sched.c 233 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/stop_machine.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/debugfs.h>
  70. #include <linux/ctype.h>
  71. #include <linux/ftrace.h>
  72. #include <linux/slab.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #include <asm/mutex.h>
  76. #ifdef CONFIG_PARAVIRT
  77. #include <asm/paravirt.h>
  78. #endif
  79. #include "sched_cpupri.h"
  80. #include "workqueue_sched.h"
  81. #include "sched_autogroup.h"
  82. #define CREATE_TRACE_POINTS
  83. #include <trace/events/sched.h>
  84. /*
  85. * Convert user-nice values [ -20 ... 0 ... 19 ]
  86. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  87. * and back.
  88. */
  89. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  90. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  91. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  92. /*
  93. * 'User priority' is the nice value converted to something we
  94. * can work with better when scaling various scheduler parameters,
  95. * it's a [ 0 ... 39 ] range.
  96. */
  97. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  98. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  99. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  100. /*
  101. * Helpers for converting nanosecond timing to jiffy resolution
  102. */
  103. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  104. #define NICE_0_LOAD SCHED_LOAD_SCALE
  105. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  106. /*
  107. * These are the 'tuning knobs' of the scheduler:
  108. *
  109. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  110. * Timeslices get refilled after they expire.
  111. */
  112. #define DEF_TIMESLICE (100 * HZ / 1000)
  113. /*
  114. * single value that denotes runtime == period, ie unlimited time.
  115. */
  116. #define RUNTIME_INF ((u64)~0ULL)
  117. static inline int rt_policy(int policy)
  118. {
  119. if (policy == SCHED_FIFO || policy == SCHED_RR)
  120. return 1;
  121. return 0;
  122. }
  123. static inline int task_has_rt_policy(struct task_struct *p)
  124. {
  125. return rt_policy(p->policy);
  126. }
  127. /*
  128. * This is the priority-queue data structure of the RT scheduling class:
  129. */
  130. struct rt_prio_array {
  131. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  132. struct list_head queue[MAX_RT_PRIO];
  133. };
  134. struct rt_bandwidth {
  135. /* nests inside the rq lock: */
  136. raw_spinlock_t rt_runtime_lock;
  137. ktime_t rt_period;
  138. u64 rt_runtime;
  139. struct hrtimer rt_period_timer;
  140. };
  141. static struct rt_bandwidth def_rt_bandwidth;
  142. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  143. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  144. {
  145. struct rt_bandwidth *rt_b =
  146. container_of(timer, struct rt_bandwidth, rt_period_timer);
  147. ktime_t now;
  148. int overrun;
  149. int idle = 0;
  150. for (;;) {
  151. now = hrtimer_cb_get_time(timer);
  152. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  153. if (!overrun)
  154. break;
  155. idle = do_sched_rt_period_timer(rt_b, overrun);
  156. }
  157. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  158. }
  159. static
  160. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  161. {
  162. rt_b->rt_period = ns_to_ktime(period);
  163. rt_b->rt_runtime = runtime;
  164. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  165. hrtimer_init(&rt_b->rt_period_timer,
  166. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  167. rt_b->rt_period_timer.function = sched_rt_period_timer;
  168. }
  169. static inline int rt_bandwidth_enabled(void)
  170. {
  171. return sysctl_sched_rt_runtime >= 0;
  172. }
  173. static void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  174. {
  175. unsigned long delta;
  176. ktime_t soft, hard, now;
  177. for (;;) {
  178. if (hrtimer_active(period_timer))
  179. break;
  180. now = hrtimer_cb_get_time(period_timer);
  181. hrtimer_forward(period_timer, now, period);
  182. soft = hrtimer_get_softexpires(period_timer);
  183. hard = hrtimer_get_expires(period_timer);
  184. delta = ktime_to_ns(ktime_sub(hard, soft));
  185. __hrtimer_start_range_ns(period_timer, soft, delta,
  186. HRTIMER_MODE_ABS_PINNED, 0);
  187. }
  188. }
  189. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  190. {
  191. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  192. return;
  193. if (hrtimer_active(&rt_b->rt_period_timer))
  194. return;
  195. raw_spin_lock(&rt_b->rt_runtime_lock);
  196. start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
  197. raw_spin_unlock(&rt_b->rt_runtime_lock);
  198. }
  199. #ifdef CONFIG_RT_GROUP_SCHED
  200. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  201. {
  202. hrtimer_cancel(&rt_b->rt_period_timer);
  203. }
  204. #endif
  205. /*
  206. * sched_domains_mutex serializes calls to init_sched_domains,
  207. * detach_destroy_domains and partition_sched_domains.
  208. */
  209. static DEFINE_MUTEX(sched_domains_mutex);
  210. #ifdef CONFIG_CGROUP_SCHED
  211. #include <linux/cgroup.h>
  212. struct cfs_rq;
  213. static LIST_HEAD(task_groups);
  214. struct cfs_bandwidth {
  215. #ifdef CONFIG_CFS_BANDWIDTH
  216. raw_spinlock_t lock;
  217. ktime_t period;
  218. u64 quota, runtime;
  219. s64 hierarchal_quota;
  220. u64 runtime_expires;
  221. int idle, timer_active;
  222. struct hrtimer period_timer;
  223. struct list_head throttled_cfs_rq;
  224. /* statistics */
  225. int nr_periods, nr_throttled;
  226. u64 throttled_time;
  227. #endif
  228. };
  229. /* task group related information */
  230. struct task_group {
  231. struct cgroup_subsys_state css;
  232. #ifdef CONFIG_FAIR_GROUP_SCHED
  233. /* schedulable entities of this group on each cpu */
  234. struct sched_entity **se;
  235. /* runqueue "owned" by this group on each cpu */
  236. struct cfs_rq **cfs_rq;
  237. unsigned long shares;
  238. atomic_t load_weight;
  239. #endif
  240. #ifdef CONFIG_RT_GROUP_SCHED
  241. struct sched_rt_entity **rt_se;
  242. struct rt_rq **rt_rq;
  243. struct rt_bandwidth rt_bandwidth;
  244. #endif
  245. struct rcu_head rcu;
  246. struct list_head list;
  247. struct task_group *parent;
  248. struct list_head siblings;
  249. struct list_head children;
  250. #ifdef CONFIG_SCHED_AUTOGROUP
  251. struct autogroup *autogroup;
  252. #endif
  253. struct cfs_bandwidth cfs_bandwidth;
  254. };
  255. /* task_group_lock serializes the addition/removal of task groups */
  256. static DEFINE_SPINLOCK(task_group_lock);
  257. #ifdef CONFIG_FAIR_GROUP_SCHED
  258. # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
  259. /*
  260. * A weight of 0 or 1 can cause arithmetics problems.
