ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
  193. O_NONBLOCK);
  194. if (ret == -EINPROGRESS) {
  195. dout("connect %s EINPROGRESS sk_state = %u\n",
  196. ceph_pr_addr(&con->peer_addr.in_addr),
  197. sock->sk->sk_state);
  198. ret = 0;
  199. }
  200. if (ret < 0) {
  201. pr_err("connect %s error %d\n",
  202. ceph_pr_addr(&con->peer_addr.in_addr), ret);
  203. sock_release(sock);
  204. con->sock = NULL;
  205. con->error_msg = "connect error";
  206. }
  207. if (ret < 0)
  208. return ERR_PTR(ret);
  209. return sock;
  210. }
  211. static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
  212. {
  213. struct kvec iov = {buf, len};
  214. struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
  215. int r;
  216. r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
  217. if (r == -EAGAIN)
  218. r = 0;
  219. return r;
  220. }
  221. /*
  222. * write something. @more is true if caller will be sending more data
  223. * shortly.
  224. */
  225. static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
  226. size_t kvlen, size_t len, int more)
  227. {
  228. struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
  229. int r;
  230. if (more)
  231. msg.msg_flags |= MSG_MORE;
  232. else
  233. msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
  234. r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
  235. if (r == -EAGAIN)
  236. r = 0;
  237. return r;
  238. }
  239. /*
  240. * Shutdown/close the socket for the given connection.
  241. */
  242. static int con_close_socket(struct ceph_connection *con)
  243. {
  244. int rc;
  245. dout("con_close_socket on %p sock %p\n", con, con->sock);
  246. if (!con->sock)
  247. return 0;
  248. set_bit(SOCK_CLOSED, &con->state);
  249. rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
  250. sock_release(con->sock);
  251. con->sock = NULL;
  252. clear_bit(SOCK_CLOSED, &con->state);
  253. return rc;
  254. }
  255. /*
  256. * Reset a connection. Discard all incoming and outgoing messages
  257. * and clear *_seq state.
  258. */
  259. static void ceph_msg_remove(struct ceph_msg *msg)
  260. {
  261. list_del_init(&msg->list_head);
  262. ceph_msg_put(msg);
  263. }
  264. static void ceph_msg_remove_list(struct list_head *head)
  265. {
  266. while (!list_empty(head)) {
  267. struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
  268. list_head);
  269. ceph_msg_remove(msg);
  270. }
  271. }
  272. static void reset_connection(struct ceph_connection *con)
  273. {
  274. /* reset connection, out_queue, msg_ and connect_seq */
  275. /* discard existing out_queue and msg_seq */
  276. ceph_msg_remove_list(&con->out_queue);
  277. ceph_msg_remove_list(&con->out_sent);
  278. if (con->in_msg) {
  279. ceph_msg_put(con->in_msg);
  280. con->in_msg = NULL;
  281. }
  282. con->connect_seq = 0;
  283. con->out_seq = 0;
  284. if (con->out_msg) {
  285. ceph_msg_put(con->out_msg);
  286. con->out_msg = NULL;
  287. }
  288. con->in_seq = 0;
  289. con->in_seq_acked = 0;
  290. }
  291. /*
  292. * mark a peer down. drop any open connections.
  293. */
  294. void ceph_con_close(struct ceph_connection *con)
  295. {
  296. dout("con_close %p peer %s\n", con,
  297. ceph_pr_addr(&con->peer_addr.in_addr));
  298. set_bit(CLOSED, &con->state); /* in case there's queued work */
  299. clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
  300. clear_bit(LOSSYTX, &con->state); /* so we retry next connect */
  301. clear_bit(KEEPALIVE_PENDING, &con->state);
  302. clear_bit(WRITE_PENDING, &con->state);
  303. mutex_lock(&con->mutex);
  304. reset_connection(con);
  305. con->peer_global_seq = 0;
  306. cancel_delayed_work(&con->work);
  307. mutex_unlock(&con->mutex);
  308. queue_con(con);
  309. }
  310. EXPORT_SYMBOL(ceph_con_close);
  311. /*
  312. * Reopen a closed connection, with a new peer address.
  313. */
  314. void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
  315. {
  316. dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
  317. set_bit(OPENING, &con->state);
  318. clear_bit(CLOSED, &con->state);
  319. memcpy(&con->peer_addr, addr, sizeof(*addr));
  320. con->delay = 0; /* reset backoff memory */
  321. queue_con(con);
  322. }
  323. EXPORT_SYMBOL(ceph_con_open);
  324. /*
  325. * return true if this connection ever successfully opened
  326. */
  327. bool ceph_con_opened(struct ceph_connection *con)
  328. {
  329. return con->connect_seq > 0;
  330. }
  331. /*
  332. * generic get/put
  333. */
  334. struct ceph_connection *ceph_con_get(struct ceph_connection *con)
  335. {
  336. dout("con_get %p nref = %d -> %d\n", con,
  337. atomic_read(&con->nref), atomic_read(&con->nref) + 1);
  338. if (atomic_inc_not_zero(&con->nref))
  339. return con;
  340. return NULL;
  341. }
  342. void ceph_con_put(struct ceph_connection *con)
  343. {
  344. dout("con_put %p nref = %d -> %d\n", con,
  345. atomic_read(&con->nref), atomic_read(&con->nref) - 1);
  346. BUG_ON(atomic_read(&con->nref) == 0);
  347. if (atomic_dec_and_test(&con->nref)) {
  348. BUG_ON(con->sock);
  349. kfree(con);
  350. }
  351. }
  352. /*
  353. * initialize a new connection.
  354. */
  355. void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
  356. {
  357. dout("con_init %p\n", con);
  358. memset(con, 0, sizeof(*con));
  359. atomic_set(&con->nref, 1);
  360. con->msgr = msgr;
  361. mutex_init(&con->mutex);
  362. INIT_LIST_HEAD(&con->out_queue);
  363. INIT_LIST_HEAD(&con->out_sent);
  364. INIT_DELAYED_WORK(&con->work, con_work);
  365. }
  366. EXPORT_SYMBOL(ceph_con_init);
  367. /*
  368. * We maintain a global counter to order connection attempts. Get
  369. * a unique seq greater than @gt.
  370. */
  371. static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
  372. {
  373. u32 ret;
  374. spin_lock(&msgr->global_seq_lock);
  375. if (msgr->global_seq < gt)
  376. msgr->global_seq = gt;
  377. ret = ++msgr->global_seq;
  378. spin_unlock(&msgr->global_seq_lock);
  379. return ret;
  380. }
  381. /*
  382. * Prepare footer for currently outgoing message, and finish things
  383. * off. Assumes out_kvec* are already valid.. we just add on to the end.
  384. */
  385. static void prepare_write_message_footer(struct ceph_connection *con, int v)
  386. {
  387. struct ceph_msg *m = con->out_msg;
  388. dout("prepare_write_message_footer %p\n", con);
  389. con->out_kvec_is_msg = true;
  390. con->out_kvec[v].iov_base = &m->footer;
  391. con->out_kvec[v].iov_len = sizeof(m->footer);
  392. con->out_kvec_bytes += sizeof(m->footer);
  393. con->out_kvec_left++;
  394. con->out_more = m->more_to_follow;
  395. con->out_msg_done = true;
  396. }
  397. /*
  398. * Prepare headers for the next outgoing message.
  399. */
  400. static void prepare_write_message(struct ceph_connection *con)
  401. {
  402. struct ceph_msg *m;
  403. int v = 0;
  404. con->out_kvec_bytes = 0;
  405. con->out_kvec_is_msg = true;
  406. con->out_msg_done = false;
  407. /* Sneak an ack in there first? If we can get it into the same
  408. * TCP packet that's a good thing. */
  409. if (con->in_seq > con->in_seq_acked) {
  410. con->in_seq_acked = con->in_seq;
  411. con->out_kvec[v].iov_base = &tag_ack;
  412. con->out_kvec[v++].iov_len = 1;
  413. con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
  414. con->out_kvec[v].iov_base = &con->out_temp_ack;
  415. con->out_kvec[v++].iov_len = sizeof(con->out_temp_ack);
  416. con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
  417. }
  418. m = list_first_entry(&con->out_queue,
  419. struct ceph_msg, list_head);
  420. con->out_msg = m;
  421. if (test_bit(LOSSYTX, &con->state)) {
  422. list_del_init(&m->list_head);
  423. } else {
  424. /* put message on sent list */
  425. ceph_msg_get(m);
  426. list_move_tail(&m->list_head, &con->out_sent);
  427. }
  428. /*
  429. * only assign outgoing seq # if we haven't sent this message
  430. * yet. if it is requeued, resend with it's original seq.
