super.c 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054
  1. /*
  2. * bcache setup/teardown code, and some metadata io - read a superblock and
  3. * figure out what to do with it.
  4. *
  5. * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
  6. * Copyright 2012 Google, Inc.
  7. */
  8. #include "bcache.h"
  9. #include "btree.h"
  10. #include "debug.h"
  11. #include "request.h"
  12. #include "writeback.h"
  13. #include <linux/blkdev.h>
  14. #include <linux/buffer_head.h>
  15. #include <linux/debugfs.h>
  16. #include <linux/genhd.h>
  17. #include <linux/kthread.h>
  18. #include <linux/module.h>
  19. #include <linux/random.h>
  20. #include <linux/reboot.h>
  21. #include <linux/sysfs.h>
  22. MODULE_LICENSE("GPL");
  23. MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
  24. static const char bcache_magic[] = {
  25. 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
  26. 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
  27. };
  28. static const char invalid_uuid[] = {
  29. 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
  30. 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
  31. };
  32. /* Default is -1; we skip past it for struct cached_dev's cache mode */
  33. const char * const bch_cache_modes[] = {
  34. "default",
  35. "writethrough",
  36. "writeback",
  37. "writearound",
  38. "none",
  39. NULL
  40. };
  41. struct uuid_entry_v0 {
  42. uint8_t uuid[16];
  43. uint8_t label[32];
  44. uint32_t first_reg;
  45. uint32_t last_reg;
  46. uint32_t invalidated;
  47. uint32_t pad;
  48. };
  49. static struct kobject *bcache_kobj;
  50. struct mutex bch_register_lock;
  51. LIST_HEAD(bch_cache_sets);
  52. static LIST_HEAD(uncached_devices);
  53. static int bcache_major, bcache_minor;
  54. static wait_queue_head_t unregister_wait;
  55. struct workqueue_struct *bcache_wq;
  56. #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE)
  57. static void bio_split_pool_free(struct bio_split_pool *p)
  58. {
  59. if (p->bio_split_hook)
  60. mempool_destroy(p->bio_split_hook);
  61. if (p->bio_split)
  62. bioset_free(p->bio_split);
  63. }
  64. static int bio_split_pool_init(struct bio_split_pool *p)
  65. {
  66. p->bio_split = bioset_create(4, 0);
  67. if (!p->bio_split)
  68. return -ENOMEM;
  69. p->bio_split_hook = mempool_create_kmalloc_pool(4,
  70. sizeof(struct bio_split_hook));
  71. if (!p->bio_split_hook)
  72. return -ENOMEM;
  73. return 0;
  74. }
  75. /* Superblock */
  76. static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
  77. struct page **res)
  78. {
  79. const char *err;
  80. struct cache_sb *s;
  81. struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
  82. unsigned i;
  83. if (!bh)
  84. return "IO error";
  85. s = (struct cache_sb *) bh->b_data;
  86. sb->offset = le64_to_cpu(s->offset);
  87. sb->version = le64_to_cpu(s->version);
  88. memcpy(sb->magic, s->magic, 16);
  89. memcpy(sb->uuid, s->uuid, 16);
  90. memcpy(sb->set_uuid, s->set_uuid, 16);
  91. memcpy(sb->label, s->label, SB_LABEL_SIZE);
  92. sb->flags = le64_to_cpu(s->flags);
  93. sb->seq = le64_to_cpu(s->seq);
  94. sb->last_mount = le32_to_cpu(s->last_mount);
  95. sb->first_bucket = le16_to_cpu(s->first_bucket);
  96. sb->keys = le16_to_cpu(s->keys);
  97. for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
  98. sb->d[i] = le64_to_cpu(s->d[i]);
  99. pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
  100. sb->version, sb->flags, sb->seq, sb->keys);
  101. err = "Not a bcache superblock";
  102. if (sb->offset != SB_SECTOR)
  103. goto err;
  104. if (memcmp(sb->magic, bcache_magic, 16))
  105. goto err;
  106. err = "Too many journal buckets";
  107. if (sb->keys > SB_JOURNAL_BUCKETS)
  108. goto err;
  109. err = "Bad checksum";
  110. if (s->csum != csum_set(s))
  111. goto err;
  112. err = "Bad UUID";
  113. if (bch_is_zero(sb->uuid, 16))
  114. goto err;
  115. sb->block_size = le16_to_cpu(s->block_size);
  116. err = "Superblock block size smaller than device block size";
  117. if (sb->block_size << 9 < bdev_logical_block_size(bdev))
  118. goto err;
  119. switch (sb->version) {
  120. case BCACHE_SB_VERSION_BDEV:
  121. sb->data_offset = BDEV_DATA_START_DEFAULT;
  122. break;
  123. case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
  124. sb->data_offset = le64_to_cpu(s->data_offset);
  125. err = "Bad data offset";
  126. if (sb->data_offset < BDEV_DATA_START_DEFAULT)
  127. goto err;
  128. break;
  129. case BCACHE_SB_VERSION_CDEV:
  130. case BCACHE_SB_VERSION_CDEV_WITH_UUID:
  131. sb->nbuckets = le64_to_cpu(s->nbuckets);
  132. sb->block_size = le16_to_cpu(s->block_size);
  133. sb->bucket_size = le16_to_cpu(s->bucket_size);
  134. sb->nr_in_set = le16_to_cpu(s->nr_in_set);
  135. sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
  136. err = "Too many buckets";
  137. if (sb->nbuckets > LONG_MAX)
  138. goto err;
  139. err = "Not enough buckets";
  140. if (sb->nbuckets < 1 << 7)
  141. goto err;
  142. err = "Bad block/bucket size";
  143. if (!is_power_of_2(sb->block_size) ||
  144. sb->block_size > PAGE_SECTORS ||
  145. !is_power_of_2(sb->bucket_size) ||
  146. sb->bucket_size < PAGE_SECTORS)
  147. goto err;
  148. err = "Invalid superblock: device too small";
  149. if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
  150. goto err;
  151. err = "Bad UUID";
  152. if (bch_is_zero(sb->set_uuid, 16))
  153. goto err;
  154. err = "Bad cache device number in set";
  155. if (!sb->nr_in_set ||
  156. sb->nr_in_set <= sb->nr_this_dev ||
  157. sb->nr_in_set > MAX_CACHES_PER_SET)
  158. goto err;
  159. err = "Journal buckets not sequential";
  160. for (i = 0; i < sb->keys; i++)
  161. if (sb->d[i] != sb->first_bucket + i)
  162. goto err;
  163. err = "Too many journal buckets";
  164. if (sb->first_bucket + sb->keys > sb->nbuckets)
  165. goto err;
  166. err = "Invalid superblock: first bucket comes before end of super";
  167. if (sb->first_bucket * sb->bucket_size < 16)
  168. goto err;
  169. break;
  170. default:
  171. err = "Unsupported superblock version";
  172. goto err;
  173. }
  174. sb->last_mount = get_seconds();
  175. err = NULL;
  176. get_page(bh->b_page);
  177. *res = bh->b_page;
  178. err:
  179. put_bh(bh);
  180. return err;
  181. }
  182. static void write_bdev_super_endio(struct bio *bio, int error)
  183. {
  184. struct cached_dev *dc = bio->bi_private;
  185. /* XXX: error checking */
  186. closure_put(&dc->sb_write.cl);
  187. }
  188. static void __write_super(struct cache_sb *sb, struct bio *bio)
  189. {
  190. struct cache_sb *out = page_address(bio->bi_io_vec[0].bv_page);
  191. unsigned i;
  192. bio->bi_sector = SB_SECTOR;
  193. bio->bi_rw = REQ_SYNC|REQ_META;
  194. bio->bi_size = SB_SIZE;
  195. bch_bio_map(bio, NULL);
  196. out->offset = cpu_to_le64(sb->offset);