  261. * A weight of a cfs_rq is the sum of weights of which entities
  262. * are queued on this cfs_rq, so a weight of a entity should not be
  263. * too large, so as the shares value of a task group.
  264. * (The default weight is 1024 - so there's no practical
  265. * limitation from this.)
  266. */
  267. #define MIN_SHARES (1UL << 1)
  268. #define MAX_SHARES (1UL << 18)
  269. static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
  270. #endif
  271. /* Default task group.
  272. * Every task in system belong to this group at bootup.
  273. */
  274. struct task_group root_task_group;
  275. #endif /* CONFIG_CGROUP_SCHED */
  276. /* CFS-related fields in a runqueue */
  277. struct cfs_rq {
  278. struct load_weight load;
  279. unsigned long nr_running, h_nr_running;
  280. u64 exec_clock;
  281. u64 min_vruntime;
  282. #ifndef CONFIG_64BIT
  283. u64 min_vruntime_copy;
  284. #endif
  285. struct rb_root tasks_timeline;
  286. struct rb_node *rb_leftmost;
  287. struct list_head tasks;
  288. struct list_head *balance_iterator;
  289. /*
  290. * 'curr' points to currently running entity on this cfs_rq.
  291. * It is set to NULL otherwise (i.e when none are currently running).
  292. */
  293. struct sched_entity *curr, *next, *last, *skip;
  294. #ifdef CONFIG_SCHED_DEBUG
  295. unsigned int nr_spread_over;
  296. #endif
  297. #ifdef CONFIG_FAIR_GROUP_SCHED
  298. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  299. /*
  300. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  301. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  302. * (like users, containers etc.)
  303. *
  304. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  305. * list is used during load balance.
  306. */
  307. int on_list;
  308. struct list_head leaf_cfs_rq_list;
  309. struct task_group *tg; /* group that "owns" this runqueue */
  310. #ifdef CONFIG_SMP
  311. /*
  312. * the part of load.weight contributed by tasks
  313. */
  314. unsigned long task_weight;
  315. /*
  316. * h_load = weight * f(tg)
  317. *
  318. * Where f(tg) is the recursive weight fraction assigned to
  319. * this group.
  320. */
  321. unsigned long h_load;
  322. /*
  323. * Maintaining per-cpu shares distribution for group scheduling
  324. *
  325. * load_stamp is the last time we updated the load average
  326. * load_last is the last time we updated the load average and saw load
  327. * load_unacc_exec_time is currently unaccounted execution time
  328. */
  329. u64 load_avg;
  330. u64 load_period;
  331. u64 load_stamp, load_last, load_unacc_exec_time;
  332. unsigned long load_contribution;
  333. #endif
  334. #ifdef CONFIG_CFS_BANDWIDTH
  335. int runtime_enabled;
  336. u64 runtime_expires;
  337. s64 runtime_remaining;
  338. u64 throttled_timestamp;
  339. int throttled, throttle_count;
  340. struct list_head throttled_list;
  341. #endif
  342. #endif
  343. };
  344. #ifdef CONFIG_FAIR_GROUP_SCHED
  345. #ifdef CONFIG_CFS_BANDWIDTH
  346. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  347. {
  348. return &tg->cfs_bandwidth;
  349. }
  350. static inline u64 default_cfs_period(void);
  351. static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
  352. static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
  353. {
  354. struct cfs_bandwidth *cfs_b =
  355. container_of(timer, struct cfs_bandwidth, period_timer);
  356. ktime_t now;
  357. int overrun;
  358. int idle = 0;
  359. for (;;) {
  360. now = hrtimer_cb_get_time(timer);
  361. overrun = hrtimer_forward(timer, now, cfs_b->period);
  362. if (!overrun)
  363. break;
  364. idle = do_sched_cfs_period_timer(cfs_b, overrun);
  365. }
  366. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  367. }
  368. static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  369. {
  370. raw_spin_lock_init(&cfs_b->lock);
  371. cfs_b->runtime = 0;
  372. cfs_b->quota = RUNTIME_INF;
  373. cfs_b->period = ns_to_ktime(default_cfs_period());
  374. INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
  375. hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  376. cfs_b->period_timer.function = sched_cfs_period_timer;
  377. }
  378. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  379. {
  380. cfs_rq->runtime_enabled = 0;
  381. INIT_LIST_HEAD(&cfs_rq->throttled_list);
  382. }
  383. /* requires cfs_b->lock, may release to reprogram timer */
  384. static void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  385. {
  386. /*
  387. * The timer may be active because we're trying to set a new bandwidth
  388. * period or because we're racing with the tear-down path
  389. * (timer_active==0 becomes visible before the hrtimer call-back
  390. * terminates). In either case we ensure that it's re-programmed
  391. */
  392. while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
  393. raw_spin_unlock(&cfs_b->lock);
  394. /* ensure cfs_b->lock is available while we wait */
  395. hrtimer_cancel(&cfs_b->period_timer);
  396. raw_spin_lock(&cfs_b->lock);
  397. /* if someone else restarted the timer then we're done */
  398. if (cfs_b->timer_active)
  399. return;
  400. }
  401. cfs_b->timer_active = 1;
  402. start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
  403. }
  404. static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  405. {
  406. hrtimer_cancel(&cfs_b->period_timer);
  407. }
  408. #else
  409. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  410. static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  411. static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  412. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  413. {
  414. return NULL;
  415. }
  416. #endif /* CONFIG_CFS_BANDWIDTH */
  417. #endif /* CONFIG_FAIR_GROUP_SCHED */
  418. /* Real-Time classes' related field in a runqueue: */
  419. struct rt_rq {
  420. struct rt_prio_array active;
  421. unsigned long rt_nr_running;
  422. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  423. struct {
  424. int curr; /* highest queued rt task prio */
  425. #ifdef CONFIG_SMP
  426. int next; /* next highest */
  427. #endif
  428. } highest_prio;
  429. #endif
  430. #ifdef CONFIG_SMP
  431. unsigned long rt_nr_migratory;
  432. unsigned long rt_nr_total;
  433. int overloaded;
  434. struct plist_head pushable_tasks;
  435. #endif
  436. int rt_throttled;
  437. u64 rt_time;
  438. u64 rt_runtime;
  439. /* Nests inside the rq lock: */
  440. raw_spinlock_t rt_runtime_lock;
  441. #ifdef CONFIG_RT_GROUP_SCHED
  442. unsigned long rt_nr_boosted;
  443. struct rq *rq;
  444. struct list_head leaf_rt_rq_list;
  445. struct task_group *tg;
  446. #endif
  447. };
  448. #ifdef CONFIG_SMP
  449. /*
  450. * We add the notion of a root-domain which will be used to define per-domain
  451. * variables. Each exclusive cpuset essentially defines an island domain by
  452. * fully partitioning the member cpus from any other cpuset. Whenever a new
  453. * exclusive cpuset is created, we also create and attach a new root-domain
  454. * object.