  431. */
  432. if (m->needs_out_seq) {
  433. m->hdr.seq = cpu_to_le64(++con->out_seq);
  434. m->needs_out_seq = false;
  435. }
  436. dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
  437. m, con->out_seq, le16_to_cpu(m->hdr.type),
  438. le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
  439. le32_to_cpu(m->hdr.data_len),
  440. m->nr_pages);
  441. BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
  442. /* tag + hdr + front + middle */
  443. con->out_kvec[v].iov_base = &tag_msg;
  444. con->out_kvec[v++].iov_len = 1;
  445. con->out_kvec[v].iov_base = &m->hdr;
  446. con->out_kvec[v++].iov_len = sizeof(m->hdr);
  447. con->out_kvec[v++] = m->front;
  448. if (m->middle)
  449. con->out_kvec[v++] = m->middle->vec;
  450. con->out_kvec_left = v;
  451. con->out_kvec_bytes += 1 + sizeof(m->hdr) + m->front.iov_len +
  452. (m->middle ? m->middle->vec.iov_len : 0);
  453. con->out_kvec_cur = con->out_kvec;
  454. /* fill in crc (except data pages), footer */
  455. con->out_msg->hdr.crc =
  456. cpu_to_le32(crc32c(0, (void *)&m->hdr,
  457. sizeof(m->hdr) - sizeof(m->hdr.crc)));
  458. con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
  459. con->out_msg->footer.front_crc =
  460. cpu_to_le32(crc32c(0, m->front.iov_base, m->front.iov_len));
  461. if (m->middle)
  462. con->out_msg->footer.middle_crc =
  463. cpu_to_le32(crc32c(0, m->middle->vec.iov_base,
  464. m->middle->vec.iov_len));
  465. else
  466. con->out_msg->footer.middle_crc = 0;
  467. con->out_msg->footer.data_crc = 0;
  468. dout("prepare_write_message front_crc %u data_crc %u\n",
  469. le32_to_cpu(con->out_msg->footer.front_crc),
  470. le32_to_cpu(con->out_msg->footer.middle_crc));
  471. /* is there a data payload? */
  472. if (le32_to_cpu(m->hdr.data_len) > 0) {
  473. /* initialize page iterator */
  474. con->out_msg_pos.page = 0;
  475. if (m->pages)
  476. con->out_msg_pos.page_pos = m->page_alignment;
  477. else
  478. con->out_msg_pos.page_pos = 0;
  479. con->out_msg_pos.data_pos = 0;
  480. con->out_msg_pos.did_page_crc = 0;
  481. con->out_more = 1; /* data + footer will follow */
  482. } else {
  483. /* no, queue up footer too and be done */
  484. prepare_write_message_footer(con, v);
  485. }
  486. set_bit(WRITE_PENDING, &con->state);
  487. }
  488. /*
  489. * Prepare an ack.
  490. */
  491. static void prepare_write_ack(struct ceph_connection *con)
  492. {
  493. dout("prepare_write_ack %p %llu -> %llu\n", con,
  494. con->in_seq_acked, con->in_seq);
  495. con->in_seq_acked = con->in_seq;
  496. con->out_kvec[0].iov_base = &tag_ack;
  497. con->out_kvec[0].iov_len = 1;
  498. con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
  499. con->out_kvec[1].iov_base = &con->out_temp_ack;
  500. con->out_kvec[1].iov_len = sizeof(con->out_temp_ack);
  501. con->out_kvec_left = 2;
  502. con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
  503. con->out_kvec_cur = con->out_kvec;
  504. con->out_more = 1; /* more will follow.. eventually.. */
  505. set_bit(WRITE_PENDING, &con->state);
  506. }
  507. /*
  508. * Prepare to write keepalive byte.
  509. */
  510. static void prepare_write_keepalive(struct ceph_connection *con)
  511. {
  512. dout("prepare_write_keepalive %p\n", con);
  513. con->out_kvec[0].iov_base = &tag_keepalive;
  514. con->out_kvec[0].iov_len = 1;
  515. con->out_kvec_left = 1;
  516. con->out_kvec_bytes = 1;
  517. con->out_kvec_cur = con->out_kvec;
  518. set_bit(WRITE_PENDING, &con->state);
  519. }
  520. /*
  521. * Connection negotiation.
  522. */
  523. static int prepare_connect_authorizer(struct ceph_connection *con)
  524. {
  525. void *auth_buf;
  526. int auth_len = 0;
  527. int auth_protocol = 0;
  528. mutex_unlock(&con->mutex);
  529. if (con->ops->get_authorizer)
  530. con->ops->get_authorizer(con, &auth_buf, &auth_len,
  531. &auth_protocol, &con->auth_reply_buf,
  532. &con->auth_reply_buf_len,
  533. con->auth_retry);
  534. mutex_lock(&con->mutex);
  535. if (test_bit(CLOSED, &con->state) ||
  536. test_bit(OPENING, &con->state))
  537. return -EAGAIN;
  538. con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
  539. con->out_connect.authorizer_len = cpu_to_le32(auth_len);
  540. if (auth_len) {
  541. con->out_kvec[con->out_kvec_left].iov_base = auth_buf;
  542. con->out_kvec[con->out_kvec_left].iov_len = auth_len;
  543. con->out_kvec_left++;
  544. con->out_kvec_bytes += auth_len;
  545. }
  546. return 0;
  547. }
  548. /*
  549. * We connected to a peer and are saying hello.
  550. */
  551. static void prepare_write_banner(struct ceph_messenger *msgr,
  552. struct ceph_connection *con)
  553. {
  554. int len = strlen(CEPH_BANNER);
  555. con->out_kvec[0].iov_base = CEPH_BANNER;
  556. con->out_kvec[0].iov_len = len;
  557. con->out_kvec[1].iov_base = &msgr->my_enc_addr;
  558. con->out_kvec[1].iov_len = sizeof(msgr->my_enc_addr);
  559. con->out_kvec_left = 2;
  560. con->out_kvec_bytes = len + sizeof(msgr->my_enc_addr);
  561. con->out_kvec_cur = con->out_kvec;
  562. con->out_more = 0;
  563. set_bit(WRITE_PENDING, &con->state);
  564. }
  565. static int prepare_write_connect(struct ceph_messenger *msgr,
  566. struct ceph_connection *con,
  567. int after_banner)
  568. {
  569. unsigned global_seq = get_global_seq(con->msgr, 0);
  570. int proto;
  571. switch (con->peer_name.type) {
  572. case CEPH_ENTITY_TYPE_MON:
  573. proto = CEPH_MONC_PROTOCOL;
  574. break;
  575. case CEPH_ENTITY_TYPE_OSD:
  576. proto = CEPH_OSDC_PROTOCOL;
  577. break;
  578. case CEPH_ENTITY_TYPE_MDS:
  579. proto = CEPH_MDSC_PROTOCOL;
  580. break;
  581. default:
  582. BUG();
  583. }
  584. dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
  585. con->connect_seq, global_seq, proto);
  586. con->out_connect.features = cpu_to_le64(msgr->supported_features);
  587. con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
  588. con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
  589. con->out_connect.global_seq = cpu_to_le32(global_seq);
  590. con->out_connect.protocol_version = cpu_to_le32(proto);
  591. con->out_connect.flags = 0;
  592. if (!after_banner) {
  593. con->out_kvec_left = 0;
  594. con->out_kvec_bytes = 0;
  595. }
  596. con->out_kvec[con->out_kvec_left].iov_base = &con->out_connect;
  597. con->out_kvec[con->out_kvec_left].iov_len = sizeof(con->out_connect);
  598. con->out_kvec_left++;
  599. con->out_kvec_bytes += sizeof(con->out_connect);
  600. con->out_kvec_cur = con->out_kvec;
  601. con->out_more = 0;
  602. set_bit(WRITE_PENDING, &con->state);
  603. return prepare_connect_authorizer(con);
  604. }
  605. /*
  606. * write as much of pending kvecs to the socket as we can.
  607. * 1 -> done
  608. * 0 -> socket full, but more to do
  609. * <0 -> error
  610. */
  611. static int write_partial_kvec(struct ceph_connection *con)
  612. {
  613. int ret;
  614. dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
  615. while (con->out_kvec_bytes > 0) {
  616. ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
  617. con->out_kvec_left, con->out_kvec_bytes,
  618. con->out_more);
  619. if (ret <= 0)
  620. goto out;
  621. con->out_kvec_bytes -= ret;
  622. if (con->out_kvec_bytes == 0)
  623. break; /* done */
  624. while (ret > 0) {
  625. if (ret >= con->out_kvec_cur->iov_len) {
  626. ret -= con->out_kvec_cur->iov_len;
  627. con->out_kvec_cur++;
  628. con->out_kvec_left--;
  629. } else {
  630. con->out_kvec_cur->iov_len -= ret;
  631. con->out_kvec_cur->iov_base += ret;
  632. ret = 0;
  633. break;
  634. }
  635. }
  636. }
  637. con->out_kvec_left = 0;
  638. con->out_kvec_is_msg = false;
  639. ret = 1;
  640. out:
  641. dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
  642. con->out_kvec_bytes, con->out_kvec_left, ret);
  643. return ret; /* done! */
  644. }
  645. #ifdef CONFIG_BLOCK
  646. static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
  647. {
  648. if (!bio) {
  649. *iter = NULL;
  650. *seg = 0;
  651. return;
  652. }
  653. *iter = bio;
  654. *seg = bio->bi_idx;
  655. }
  656. static void iter_bio_next(struct bio **bio_iter, int *seg)
  657. {
  658. if (*bio_iter == NULL)
  659. return;
  660. BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
  661. (*seg)++;
  662. if (*seg == (*bio_iter)->bi_vcnt)
  663. init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
  664. }
  665. #endif
  666. /*
  667. * Write as much message data payload as we can. If we finish, queue
  668. * up the footer.
  669. * 1 -> done, footer is now queued in out_kvec[].
  670. * 0 -> socket full, but more to do
  671. * <0 -> error
  672. */
  673. static int write_partial_msg_pages(struct ceph_connection *con)
  674. {
  675. struct ceph_msg *msg = con->out_msg;
  676. unsigned data_len = le32_to_cpu(msg->hdr.data_len);
  677. size_t len;
  678. int crc = con->msgr->nocrc;
  679. int ret;
  680. int total_max_write;
  681. int in_trail = 0;
  682. size_t trail_len = (msg->trail ? msg->trail->length : 0);
  683. dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
  684. con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
  685. con->out_msg_pos.page_pos);
  686. #ifdef CONFIG_BLOCK
  687. if (msg->bio && !msg->bio_iter)
  688. init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
  689. #endif
  690. while (data_len > con->out_msg_pos.data_pos) {
  691. struct page *page = NULL;
  692. void *kaddr = NULL;
  693. int max_write = PAGE_SIZE;
  694. int page_shift = 0;
  695. total_max_write = data_len - trail_len -
  696. con->out_msg_pos.data_pos;
  697. /*
  698. * if we are calculating the data crc (the default), we need
  699. * to map the page. if our pages[] has been revoked, use the
  700. * zero page.