  197. out->version = cpu_to_le64(sb->version);
  198. memcpy(out->uuid, sb->uuid, 16);
  199. memcpy(out->set_uuid, sb->set_uuid, 16);
  200. memcpy(out->label, sb->label, SB_LABEL_SIZE);
  201. out->flags = cpu_to_le64(sb->flags);
  202. out->seq = cpu_to_le64(sb->seq);
  203. out->last_mount = cpu_to_le32(sb->last_mount);
  204. out->first_bucket = cpu_to_le16(sb->first_bucket);
  205. out->keys = cpu_to_le16(sb->keys);
  206. for (i = 0; i < sb->keys; i++)
  207. out->d[i] = cpu_to_le64(sb->d[i]);
  208. out->csum = csum_set(out);
  209. pr_debug("ver %llu, flags %llu, seq %llu",
  210. sb->version, sb->flags, sb->seq);
  211. submit_bio(REQ_WRITE, bio);
  212. }
  213. void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
  214. {
  215. struct closure *cl = &dc->sb_write.cl;
  216. struct bio *bio = &dc->sb_bio;
  217. closure_lock(&dc->sb_write, parent);
  218. bio_reset(bio);
  219. bio->bi_bdev = dc->bdev;
  220. bio->bi_end_io = write_bdev_super_endio;
  221. bio->bi_private = dc;
  222. closure_get(cl);
  223. __write_super(&dc->sb, bio);
  224. closure_return(cl);
  225. }
  226. static void write_super_endio(struct bio *bio, int error)
  227. {
  228. struct cache *ca = bio->bi_private;
  229. bch_count_io_errors(ca, error, "writing superblock");
  230. closure_put(&ca->set->sb_write.cl);
  231. }
  232. void bcache_write_super(struct cache_set *c)
  233. {
  234. struct closure *cl = &c->sb_write.cl;
  235. struct cache *ca;
  236. unsigned i;
  237. closure_lock(&c->sb_write, &c->cl);
  238. c->sb.seq++;
  239. for_each_cache(ca, c, i) {
  240. struct bio *bio = &ca->sb_bio;
  241. ca->sb.version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
  242. ca->sb.seq = c->sb.seq;
  243. ca->sb.last_mount = c->sb.last_mount;
  244. SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
  245. bio_reset(bio);
  246. bio->bi_bdev = ca->bdev;
  247. bio->bi_end_io = write_super_endio;
  248. bio->bi_private = ca;
  249. closure_get(cl);
  250. __write_super(&ca->sb, bio);
  251. }
  252. closure_return(cl);
  253. }
  254. /* UUID io */
  255. static void uuid_endio(struct bio *bio, int error)
  256. {
  257. struct closure *cl = bio->bi_private;
  258. struct cache_set *c = container_of(cl, struct cache_set, uuid_write.cl);
  259. cache_set_err_on(error, c, "accessing uuids");
  260. bch_bbio_free(bio, c);
  261. closure_put(cl);
  262. }
  263. static void uuid_io(struct cache_set *c, unsigned long rw,
  264. struct bkey *k, struct closure *parent)
  265. {
  266. struct closure *cl = &c->uuid_write.cl;
  267. struct uuid_entry *u;
  268. unsigned i;
  269. char buf[80];
  270. BUG_ON(!parent);
  271. closure_lock(&c->uuid_write, parent);
  272. for (i = 0; i < KEY_PTRS(k); i++) {
  273. struct bio *bio = bch_bbio_alloc(c);
  274. bio->bi_rw = REQ_SYNC|REQ_META|rw;
  275. bio->bi_size = KEY_SIZE(k) << 9;
  276. bio->bi_end_io = uuid_endio;
  277. bio->bi_private = cl;
  278. bch_bio_map(bio, c->uuids);
  279. bch_submit_bbio(bio, c, k, i);
  280. if (!(rw & WRITE))
  281. break;
  282. }
  283. bch_bkey_to_text(buf, sizeof(buf), k);
  284. pr_debug("%s UUIDs at %s", rw & REQ_WRITE ? "wrote" : "read", buf);
  285. for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
  286. if (!bch_is_zero(u->uuid, 16))
  287. pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
  288. u - c->uuids, u->uuid, u->label,
  289. u->first_reg, u->last_reg, u->invalidated);
  290. closure_return(cl);
  291. }
  292. static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
  293. {
  294. struct bkey *k = &j->uuid_bucket;
  295. if (__bch_ptr_invalid(c, 1, k))
  296. return "bad uuid pointer";
  297. bkey_copy(&c->uuid_bucket, k);
  298. uuid_io(c, READ_SYNC, k, cl);
  299. if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
  300. struct uuid_entry_v0 *u0 = (void *) c->uuids;
  301. struct uuid_entry *u1 = (void *) c->uuids;
  302. int i;
  303. closure_sync(cl);
  304. /*
  305. * Since the new uuid entry is bigger than the old, we have to
  306. * convert starting at the highest memory address and work down
  307. * in order to do it in place
  308. */
  309. for (i = c->nr_uuids - 1;
  310. i >= 0;
  311. --i) {
  312. memcpy(u1[i].uuid, u0[i].uuid, 16);
  313. memcpy(u1[i].label, u0[i].label, 32);
  314. u1[i].first_reg = u0[i].first_reg;
  315. u1[i].last_reg = u0[i].last_reg;
  316. u1[i].invalidated = u0[i].invalidated;
  317. u1[i].flags = 0;
  318. u1[i].sectors = 0;
  319. }
  320. }
  321. return NULL;
  322. }
  323. static int __uuid_write(struct cache_set *c)
  324. {
  325. BKEY_PADDED(key) k;
  326. struct closure cl;
  327. closure_init_stack(&cl);
  328. lockdep_assert_held(&bch_register_lock);
  329. if (bch_bucket_alloc_set(c, WATERMARK_METADATA, &k.key, 1, &cl))
  330. return 1;
  331. SET_KEY_SIZE(&k.key, c->sb.bucket_size);
  332. uuid_io(c, REQ_WRITE, &k.key, &cl);
  333. closure_sync(&cl);
  334. bkey_copy(&c->uuid_bucket, &k.key);
  335. __bkey_put(c, &k.key);
  336. return 0;
  337. }
  338. int bch_uuid_write(struct cache_set *c)
  339. {
  340. int ret = __uuid_write(c);
  341. if (!ret)
  342. bch_journal_meta(c, NULL);
  343. return ret;
  344. }
  345. static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
  346. {
  347. struct uuid_entry *u;
  348. for (u = c->uuids;
  349. u < c->uuids + c->nr_uuids; u++)
  350. if (!memcmp(u->uuid, uuid, 16))
  351. return u;
  352. return NULL;
  353. }
  354. static struct uuid_entry *uuid_find_empty(struct cache_set *c)
  355. {
  356. static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
  357. return uuid_find(c, zero_uuid);
  358. }
  359. /*
  360. * Bucket priorities/gens:
  361. *
  362. * For each bucket, we store on disk its
  363. * 8 bit gen
  364. * 16 bit priority
  365. *
  366. * See alloc.c for an explanation of the gen. The priority is used to implement
  367. * lru (and in the future other) cache replacement policies; for most purposes
  368. * it's just an opaque integer.
  369. *
  370. * The gens and the priorities don't have a whole lot to do with each other, and
  371. * it's actually the gens that must be written out at specific times - it's no
  372. * big deal if the priorities don't get written, if we lose them we just reuse
  373. * buckets in suboptimal order.
  374. *
  375. * On disk they're stored in a packed array, and in as many buckets are required
  376. * to fit them all. The buckets we use to store them form a list; the journal
  377. * header points to the first bucket, the first bucket points to the second
  378. * bucket, et cetera.
  379. *
  380. * This code is used by the allocation code; periodically (whenever it runs out
  381. * of buckets to allocate from) the allocation code will invalidate some
  382. * buckets, but it can't use those buckets until their new gens are safely on
  383. * disk.