  455. *
  456. */
  457. struct root_domain {
  458. atomic_t refcount;
  459. atomic_t rto_count;
  460. struct rcu_head rcu;
  461. cpumask_var_t span;
  462. cpumask_var_t online;
  463. /*
  464. * The "RT overload" flag: it gets set if a CPU has more than
  465. * one runnable RT task.
  466. */
  467. cpumask_var_t rto_mask;
  468. struct cpupri cpupri;
  469. };
  470. /*
  471. * By default the system creates a single root-domain with all cpus as
  472. * members (mimicking the global state we have today).
  473. */
  474. static struct root_domain def_root_domain;
  475. #endif /* CONFIG_SMP */
  476. /*
  477. * This is the main, per-CPU runqueue data structure.
  478. *
  479. * Locking rule: those places that want to lock multiple runqueues
  480. * (such as the load balancing or the thread migration code), lock
  481. * acquire operations must be ordered by ascending &runqueue.
  482. */
  483. struct rq {
  484. /* runqueue lock: */
  485. raw_spinlock_t lock;
  486. /*
  487. * nr_running and cpu_load should be in the same cacheline because
  488. * remote CPUs use both these fields when doing load calculation.
  489. */
  490. unsigned long nr_running;
  491. #define CPU_LOAD_IDX_MAX 5
  492. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  493. unsigned long last_load_update_tick;
  494. #ifdef CONFIG_NO_HZ
  495. u64 nohz_stamp;
  496. unsigned char nohz_balance_kick;
  497. #endif
  498. int skip_clock_update;
  499. /* capture load from *all* tasks on this cpu: */
  500. struct load_weight load;
  501. unsigned long nr_load_updates;
  502. u64 nr_switches;
  503. struct cfs_rq cfs;
  504. struct rt_rq rt;
  505. #ifdef CONFIG_FAIR_GROUP_SCHED
  506. /* list of leaf cfs_rq on this cpu: */
  507. struct list_head leaf_cfs_rq_list;
  508. #endif
  509. #ifdef CONFIG_RT_GROUP_SCHED
  510. struct list_head leaf_rt_rq_list;
  511. #endif
  512. /*
  513. * This is part of a global counter where only the total sum
  514. * over all CPUs matters. A task can increase this counter on
  515. * one CPU and if it got migrated afterwards it may decrease
  516. * it on another CPU. Always updated under the runqueue lock:
  517. */
  518. unsigned long nr_uninterruptible;
  519. struct task_struct *curr, *idle, *stop;
  520. unsigned long next_balance;
  521. struct mm_struct *prev_mm;
  522. u64 clock;
  523. u64 clock_task;
  524. atomic_t nr_iowait;
  525. #ifdef CONFIG_SMP
  526. struct root_domain *rd;
  527. struct sched_domain *sd;
  528. unsigned long cpu_power;
  529. unsigned char idle_at_tick;
  530. /* For active balancing */
  531. int post_schedule;
  532. int active_balance;
  533. int push_cpu;
  534. struct cpu_stop_work active_balance_work;
  535. /* cpu of this runqueue: */
  536. int cpu;
  537. int online;
  538. u64 rt_avg;
  539. u64 age_stamp;
  540. u64 idle_stamp;
  541. u64 avg_idle;
  542. #endif
  543. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  544. u64 prev_irq_time;
  545. #endif
  546. #ifdef CONFIG_PARAVIRT
  547. u64 prev_steal_time;
  548. #endif
  549. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  550. u64 prev_steal_time_rq;
  551. #endif
  552. /* calc_load related fields */
  553. unsigned long calc_load_update;
  554. long calc_load_active;
  555. #ifdef CONFIG_SCHED_HRTICK
  556. #ifdef CONFIG_SMP
  557. int hrtick_csd_pending;
  558. struct call_single_data hrtick_csd;
  559. #endif
  560. struct hrtimer hrtick_timer;
  561. #endif
  562. #ifdef CONFIG_SCHEDSTATS
  563. /* latency stats */
  564. struct sched_info rq_sched_info;
  565. unsigned long long rq_cpu_time;
  566. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  567. /* sys_sched_yield() stats */
  568. unsigned int yld_count;
  569. /* schedule() stats */
  570. unsigned int sched_switch;
  571. unsigned int sched_count;
  572. unsigned int sched_goidle;
  573. /* try_to_wake_up() stats */
  574. unsigned int ttwu_count;
  575. unsigned int ttwu_local;
  576. #endif
  577. #ifdef CONFIG_SMP
  578. struct task_struct *wake_list;
  579. #endif
  580. };
  581. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  582. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
  583. static inline int cpu_of(struct rq *rq)
  584. {
  585. #ifdef CONFIG_SMP
  586. return rq->cpu;
  587. #else
  588. return 0;
  589. #endif
  590. }
  591. #define rcu_dereference_check_sched_domain(p) \
  592. rcu_dereference_check((p), \
  593. lockdep_is_held(&sched_domains_mutex))
  594. /*
  595. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  596. * See detach_destroy_domains: synchronize_sched for details.
  597. *
  598. * The domain tree of any CPU may only be accessed from within
  599. * preempt-disabled sections.
  600. */
  601. #define for_each_domain(cpu, __sd) \
  602. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  603. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  604. #define this_rq() (&__get_cpu_var(runqueues))
  605. #define task_rq(p) cpu_rq(task_cpu(p))
  606. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  607. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  608. #ifdef CONFIG_CGROUP_SCHED
  609. /*
  610. * Return the group to which this tasks belongs.
  611. *
  612. * We use task_subsys_state_check() and extend the RCU verification with
  613. * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
  614. * task it moves into the cgroup. Therefore by holding either of those locks,
  615. * we pin the task to the current cgroup.