  701. */
  702. /* have we reached the trail part of the data? */
  703. if (con->out_msg_pos.data_pos >= data_len - trail_len) {
  704. in_trail = 1;
  705. total_max_write = data_len - con->out_msg_pos.data_pos;
  706. page = list_first_entry(&msg->trail->head,
  707. struct page, lru);
  708. if (crc)
  709. kaddr = kmap(page);
  710. max_write = PAGE_SIZE;
  711. } else if (msg->pages) {
  712. page = msg->pages[con->out_msg_pos.page];
  713. if (crc)
  714. kaddr = kmap(page);
  715. } else if (msg->pagelist) {
  716. page = list_first_entry(&msg->pagelist->head,
  717. struct page, lru);
  718. if (crc)
  719. kaddr = kmap(page);
  720. #ifdef CONFIG_BLOCK
  721. } else if (msg->bio) {
  722. struct bio_vec *bv;
  723. bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
  724. page = bv->bv_page;
  725. page_shift = bv->bv_offset;
  726. if (crc)
  727. kaddr = kmap(page) + page_shift;
  728. max_write = bv->bv_len;
  729. #endif
  730. } else {
  731. page = con->msgr->zero_page;
  732. if (crc)
  733. kaddr = page_address(con->msgr->zero_page);
  734. }
  735. len = min_t(int, max_write - con->out_msg_pos.page_pos,
  736. total_max_write);
  737. if (crc && !con->out_msg_pos.did_page_crc) {
  738. void *base = kaddr + con->out_msg_pos.page_pos;
  739. u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
  740. BUG_ON(kaddr == NULL);
  741. con->out_msg->footer.data_crc =
  742. cpu_to_le32(crc32c(tmpcrc, base, len));
  743. con->out_msg_pos.did_page_crc = 1;
  744. }
  745. ret = kernel_sendpage(con->sock, page,
  746. con->out_msg_pos.page_pos + page_shift,
  747. len,
  748. MSG_DONTWAIT | MSG_NOSIGNAL |
  749. MSG_MORE);
  750. if (crc &&
  751. (msg->pages || msg->pagelist || msg->bio || in_trail))
  752. kunmap(page);
  753. if (ret == -EAGAIN)
  754. ret = 0;
  755. if (ret <= 0)
  756. goto out;
  757. con->out_msg_pos.data_pos += ret;
  758. con->out_msg_pos.page_pos += ret;
  759. if (ret == len) {
  760. con->out_msg_pos.page_pos = 0;
  761. con->out_msg_pos.page++;
  762. con->out_msg_pos.did_page_crc = 0;
  763. if (in_trail)
  764. list_move_tail(&page->lru,
  765. &msg->trail->head);
  766. else if (msg->pagelist)
  767. list_move_tail(&page->lru,
  768. &msg->pagelist->head);
  769. #ifdef CONFIG_BLOCK
  770. else if (msg->bio)
  771. iter_bio_next(&msg->bio_iter, &msg->bio_seg);
  772. #endif
  773. }
  774. }
  775. dout("write_partial_msg_pages %p msg %p done\n", con, msg);
  776. /* prepare and queue up footer, too */
  777. if (!crc)
  778. con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
  779. con->out_kvec_bytes = 0;
  780. con->out_kvec_left = 0;
  781. con->out_kvec_cur = con->out_kvec;
  782. prepare_write_message_footer(con, 0);
  783. ret = 1;
  784. out:
  785. return ret;
  786. }
  787. /*
  788. * write some zeros
  789. */
  790. static int write_partial_skip(struct ceph_connection *con)
  791. {
  792. int ret;
  793. while (con->out_skip > 0) {
  794. struct kvec iov = {
  795. .iov_base = page_address(con->msgr->zero_page),
  796. .iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE)
  797. };
  798. ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1);
  799. if (ret <= 0)
  800. goto out;
  801. con->out_skip -= ret;
  802. }
  803. ret = 1;
  804. out:
  805. return ret;
  806. }
  807. /*
  808. * Prepare to read connection handshake, or an ack.
  809. */
  810. static void prepare_read_banner(struct ceph_connection *con)
  811. {
  812. dout("prepare_read_banner %p\n", con);
  813. con->in_base_pos = 0;
  814. }
  815. static void prepare_read_connect(struct ceph_connection *con)
  816. {
  817. dout("prepare_read_connect %p\n", con);
  818. con->in_base_pos = 0;
  819. }
  820. static void prepare_read_ack(struct ceph_connection *con)
  821. {
  822. dout("prepare_read_ack %p\n", con);
  823. con->in_base_pos = 0;
  824. }
  825. static void prepare_read_tag(struct ceph_connection *con)
  826. {
  827. dout("prepare_read_tag %p\n", con);
  828. con->in_base_pos = 0;
  829. con->in_tag = CEPH_MSGR_TAG_READY;
  830. }
  831. /*
  832. * Prepare to read a message.
  833. */
  834. static int prepare_read_message(struct ceph_connection *con)
  835. {
  836. dout("prepare_read_message %p\n", con);
  837. BUG_ON(con->in_msg != NULL);
  838. con->in_base_pos = 0;
  839. con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
  840. return 0;
  841. }
  842. static int read_partial(struct ceph_connection *con,
  843. int *to, int size, void *object)
  844. {
  845. *to += size;
  846. while (con->in_base_pos < *to) {
  847. int left = *to - con->in_base_pos;
  848. int have = size - left;
  849. int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
  850. if (ret <= 0)
  851. return ret;
  852. con->in_base_pos += ret;
  853. }
  854. return 1;
  855. }
  856. /*
  857. * Read all or part of the connect-side handshake on a new connection
  858. */
  859. static int read_partial_banner(struct ceph_connection *con)
  860. {
  861. int ret, to = 0;
  862. dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
  863. /* peer's banner */
  864. ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner);
  865. if (ret <= 0)
  866. goto out;
  867. ret = read_partial(con, &to, sizeof(con->actual_peer_addr),
  868. &con->actual_peer_addr);
  869. if (ret <= 0)
  870. goto out;
  871. ret = read_partial(con, &to, sizeof(con->peer_addr_for_me),
  872. &con->peer_addr_for_me);
  873. if (ret <= 0)
  874. goto out;
  875. out:
  876. return ret;
  877. }
  878. static int read_partial_connect(struct ceph_connection *con)
  879. {
  880. int ret, to = 0;
  881. dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
  882. ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply);
  883. if (ret <= 0)
  884. goto out;
  885. ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len),
  886. con->auth_reply_buf);
  887. if (ret <= 0)
  888. goto out;
  889. dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
  890. con, (int)con->in_reply.tag,
  891. le32_to_cpu(con->in_reply.connect_seq),
  892. le32_to_cpu(con->in_reply.global_seq));
  893. out:
  894. return ret;
  895. }
  896. /*
  897. * Verify the hello banner looks okay.
  898. */
  899. static int verify_hello(struct ceph_connection *con)
  900. {
  901. if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
  902. pr_err("connect to %s got bad banner\n",
  903. ceph_pr_addr(&con->peer_addr.in_addr));
  904. con->error_msg = "protocol error, bad banner";
  905. return -1;
  906. }
  907. return 0;
  908. }
  909. static bool addr_is_blank(struct sockaddr_storage *ss)
  910. {
  911. switch (ss->ss_family) {
  912. case AF_INET:
  913. return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
  914. case AF_INET6:
  915. return
  916. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
  917. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
  918. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
  919. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
  920. }
  921. return false;
  922. }
  923. static int addr_port(struct sockaddr_storage *ss)
  924. {
  925. switch (ss->ss_family) {
  926. case AF_INET:
  927. return ntohs(((struct sockaddr_in *)ss)->sin_port);
  928. case AF_INET6:
  929. return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
  930. }
  931. return 0;
  932. }
  933. static void addr_set_port(struct sockaddr_storage *ss, int p)
  934. {
  935. switch (ss->ss_family) {
  936. case AF_INET:
  937. ((struct sockaddr_in *)ss)->sin_port = htons(p);
  938. case AF_INET6:
  939. ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
  940. }
  941. }
  942. /*
  943. * Parse an ip[:port] list into an addr array. Use the default
  944. * monitor port if a port isn't specified.