  384. */
  385. static void prio_endio(struct bio *bio, int error)
  386. {
  387. struct cache *ca = bio->bi_private;
  388. cache_set_err_on(error, ca->set, "accessing priorities");
  389. bch_bbio_free(bio, ca->set);
  390. closure_put(&ca->prio);
  391. }
  392. static void prio_io(struct cache *ca, uint64_t bucket, unsigned long rw)
  393. {
  394. struct closure *cl = &ca->prio;
  395. struct bio *bio = bch_bbio_alloc(ca->set);
  396. closure_init_stack(cl);
  397. bio->bi_sector = bucket * ca->sb.bucket_size;
  398. bio->bi_bdev = ca->bdev;
  399. bio->bi_rw = REQ_SYNC|REQ_META|rw;
  400. bio->bi_size = bucket_bytes(ca);
  401. bio->bi_end_io = prio_endio;
  402. bio->bi_private = ca;
  403. bch_bio_map(bio, ca->disk_buckets);
  404. closure_bio_submit(bio, &ca->prio, ca);
  405. closure_sync(cl);
  406. }
  407. #define buckets_free(c) "free %zu, free_inc %zu, unused %zu", \
  408. fifo_used(&c->free), fifo_used(&c->free_inc), fifo_used(&c->unused)
  409. void bch_prio_write(struct cache *ca)
  410. {
  411. int i;
  412. struct bucket *b;
  413. struct closure cl;
  414. closure_init_stack(&cl);
  415. lockdep_assert_held(&ca->set->bucket_lock);
  416. for (b = ca->buckets;
  417. b < ca->buckets + ca->sb.nbuckets; b++)
  418. b->disk_gen = b->gen;
  419. ca->disk_buckets->seq++;
  420. atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
  421. &ca->meta_sectors_written);
  422. pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
  423. fifo_used(&ca->free_inc), fifo_used(&ca->unused));
  424. for (i = prio_buckets(ca) - 1; i >= 0; --i) {
  425. long bucket;
  426. struct prio_set *p = ca->disk_buckets;
  427. struct bucket_disk *d = p->data;
  428. struct bucket_disk *end = d + prios_per_bucket(ca);
  429. for (b = ca->buckets + i * prios_per_bucket(ca);
  430. b < ca->buckets + ca->sb.nbuckets && d < end;
  431. b++, d++) {
  432. d->prio = cpu_to_le16(b->prio);
  433. d->gen = b->gen;
  434. }
  435. p->next_bucket = ca->prio_buckets[i + 1];
  436. p->magic = pset_magic(ca);
  437. p->csum = bch_crc64(&p->magic, bucket_bytes(ca) - 8);
  438. bucket = bch_bucket_alloc(ca, WATERMARK_PRIO, &cl);
  439. BUG_ON(bucket == -1);
  440. mutex_unlock(&ca->set->bucket_lock);
  441. prio_io(ca, bucket, REQ_WRITE);
  442. mutex_lock(&ca->set->bucket_lock);
  443. ca->prio_buckets[i] = bucket;
  444. atomic_dec_bug(&ca->buckets[bucket].pin);
  445. }
  446. mutex_unlock(&ca->set->bucket_lock);
  447. bch_journal_meta(ca->set, &cl);
  448. closure_sync(&cl);
  449. mutex_lock(&ca->set->bucket_lock);
  450. ca->need_save_prio = 0;
  451. /*
  452. * Don't want the old priorities to get garbage collected until after we
  453. * finish writing the new ones, and they're journalled
  454. */
  455. for (i = 0; i < prio_buckets(ca); i++)
  456. ca->prio_last_buckets[i] = ca->prio_buckets[i];
  457. }
  458. static void prio_read(struct cache *ca, uint64_t bucket)
  459. {
  460. struct prio_set *p = ca->disk_buckets;
  461. struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
  462. struct bucket *b;
  463. unsigned bucket_nr = 0;
  464. for (b = ca->buckets;
  465. b < ca->buckets + ca->sb.nbuckets;
  466. b++, d++) {
  467. if (d == end) {
  468. ca->prio_buckets[bucket_nr] = bucket;
  469. ca->prio_last_buckets[bucket_nr] = bucket;
  470. bucket_nr++;
  471. prio_io(ca, bucket, READ_SYNC);
  472. if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
  473. pr_warn("bad csum reading priorities");
  474. if (p->magic != pset_magic(ca))
  475. pr_warn("bad magic reading priorities");
  476. bucket = p->next_bucket;
  477. d = p->data;
  478. }
  479. b->prio = le16_to_cpu(d->prio);
  480. b->gen = b->disk_gen = b->last_gc = b->gc_gen = d->gen;
  481. }
  482. }
  483. /* Bcache device */
  484. static int open_dev(struct block_device *b, fmode_t mode)
  485. {
  486. struct bcache_device *d = b->bd_disk->private_data;
  487. if (atomic_read(&d->closing))
  488. return -ENXIO;
  489. closure_get(&d->cl);
  490. return 0;
  491. }
  492. static void release_dev(struct gendisk *b, fmode_t mode)
  493. {
  494. struct bcache_device *d = b->private_data;
  495. closure_put(&d->cl);
  496. }
  497. static int ioctl_dev(struct block_device *b, fmode_t mode,
  498. unsigned int cmd, unsigned long arg)
  499. {
  500. struct bcache_device *d = b->bd_disk->private_data;
  501. return d->ioctl(d, mode, cmd, arg);
  502. }
  503. static const struct block_device_operations bcache_ops = {
  504. .open = open_dev,
  505. .release = release_dev,
  506. .ioctl = ioctl_dev,
  507. .owner = THIS_MODULE,
  508. };
  509. void bcache_device_stop(struct bcache_device *d)
  510. {
  511. if (!atomic_xchg(&d->closing, 1))
  512. closure_queue(&d->cl);
  513. }
  514. static void bcache_device_unlink(struct bcache_device *d)
  515. {
  516. unsigned i;
  517. struct cache *ca;
  518. sysfs_remove_link(&d->c->kobj, d->name);
  519. sysfs_remove_link(&d->kobj, "cache");
  520. for_each_cache(ca, d->c, i)
  521. bd_unlink_disk_holder(ca->bdev, d->disk);
  522. }
  523. static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
  524. const char *name)
  525. {
  526. unsigned i;
  527. struct cache *ca;
  528. for_each_cache(ca, d->c, i)
  529. bd_link_disk_holder(ca->bdev, d->disk);
  530. snprintf(d->name, BCACHEDEVNAME_SIZE,
  531. "%s%u", name, d->id);
  532. WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
  533. sysfs_create_link(&c->kobj, &d->kobj, d->name),
  534. "Couldn't create device <-> cache set symlinks");
  535. }
  536. static void bcache_device_detach(struct bcache_device *d)
  537. {
  538. lockdep_assert_held(&bch_register_lock);
  539. if (atomic_read(&d->detaching)) {
  540. struct uuid_entry *u = d->c->uuids + d->id;
  541. SET_UUID_FLASH_ONLY(u, 0);
  542. memcpy(u->uuid, invalid_uuid, 16);
  543. u->invalidated = cpu_to_le32(get_seconds());
  544. bch_uuid_write(d->c);
  545. atomic_set(&d->detaching, 0);
  546. }
  547. if (!d->flush_done)
  548. bcache_device_unlink(d);
  549. d->c->devices[d->id] = NULL;
  550. closure_put(&d->c->caching);
  551. d->c = NULL;
  552. }
  553. static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
  554. unsigned id)
  555. {
  556. BUG_ON(test_bit(CACHE_SET_STOPPING, &c->flags));
  557. d->id = id;
  558. d->c = c;
  559. c->devices[id] = d;
  560. closure_get(&c->caching);
  561. }
  562. static void bcache_device_free(struct bcache_device *d)
  563. {
  564. lockdep_assert_held(&bch_register_lock);
  565. pr_info("%s stopped", d->disk->disk_name);
  566. if (d->c)
  567. bcache_device_detach(d);
  568. if (d->disk && d->disk->flags & GENHD_FL_UP)
  569. del_gendisk(d->disk);
  570. if (d->disk && d->disk->queue)