  616. */
  617. static inline struct task_group *task_group(struct task_struct *p)
  618. {
  619. struct task_group *tg;
  620. struct cgroup_subsys_state *css;
  621. css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
  622. lockdep_is_held(&p->pi_lock) ||
  623. lockdep_is_held(&task_rq(p)->lock));
  624. tg = container_of(css, struct task_group, css);
  625. return autogroup_task_group(p, tg);
  626. }
  627. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  628. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  629. {
  630. #ifdef CONFIG_FAIR_GROUP_SCHED
  631. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  632. p->se.parent = task_group(p)->se[cpu];
  633. #endif
  634. #ifdef CONFIG_RT_GROUP_SCHED
  635. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  636. p->rt.parent = task_group(p)->rt_se[cpu];
  637. #endif
  638. }
  639. #else /* CONFIG_CGROUP_SCHED */
  640. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  641. static inline struct task_group *task_group(struct task_struct *p)
  642. {
  643. return NULL;
  644. }
  645. #endif /* CONFIG_CGROUP_SCHED */
  646. static void update_rq_clock_task(struct rq *rq, s64 delta);
  647. static void update_rq_clock(struct rq *rq)
  648. {
  649. s64 delta;
  650. if (rq->skip_clock_update > 0)
  651. return;
  652. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  653. rq->clock += delta;
  654. update_rq_clock_task(rq, delta);
  655. }
  656. /*
  657. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  658. */
  659. #ifdef CONFIG_SCHED_DEBUG
  660. # define const_debug __read_mostly
  661. #else
  662. # define const_debug static const
  663. #endif
  664. /**
  665. * runqueue_is_locked - Returns true if the current cpu runqueue is locked
  666. * @cpu: the processor in question.
  667. *
  668. * This interface allows printk to be called with the runqueue lock
  669. * held and know whether or not it is OK to wake up the klogd.
  670. */
  671. int runqueue_is_locked(int cpu)
  672. {
  673. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  674. }
  675. /*
  676. * Debugging: various feature bits
  677. */
  678. #define SCHED_FEAT(name, enabled) \
  679. __SCHED_FEAT_##name ,
  680. enum {
  681. #include "sched_features.h"
  682. };
  683. #undef SCHED_FEAT
  684. #define SCHED_FEAT(name, enabled) \
  685. (1UL << __SCHED_FEAT_##name) * enabled |
  686. const_debug unsigned int sysctl_sched_features =
  687. #include "sched_features.h"
  688. 0;
  689. #undef SCHED_FEAT
  690. #ifdef CONFIG_SCHED_DEBUG
  691. #define SCHED_FEAT(name, enabled) \
  692. #name ,
  693. static __read_mostly char *sched_feat_names[] = {
  694. #include "sched_features.h"
  695. NULL
  696. };
  697. #undef SCHED_FEAT
  698. static int sched_feat_show(struct seq_file *m, void *v)
  699. {
  700. int i;
  701. for (i = 0; sched_feat_names[i]; i++) {
  702. if (!(sysctl_sched_features & (1UL << i)))
  703. seq_puts(m, "NO_");
  704. seq_printf(m, "%s ", sched_feat_names[i]);
  705. }
  706. seq_puts(m, "\n");
  707. return 0;
  708. }
  709. static ssize_t
  710. sched_feat_write(struct file *filp, const char __user *ubuf,
  711. size_t cnt, loff_t *ppos)
  712. {
  713. char buf[64];
  714. char *cmp;
  715. int neg = 0;
  716. int i;
  717. if (cnt > 63)
  718. cnt = 63;
  719. if (copy_from_user(&buf, ubuf, cnt))
  720. return -EFAULT;
  721. buf[cnt] = 0;
  722. cmp = strstrip(buf);
  723. if (strncmp(cmp, "NO_", 3) == 0) {
  724. neg = 1;
  725. cmp += 3;
  726. }
  727. for (i = 0; sched_feat_names[i]; i++) {
  728. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  729. if (neg)
  730. sysctl_sched_features &= ~(1UL << i);
  731. else
  732. sysctl_sched_features |= (1UL << i);
  733. break;
  734. }
  735. }
  736. if (!sched_feat_names[i])
  737. return -EINVAL;
  738. *ppos += cnt;
  739. return cnt;
  740. }
  741. static int sched_feat_open(struct inode *inode, struct file *filp)
  742. {
  743. return single_open(filp, sched_feat_show, NULL);
  744. }
  745. static const struct file_operations sched_feat_fops = {
  746. .open = sched_feat_open,
  747. .write = sched_feat_write,
  748. .read = seq_read,
  749. .llseek = seq_lseek,
  750. .release = single_release,
  751. };
  752. static __init int sched_init_debug(void)
  753. {
  754. debugfs_create_file("sched_features", 0644, NULL, NULL,
  755. &sched_feat_fops);
  756. return 0;
  757. }
  758. late_initcall(sched_init_debug);
  759. #endif
  760. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  761. /*
  762. * Number of tasks to iterate in a single balance run.
  763. * Limited because this is done with IRQs disabled.
  764. */
  765. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  766. /*
  767. * period over which we average the RT time consumption, measured
  768. * in ms.
  769. *
  770. * default: 1s
  771. */
  772. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  773. /*
  774. * period over which we measure -rt task cpu usage in us.
  775. * default: 1s
  776. */
  777. unsigned int sysctl_sched_rt_period = 1000000;
  778. static __read_mostly int scheduler_running;
  779. /*
  780. * part of the period that we allow rt tasks to run in us.
  781. * default: 0.95s
  782. */
  783. int sysctl_sched_rt_runtime = 950000;
  784. static inline u64 global_rt_period(void)
  785. {
  786. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  787. }
  788. static inline u64 global_rt_runtime(void)
  789. {
  790. if (sysctl_sched_rt_runtime < 0)
  791. return RUNTIME_INF;
  792. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  793. }
  794. #ifndef prepare_arch_switch
  795. # define prepare_arch_switch(next) do { } while (0)
  796. #endif
  797. #ifndef finish_arch_switch
  798. # define finish_arch_switch(prev) do { } while (0)
  799. #endif
  800. static inline int task_current(struct rq *rq, struct task_struct *p)
  801. {
  802. return rq->curr == p;
  803. }
  804. static inline int task_running(struct rq *rq, struct task_struct *p)
  805. {
  806. #ifdef CONFIG_SMP
  807. return p->on_cpu;
  808. #else
  809. return task_current(rq, p);
  810. #endif
  811. }
  812. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  813. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  814. {
  815. #ifdef CONFIG_SMP
  816. /*
  817. * We can optimise this out completely for !SMP, because the
  818. * SMP rebalancing from interrupt is the only thing that cares
  819. * here.
  820. */
  821. next->on_cpu = 1;
  822. #endif
  823. }
  824. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  825. {
  826. #ifdef CONFIG_SMP
  827. /*
  828. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  829. * We must ensure this doesn't happen until the switch is completely
  830. * finished.