  945. */
  946. int ceph_parse_ips(const char *c, const char *end,
  947. struct ceph_entity_addr *addr,
  948. int max_count, int *count)
  949. {
  950. int i;
  951. const char *p = c;
  952. dout("parse_ips on '%.*s'\n", (int)(end-c), c);
  953. for (i = 0; i < max_count; i++) {
  954. const char *ipend;
  955. struct sockaddr_storage *ss = &addr[i].in_addr;
  956. struct sockaddr_in *in4 = (void *)ss;
  957. struct sockaddr_in6 *in6 = (void *)ss;
  958. int port;
  959. char delim = ',';
  960. if (*p == '[') {
  961. delim = ']';
  962. p++;
  963. }
  964. memset(ss, 0, sizeof(*ss));
  965. if (in4_pton(p, end - p, (u8 *)&in4->sin_addr.s_addr,
  966. delim, &ipend))
  967. ss->ss_family = AF_INET;
  968. else if (in6_pton(p, end - p, (u8 *)&in6->sin6_addr.s6_addr,
  969. delim, &ipend))
  970. ss->ss_family = AF_INET6;
  971. else
  972. goto bad;
  973. p = ipend;
  974. if (delim == ']') {
  975. if (*p != ']') {
  976. dout("missing matching ']'\n");
  977. goto bad;
  978. }
  979. p++;
  980. }
  981. /* port? */
  982. if (p < end && *p == ':') {
  983. port = 0;
  984. p++;
  985. while (p < end && *p >= '0' && *p <= '9') {
  986. port = (port * 10) + (*p - '0');
  987. p++;
  988. }
  989. if (port > 65535 || port == 0)
  990. goto bad;
  991. } else {
  992. port = CEPH_MON_PORT;
  993. }
  994. addr_set_port(ss, port);
  995. dout("parse_ips got %s\n", ceph_pr_addr(ss));
  996. if (p == end)
  997. break;
  998. if (*p != ',')
  999. goto bad;
  1000. p++;
  1001. }
  1002. if (p != end)
  1003. goto bad;
  1004. if (count)
  1005. *count = i + 1;
  1006. return 0;
  1007. bad:
  1008. pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
  1009. return -EINVAL;
  1010. }
  1011. EXPORT_SYMBOL(ceph_parse_ips);
  1012. static int process_banner(struct ceph_connection *con)
  1013. {
  1014. dout("process_banner on %p\n", con);
  1015. if (verify_hello(con) < 0)
  1016. return -1;
  1017. ceph_decode_addr(&con->actual_peer_addr);
  1018. ceph_decode_addr(&con->peer_addr_for_me);
  1019. /*
  1020. * Make sure the other end is who we wanted. note that the other
  1021. * end may not yet know their ip address, so if it's 0.0.0.0, give
  1022. * them the benefit of the doubt.
  1023. */
  1024. if (memcmp(&con->peer_addr, &con->actual_peer_addr,
  1025. sizeof(con->peer_addr)) != 0 &&
  1026. !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
  1027. con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
  1028. pr_warning("wrong peer, want %s/%d, got %s/%d\n",
  1029. ceph_pr_addr(&con->peer_addr.in_addr),
  1030. (int)le32_to_cpu(con->peer_addr.nonce),
  1031. ceph_pr_addr(&con->actual_peer_addr.in_addr),
  1032. (int)le32_to_cpu(con->actual_peer_addr.nonce));
  1033. con->error_msg = "wrong peer at address";
  1034. return -1;
  1035. }
  1036. /*
  1037. * did we learn our address?
  1038. */
  1039. if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
  1040. int port = addr_port(&con->msgr->inst.addr.in_addr);
  1041. memcpy(&con->msgr->inst.addr.in_addr,
  1042. &con->peer_addr_for_me.in_addr,
  1043. sizeof(con->peer_addr_for_me.in_addr));
  1044. addr_set_port(&con->msgr->inst.addr.in_addr, port);
  1045. encode_my_addr(con->msgr);
  1046. dout("process_banner learned my addr is %s\n",
  1047. ceph_pr_addr(&con->msgr->inst.addr.in_addr));
  1048. }
  1049. set_bit(NEGOTIATING, &con->state);
  1050. prepare_read_connect(con);
  1051. return 0;
  1052. }
  1053. static void fail_protocol(struct ceph_connection *con)
  1054. {
  1055. reset_connection(con);
  1056. set_bit(CLOSED, &con->state); /* in case there's queued work */
  1057. mutex_unlock(&con->mutex);
  1058. if (con->ops->bad_proto)
  1059. con->ops->bad_proto(con);
  1060. mutex_lock(&con->mutex);
  1061. }
  1062. static int process_connect(struct ceph_connection *con)
  1063. {
  1064. u64 sup_feat = con->msgr->supported_features;
  1065. u64 req_feat = con->msgr->required_features;
  1066. u64 server_feat = le64_to_cpu(con->in_reply.features);
  1067. int ret;
  1068. dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
  1069. switch (con->in_reply.tag) {
  1070. case CEPH_MSGR_TAG_FEATURES:
  1071. pr_err("%s%lld %s feature set mismatch,"
  1072. " my %llx < server's %llx, missing %llx\n",
  1073. ENTITY_NAME(con->peer_name),
  1074. ceph_pr_addr(&con->peer_addr.in_addr),
  1075. sup_feat, server_feat, server_feat & ~sup_feat);
  1076. con->error_msg = "missing required protocol features";
  1077. fail_protocol(con);
  1078. return -1;
  1079. case CEPH_MSGR_TAG_BADPROTOVER:
  1080. pr_err("%s%lld %s protocol version mismatch,"
  1081. " my %d != server's %d\n",
  1082. ENTITY_NAME(con->peer_name),
  1083. ceph_pr_addr(&con->peer_addr.in_addr),
  1084. le32_to_cpu(con->out_connect.protocol_version),
  1085. le32_to_cpu(con->in_reply.protocol_version));
  1086. con->error_msg = "protocol version mismatch";
  1087. fail_protocol(con);
  1088. return -1;
  1089. case CEPH_MSGR_TAG_BADAUTHORIZER:
  1090. con->auth_retry++;
  1091. dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
  1092. con->auth_retry);
  1093. if (con->auth_retry == 2) {
  1094. con->error_msg = "connect authorization failure";
  1095. return -1;
  1096. }
  1097. con->auth_retry = 1;
  1098. ret = prepare_write_connect(con->msgr, con, 0);
  1099. if (ret < 0)
  1100. return ret;
  1101. prepare_read_connect(con);
  1102. break;
  1103. case CEPH_MSGR_TAG_RESETSESSION:
  1104. /*
  1105. * If we connected with a large connect_seq but the peer
  1106. * has no record of a session with us (no connection, or
  1107. * connect_seq == 0), they will send RESETSESION to indicate
  1108. * that they must have reset their session, and may have
  1109. * dropped messages.
  1110. */
  1111. dout("process_connect got RESET peer seq %u\n",
  1112. le32_to_cpu(con->in_connect.connect_seq));
  1113. pr_err("%s%lld %s connection reset\n",
  1114. ENTITY_NAME(con->peer_name),
  1115. ceph_pr_addr(&con->peer_addr.in_addr));
  1116. reset_connection(con);
  1117. prepare_write_connect(con->msgr, con, 0);
  1118. prepare_read_connect(con);
  1119. /* Tell ceph about it. */
  1120. mutex_unlock(&con->mutex);
  1121. pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
  1122. if (con->ops->peer_reset)
  1123. con->ops->peer_reset(con);
  1124. mutex_lock(&con->mutex);
  1125. if (test_bit(CLOSED, &con->state) ||
  1126. test_bit(OPENING, &con->state))
  1127. return -EAGAIN;
  1128. break;
  1129. case CEPH_MSGR_TAG_RETRY_SESSION:
  1130. /*
  1131. * If we sent a smaller connect_seq than the peer has, try
  1132. * again with a larger value.
  1133. */
  1134. dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
  1135. le32_to_cpu(con->out_connect.connect_seq),
  1136. le32_to_cpu(con->in_connect.connect_seq));
  1137. con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
  1138. prepare_write_connect(con->msgr, con, 0);
  1139. prepare_read_connect(con);
  1140. break;
  1141. case CEPH_MSGR_TAG_RETRY_GLOBAL:
  1142. /*
  1143. * If we sent a smaller global_seq than the peer has, try
  1144. * again with a larger value.
  1145. */
  1146. dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
  1147. con->peer_global_seq,
  1148. le32_to_cpu(con->in_connect.global_seq));
  1149. get_global_seq(con->msgr,
  1150. le32_to_cpu(con->in_connect.global_seq));
  1151. prepare_write_connect(con->msgr, con, 0);
  1152. prepare_read_connect(con);
  1153. break;
  1154. case CEPH_MSGR_TAG_READY:
  1155. if (req_feat & ~server_feat) {
  1156. pr_err("%s%lld %s protocol feature mismatch,"
  1157. " my required %llx > server's %llx, need %llx\n",
  1158. ENTITY_NAME(con->peer_name),
  1159. ceph_pr_addr(&con->peer_addr.in_addr),
  1160. req_feat, server_feat, req_feat & ~server_feat);
  1161. con->error_msg = "missing required protocol features";
  1162. fail_protocol(con);
  1163. return -1;
  1164. }
  1165. clear_bit(CONNECTING, &con->state);
  1166. con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
  1167. con->connect_seq++;
  1168. con->peer_features = server_feat;
  1169. dout("process_connect got READY gseq %d cseq %d (%d)\n",
  1170. con->peer_global_seq,
  1171. le32_to_cpu(con->in_reply.connect_seq),
  1172. con->connect_seq);
  1173. WARN_ON(con->connect_seq !=
  1174. le32_to_cpu(con->in_reply.connect_seq));
  1175. if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
  1176. set_bit(LOSSYTX, &con->state);
  1177. prepare_read_tag(con);
  1178. break;
  1179. case CEPH_MSGR_TAG_WAIT:
  1180. /*
  1181. * If there is a connection race (we are opening
  1182. * connections to each other), one of us may just have
  1183. * to WAIT. This shouldn't happen if we are the
  1184. * client.