  571. blk_cleanup_queue(d->disk->queue);
  572. if (d->disk)
  573. put_disk(d->disk);
  574. bio_split_pool_free(&d->bio_split_hook);
  575. if (d->unaligned_bvec)
  576. mempool_destroy(d->unaligned_bvec);
  577. if (d->bio_split)
  578. bioset_free(d->bio_split);
  579. if (is_vmalloc_addr(d->stripe_sectors_dirty))
  580. vfree(d->stripe_sectors_dirty);
  581. else
  582. kfree(d->stripe_sectors_dirty);
  583. closure_debug_destroy(&d->cl);
  584. }
  585. static int bcache_device_init(struct bcache_device *d, unsigned block_size,
  586. sector_t sectors)
  587. {
  588. struct request_queue *q;
  589. size_t n;
  590. if (!d->stripe_size)
  591. d->stripe_size = 1 << 31;
  592. d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
  593. if (!d->nr_stripes || d->nr_stripes > SIZE_MAX / sizeof(atomic_t))
  594. return -ENOMEM;
  595. n = d->nr_stripes * sizeof(atomic_t);
  596. d->stripe_sectors_dirty = n < PAGE_SIZE << 6
  597. ? kzalloc(n, GFP_KERNEL)
  598. : vzalloc(n);
  599. if (!d->stripe_sectors_dirty)
  600. return -ENOMEM;
  601. if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
  602. !(d->unaligned_bvec = mempool_create_kmalloc_pool(1,
  603. sizeof(struct bio_vec) * BIO_MAX_PAGES)) ||
  604. bio_split_pool_init(&d->bio_split_hook) ||
  605. !(d->disk = alloc_disk(1)) ||
  606. !(q = blk_alloc_queue(GFP_KERNEL)))
  607. return -ENOMEM;
  608. set_capacity(d->disk, sectors);
  609. snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", bcache_minor);
  610. d->disk->major = bcache_major;
  611. d->disk->first_minor = bcache_minor++;
  612. d->disk->fops = &bcache_ops;
  613. d->disk->private_data = d;
  614. blk_queue_make_request(q, NULL);
  615. d->disk->queue = q;
  616. q->queuedata = d;
  617. q->backing_dev_info.congested_data = d;
  618. q->limits.max_hw_sectors = UINT_MAX;
  619. q->limits.max_sectors = UINT_MAX;
  620. q->limits.max_segment_size = UINT_MAX;
  621. q->limits.max_segments = BIO_MAX_PAGES;
  622. q->limits.max_discard_sectors = UINT_MAX;
  623. q->limits.io_min = block_size;
  624. q->limits.logical_block_size = block_size;
  625. q->limits.physical_block_size = block_size;
  626. set_bit(QUEUE_FLAG_NONROT, &d->disk->queue->queue_flags);
  627. set_bit(QUEUE_FLAG_DISCARD, &d->disk->queue->queue_flags);
  628. blk_queue_flush(q, REQ_FLUSH|REQ_FUA);
  629. return 0;
  630. }
  631. /* Cached device */
  632. static void calc_cached_dev_sectors(struct cache_set *c)
  633. {
  634. uint64_t sectors = 0;
  635. struct cached_dev *dc;
  636. list_for_each_entry(dc, &c->cached_devs, list)
  637. sectors += bdev_sectors(dc->bdev);
  638. c->cached_dev_sectors = sectors;
  639. }
  640. void bch_cached_dev_run(struct cached_dev *dc)
  641. {
  642. struct bcache_device *d = &dc->disk;
  643. char buf[SB_LABEL_SIZE + 1];
  644. char *env[] = {
  645. "DRIVER=bcache",
  646. kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
  647. NULL,
  648. NULL,
  649. };
  650. memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
  651. buf[SB_LABEL_SIZE] = '\0';
  652. env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf);
  653. if (atomic_xchg(&dc->running, 1))
  654. return;
  655. if (!d->c &&
  656. BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
  657. struct closure cl;
  658. closure_init_stack(&cl);
  659. SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
  660. bch_write_bdev_super(dc, &cl);
  661. closure_sync(&cl);
  662. }
  663. add_disk(d->disk);
  664. bd_link_disk_holder(dc->bdev, dc->disk.disk);
  665. /* won't show up in the uevent file, use udevadm monitor -e instead
  666. * only class / kset properties are persistent */
  667. kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
  668. kfree(env[1]);
  669. kfree(env[2]);
  670. if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
  671. sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
  672. pr_debug("error creating sysfs link");
  673. }
  674. static void cached_dev_detach_finish(struct work_struct *w)
  675. {
  676. struct cached_dev *dc = container_of(w, struct cached_dev, detach);
  677. char buf[BDEVNAME_SIZE];
  678. struct closure cl;
  679. closure_init_stack(&cl);
  680. BUG_ON(!atomic_read(&dc->disk.detaching));
  681. BUG_ON(atomic_read(&dc->count));
  682. mutex_lock(&bch_register_lock);
  683. memset(&dc->sb.set_uuid, 0, 16);
  684. SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
  685. bch_write_bdev_super(dc, &cl);
  686. closure_sync(&cl);
  687. bcache_device_detach(&dc->disk);
  688. list_move(&dc->list, &uncached_devices);
  689. mutex_unlock(&bch_register_lock);
  690. pr_info("Caching disabled for %s", bdevname(dc->bdev, buf));
  691. /* Drop ref we took in cached_dev_detach() */
  692. closure_put(&dc->disk.cl);
  693. }
  694. void bch_cached_dev_detach(struct cached_dev *dc)
  695. {
  696. lockdep_assert_held(&bch_register_lock);
  697. if (atomic_read(&dc->disk.closing))
  698. return;
  699. if (atomic_xchg(&dc->disk.detaching, 1))
  700. return;
  701. /*
  702. * Block the device from being closed and freed until we're finished
  703. * detaching
  704. */
  705. closure_get(&dc->disk.cl);
  706. bch_writeback_queue(dc);
  707. cached_dev_put(dc);
  708. }
  709. int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c)
  710. {
  711. uint32_t rtime = cpu_to_le32(get_seconds());
  712. struct uuid_entry *u;
  713. char buf[BDEVNAME_SIZE];
  714. bdevname(dc->bdev, buf);
  715. if (memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))
  716. return -ENOENT;
  717. if (dc->disk.c) {
  718. pr_err("Can't attach %s: already attached", buf);
  719. return -EINVAL;
  720. }
  721. if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
  722. pr_err("Can't attach %s: shutting down", buf);
  723. return -EINVAL;
  724. }
  725. if (dc->sb.block_size < c->sb.block_size) {
  726. /* Will die */
  727. pr_err("Couldn't attach %s: block size less than set's block size",
  728. buf);
  729. return -EINVAL;
  730. }
  731. u = uuid_find(c, dc->sb.uuid);
  732. if (u &&
  733. (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
  734. BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
  735. memcpy(u->uuid, invalid_uuid, 16);
  736. u->invalidated = cpu_to_le32(get_seconds());
  737. u = NULL;
  738. }
  739. if (!u) {
  740. if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
  741. pr_err("Couldn't find uuid for %s in set", buf);
  742. return -ENOENT;
  743. }
  744. u = uuid_find_empty(c);
  745. if (!u) {
  746. pr_err("Not caching %s, no room for UUID", buf);
  747. return -EINVAL;
  748. }
  749. }
  750. /* Deadlocks since we're called via sysfs...