  831. */
  832. smp_wmb();
  833. prev->on_cpu = 0;
  834. #endif
  835. #ifdef CONFIG_DEBUG_SPINLOCK
  836. /* this is a valid case when another task releases the spinlock */
  837. rq->lock.owner = current;
  838. #endif
  839. /*
  840. * If we are tracking spinlock dependencies then we have to
  841. * fix up the runqueue lock - which gets 'carried over' from
  842. * prev into current:
  843. */
  844. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  845. raw_spin_unlock_irq(&rq->lock);
  846. }
  847. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  848. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  849. {
  850. #ifdef CONFIG_SMP
  851. /*
  852. * We can optimise this out completely for !SMP, because the
  853. * SMP rebalancing from interrupt is the only thing that cares
  854. * here.
  855. */
  856. next->on_cpu = 1;
  857. #endif
  858. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  859. raw_spin_unlock_irq(&rq->lock);
  860. #else
  861. raw_spin_unlock(&rq->lock);
  862. #endif
  863. }
  864. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  865. {
  866. #ifdef CONFIG_SMP
  867. /*
  868. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  869. * We must ensure this doesn't happen until the switch is completely
  870. * finished.
  871. */
  872. smp_wmb();
  873. prev->on_cpu = 0;
  874. #endif
  875. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  876. local_irq_enable();
  877. #endif
  878. }
  879. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  880. /*
  881. * __task_rq_lock - lock the rq @p resides on.
  882. */
  883. static inline struct rq *__task_rq_lock(struct task_struct *p)
  884. __acquires(rq->lock)
  885. {
  886. struct rq *rq;
  887. lockdep_assert_held(&p->pi_lock);
  888. for (;;) {
  889. rq = task_rq(p);
  890. raw_spin_lock(&rq->lock);
  891. if (likely(rq == task_rq(p)))
  892. return rq;
  893. raw_spin_unlock(&rq->lock);
  894. }
  895. }
  896. /*
  897. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  898. */
  899. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  900. __acquires(p->pi_lock)
  901. __acquires(rq->lock)
  902. {
  903. struct rq *rq;
  904. for (;;) {
  905. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  906. rq = task_rq(p);
  907. raw_spin_lock(&rq->lock);
  908. if (likely(rq == task_rq(p)))
  909. return rq;
  910. raw_spin_unlock(&rq->lock);
  911. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  912. }
  913. }
  914. static void __task_rq_unlock(struct rq *rq)
  915. __releases(rq->lock)
  916. {
  917. raw_spin_unlock(&rq->lock);
  918. }
  919. static inline void
  920. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  921. __releases(rq->lock)
  922. __releases(p->pi_lock)
  923. {
  924. raw_spin_unlock(&rq->lock);
  925. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  926. }
  927. /*
  928. * this_rq_lock - lock this runqueue and disable interrupts.
  929. */
  930. static struct rq *this_rq_lock(void)
  931. __acquires(rq->lock)
  932. {
  933. struct rq *rq;
  934. local_irq_disable();
  935. rq = this_rq();
  936. raw_spin_lock(&rq->lock);
  937. return rq;
  938. }
  939. #ifdef CONFIG_SCHED_HRTICK
  940. /*
  941. * Use HR-timers to deliver accurate preemption points.
  942. *
  943. * Its all a bit involved since we cannot program an hrt while holding the
  944. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  945. * reschedule event.
  946. *
  947. * When we get rescheduled we reprogram the hrtick_timer outside of the
  948. * rq->lock.
  949. */
  950. /*
  951. * Use hrtick when:
  952. * - enabled by features
  953. * - hrtimer is actually high res
  954. */
  955. static inline int hrtick_enabled(struct rq *rq)
  956. {
  957. if (!sched_feat(HRTICK))
  958. return 0;
  959. if (!cpu_active(cpu_of(rq)))
  960. return 0;
  961. return hrtimer_is_hres_active(&rq->hrtick_timer);
  962. }
  963. static void hrtick_clear(struct rq *rq)
  964. {
  965. if (hrtimer_active(&rq->hrtick_timer))
  966. hrtimer_cancel(&rq->hrtick_timer);
  967. }
  968. /*
  969. * High-resolution timer tick.
  970. * Runs from hardirq context with interrupts disabled.
  971. */
  972. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  973. {
  974. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  975. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  976. raw_spin_lock(&rq->lock);
  977. update_rq_clock(rq);
  978. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  979. raw_spin_unlock(&rq->lock);
  980. return HRTIMER_NORESTART;
  981. }
  982. #ifdef CONFIG_SMP
  983. /*
  984. * called from hardirq (IPI) context
  985. */
  986. static void __hrtick_start(void *arg)
  987. {
  988. struct rq *rq = arg;
  989. raw_spin_lock(&rq->lock);
  990. hrtimer_restart(&rq->hrtick_timer);
  991. rq->hrtick_csd_pending = 0;
  992. raw_spin_unlock(&rq->lock);
  993. }
  994. /*
  995. * Called to set the hrtick timer state.
  996. *
  997. * called with rq->lock held and irqs disabled
  998. */
  999. static void hrtick_start(struct rq *rq, u64 delay)
  1000. {
  1001. struct hrtimer *timer = &rq->hrtick_timer;
  1002. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  1003. hrtimer_set_expires(timer, time);
  1004. if (rq == this_rq()) {
  1005. hrtimer_restart(timer);
  1006. } else if (!rq->hrtick_csd_pending) {
  1007. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  1008. rq->hrtick_csd_pending = 1;
  1009. }
  1010. }
  1011. static int
  1012. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  1013. {
  1014. int cpu = (int)(long)hcpu;
  1015. switch (action) {
  1016. case CPU_UP_CANCELED:
  1017. case CPU_UP_CANCELED_FROZEN:
  1018. case CPU_DOWN_PREPARE:
  1019. case CPU_DOWN_PREPARE_FROZEN:
  1020. case CPU_DEAD:
  1021. case CPU_DEAD_FROZEN:
  1022. hrtick_clear(cpu_rq(cpu));
  1023. return NOTIFY_OK;
  1024. }
  1025. return NOTIFY_DONE;
  1026. }
  1027. static __init void init_hrtick(void)
  1028. {
  1029. hotcpu_notifier(hotplug_hrtick, 0);
  1030. }
  1031. #else
  1032. /*
  1033. * Called to set the hrtick timer state.