  1185. */
  1186. pr_err("process_connect peer connecting WAIT\n");
  1187. default:
  1188. pr_err("connect protocol error, will retry\n");
  1189. con->error_msg = "protocol error, garbage tag during connect";
  1190. return -1;
  1191. }
  1192. return 0;
  1193. }
  1194. /*
  1195. * read (part of) an ack
  1196. */
  1197. static int read_partial_ack(struct ceph_connection *con)
  1198. {
  1199. int to = 0;
  1200. return read_partial(con, &to, sizeof(con->in_temp_ack),
  1201. &con->in_temp_ack);
  1202. }
  1203. /*
  1204. * We can finally discard anything that's been acked.
  1205. */
  1206. static void process_ack(struct ceph_connection *con)
  1207. {
  1208. struct ceph_msg *m;
  1209. u64 ack = le64_to_cpu(con->in_temp_ack);
  1210. u64 seq;
  1211. while (!list_empty(&con->out_sent)) {
  1212. m = list_first_entry(&con->out_sent, struct ceph_msg,
  1213. list_head);
  1214. seq = le64_to_cpu(m->hdr.seq);
  1215. if (seq > ack)
  1216. break;
  1217. dout("got ack for seq %llu type %d at %p\n", seq,
  1218. le16_to_cpu(m->hdr.type), m);
  1219. ceph_msg_remove(m);
  1220. }
  1221. prepare_read_tag(con);
  1222. }
  1223. static int read_partial_message_section(struct ceph_connection *con,
  1224. struct kvec *section,
  1225. unsigned int sec_len, u32 *crc)
  1226. {
  1227. int ret, left;
  1228. BUG_ON(!section);
  1229. while (section->iov_len < sec_len) {
  1230. BUG_ON(section->iov_base == NULL);
  1231. left = sec_len - section->iov_len;
  1232. ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
  1233. section->iov_len, left);
  1234. if (ret <= 0)
  1235. return ret;
  1236. section->iov_len += ret;
  1237. if (section->iov_len == sec_len)
  1238. *crc = crc32c(0, section->iov_base,
  1239. section->iov_len);
  1240. }
  1241. return 1;
  1242. }
  1243. static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
  1244. struct ceph_msg_header *hdr,
  1245. int *skip);
  1246. static int read_partial_message_pages(struct ceph_connection *con,
  1247. struct page **pages,
  1248. unsigned data_len, int datacrc)
  1249. {
  1250. void *p;
  1251. int ret;
  1252. int left;
  1253. left = min((int)(data_len - con->in_msg_pos.data_pos),
  1254. (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
  1255. /* (page) data */
  1256. BUG_ON(pages == NULL);
  1257. p = kmap(pages[con->in_msg_pos.page]);
  1258. ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
  1259. left);
  1260. if (ret > 0 && datacrc)
  1261. con->in_data_crc =
  1262. crc32c(con->in_data_crc,
  1263. p + con->in_msg_pos.page_pos, ret);
  1264. kunmap(pages[con->in_msg_pos.page]);
  1265. if (ret <= 0)
  1266. return ret;
  1267. con->in_msg_pos.data_pos += ret;
  1268. con->in_msg_pos.page_pos += ret;
  1269. if (con->in_msg_pos.page_pos == PAGE_SIZE) {
  1270. con->in_msg_pos.page_pos = 0;
  1271. con->in_msg_pos.page++;
  1272. }
  1273. return ret;
  1274. }
  1275. #ifdef CONFIG_BLOCK
  1276. static int read_partial_message_bio(struct ceph_connection *con,
  1277. struct bio **bio_iter, int *bio_seg,
  1278. unsigned data_len, int datacrc)
  1279. {
  1280. struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
  1281. void *p;
  1282. int ret, left;
  1283. if (IS_ERR(bv))
  1284. return PTR_ERR(bv);
  1285. left = min((int)(data_len - con->in_msg_pos.data_pos),
  1286. (int)(bv->bv_len - con->in_msg_pos.page_pos));
  1287. p = kmap(bv->bv_page) + bv->bv_offset;
  1288. ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
  1289. left);
  1290. if (ret > 0 && datacrc)
  1291. con->in_data_crc =
  1292. crc32c(con->in_data_crc,
  1293. p + con->in_msg_pos.page_pos, ret);
  1294. kunmap(bv->bv_page);
  1295. if (ret <= 0)
  1296. return ret;
  1297. con->in_msg_pos.data_pos += ret;
  1298. con->in_msg_pos.page_pos += ret;
  1299. if (con->in_msg_pos.page_pos == bv->bv_len) {
  1300. con->in_msg_pos.page_pos = 0;
  1301. iter_bio_next(bio_iter, bio_seg);
  1302. }
  1303. return ret;
  1304. }
  1305. #endif
  1306. /*
  1307. * read (part of) a message.
  1308. */
  1309. static int read_partial_message(struct ceph_connection *con)
  1310. {
  1311. struct ceph_msg *m = con->in_msg;
  1312. int ret;
  1313. int to, left;
  1314. unsigned front_len, middle_len, data_len;
  1315. int datacrc = con->msgr->nocrc;
  1316. int skip;
  1317. u64 seq;
  1318. dout("read_partial_message con %p msg %p\n", con, m);
  1319. /* header */
  1320. while (con->in_base_pos < sizeof(con->in_hdr)) {
  1321. left = sizeof(con->in_hdr) - con->in_base_pos;
  1322. ret = ceph_tcp_recvmsg(con->sock,
  1323. (char *)&con->in_hdr + con->in_base_pos,
  1324. left);
  1325. if (ret <= 0)
  1326. return ret;
  1327. con->in_base_pos += ret;
  1328. if (con->in_base_pos == sizeof(con->in_hdr)) {
  1329. u32 crc = crc32c(0, (void *)&con->in_hdr,
  1330. sizeof(con->in_hdr) - sizeof(con->in_hdr.crc));
  1331. if (crc != le32_to_cpu(con->in_hdr.crc)) {
  1332. pr_err("read_partial_message bad hdr "
  1333. " crc %u != expected %u\n",
  1334. crc, con->in_hdr.crc);
  1335. return -EBADMSG;
  1336. }
  1337. }
  1338. }
  1339. front_len = le32_to_cpu(con->in_hdr.front_len);
  1340. if (front_len > CEPH_MSG_MAX_FRONT_LEN)
  1341. return -EIO;
  1342. middle_len = le32_to_cpu(con->in_hdr.middle_len);
  1343. if (middle_len > CEPH_MSG_MAX_DATA_LEN)
  1344. return -EIO;
  1345. data_len = le32_to_cpu(con->in_hdr.data_len);
  1346. if (data_len > CEPH_MSG_MAX_DATA_LEN)
  1347. return -EIO;
  1348. /* verify seq# */
  1349. seq = le64_to_cpu(con->in_hdr.seq);
  1350. if ((s64)seq - (s64)con->in_seq < 1) {
  1351. pr_info("skipping %s%lld %s seq %lld expected %lld\n",
  1352. ENTITY_NAME(con->peer_name),
  1353. ceph_pr_addr(&con->peer_addr.in_addr),
  1354. seq, con->in_seq + 1);
  1355. con->in_base_pos = -front_len - middle_len - data_len -
  1356. sizeof(m->footer);
  1357. con->in_tag = CEPH_MSGR_TAG_READY;
  1358. return 0;
  1359. } else if ((s64)seq - (s64)con->in_seq > 1) {
  1360. pr_err("read_partial_message bad seq %lld expected %lld\n",
  1361. seq, con->in_seq + 1);
  1362. con->error_msg = "bad message sequence # for incoming message";
  1363. return -EBADMSG;
  1364. }
  1365. /* allocate message? */
  1366. if (!con->in_msg) {
  1367. dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
  1368. con->in_hdr.front_len, con->in_hdr.data_len);
  1369. skip = 0;
  1370. con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
  1371. if (skip) {
  1372. /* skip this message */
  1373. dout("alloc_msg said skip message\n");
  1374. BUG_ON(con->in_msg);
  1375. con->in_base_pos = -front_len - middle_len - data_len -
  1376. sizeof(m->footer);
  1377. con->in_tag = CEPH_MSGR_TAG_READY;
  1378. con->in_seq++;
  1379. return 0;
  1380. }
  1381. if (!con->in_msg) {
  1382. con->error_msg =
  1383. "error allocating memory for incoming message";
  1384. return -ENOMEM;
  1385. }
  1386. m = con->in_msg;
  1387. m->front.iov_len = 0; /* haven't read it yet */
  1388. if (m->middle)
  1389. m->middle->vec.iov_len = 0;
  1390. con->in_msg_pos.page = 0;
  1391. if (m->pages)
  1392. con->in_msg_pos.page_pos = m->page_alignment;
  1393. else
  1394. con->in_msg_pos.page_pos = 0;
  1395. con->in_msg_pos.data_pos = 0;
  1396. }
  1397. /* front */
  1398. ret = read_partial_message_section(con, &m->front, front_len,
  1399. &con->in_front_crc);
  1400. if (ret <= 0)
  1401. return ret;
  1402. /* middle */
  1403. if (m->middle) {
  1404. ret = read_partial_message_section(con, &m->middle->vec,
  1405. middle_len,
  1406. &con->in_middle_crc);
  1407. if (ret <= 0)
  1408. return ret;
  1409. }
  1410. #ifdef CONFIG_BLOCK
  1411. if (m->bio && !m->bio_iter)
  1412. init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
  1413. #endif
  1414. /* (page) data */
  1415. while (con->in_msg_pos.data_pos < data_len) {
  1416. if (m->pages) {
  1417. ret = read_partial_message_pages(con, m->pages,
  1418. data_len, datacrc);
  1419. if (ret <= 0)
  1420. return ret;
  1421. #ifdef CONFIG_BLOCK
  1422. } else if (m->bio) {
  1423. ret = read_partial_message_bio(con,
  1424. &m->bio_iter, &m->bio_seg,
  1425. data_len, datacrc);
  1426. if (ret <= 0)
  1427. return ret;
  1428. #endif
  1429. } else {
  1430. BUG_ON(1);
  1431. }
  1432. }
  1433. /* footer */
  1434. to = sizeof(m->hdr) + sizeof(m->footer);
  1435. while (con->in_base_pos < to) {
  1436. left = to - con->in_base_pos;
  1437. ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer +
  1438. (con->in_base_pos - sizeof(m->hdr)),
  1439. left);
  1440. if (ret <= 0)
  1441. return ret;
  1442. con->in_base_pos += ret;
  1443. }
  1444. dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
  1445. m, front_len, m->footer.front_crc, middle_len,
  1446. m->footer.middle_crc, data_len, m->footer.data_crc);
  1447. /* crc ok? */
  1448. if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
  1449. pr_err("read_partial_message %p front crc %u != exp. %u\n",
  1450. m, con->in_front_crc, m->footer.front_crc);
  1451. return -EBADMSG;
  1452. }
  1453. if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
  1454. pr_err("read_partial_message %p middle crc %u != exp %u\n",
  1455. m, con->in_middle_crc, m->footer.middle_crc);
  1456. return -EBADMSG;
  1457. }
  1458. if (datacrc &&
  1459. (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
  1460. con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
  1461. pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
  1462. con->in_data_crc, le32_to_cpu(m->footer.data_crc));
  1463. return -EBADMSG;
  1464. }
  1465. return 1; /* done! */
  1466. }
  1467. /*
  1468. * Process message. This happens in the worker thread. The callback should
  1469. * be careful not to do anything that waits on other incoming messages or it
  1470. * may deadlock.