  751. sysfs_remove_file(&dc->kobj, &sysfs_attach);
  752. */
  753. if (bch_is_zero(u->uuid, 16)) {
  754. struct closure cl;
  755. closure_init_stack(&cl);
  756. memcpy(u->uuid, dc->sb.uuid, 16);
  757. memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
  758. u->first_reg = u->last_reg = rtime;
  759. bch_uuid_write(c);
  760. memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
  761. SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
  762. bch_write_bdev_super(dc, &cl);
  763. closure_sync(&cl);
  764. } else {
  765. u->last_reg = rtime;
  766. bch_uuid_write(c);
  767. }
  768. bcache_device_attach(&dc->disk, c, u - c->uuids);
  769. list_move(&dc->list, &c->cached_devs);
  770. calc_cached_dev_sectors(c);
  771. smp_wmb();
  772. /*
  773. * dc->c must be set before dc->count != 0 - paired with the mb in
  774. * cached_dev_get()
  775. */
  776. atomic_set(&dc->count, 1);
  777. if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
  778. bch_sectors_dirty_init(dc);
  779. atomic_set(&dc->has_dirty, 1);
  780. atomic_inc(&dc->count);
  781. bch_writeback_queue(dc);
  782. }
  783. bch_cached_dev_run(dc);
  784. bcache_device_link(&dc->disk, c, "bdev");
  785. pr_info("Caching %s as %s on set %pU",
  786. bdevname(dc->bdev, buf), dc->disk.disk->disk_name,
  787. dc->disk.c->sb.set_uuid);
  788. return 0;
  789. }
  790. void bch_cached_dev_release(struct kobject *kobj)
  791. {
  792. struct cached_dev *dc = container_of(kobj, struct cached_dev,
  793. disk.kobj);
  794. kfree(dc);
  795. module_put(THIS_MODULE);
  796. }
  797. static void cached_dev_free(struct closure *cl)
  798. {
  799. struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
  800. cancel_delayed_work_sync(&dc->writeback_rate_update);
  801. mutex_lock(&bch_register_lock);
  802. if (atomic_read(&dc->running))
  803. bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
  804. bcache_device_free(&dc->disk);
  805. list_del(&dc->list);
  806. mutex_unlock(&bch_register_lock);
  807. if (!IS_ERR_OR_NULL(dc->bdev)) {
  808. if (dc->bdev->bd_disk)
  809. blk_sync_queue(bdev_get_queue(dc->bdev));
  810. blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  811. }
  812. wake_up(&unregister_wait);
  813. kobject_put(&dc->disk.kobj);
  814. }
  815. static void cached_dev_flush(struct closure *cl)
  816. {
  817. struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
  818. struct bcache_device *d = &dc->disk;
  819. mutex_lock(&bch_register_lock);
  820. d->flush_done = 1;
  821. if (d->c)
  822. bcache_device_unlink(d);
  823. mutex_unlock(&bch_register_lock);
  824. bch_cache_accounting_destroy(&dc->accounting);
  825. kobject_del(&d->kobj);
  826. continue_at(cl, cached_dev_free, system_wq);
  827. }
  828. static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
  829. {
  830. int ret;
  831. struct io *io;
  832. struct request_queue *q = bdev_get_queue(dc->bdev);
  833. __module_get(THIS_MODULE);
  834. INIT_LIST_HEAD(&dc->list);
  835. closure_init(&dc->disk.cl, NULL);
  836. set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
  837. kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
  838. INIT_WORK(&dc->detach, cached_dev_detach_finish);
  839. closure_init_unlocked(&dc->sb_write);
  840. INIT_LIST_HEAD(&dc->io_lru);
  841. spin_lock_init(&dc->io_lock);
  842. bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
  843. dc->sequential_merge = true;
  844. dc->sequential_cutoff = 4 << 20;
  845. for (io = dc->io; io < dc->io + RECENT_IO; io++) {
  846. list_add(&io->lru, &dc->io_lru);
  847. hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
  848. }
  849. ret = bcache_device_init(&dc->disk, block_size,
  850. dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
  851. if (ret)
  852. return ret;
  853. set_capacity(dc->disk.disk,
  854. dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
  855. dc->disk.disk->queue->backing_dev_info.ra_pages =
  856. max(dc->disk.disk->queue->backing_dev_info.ra_pages,
  857. q->backing_dev_info.ra_pages);
  858. bch_cached_dev_request_init(dc);
  859. bch_cached_dev_writeback_init(dc);
  860. return 0;
  861. }
  862. /* Cached device - bcache superblock */
  863. static void register_bdev(struct cache_sb *sb, struct page *sb_page,
  864. struct block_device *bdev,
  865. struct cached_dev *dc)
  866. {
  867. char name[BDEVNAME_SIZE];
  868. const char *err = "cannot allocate memory";
  869. struct cache_set *c;
  870. memcpy(&dc->sb, sb, sizeof(struct cache_sb));
  871. dc->bdev = bdev;
  872. dc->bdev->bd_holder = dc;
  873. bio_init(&dc->sb_bio);
  874. dc->sb_bio.bi_max_vecs = 1;
  875. dc->sb_bio.bi_io_vec = dc->sb_bio.bi_inline_vecs;
  876. dc->sb_bio.bi_io_vec[0].bv_page = sb_page;
  877. get_page(sb_page);
  878. if (cached_dev_init(dc, sb->block_size << 9))
  879. goto err;
  880. err = "error creating kobject";
  881. if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
  882. "bcache"))
  883. goto err;
  884. if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
  885. goto err;
  886. pr_info("registered backing device %s", bdevname(bdev, name));
  887. list_add(&dc->list, &uncached_devices);
  888. list_for_each_entry(c, &bch_cache_sets, list)
  889. bch_cached_dev_attach(dc, c);
  890. if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
  891. BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
  892. bch_cached_dev_run(dc);
  893. return;
  894. err:
  895. pr_notice("error opening %s: %s", bdevname(bdev, name), err);
  896. bcache_device_stop(&dc->disk);
  897. }
  898. /* Flash only volumes */
  899. void bch_flash_dev_release(struct kobject *kobj)
  900. {
  901. struct bcache_device *d = container_of(kobj, struct bcache_device,
  902. kobj);
  903. kfree(d);
  904. }
  905. static void flash_dev_free(struct closure *cl)
  906. {
  907. struct bcache_device *d = container_of(cl, struct bcache_device, cl);
  908. bcache_device_free(d);
  909. kobject_put(&d->kobj);
  910. }
  911. static void flash_dev_flush(struct closure *cl)
  912. {
  913. struct bcache_device *d = container_of(cl, struct bcache_device, cl);
  914. bcache_device_unlink(d);
  915. kobject_del(&d->kobj);
  916. continue_at(cl, flash_dev_free, system_wq);
  917. }
  918. static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
  919. {
  920. struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
  921. GFP_KERNEL);
  922. if (!d)
  923. return -ENOMEM;
  924. closure_init(&d->cl, NULL);
  925. set_closure_fn(&d->cl, flash_dev_flush, system_wq);
  926. kobject_init(&d->kobj, &bch_flash_dev_ktype);
  927. if (bcache_device_init(d, block_bytes(c), u->sectors))
  928. goto err;
  929. bcache_device_attach(d, c, u - c->uuids);
  930. bch_flash_dev_request_init(d);
  931. add_disk(d->disk);
  932. if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
  933. goto err;
  934. bcache_device_link(d, c, "volume");
  935. return 0;
  936. err:
  937. kobject_put(&d->kobj);
  938. return -ENOMEM;
  939. }
  940. static int flash_devs_run(struct cache_set *c)
  941. {
  942. int ret = 0;
  943. struct uuid_entry *u;
  944. for (u = c->uuids;
  945. u < c->uuids + c->nr_uuids && !ret;
  946. u++)
  947. if (UUID_FLASH_ONLY(u))
  948. ret = flash_dev_run(c, u);
  949. return ret;
  950. }
  951. int bch_flash_dev_create(struct cache_set *c, uint64_t size)
  952. {
  953. struct uuid_entry *u;
  954. if (test_bit(CACHE_SET_STOPPING, &c->flags))
  955. return -EINTR;
  956. u = uuid_find_empty(c);
  957. if (!u) {
  958. pr_err("Can't create volume, no room for UUID");
  959. return -EINVAL;
  960. }
  961. get_random_bytes(u->uuid, 16);
  962. memset(u->label, 0, 32);
  963. u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
  964. SET_UUID_FLASH_ONLY(u, 1);
  965. u->sectors = size >> 9;
  966. bch_uuid_write(c);
  967. return flash_dev_run(c, u);
  968. }
  969. /* Cache set */
  970. __printf(2, 3)
  971. bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
  972. {
  973. va_list args;
  974. if (c->on_error != ON_ERROR_PANIC &&
  975. test_bit(CACHE_SET_STOPPING, &c->flags))
  976. return false;
  977. /* XXX: we can be called from atomic context
  978. acquire_console_sem();
  979. */
  980. printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
  981. va_start(args, fmt);
  982. vprintk(fmt, args);
  983. va_end(args);
  984. printk(", disabling caching\n");