  1034. *
  1035. * called with rq->lock held and irqs disabled
  1036. */
  1037. static void hrtick_start(struct rq *rq, u64 delay)
  1038. {
  1039. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  1040. HRTIMER_MODE_REL_PINNED, 0);
  1041. }
  1042. static inline void init_hrtick(void)
  1043. {
  1044. }
  1045. #endif /* CONFIG_SMP */
  1046. static void init_rq_hrtick(struct rq *rq)
  1047. {
  1048. #ifdef CONFIG_SMP
  1049. rq->hrtick_csd_pending = 0;
  1050. rq->hrtick_csd.flags = 0;
  1051. rq->hrtick_csd.func = __hrtick_start;
  1052. rq->hrtick_csd.info = rq;
  1053. #endif
  1054. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1055. rq->hrtick_timer.function = hrtick;
  1056. }
  1057. #else /* CONFIG_SCHED_HRTICK */
  1058. static inline void hrtick_clear(struct rq *rq)
  1059. {
  1060. }
  1061. static inline void init_rq_hrtick(struct rq *rq)
  1062. {
  1063. }
  1064. static inline void init_hrtick(void)
  1065. {
  1066. }
  1067. #endif /* CONFIG_SCHED_HRTICK */
  1068. /*
  1069. * resched_task - mark a task 'to be rescheduled now'.
  1070. *
  1071. * On UP this means the setting of the need_resched flag, on SMP it
  1072. * might also involve a cross-CPU call to trigger the scheduler on
  1073. * the target CPU.
  1074. */
  1075. #ifdef CONFIG_SMP
  1076. #ifndef tsk_is_polling
  1077. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1078. #endif
  1079. static void resched_task(struct task_struct *p)
  1080. {
  1081. int cpu;
  1082. assert_raw_spin_locked(&task_rq(p)->lock);
  1083. if (test_tsk_need_resched(p))
  1084. return;
  1085. set_tsk_need_resched(p);
  1086. cpu = task_cpu(p);
  1087. if (cpu == smp_processor_id())
  1088. return;
  1089. /* NEED_RESCHED must be visible before we test polling */
  1090. smp_mb();
  1091. if (!tsk_is_polling(p))
  1092. smp_send_reschedule(cpu);
  1093. }
  1094. static void resched_cpu(int cpu)
  1095. {
  1096. struct rq *rq = cpu_rq(cpu);
  1097. unsigned long flags;
  1098. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  1099. return;
  1100. resched_task(cpu_curr(cpu));
  1101. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1102. }
  1103. #ifdef CONFIG_NO_HZ
  1104. /*
  1105. * In the semi idle case, use the nearest busy cpu for migrating timers
  1106. * from an idle cpu. This is good for power-savings.
  1107. *
  1108. * We don't do similar optimization for completely idle system, as
  1109. * selecting an idle cpu will add more delays to the timers than intended
  1110. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  1111. */
  1112. int get_nohz_timer_target(void)
  1113. {
  1114. int cpu = smp_processor_id();
  1115. int i;
  1116. struct sched_domain *sd;
  1117. rcu_read_lock();
  1118. for_each_domain(cpu, sd) {
  1119. for_each_cpu(i, sched_domain_span(sd)) {
  1120. if (!idle_cpu(i)) {
  1121. cpu = i;
  1122. goto unlock;
  1123. }
  1124. }
  1125. }
  1126. unlock:
  1127. rcu_read_unlock();
  1128. return cpu;
  1129. }
  1130. /*
  1131. * When add_timer_on() enqueues a timer into the timer wheel of an
  1132. * idle CPU then this timer might expire before the next timer event
  1133. * which is scheduled to wake up that CPU. In case of a completely
  1134. * idle system the next event might even be infinite time into the
  1135. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1136. * leaves the inner idle loop so the newly added timer is taken into
  1137. * account when the CPU goes back to idle and evaluates the timer
  1138. * wheel for the next timer event.
  1139. */
  1140. void wake_up_idle_cpu(int cpu)
  1141. {
  1142. struct rq *rq = cpu_rq(cpu);
  1143. if (cpu == smp_processor_id())
  1144. return;
  1145. /*
  1146. * This is safe, as this function is called with the timer
  1147. * wheel base lock of (cpu) held. When the CPU is on the way
  1148. * to idle and has not yet set rq->curr to idle then it will
  1149. * be serialized on the timer wheel base lock and take the new
  1150. * timer into account automatically.
  1151. */
  1152. if (rq->curr != rq->idle)
  1153. return;
  1154. /*
  1155. * We can set TIF_RESCHED on the idle task of the other CPU
  1156. * lockless. The worst case is that the other CPU runs the
  1157. * idle task through an additional NOOP schedule()
  1158. */
  1159. set_tsk_need_resched(rq->idle);
  1160. /* NEED_RESCHED must be visible before we test polling */
  1161. smp_mb();
  1162. if (!tsk_is_polling(rq->idle))
  1163. smp_send_reschedule(cpu);
  1164. }
  1165. #endif /* CONFIG_NO_HZ */
  1166. static u64 sched_avg_period(void)
  1167. {
  1168. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1169. }
  1170. static void sched_avg_update(struct rq *rq)
  1171. {
  1172. s64 period = sched_avg_period();
  1173. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1174. /*
  1175. * Inline assembly required to prevent the compiler
  1176. * optimising this loop into a divmod call.
  1177. * See __iter_div_u64_rem() for another example of this.
  1178. */
  1179. asm("" : "+rm" (rq->age_stamp));
  1180. rq->age_stamp += period;
  1181. rq->rt_avg /= 2;
  1182. }
  1183. }
  1184. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1185. {
  1186. rq->rt_avg += rt_delta;
  1187. sched_avg_update(rq);
  1188. }
  1189. #else /* !CONFIG_SMP */
  1190. static void resched_task(struct task_struct *p)
  1191. {
  1192. assert_raw_spin_locked(&task_rq(p)->lock);
  1193. set_tsk_need_resched(p);
  1194. }
  1195. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1196. {
  1197. }
  1198. static void sched_avg_update(struct rq *rq)
  1199. {
  1200. }
  1201. #endif /* CONFIG_SMP */
  1202. #if BITS_PER_LONG == 32
  1203. # define WMULT_CONST (~0UL)
  1204. #else
  1205. # define WMULT_CONST (1UL << 32)
  1206. #endif
  1207. #define WMULT_SHIFT 32
  1208. /*
  1209. * Shift right and round:
  1210. */
  1211. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1212. /*
  1213. * delta *= weight / lw
  1214. */
  1215. static unsigned long
  1216. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1217. struct load_weight *lw)
  1218. {
  1219. u64 tmp;
  1220. /*
  1221. * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
  1222. * entities since MIN_SHARES = 2. Treat weight as 1 if less than
  1223. * 2^SCHED_LOAD_RESOLUTION.