  1471. */
  1472. static void process_message(struct ceph_connection *con)
  1473. {
  1474. struct ceph_msg *msg;
  1475. msg = con->in_msg;
  1476. con->in_msg = NULL;
  1477. /* if first message, set peer_name */
  1478. if (con->peer_name.type == 0)
  1479. con->peer_name = msg->hdr.src;
  1480. con->in_seq++;
  1481. mutex_unlock(&con->mutex);
  1482. dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
  1483. msg, le64_to_cpu(msg->hdr.seq),
  1484. ENTITY_NAME(msg->hdr.src),
  1485. le16_to_cpu(msg->hdr.type),
  1486. ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
  1487. le32_to_cpu(msg->hdr.front_len),
  1488. le32_to_cpu(msg->hdr.data_len),
  1489. con->in_front_crc, con->in_middle_crc, con->in_data_crc);
  1490. con->ops->dispatch(con, msg);
  1491. mutex_lock(&con->mutex);
  1492. prepare_read_tag(con);
  1493. }
  1494. /*
  1495. * Write something to the socket. Called in a worker thread when the
  1496. * socket appears to be writeable and we have something ready to send.
  1497. */
  1498. static int try_write(struct ceph_connection *con)
  1499. {
  1500. struct ceph_messenger *msgr = con->msgr;
  1501. int ret = 1;
  1502. dout("try_write start %p state %lu nref %d\n", con, con->state,
  1503. atomic_read(&con->nref));
  1504. more:
  1505. dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
  1506. /* open the socket first? */
  1507. if (con->sock == NULL) {
  1508. prepare_write_banner(msgr, con);
  1509. prepare_write_connect(msgr, con, 1);
  1510. prepare_read_banner(con);
  1511. set_bit(CONNECTING, &con->state);
  1512. clear_bit(NEGOTIATING, &con->state);
  1513. BUG_ON(con->in_msg);
  1514. con->in_tag = CEPH_MSGR_TAG_READY;
  1515. dout("try_write initiating connect on %p new state %lu\n",
  1516. con, con->state);
  1517. con->sock = ceph_tcp_connect(con);
  1518. if (IS_ERR(con->sock)) {
  1519. con->sock = NULL;
  1520. con->error_msg = "connect error";
  1521. ret = -1;
  1522. goto out;
  1523. }
  1524. }
  1525. more_kvec:
  1526. /* kvec data queued? */
  1527. if (con->out_skip) {
  1528. ret = write_partial_skip(con);
  1529. if (ret <= 0)
  1530. goto out;
  1531. }
  1532. if (con->out_kvec_left) {
  1533. ret = write_partial_kvec(con);
  1534. if (ret <= 0)
  1535. goto out;
  1536. }
  1537. /* msg pages? */
  1538. if (con->out_msg) {
  1539. if (con->out_msg_done) {
  1540. ceph_msg_put(con->out_msg);
  1541. con->out_msg = NULL; /* we're done with this one */
  1542. goto do_next;
  1543. }
  1544. ret = write_partial_msg_pages(con);
  1545. if (ret == 1)
  1546. goto more_kvec; /* we need to send the footer, too! */
  1547. if (ret == 0)
  1548. goto out;
  1549. if (ret < 0) {
  1550. dout("try_write write_partial_msg_pages err %d\n",
  1551. ret);
  1552. goto out;
  1553. }
  1554. }
  1555. do_next:
  1556. if (!test_bit(CONNECTING, &con->state)) {
  1557. /* is anything else pending? */
  1558. if (!list_empty(&con->out_queue)) {
  1559. prepare_write_message(con);
  1560. goto more;
  1561. }
  1562. if (con->in_seq > con->in_seq_acked) {
  1563. prepare_write_ack(con);
  1564. goto more;
  1565. }
  1566. if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
  1567. prepare_write_keepalive(con);
  1568. goto more;
  1569. }
  1570. }
  1571. /* Nothing to do! */
  1572. clear_bit(WRITE_PENDING, &con->state);
  1573. dout("try_write nothing else to write.\n");
  1574. ret = 0;
  1575. out:
  1576. dout("try_write done on %p ret %d\n", con, ret);
  1577. return ret;
  1578. }
  1579. /*
  1580. * Read what we can from the socket.
  1581. */
  1582. static int try_read(struct ceph_connection *con)
  1583. {
  1584. int ret = -1;
  1585. if (!con->sock)
  1586. return 0;
  1587. if (test_bit(STANDBY, &con->state))
  1588. return 0;
  1589. dout("try_read start on %p\n", con);
  1590. more:
  1591. dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
  1592. con->in_base_pos);
  1593. /*
  1594. * process_connect and process_message drop and re-take
  1595. * con->mutex. make sure we handle a racing close or reopen.
  1596. */
  1597. if (test_bit(CLOSED, &con->state) ||
  1598. test_bit(OPENING, &con->state)) {
  1599. ret = -EAGAIN;
  1600. goto out;
  1601. }
  1602. if (test_bit(CONNECTING, &con->state)) {
  1603. if (!test_bit(NEGOTIATING, &con->state)) {
  1604. dout("try_read connecting\n");
  1605. ret = read_partial_banner(con);
  1606. if (ret <= 0)
  1607. goto out;
  1608. ret = process_banner(con);
  1609. if (ret < 0)
  1610. goto out;
  1611. }
  1612. ret = read_partial_connect(con);
  1613. if (ret <= 0)
  1614. goto out;
  1615. ret = process_connect(con);
  1616. if (ret < 0)
  1617. goto out;
  1618. goto more;
  1619. }
  1620. if (con->in_base_pos < 0) {
  1621. /*
  1622. * skipping + discarding content.
  1623. *
  1624. * FIXME: there must be a better way to do this!
  1625. */
  1626. static char buf[1024];
  1627. int skip = min(1024, -con->in_base_pos);
  1628. dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
  1629. ret = ceph_tcp_recvmsg(con->sock, buf, skip);
  1630. if (ret <= 0)
  1631. goto out;
  1632. con->in_base_pos += ret;
  1633. if (con->in_base_pos)
  1634. goto more;
  1635. }
  1636. if (con->in_tag == CEPH_MSGR_TAG_READY) {
  1637. /*
  1638. * what's next?
  1639. */
  1640. ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
  1641. if (ret <= 0)
  1642. goto out;
  1643. dout("try_read got tag %d\n", (int)con->in_tag);
  1644. switch (con->in_tag) {
  1645. case CEPH_MSGR_TAG_MSG:
  1646. prepare_read_message(con);
  1647. break;
  1648. case CEPH_MSGR_TAG_ACK:
  1649. prepare_read_ack(con);
  1650. break;
  1651. case CEPH_MSGR_TAG_CLOSE:
  1652. set_bit(CLOSED, &con->state); /* fixme */
  1653. goto out;
  1654. default:
  1655. goto bad_tag;
  1656. }
  1657. }
  1658. if (con->in_tag == CEPH_MSGR_TAG_MSG) {
  1659. ret = read_partial_message(con);
  1660. if (ret <= 0) {
  1661. switch (ret) {
  1662. case -EBADMSG:
  1663. con->error_msg = "bad crc";
  1664. ret = -EIO;
  1665. break;
  1666. case -EIO:
  1667. con->error_msg = "io error";
  1668. break;
  1669. }
  1670. goto out;
  1671. }
  1672. if (con->in_tag == CEPH_MSGR_TAG_READY)
  1673. goto more;
  1674. process_message(con);
  1675. goto more;
  1676. }
  1677. if (con->in_tag == CEPH_MSGR_TAG_ACK) {
  1678. ret = read_partial_ack(con);
  1679. if (ret <= 0)
  1680. goto out;
  1681. process_ack(con);
  1682. goto more;
  1683. }
  1684. out:
  1685. dout("try_read done on %p ret %d\n", con, ret);
  1686. return ret;
  1687. bad_tag:
  1688. pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
  1689. con->error_msg = "protocol error, garbage tag";
  1690. ret = -1;
  1691. goto out;
  1692. }
  1693. /*
  1694. * Atomically queue work on a connection. Bump @con reference to
  1695. * avoid races with connection teardown.