  985. if (c->on_error == ON_ERROR_PANIC)
  986. panic("panic forced after error\n");
  987. bch_cache_set_unregister(c);
  988. return true;
  989. }
  990. void bch_cache_set_release(struct kobject *kobj)
  991. {
  992. struct cache_set *c = container_of(kobj, struct cache_set, kobj);
  993. kfree(c);
  994. module_put(THIS_MODULE);
  995. }
  996. static void cache_set_free(struct closure *cl)
  997. {
  998. struct cache_set *c = container_of(cl, struct cache_set, cl);
  999. struct cache *ca;
  1000. unsigned i;
  1001. if (!IS_ERR_OR_NULL(c->debug))
  1002. debugfs_remove(c->debug);
  1003. bch_open_buckets_free(c);
  1004. bch_btree_cache_free(c);
  1005. bch_journal_free(c);
  1006. for_each_cache(ca, c, i)
  1007. if (ca)
  1008. kobject_put(&ca->kobj);
  1009. free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
  1010. free_pages((unsigned long) c->sort, ilog2(bucket_pages(c)));
  1011. if (c->bio_split)
  1012. bioset_free(c->bio_split);
  1013. if (c->fill_iter)
  1014. mempool_destroy(c->fill_iter);
  1015. if (c->bio_meta)
  1016. mempool_destroy(c->bio_meta);
  1017. if (c->search)
  1018. mempool_destroy(c->search);
  1019. kfree(c->devices);
  1020. mutex_lock(&bch_register_lock);
  1021. list_del(&c->list);
  1022. mutex_unlock(&bch_register_lock);
  1023. pr_info("Cache set %pU unregistered", c->sb.set_uuid);
  1024. wake_up(&unregister_wait);
  1025. closure_debug_destroy(&c->cl);
  1026. kobject_put(&c->kobj);
  1027. }
  1028. static void cache_set_flush(struct closure *cl)
  1029. {
  1030. struct cache_set *c = container_of(cl, struct cache_set, caching);
  1031. struct cache *ca;
  1032. struct btree *b;
  1033. unsigned i;
  1034. bch_cache_accounting_destroy(&c->accounting);
  1035. kobject_put(&c->internal);
  1036. kobject_del(&c->kobj);
  1037. if (!IS_ERR_OR_NULL(c->root))
  1038. list_add(&c->root->list, &c->btree_cache);
  1039. /* Should skip this if we're unregistering because of an error */
  1040. list_for_each_entry(b, &c->btree_cache, list)
  1041. if (btree_node_dirty(b))
  1042. bch_btree_node_write(b, NULL);
  1043. for_each_cache(ca, c, i)
  1044. if (ca->alloc_thread)
  1045. kthread_stop(ca->alloc_thread);
  1046. closure_return(cl);
  1047. }
  1048. static void __cache_set_unregister(struct closure *cl)
  1049. {
  1050. struct cache_set *c = container_of(cl, struct cache_set, caching);
  1051. struct cached_dev *dc;
  1052. size_t i;
  1053. mutex_lock(&bch_register_lock);
  1054. for (i = 0; i < c->nr_uuids; i++)
  1055. if (c->devices[i]) {
  1056. if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
  1057. test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
  1058. dc = container_of(c->devices[i],
  1059. struct cached_dev, disk);
  1060. bch_cached_dev_detach(dc);
  1061. } else {
  1062. bcache_device_stop(c->devices[i]);
  1063. }
  1064. }
  1065. mutex_unlock(&bch_register_lock);
  1066. continue_at(cl, cache_set_flush, system_wq);
  1067. }
  1068. void bch_cache_set_stop(struct cache_set *c)
  1069. {
  1070. if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
  1071. closure_queue(&c->caching);
  1072. }
  1073. void bch_cache_set_unregister(struct cache_set *c)
  1074. {
  1075. set_bit(CACHE_SET_UNREGISTERING, &c->flags);
  1076. bch_cache_set_stop(c);
  1077. }
  1078. #define alloc_bucket_pages(gfp, c) \
  1079. ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
  1080. struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
  1081. {
  1082. int iter_size;
  1083. struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
  1084. if (!c)
  1085. return NULL;
  1086. __module_get(THIS_MODULE);
  1087. closure_init(&c->cl, NULL);
  1088. set_closure_fn(&c->cl, cache_set_free, system_wq);
  1089. closure_init(&c->caching, &c->cl);
  1090. set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
  1091. /* Maybe create continue_at_noreturn() and use it here? */
  1092. closure_set_stopped(&c->cl);
  1093. closure_put(&c->cl);
  1094. kobject_init(&c->kobj, &bch_cache_set_ktype);
  1095. kobject_init(&c->internal, &bch_cache_set_internal_ktype);
  1096. bch_cache_accounting_init(&c->accounting, &c->cl);
  1097. memcpy(c->sb.set_uuid, sb->set_uuid, 16);
  1098. c->sb.block_size = sb->block_size;
  1099. c->sb.bucket_size = sb->bucket_size;
  1100. c->sb.nr_in_set = sb->nr_in_set;
  1101. c->sb.last_mount = sb->last_mount;
  1102. c->bucket_bits = ilog2(sb->bucket_size);
  1103. c->block_bits = ilog2(sb->block_size);
  1104. c->nr_uuids = bucket_bytes(c) / sizeof(struct uuid_entry);
  1105. c->btree_pages = c->sb.bucket_size / PAGE_SECTORS;
  1106. if (c->btree_pages > BTREE_MAX_PAGES)
  1107. c->btree_pages = max_t(int, c->btree_pages / 4,
  1108. BTREE_MAX_PAGES);
  1109. c->sort_crit_factor = int_sqrt(c->btree_pages);
  1110. closure_init_unlocked(&c->sb_write);
  1111. mutex_init(&c->bucket_lock);
  1112. init_waitqueue_head(&c->try_wait);
  1113. closure_init_unlocked(&c->uuid_write);
  1114. spin_lock_init(&c->sort_time_lock);
  1115. mutex_init(&c->sort_lock);
  1116. spin_lock_init(&c->btree_read_time_lock);
  1117. bch_moving_init_cache_set(c);
  1118. INIT_LIST_HEAD(&c->list);
  1119. INIT_LIST_HEAD(&c->cached_devs);
  1120. INIT_LIST_HEAD(&c->btree_cache);
  1121. INIT_LIST_HEAD(&c->btree_cache_freeable);
  1122. INIT_LIST_HEAD(&c->btree_cache_freed);
  1123. INIT_LIST_HEAD(&c->data_buckets);
  1124. c->search = mempool_create_slab_pool(32, bch_search_cache);
  1125. if (!c->search)
  1126. goto err;
  1127. iter_size = (sb->bucket_size / sb->block_size + 1) *
  1128. sizeof(struct btree_iter_set);
  1129. if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) ||
  1130. !(c->bio_meta = mempool_create_kmalloc_pool(2,
  1131. sizeof(struct bbio) + sizeof(struct bio_vec) *
  1132. bucket_pages(c))) ||
  1133. !(c->fill_iter = mempool_create_kmalloc_pool(1, iter_size)) ||
  1134. !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
  1135. !(c->sort = alloc_bucket_pages(GFP_KERNEL, c)) ||
  1136. !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
  1137. bch_journal_alloc(c) ||
  1138. bch_btree_cache_alloc(c) ||
  1139. bch_open_buckets_alloc(c))
  1140. goto err;
  1141. c->congested_read_threshold_us = 2000;
  1142. c->congested_write_threshold_us = 20000;
  1143. c->error_limit = 8 << IO_ERROR_SHIFT;
  1144. return c;
  1145. err:
  1146. bch_cache_set_unregister(c);
  1147. return NULL;
  1148. }
  1149. static void run_cache_set(struct cache_set *c)
  1150. {
  1151. const char *err = "cannot allocate memory";
  1152. struct cached_dev *dc, *t;
  1153. struct cache *ca;
  1154. unsigned i;
  1155. struct btree_op op;
  1156. bch_btree_op_init_stack(&op);
  1157. op.lock = SHRT_MAX;
  1158. for_each_cache(ca, c, i)
  1159. c->nbuckets += ca->sb.nbuckets;
  1160. if (CACHE_SYNC(&c->sb)) {
  1161. LIST_HEAD(journal);
  1162. struct bkey *k;
  1163. struct jset *j;
  1164. err = "cannot allocate memory for journal";
  1165. if (bch_journal_read(c, &journal, &op))
  1166. goto err;
  1167. pr_debug("btree_journal_read() done");
  1168. err = "no journal entries found";
  1169. if (list_empty(&journal))
  1170. goto err;
  1171. j = &list_entry(journal.prev, struct journal_replay, list)->j;
  1172. err = "IO error reading priorities";
  1173. for_each_cache(ca, c, i)
  1174. prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
  1175. /*
  1176. * If prio_read() fails it'll call cache_set_error and we'll
  1177. * tear everything down right away, but if we perhaps checked
  1178. * sooner we could avoid journal replay.
  1179. */
  1180. k = &j->btree_root;
  1181. err = "bad btree root";
  1182. if (__bch_ptr_invalid(c, j->btree_level + 1, k))
  1183. goto err;
  1184. err = "error reading btree root";
  1185. c->root = bch_btree_node_get(c, k, j->btree_level, true);
  1186. if (IS_ERR_OR_NULL(c->root))
  1187. goto err;
  1188. list_del_init(&c->root->list);
  1189. rw_unlock(true, c->root);
  1190. err = uuid_read(c, j, &op.cl);
  1191. if (err)
  1192. goto err;
  1193. err = "error in recovery";
  1194. if (bch_btree_check(c, &op))
  1195. goto err;
  1196. bch_journal_mark(c, &journal);
  1197. bch_btree_gc_finish(c);
  1198. pr_debug("btree_check() done");
  1199. /*
  1200. * bcache_journal_next() can't happen sooner, or
  1201. * btree_gc_finish() will give spurious errors about last_gc >
  1202. * gc_gen - this is a hack but oh well.