  1224. */
  1225. if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
  1226. tmp = (u64)delta_exec * scale_load_down(weight);
  1227. else
  1228. tmp = (u64)delta_exec;
  1229. if (!lw->inv_weight) {
  1230. unsigned long w = scale_load_down(lw->weight);
  1231. if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
  1232. lw->inv_weight = 1;
  1233. else if (unlikely(!w))
  1234. lw->inv_weight = WMULT_CONST;
  1235. else
  1236. lw->inv_weight = WMULT_CONST / w;
  1237. }
  1238. /*
  1239. * Check whether we'd overflow the 64-bit multiplication:
  1240. */
  1241. if (unlikely(tmp > WMULT_CONST))
  1242. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1243. WMULT_SHIFT/2);
  1244. else
  1245. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1246. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1247. }
  1248. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1249. {
  1250. lw->weight += inc;
  1251. lw->inv_weight = 0;
  1252. }
  1253. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1254. {
  1255. lw->weight -= dec;
  1256. lw->inv_weight = 0;
  1257. }
  1258. static inline void update_load_set(struct load_weight *lw, unsigned long w)
  1259. {
  1260. lw->weight = w;
  1261. lw->inv_weight = 0;
  1262. }
  1263. /*
  1264. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1265. * of tasks with abnormal "nice" values across CPUs the contribution that
  1266. * each task makes to its run queue's load is weighted according to its
  1267. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1268. * scaled version of the new time slice allocation that they receive on time
  1269. * slice expiry etc.
  1270. */
  1271. #define WEIGHT_IDLEPRIO 3
  1272. #define WMULT_IDLEPRIO 1431655765
  1273. /*
  1274. * Nice levels are multiplicative, with a gentle 10% change for every
  1275. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1276. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1277. * that remained on nice 0.
  1278. *
  1279. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1280. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1281. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1282. * If a task goes up by ~10% and another task goes down by ~10% then
  1283. * the relative distance between them is ~25%.)
  1284. */
  1285. static const int prio_to_weight[40] = {
  1286. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1287. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1288. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1289. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1290. /* 0 */ 1024, 820, 655, 526, 423,
  1291. /* 5 */ 335, 272, 215, 172, 137,
  1292. /* 10 */ 110, 87, 70, 56, 45,
  1293. /* 15 */ 36, 29, 23, 18, 15,
  1294. };
  1295. /*
  1296. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1297. *
  1298. * In cases where the weight does not change often, we can use the
  1299. * precalculated inverse to speed up arithmetics by turning divisions
  1300. * into multiplications:
  1301. */
  1302. static const u32 prio_to_wmult[40] = {
  1303. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1304. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1305. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1306. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1307. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1308. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1309. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1310. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1311. };
  1312. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1313. enum cpuacct_stat_index {
  1314. CPUACCT_STAT_USER, /* ... user mode */
  1315. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1316. CPUACCT_STAT_NSTATS,
  1317. };
  1318. #ifdef CONFIG_CGROUP_CPUACCT
  1319. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1320. static void cpuacct_update_stats(struct task_struct *tsk,
  1321. enum cpuacct_stat_index idx, cputime_t val);
  1322. #else
  1323. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1324. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1325. enum cpuacct_stat_index idx, cputime_t val) {}
  1326. #endif
  1327. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1328. {
  1329. update_load_add(&rq->load, load);
  1330. }
  1331. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1332. {
  1333. update_load_sub(&rq->load, load);
  1334. }
  1335. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  1336. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  1337. typedef int (*tg_visitor)(struct task_group *, void *);
  1338. /*
  1339. * Iterate task_group tree rooted at *from, calling @down when first entering a
  1340. * node and @up when leaving it for the final time.
  1341. *
  1342. * Caller must hold rcu_lock or sufficient equivalent.
  1343. */
  1344. static int walk_tg_tree_from(struct task_group *from,
  1345. tg_visitor down, tg_visitor up, void *data)
  1346. {
  1347. struct task_group *parent, *child;
  1348. int ret;
  1349. parent = from;
  1350. down:
  1351. ret = (*down)(parent, data);
  1352. if (ret)
  1353. goto out;
  1354. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1355. parent = child;
  1356. goto down;
  1357. up:
  1358. continue;
  1359. }
  1360. ret = (*up)(parent, data);
  1361. if (ret || parent == from)
  1362. goto out;
  1363. child = parent;
  1364. parent = parent->parent;
  1365. if (parent)
  1366. goto up;
  1367. out:
  1368. return ret;
  1369. }
  1370. /*
  1371. * Iterate the full tree, calling @down when first entering a node and @up when
  1372. * leaving it for the final time.
  1373. *
  1374. * Caller must hold rcu_lock or sufficient equivalent.
  1375. */
  1376. static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1377. {
  1378. return walk_tg_tree_from(&root_task_group, down, up, data);
  1379. }
  1380. static int tg_nop(struct task_group *tg, void *data)
  1381. {
  1382. return 0;
  1383. }
  1384. #endif
  1385. #ifdef CONFIG_SMP
  1386. /* Used instead of source_load when we know the type == 0 */
  1387. static unsigned long weighted_cpuload(const int cpu)
  1388. {
  1389. return cpu_rq(cpu)->load.weight;
  1390. }
  1391. /*
  1392. * Return a low guess at the load of a migration-source cpu weighted
  1393. * according to the scheduling class and "nice" value.
  1394. *
  1395. * We want to under-estimate the load of migration sources, to
  1396. * balance conservatively.
  1397. */
  1398. static unsigned long source_load(int cpu, int type)
  1399. {
  1400. struct rq *rq = cpu_rq(cpu);
  1401. unsigned long total = weighted_cpuload(cpu);
  1402. if (type == 0 || !sched_feat(LB_BIAS))
  1403. return total;
  1404. return min(rq->cpu_load[type-1], total);
  1405. }
  1406. /*
  1407. * Return a high guess at the load of a migration-target cpu weighted
  1408. * according to the scheduling class and "nice" value.
  1409. */
  1410. static unsigned long target_load(int cpu, int type)
  1411. {
  1412. struct rq *rq = cpu_rq(cpu);
  1413. unsigned long total = weighted_cpuload(cpu);
  1414. if (type == 0 || !sched_feat(LB_BIAS))
  1415. return total;
  1416. return max(rq->cpu_load[type-1], total);
  1417. }
  1418. static unsigned long power_of(int cpu)
  1419. {
  1420. return cpu_rq(cpu)->cpu_power;
  1421. }
  1422. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1423. static unsigned long cpu_avg_load_per_task(int cpu)
  1424. {
  1425. struct rq *rq = cpu_rq(cpu);
  1426. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1427. if (nr_running)
  1428. return rq->load.weight / nr_running;
  1429. return 0;
  1430. }
  1431. #ifdef CONFIG_PREEMPT
  1432. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1433. /*
  1434. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1435. * way at the expense of forcing extra atomic operations in all
  1436. * invocations. This assures that the double_lock is acquired using the
  1437. * same underlying policy as the spinlock_t on this architecture, which
  1438. * reduces latency compared to the unfair variant below. However, it
  1439. * also adds more overhead and therefore may reduce throughput.