  1696. */
  1697. static void queue_con(struct ceph_connection *con)
  1698. {
  1699. if (test_bit(DEAD, &con->state)) {
  1700. dout("queue_con %p ignoring: DEAD\n",
  1701. con);
  1702. return;
  1703. }
  1704. if (!con->ops->get(con)) {
  1705. dout("queue_con %p ref count 0\n", con);
  1706. return;
  1707. }
  1708. if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
  1709. dout("queue_con %p - already queued\n", con);
  1710. con->ops->put(con);
  1711. } else {
  1712. dout("queue_con %p\n", con);
  1713. }
  1714. }
  1715. /*
  1716. * Do some work on a connection. Drop a connection ref when we're done.
  1717. */
  1718. static void con_work(struct work_struct *work)
  1719. {
  1720. struct ceph_connection *con = container_of(work, struct ceph_connection,
  1721. work.work);
  1722. int ret;
  1723. mutex_lock(&con->mutex);
  1724. restart:
  1725. if (test_and_clear_bit(BACKOFF, &con->state)) {
  1726. dout("con_work %p backing off\n", con);
  1727. if (queue_delayed_work(ceph_msgr_wq, &con->work,
  1728. round_jiffies_relative(con->delay))) {
  1729. dout("con_work %p backoff %lu\n", con, con->delay);
  1730. mutex_unlock(&con->mutex);
  1731. return;
  1732. } else {
  1733. con->ops->put(con);
  1734. dout("con_work %p FAILED to back off %lu\n", con,
  1735. con->delay);
  1736. }
  1737. }
  1738. if (test_bit(STANDBY, &con->state)) {
  1739. dout("con_work %p STANDBY\n", con);
  1740. goto done;
  1741. }
  1742. if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
  1743. dout("con_work CLOSED\n");
  1744. con_close_socket(con);
  1745. goto done;
  1746. }
  1747. if (test_and_clear_bit(OPENING, &con->state)) {
  1748. /* reopen w/ new peer */
  1749. dout("con_work OPENING\n");
  1750. con_close_socket(con);
  1751. }
  1752. if (test_and_clear_bit(SOCK_CLOSED, &con->state))
  1753. goto fault;
  1754. ret = try_read(con);
  1755. if (ret == -EAGAIN)
  1756. goto restart;
  1757. if (ret < 0)
  1758. goto fault;
  1759. ret = try_write(con);
  1760. if (ret == -EAGAIN)
  1761. goto restart;
  1762. if (ret < 0)
  1763. goto fault;
  1764. done:
  1765. mutex_unlock(&con->mutex);
  1766. done_unlocked:
  1767. con->ops->put(con);
  1768. return;
  1769. fault:
  1770. mutex_unlock(&con->mutex);
  1771. ceph_fault(con); /* error/fault path */
  1772. goto done_unlocked;
  1773. }
  1774. /*
  1775. * Generic error/fault handler. A retry mechanism is used with
  1776. * exponential backoff
  1777. */
  1778. static void ceph_fault(struct ceph_connection *con)
  1779. {
  1780. pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
  1781. ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
  1782. dout("fault %p state %lu to peer %s\n",
  1783. con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
  1784. if (test_bit(LOSSYTX, &con->state)) {
  1785. dout("fault on LOSSYTX channel\n");
  1786. goto out;
  1787. }
  1788. mutex_lock(&con->mutex);
  1789. if (test_bit(CLOSED, &con->state))
  1790. goto out_unlock;
  1791. con_close_socket(con);
  1792. if (con->in_msg) {
  1793. ceph_msg_put(con->in_msg);
  1794. con->in_msg = NULL;
  1795. }
  1796. /* Requeue anything that hasn't been acked */
  1797. list_splice_init(&con->out_sent, &con->out_queue);
  1798. /* If there are no messages queued or keepalive pending, place
  1799. * the connection in a STANDBY state */
  1800. if (list_empty(&con->out_queue) &&
  1801. !test_bit(KEEPALIVE_PENDING, &con->state)) {
  1802. dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
  1803. clear_bit(WRITE_PENDING, &con->state);
  1804. set_bit(STANDBY, &con->state);
  1805. } else {
  1806. /* retry after a delay. */
  1807. if (con->delay == 0)
  1808. con->delay = BASE_DELAY_INTERVAL;
  1809. else if (con->delay < MAX_DELAY_INTERVAL)
  1810. con->delay *= 2;
  1811. con->ops->get(con);
  1812. if (queue_delayed_work(ceph_msgr_wq, &con->work,
  1813. round_jiffies_relative(con->delay))) {
  1814. dout("fault queued %p delay %lu\n", con, con->delay);
  1815. } else {
  1816. con->ops->put(con);
  1817. dout("fault failed to queue %p delay %lu, backoff\n",
  1818. con, con->delay);
  1819. /*
  1820. * In many cases we see a socket state change
  1821. * while con_work is running and end up
  1822. * queuing (non-delayed) work, such that we
  1823. * can't backoff with a delay. Set a flag so
  1824. * that when con_work restarts we schedule the
  1825. * delay then.
  1826. */
  1827. set_bit(BACKOFF, &con->state);
  1828. }
  1829. }
  1830. out_unlock:
  1831. mutex_unlock(&con->mutex);
  1832. out:
  1833. /*
  1834. * in case we faulted due to authentication, invalidate our
  1835. * current tickets so that we can get new ones.
  1836. */
  1837. if (con->auth_retry && con->ops->invalidate_authorizer) {
  1838. dout("calling invalidate_authorizer()\n");
  1839. con->ops->invalidate_authorizer(con);
  1840. }
  1841. if (con->ops->fault)
  1842. con->ops->fault(con);
  1843. }
  1844. /*
  1845. * create a new messenger instance
  1846. */
  1847. struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr,
  1848. u32 supported_features,
  1849. u32 required_features)
  1850. {
  1851. struct ceph_messenger *msgr;
  1852. msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
  1853. if (msgr == NULL)
  1854. return ERR_PTR(-ENOMEM);
  1855. msgr->supported_features = supported_features;
  1856. msgr->required_features = required_features;
  1857. spin_lock_init(&msgr->global_seq_lock);
  1858. /* the zero page is needed if a request is "canceled" while the message
  1859. * is being written over the socket */
  1860. msgr->zero_page = __page_cache_alloc(GFP_KERNEL | __GFP_ZERO);
  1861. if (!msgr->zero_page) {
  1862. kfree(msgr);
  1863. return ERR_PTR(-ENOMEM);
  1864. }
  1865. kmap(msgr->zero_page);
  1866. if (myaddr)
  1867. msgr->inst.addr = *myaddr;
  1868. /* select a random nonce */
  1869. msgr->inst.addr.type = 0;
  1870. get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
  1871. encode_my_addr(msgr);
  1872. dout("messenger_create %p\n", msgr);
  1873. return msgr;
  1874. }
  1875. EXPORT_SYMBOL(ceph_messenger_create);
  1876. void ceph_messenger_destroy(struct ceph_messenger *msgr)
  1877. {
  1878. dout("destroy %p\n", msgr);
  1879. kunmap(msgr->zero_page);
  1880. __free_page(msgr->zero_page);
  1881. kfree(msgr);
  1882. dout("destroyed messenger %p\n", msgr);
  1883. }
  1884. EXPORT_SYMBOL(ceph_messenger_destroy);
  1885. static void clear_standby(struct ceph_connection *con)
  1886. {
  1887. /* come back from STANDBY? */
  1888. if (test_and_clear_bit(STANDBY, &con->state)) {
  1889. mutex_lock(&con->mutex);
  1890. dout("clear_standby %p and ++connect_seq\n", con);
  1891. con->connect_seq++;
  1892. WARN_ON(test_bit(WRITE_PENDING, &con->state));
  1893. WARN_ON(test_bit(KEEPALIVE_PENDING, &con->state));
  1894. mutex_unlock(&con->mutex);
  1895. }
  1896. }
  1897. /*
  1898. * Queue up an outgoing message on the given connection.