  1203. */
  1204. bch_journal_next(&c->journal);
  1205. err = "error starting allocator thread";
  1206. for_each_cache(ca, c, i)
  1207. if (bch_cache_allocator_start(ca))
  1208. goto err;
  1209. /*
  1210. * First place it's safe to allocate: btree_check() and
  1211. * btree_gc_finish() have to run before we have buckets to
  1212. * allocate, and bch_bucket_alloc_set() might cause a journal
  1213. * entry to be written so bcache_journal_next() has to be called
  1214. * first.
  1215. *
  1216. * If the uuids were in the old format we have to rewrite them
  1217. * before the next journal entry is written:
  1218. */
  1219. if (j->version < BCACHE_JSET_VERSION_UUID)
  1220. __uuid_write(c);
  1221. bch_journal_replay(c, &journal, &op);
  1222. } else {
  1223. pr_notice("invalidating existing data");
  1224. /* Don't want invalidate_buckets() to queue a gc yet */
  1225. closure_lock(&c->gc, NULL);
  1226. for_each_cache(ca, c, i) {
  1227. unsigned j;
  1228. ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
  1229. 2, SB_JOURNAL_BUCKETS);
  1230. for (j = 0; j < ca->sb.keys; j++)
  1231. ca->sb.d[j] = ca->sb.first_bucket + j;
  1232. }
  1233. bch_btree_gc_finish(c);
  1234. err = "error starting allocator thread";
  1235. for_each_cache(ca, c, i)
  1236. if (bch_cache_allocator_start(ca))
  1237. goto err;
  1238. mutex_lock(&c->bucket_lock);
  1239. for_each_cache(ca, c, i)
  1240. bch_prio_write(ca);
  1241. mutex_unlock(&c->bucket_lock);
  1242. err = "cannot allocate new UUID bucket";
  1243. if (__uuid_write(c))
  1244. goto err_unlock_gc;
  1245. err = "cannot allocate new btree root";
  1246. c->root = bch_btree_node_alloc(c, 0, &op.cl);
  1247. if (IS_ERR_OR_NULL(c->root))
  1248. goto err_unlock_gc;
  1249. bkey_copy_key(&c->root->key, &MAX_KEY);
  1250. bch_btree_node_write(c->root, &op.cl);
  1251. bch_btree_set_root(c->root);
  1252. rw_unlock(true, c->root);
  1253. /*
  1254. * We don't want to write the first journal entry until
  1255. * everything is set up - fortunately journal entries won't be
  1256. * written until the SET_CACHE_SYNC() here:
  1257. */
  1258. SET_CACHE_SYNC(&c->sb, true);
  1259. bch_journal_next(&c->journal);
  1260. bch_journal_meta(c, &op.cl);
  1261. /* Unlock */
  1262. closure_set_stopped(&c->gc.cl);
  1263. closure_put(&c->gc.cl);
  1264. }
  1265. closure_sync(&op.cl);
  1266. c->sb.last_mount = get_seconds();
  1267. bcache_write_super(c);
  1268. list_for_each_entry_safe(dc, t, &uncached_devices, list)
  1269. bch_cached_dev_attach(dc, c);
  1270. flash_devs_run(c);
  1271. return;
  1272. err_unlock_gc:
  1273. closure_set_stopped(&c->gc.cl);
  1274. closure_put(&c->gc.cl);
  1275. err:
  1276. closure_sync(&op.cl);
  1277. /* XXX: test this, it's broken */
  1278. bch_cache_set_error(c, err);
  1279. }
  1280. static bool can_attach_cache(struct cache *ca, struct cache_set *c)
  1281. {
  1282. return ca->sb.block_size == c->sb.block_size &&
  1283. ca->sb.bucket_size == c->sb.block_size &&
  1284. ca->sb.nr_in_set == c->sb.nr_in_set;
  1285. }
  1286. static const char *register_cache_set(struct cache *ca)
  1287. {
  1288. char buf[12];
  1289. const char *err = "cannot allocate memory";
  1290. struct cache_set *c;
  1291. list_for_each_entry(c, &bch_cache_sets, list)
  1292. if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
  1293. if (c->cache[ca->sb.nr_this_dev])
  1294. return "duplicate cache set member";
  1295. if (!can_attach_cache(ca, c))
  1296. return "cache sb does not match set";
  1297. if (!CACHE_SYNC(&ca->sb))
  1298. SET_CACHE_SYNC(&c->sb, false);
  1299. goto found;
  1300. }
  1301. c = bch_cache_set_alloc(&ca->sb);
  1302. if (!c)
  1303. return err;
  1304. err = "error creating kobject";
  1305. if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
  1306. kobject_add(&c->internal, &c->kobj, "internal"))
  1307. goto err;
  1308. if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
  1309. goto err;
  1310. bch_debug_init_cache_set(c);
  1311. list_add(&c->list, &bch_cache_sets);
  1312. found:
  1313. sprintf(buf, "cache%i", ca->sb.nr_this_dev);
  1314. if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
  1315. sysfs_create_link(&c->kobj, &ca->kobj, buf))
  1316. goto err;
  1317. if (ca->sb.seq > c->sb.seq) {
  1318. c->sb.version = ca->sb.version;
  1319. memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
  1320. c->sb.flags = ca->sb.flags;
  1321. c->sb.seq = ca->sb.seq;
  1322. pr_debug("set version = %llu", c->sb.version);
  1323. }
  1324. ca->set = c;
  1325. ca->set->cache[ca->sb.nr_this_dev] = ca;
  1326. c->cache_by_alloc[c->caches_loaded++] = ca;
  1327. if (c->caches_loaded == c->sb.nr_in_set)
  1328. run_cache_set(c);
  1329. return NULL;
  1330. err:
  1331. bch_cache_set_unregister(c);
  1332. return err;
  1333. }
  1334. /* Cache device */
  1335. void bch_cache_release(struct kobject *kobj)
  1336. {
  1337. struct cache *ca = container_of(kobj, struct cache, kobj);
  1338. if (ca->set)
  1339. ca->set->cache[ca->sb.nr_this_dev] = NULL;
  1340. bio_split_pool_free(&ca->bio_split_hook);
  1341. free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
  1342. kfree(ca->prio_buckets);
  1343. vfree(ca->buckets);
  1344. free_heap(&ca->heap);
  1345. free_fifo(&ca->unused);
  1346. free_fifo(&ca->free_inc);
  1347. free_fifo(&ca->free);
  1348. if (ca->sb_bio.bi_inline_vecs[0].bv_page)
  1349. put_page(ca->sb_bio.bi_io_vec[0].bv_page);
  1350. if (!IS_ERR_OR_NULL(ca->bdev)) {
  1351. blk_sync_queue(bdev_get_queue(ca->bdev));
  1352. blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  1353. }
  1354. kfree(ca);
  1355. module_put(THIS_MODULE);
  1356. }
  1357. static int cache_alloc(struct cache_sb *sb, struct cache *ca)
  1358. {
  1359. size_t free;
  1360. struct bucket *b;
  1361. __module_get(THIS_MODULE);
  1362. kobject_init(&ca->kobj, &bch_cache_ktype);
  1363. bio_init(&ca->journal.bio);
  1364. ca->journal.bio.bi_max_vecs = 8;
  1365. ca->journal.bio.bi_io_vec = ca->journal.bio.bi_inline_vecs;
  1366. free = roundup_pow_of_two(ca->sb.nbuckets) >> 9;
  1367. free = max_t(size_t, free, (prio_buckets(ca) + 8) * 2);
  1368. if (!init_fifo(&ca->free, free, GFP_KERNEL) ||
  1369. !init_fifo(&ca->free_inc, free << 2, GFP_KERNEL) ||
  1370. !init_fifo(&ca->unused, free << 2, GFP_KERNEL) ||
  1371. !init_heap(&ca->heap, free << 3, GFP_KERNEL) ||
  1372. !(ca->buckets = vzalloc(sizeof(struct bucket) *
  1373. ca->sb.nbuckets)) ||
  1374. !(ca->prio_buckets = kzalloc(sizeof(uint64_t) * prio_buckets(ca) *
  1375. 2, GFP_KERNEL)) ||
  1376. !(ca->disk_buckets = alloc_bucket_pages(GFP_KERNEL, ca)) ||
  1377. bio_split_pool_init(&ca->bio_split_hook))
  1378. return -ENOMEM;
  1379. ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
  1380. for_each_bucket(b, ca)
  1381. atomic_set(&b->pin, 0);
  1382. if (bch_cache_allocator_init(ca))
  1383. goto err;
  1384. return 0;
  1385. err:
  1386. kobject_put(&ca->kobj);
  1387. return -ENOMEM;
  1388. }
  1389. static void register_cache(struct cache_sb *sb, struct page *sb_page,
  1390. struct block_device *bdev, struct cache *ca)
  1391. {
  1392. char name[BDEVNAME_SIZE];
  1393. const char *err = "cannot allocate memory";
  1394. memcpy(&ca->sb, sb, sizeof(struct cache_sb));
  1395. ca->bdev = bdev;
  1396. ca->bdev->bd_holder = ca;
  1397. bio_init(&ca->sb_bio);
  1398. ca->sb_bio.bi_max_vecs = 1;
  1399. ca->sb_bio.bi_io_vec = ca->sb_bio.bi_inline_vecs;
  1400. ca->sb_bio.bi_io_vec[0].bv_page = sb_page;
  1401. get_page(sb_page);
  1402. if (blk_queue_discard(bdev_get_queue(ca->bdev)))
  1403. ca->discard = CACHE_DISCARD(&ca->sb);
  1404. if (cache_alloc(sb, ca) != 0)
  1405. goto err;
  1406. err = "error creating kobject";
  1407. if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache"))
  1408. goto err;
  1409. err = register_cache_set(ca);
  1410. if (err)
  1411. goto err;
  1412. pr_info("registered cache device %s", bdevname(bdev, name));
  1413. return;
  1414. err:
  1415. pr_notice("error opening %s: %s", bdevname(bdev, name), err);
  1416. kobject_put(&ca->kobj);
  1417. }
  1418. /* Global interfaces/init */
  1419. static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
  1420. const char *, size_t);
  1421. kobj_attribute_write(register, register_bcache);
  1422. kobj_attribute_write(register_quiet, register_bcache);
  1423. static bool bch_is_open_backing(struct block_device *bdev) {
  1424. struct cache_set *c, *tc;
  1425. struct cached_dev *dc, *t;
  1426. list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
  1427. list_for_each_entry_safe(dc, t, &c->cached_devs, list)
  1428. if (dc->bdev == bdev)
  1429. return true;
  1430. list_for_each_entry_safe(dc, t, &uncached_devices, list)
  1431. if (dc->bdev == bdev)
  1432. return true;
  1433. return false;
  1434. }
  1435. static bool bch_is_open_cache(struct block_device *bdev) {
  1436. struct cache_set *c, *tc;
  1437. struct cache *ca;
  1438. unsigned i;
  1439. list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
  1440. for_each_cache(ca, c, i)
  1441. if (ca->bdev == bdev)
  1442. return true;
  1443. return false;
  1444. }
  1445. static bool bch_is_open(struct block_device *bdev) {
  1446. return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
  1447. }
  1448. static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
  1449. const char *buffer, size_t size)
  1450. {
  1451. ssize_t ret = size;
  1452. const char *err = "cannot allocate memory";
  1453. char *path = NULL;
  1454. struct cache_sb *sb = NULL;
  1455. struct block_device *bdev = NULL;
  1456. struct page *sb_page = NULL;
  1457. if (!try_module_get(THIS_MODULE))
  1458. return -EBUSY;
  1459. mutex_lock(&bch_register_lock);
  1460. if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
  1461. !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
  1462. goto err;
  1463. err = "failed to open device";
  1464. bdev = blkdev_get_by_path(strim(path),
  1465. FMODE_READ|FMODE_WRITE|FMODE_EXCL,
  1466. sb);
  1467. if (IS_ERR(bdev)) {
  1468. if (bdev == ERR_PTR(-EBUSY)) {
  1469. bdev = lookup_bdev(strim(path));
  1470. if (!IS_ERR(bdev) && bch_is_open(bdev))
  1471. err = "device already registered";
  1472. else
  1473. err = "device busy";
  1474. }
  1475. goto err;
  1476. }
  1477. err = "failed to set blocksize";
  1478. if (set_blocksize(bdev, 4096))
  1479. goto err_close;
  1480. err = read_super(sb, bdev, &sb_page);
  1481. if (err)
  1482. goto err_close;
  1483. if (SB_IS_BDEV(sb)) {
  1484. struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
  1485. if (!dc)
  1486. goto err_close;
  1487. register_bdev(sb, sb_page, bdev, dc);
  1488. } else {
  1489. struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  1490. if (!ca)
  1491. goto err_close;
  1492. register_cache(sb, sb_page, bdev, ca);
  1493. }
  1494. out:
  1495. if (sb_page)
  1496. put_page(sb_page);
  1497. kfree(sb);
  1498. kfree(path);
  1499. mutex_unlock(&bch_register_lock);
  1500. module_put(THIS_MODULE);
  1501. return ret;
  1502. err_close:
  1503. blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  1504. err:
  1505. if (attr != &ksysfs_register_quiet)
  1506. pr_info("error opening %s: %s", path, err);
  1507. ret = -EINVAL;
  1508. goto out;
  1509. }
  1510. static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
  1511. {
  1512. if (code == SYS_DOWN ||
  1513. code == SYS_HALT ||
  1514. code == SYS_POWER_OFF) {
  1515. DEFINE_WAIT(wait);
  1516. unsigned long start = jiffies;
  1517. bool stopped = false;
  1518. struct cache_set *c, *tc;
  1519. struct cached_dev *dc, *tdc;
  1520. mutex_lock(&bch_register_lock);
  1521. if (list_empty(&bch_cache_sets) &&
  1522. list_empty(&uncached_devices))
  1523. goto out;
  1524. pr_info("Stopping all devices:");
  1525. list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
  1526. bch_cache_set_stop(c);
  1527. list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
  1528. bcache_device_stop(&dc->disk);
  1529. /* What's a condition variable? */
  1530. while (1) {
  1531. long timeout = start + 2 * HZ - jiffies;
  1532. stopped = list_empty(&bch_cache_sets) &&
  1533. list_empty(&uncached_devices);
  1534. if (timeout < 0 || stopped)
  1535. break;
  1536. prepare_to_wait(&unregister_wait, &wait,
  1537. TASK_UNINTERRUPTIBLE);
  1538. mutex_unlock(&bch_register_lock);
  1539. schedule_timeout(timeout);
  1540. mutex_lock(&bch_register_lock);
  1541. }
  1542. finish_wait(&unregister_wait, &wait);
  1543. if (stopped)
  1544. pr_info("All devices stopped");
  1545. else
  1546. pr_notice("Timeout waiting for devices to be closed");
  1547. out:
  1548. mutex_unlock(&bch_register_lock);
  1549. }
  1550. return NOTIFY_DONE;
  1551. }
  1552. static struct notifier_block reboot = {
  1553. .notifier_call = bcache_reboot,
  1554. .priority = INT_MAX, /* before any real devices */
  1555. };
  1556. static void bcache_exit(void)
  1557. {
  1558. bch_debug_exit();
  1559. bch_writeback_exit();
  1560. bch_request_exit();
  1561. bch_btree_exit();
  1562. if (bcache_kobj)
  1563. kobject_put(bcache_kobj);
  1564. if (bcache_wq)
  1565. destroy_workqueue(bcache_wq);
  1566. unregister_blkdev(bcache_major, "bcache");
  1567. unregister_reboot_notifier(&reboot);
  1568. }
  1569. static int __init bcache_init(void)
  1570. {
  1571. static const struct attribute *files[] = {
  1572. &ksysfs_register.attr,
  1573. &ksysfs_register_quiet.attr,
  1574. NULL
  1575. };
  1576. mutex_init(&bch_register_lock);
  1577. init_waitqueue_head(&unregister_wait);
  1578. register_reboot_notifier(&reboot);
  1579. closure_debug_init();
  1580. bcache_major = register_blkdev(0, "bcache");
  1581. if (bcache_major < 0)
  1582. return bcache_major;
  1583. if (!(bcache_wq = create_workqueue("bcache")) ||
  1584. !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
  1585. sysfs_create_files(bcache_kobj, files) ||
  1586. bch_btree_init() ||
  1587. bch_request_init() ||
  1588. bch_writeback_init() ||
  1589. bch_debug_init(bcache_kobj))
  1590. goto err;
  1591. return 0;
  1592. err:
  1593. bcache_exit();
  1594. return -ENOMEM;
  1595. }
  1596. module_exit(bcache_exit);
  1597. module_init(bcache_init);