  1899. */
  1900. void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
  1901. {
  1902. if (test_bit(CLOSED, &con->state)) {
  1903. dout("con_send %p closed, dropping %p\n", con, msg);
  1904. ceph_msg_put(msg);
  1905. return;
  1906. }
  1907. /* set src+dst */
  1908. msg->hdr.src = con->msgr->inst.name;
  1909. BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
  1910. msg->needs_out_seq = true;
  1911. /* queue */
  1912. mutex_lock(&con->mutex);
  1913. BUG_ON(!list_empty(&msg->list_head));
  1914. list_add_tail(&msg->list_head, &con->out_queue);
  1915. dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
  1916. ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
  1917. ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
  1918. le32_to_cpu(msg->hdr.front_len),
  1919. le32_to_cpu(msg->hdr.middle_len),
  1920. le32_to_cpu(msg->hdr.data_len));
  1921. mutex_unlock(&con->mutex);
  1922. /* if there wasn't anything waiting to send before, queue
  1923. * new work */
  1924. clear_standby(con);
  1925. if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
  1926. queue_con(con);
  1927. }
  1928. EXPORT_SYMBOL(ceph_con_send);
  1929. /*
  1930. * Revoke a message that was previously queued for send
  1931. */
  1932. void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
  1933. {
  1934. mutex_lock(&con->mutex);
  1935. if (!list_empty(&msg->list_head)) {
  1936. dout("con_revoke %p msg %p - was on queue\n", con, msg);
  1937. list_del_init(&msg->list_head);
  1938. ceph_msg_put(msg);
  1939. msg->hdr.seq = 0;
  1940. }
  1941. if (con->out_msg == msg) {
  1942. dout("con_revoke %p msg %p - was sending\n", con, msg);
  1943. con->out_msg = NULL;
  1944. if (con->out_kvec_is_msg) {
  1945. con->out_skip = con->out_kvec_bytes;
  1946. con->out_kvec_is_msg = false;
  1947. }
  1948. ceph_msg_put(msg);
  1949. msg->hdr.seq = 0;
  1950. }
  1951. mutex_unlock(&con->mutex);
  1952. }
  1953. /*
  1954. * Revoke a message that we may be reading data into
  1955. */
  1956. void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
  1957. {
  1958. mutex_lock(&con->mutex);
  1959. if (con->in_msg && con->in_msg == msg) {
  1960. unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
  1961. unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
  1962. unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
  1963. /* skip rest of message */
  1964. dout("con_revoke_pages %p msg %p revoked\n", con, msg);
  1965. con->in_base_pos = con->in_base_pos -
  1966. sizeof(struct ceph_msg_header) -
  1967. front_len -
  1968. middle_len -
  1969. data_len -
  1970. sizeof(struct ceph_msg_footer);
  1971. ceph_msg_put(con->in_msg);
  1972. con->in_msg = NULL;
  1973. con->in_tag = CEPH_MSGR_TAG_READY;
  1974. con->in_seq++;
  1975. } else {
  1976. dout("con_revoke_pages %p msg %p pages %p no-op\n",
  1977. con, con->in_msg, msg);
  1978. }
  1979. mutex_unlock(&con->mutex);
  1980. }
  1981. /*
  1982. * Queue a keepalive byte to ensure the tcp connection is alive.
  1983. */
  1984. void ceph_con_keepalive(struct ceph_connection *con)
  1985. {
  1986. dout("con_keepalive %p\n", con);
  1987. clear_standby(con);
  1988. if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
  1989. test_and_set_bit(WRITE_PENDING, &con->state) == 0)
  1990. queue_con(con);
  1991. }
  1992. EXPORT_SYMBOL(ceph_con_keepalive);
  1993. /*
  1994. * construct a new message with given type, size
  1995. * the new msg has a ref count of 1.
  1996. */
  1997. struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags)
  1998. {
  1999. struct ceph_msg *m;
  2000. m = kmalloc(sizeof(*m), flags);
  2001. if (m == NULL)
  2002. goto out;
  2003. kref_init(&m->kref);
  2004. INIT_LIST_HEAD(&m->list_head);
  2005. m->hdr.tid = 0;
  2006. m->hdr.type = cpu_to_le16(type);
  2007. m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
  2008. m->hdr.version = 0;
  2009. m->hdr.front_len = cpu_to_le32(front_len);
  2010. m->hdr.middle_len = 0;
  2011. m->hdr.data_len = 0;
  2012. m->hdr.data_off = 0;
  2013. m->hdr.reserved = 0;
  2014. m->footer.front_crc = 0;
  2015. m->footer.middle_crc = 0;
  2016. m->footer.data_crc = 0;
  2017. m->footer.flags = 0;
  2018. m->front_max = front_len;
  2019. m->front_is_vmalloc = false;
  2020. m->more_to_follow = false;
  2021. m->pool = NULL;
  2022. /* middle */
  2023. m->middle = NULL;
  2024. /* data */
  2025. m->nr_pages = 0;
  2026. m->page_alignment = 0;
  2027. m->pages = NULL;
  2028. m->pagelist = NULL;
  2029. m->bio = NULL;
  2030. m->bio_iter = NULL;
  2031. m->bio_seg = 0;
  2032. m->trail = NULL;
  2033. /* front */
  2034. if (front_len) {
  2035. if (front_len > PAGE_CACHE_SIZE) {
  2036. m->front.iov_base = __vmalloc(front_len, flags,
  2037. PAGE_KERNEL);
  2038. m->front_is_vmalloc = true;
  2039. } else {
  2040. m->front.iov_base = kmalloc(front_len, flags);
  2041. }
  2042. if (m->front.iov_base == NULL) {
  2043. pr_err("msg_new can't allocate %d bytes\n",
  2044. front_len);
  2045. goto out2;
  2046. }
  2047. } else {
  2048. m->front.iov_base = NULL;
  2049. }
  2050. m->front.iov_len = front_len;
  2051. dout("ceph_msg_new %p front %d\n", m, front_len);
  2052. return m;
  2053. out2:
  2054. ceph_msg_put(m);
  2055. out:
  2056. pr_err("msg_new can't create type %d front %d\n", type, front_len);
  2057. return NULL;
  2058. }
  2059. EXPORT_SYMBOL(ceph_msg_new);
  2060. /*
  2061. * Allocate "middle" portion of a message, if it is needed and wasn't
  2062. * allocated by alloc_msg. This allows us to read a small fixed-size
  2063. * per-type header in the front and then gracefully fail (i.e.,
  2064. * propagate the error to the caller based on info in the front) when
  2065. * the middle is too large.
  2066. */
  2067. static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
  2068. {
  2069. int type = le16_to_cpu(msg->hdr.type);
  2070. int middle_len = le32_to_cpu(msg->hdr.middle_len);
  2071. dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
  2072. ceph_msg_type_name(type), middle_len);
  2073. BUG_ON(!middle_len);
  2074. BUG_ON(msg->middle);
  2075. msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
  2076. if (!msg->middle)
  2077. return -ENOMEM;
  2078. return 0;
  2079. }
  2080. /*
  2081. * Generic message allocator, for incoming messages.
  2082. */
  2083. static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
  2084. struct ceph_msg_header *hdr,
  2085. int *skip)
  2086. {
  2087. int type = le16_to_cpu(hdr->type);
  2088. int front_len = le32_to_cpu(hdr->front_len);
  2089. int middle_len = le32_to_cpu(hdr->middle_len);
  2090. struct ceph_msg *msg = NULL;
  2091. int ret;
  2092. if (con->ops->alloc_msg) {
  2093. mutex_unlock(&con->mutex);
  2094. msg = con->ops->alloc_msg(con, hdr, skip);
  2095. mutex_lock(&con->mutex);
  2096. if (!msg || *skip)
  2097. return NULL;
  2098. }
  2099. if (!msg) {
  2100. *skip = 0;
  2101. msg = ceph_msg_new(type, front_len, GFP_NOFS);
  2102. if (!msg) {
  2103. pr_err("unable to allocate msg type %d len %d\n",
  2104. type, front_len);
  2105. return NULL;
  2106. }
  2107. msg->page_alignment = le16_to_cpu(hdr->data_off);
  2108. }
  2109. memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
  2110. if (middle_len && !msg->middle) {
  2111. ret = ceph_alloc_middle(con, msg);
  2112. if (ret < 0) {
  2113. ceph_msg_put(msg);
  2114. return NULL;
  2115. }
  2116. }
  2117. return msg;
  2118. }
  2119. /*
  2120. * Free a generically kmalloc'd message.
  2121. */
  2122. void ceph_msg_kfree(struct ceph_msg *m)
  2123. {
  2124. dout("msg_kfree %p\n", m);
  2125. if (m->front_is_vmalloc)
  2126. vfree(m->front.iov_base);
  2127. else
  2128. kfree(m->front.iov_base);
  2129. kfree(m);
  2130. }
  2131. /*
  2132. * Drop a msg ref. Destroy as needed.
  2133. */
  2134. void ceph_msg_last_put(struct kref *kref)
  2135. {
  2136. struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
  2137. dout("ceph_msg_put last one on %p\n", m);
  2138. WARN_ON(!list_empty(&m->list_head));
  2139. /* drop middle, data, if any */
  2140. if (m->middle) {
  2141. ceph_buffer_put(m->middle);
  2142. m->middle = NULL;
  2143. }
  2144. m->nr_pages = 0;
  2145. m->pages = NULL;
  2146. if (m->pagelist) {
  2147. ceph_pagelist_release(m->pagelist);
  2148. kfree(m->pagelist);
  2149. m->pagelist = NULL;
  2150. }
  2151. m->trail = NULL;
  2152. if (m->pool)
  2153. ceph_msgpool_put(m->pool, m);
  2154. else
  2155. ceph_msg_kfree(m);
  2156. }
  2157. EXPORT_SYMBOL(ceph_msg_last_put);
  2158. void ceph_msg_dump(struct ceph_msg *msg)
  2159. {
  2160. pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
  2161. msg->front_max, msg->nr_pages);
  2162. print_hex_dump(KERN_DEBUG, "header: ",
  2163. DUMP_PREFIX_OFFSET, 16, 1,
  2164. &msg->hdr, sizeof(msg->hdr), true);
  2165. print_hex_dump(KERN_DEBUG, " front: ",
  2166. DUMP_PREFIX_OFFSET, 16, 1,
  2167. msg->front.iov_base, msg->front.iov_len, true);
  2168. if (msg->middle)
  2169. print_hex_dump(KERN_DEBUG, "middle: ",
  2170. DUMP_PREFIX_OFFSET, 16, 1,
  2171. msg->middle->vec.iov_base,
  2172. msg->middle->vec.iov_len, true);
  2173. print_hex_dump(KERN_DEBUG, "footer: ",
  2174. DUMP_PREFIX_OFFSET, 16, 1,
  2175. &msg->footer, sizeof(msg->footer), true);
  2176. }
  2177. EXPORT_SYMBOL(ceph_msg_dump);