  1440. */
  1441. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1442. __releases(this_rq->lock)
  1443. __acquires(busiest->lock)
  1444. __acquires(this_rq->lock)
  1445. {
  1446. raw_spin_unlock(&this_rq->lock);
  1447. double_rq_lock(this_rq, busiest);
  1448. return 1;
  1449. }
  1450. #else
  1451. /*
  1452. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1453. * latency by eliminating extra atomic operations when the locks are
  1454. * already in proper order on entry. This favors lower cpu-ids and will
  1455. * grant the double lock to lower cpus over higher ids under contention,
  1456. * regardless of entry order into the function.
  1457. */
  1458. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1459. __releases(this_rq->lock)
  1460. __acquires(busiest->lock)
  1461. __acquires(this_rq->lock)
  1462. {
  1463. int ret = 0;
  1464. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1465. if (busiest < this_rq) {
  1466. raw_spin_unlock(&this_rq->lock);
  1467. raw_spin_lock(&busiest->lock);
  1468. raw_spin_lock_nested(&this_rq->lock,
  1469. SINGLE_DEPTH_NESTING);
  1470. ret = 1;
  1471. } else
  1472. raw_spin_lock_nested(&busiest->lock,
  1473. SINGLE_DEPTH_NESTING);
  1474. }
  1475. return ret;
  1476. }
  1477. #endif /* CONFIG_PREEMPT */
  1478. /*
  1479. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1480. */
  1481. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1482. {
  1483. if (unlikely(!irqs_disabled())) {
  1484. /* printk() doesn't work good under rq->lock */
  1485. raw_spin_unlock(&this_rq->lock);
  1486. BUG_ON(1);
  1487. }
  1488. return _double_lock_balance(this_rq, busiest);
  1489. }
  1490. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1491. __releases(busiest->lock)
  1492. {
  1493. raw_spin_unlock(&busiest->lock);
  1494. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1495. }
  1496. /*
  1497. * double_rq_lock - safely lock two runqueues
  1498. *
  1499. * Note this does not disable interrupts like task_rq_lock,
  1500. * you need to do so manually before calling.
  1501. */
  1502. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1503. __acquires(rq1->lock)
  1504. __acquires(rq2->lock)
  1505. {
  1506. BUG_ON(!irqs_disabled());
  1507. if (rq1 == rq2) {
  1508. raw_spin_lock(&rq1->lock);
  1509. __acquire(rq2->lock); /* Fake it out ;) */
  1510. } else {
  1511. if (rq1 < rq2) {
  1512. raw_spin_lock(&rq1->lock);
  1513. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1514. } else {
  1515. raw_spin_lock(&rq2->lock);
  1516. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1517. }
  1518. }
  1519. }
  1520. /*
  1521. * double_rq_unlock - safely unlock two runqueues
  1522. *
  1523. * Note this does not restore interrupts like task_rq_unlock,
  1524. * you need to do so manually after calling.
  1525. */
  1526. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1527. __releases(rq1->lock)
  1528. __releases(rq2->lock)
  1529. {
  1530. raw_spin_unlock(&rq1->lock);
  1531. if (rq1 != rq2)
  1532. raw_spin_unlock(&rq2->lock);
  1533. else
  1534. __release(rq2->lock);
  1535. }
  1536. #else /* CONFIG_SMP */
  1537. /*
  1538. * double_rq_lock - safely lock two runqueues
  1539. *
  1540. * Note this does not disable interrupts like task_rq_lock,
  1541. * you need to do so manually before calling.
  1542. */
  1543. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1544. __acquires(rq1->lock)
  1545. __acquires(rq2->lock)
  1546. {
  1547. BUG_ON(!irqs_disabled());
  1548. BUG_ON(rq1 != rq2);
  1549. raw_spin_lock(&rq1->lock);
  1550. __acquire(rq2->lock); /* Fake it out ;) */
  1551. }
  1552. /*
  1553. * double_rq_unlock - safely unlock two runqueues
  1554. *
  1555. * Note this does not restore interrupts like task_rq_unlock,
  1556. * you need to do so manually after calling.
  1557. */
  1558. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1559. __releases(rq1->lock)
  1560. __releases(rq2->lock)
  1561. {
  1562. BUG_ON(rq1 != rq2);
  1563. raw_spin_unlock(&rq1->lock);
  1564. __release(rq2->lock);
  1565. }
  1566. #endif
  1567. static void calc_load_account_idle(struct rq *this_rq);
  1568. static void update_sysctl(void);
  1569. static int get_update_sysctl_factor(void);
  1570. static void update_cpu_load(struct rq *this_rq);
  1571. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1572. {
  1573. set_task_rq(p, cpu);
  1574. #ifdef CONFIG_SMP
  1575. /*
  1576. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1577. * successfuly executed on another CPU. We must ensure that updates of
  1578. * per-task data have been completed by this moment.
  1579. */
  1580. smp_wmb();
  1581. task_thread_info(p)->cpu = cpu;
  1582. #endif
  1583. }
  1584. static const struct sched_class rt_sched_class;
  1585. #define sched_class_highest (&stop_sched_class)
  1586. #define for_each_class(class) \
  1587. for (class = sched_class_highest; class; class = class->next)
  1588. #include "sched_stats.h"
  1589. static void inc_nr_running(struct rq *rq)
  1590. {
  1591. rq->nr_running++;
  1592. }
  1593. static void dec_nr_running(struct rq *rq)
  1594. {
  1595. rq->nr_running--;
  1596. }
  1597. static void set_load_weight(struct task_struct *p)
  1598. {
  1599. int prio = p->static_prio - MAX_RT_PRIO;
  1600. struct load_weight *load = &p->se.load;
  1601. /*
  1602. * SCHED_IDLE tasks get minimal weight:
  1603. */
  1604. if (p->policy == SCHED_IDLE) {
  1605. load->weight = scale_load(WEIGHT_IDLEPRIO);
  1606. load->inv_weight = WMULT_IDLEPRIO;
  1607. return;
  1608. }
  1609. load->weight = scale_load(prio_to_weight[prio]);
  1610. load->inv_weight = prio_to_wmult[prio];
  1611. }
  1612. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1613. {
  1614. update_rq_clock(rq);
  1615. sched_info_queued(p);
  1616. p->sched_class->enqueue_task(rq, p, flags);
  1617. }
  1618. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1619. {
  1620. update_rq_clock(rq);
  1621. sched_info_dequeued(p);
  1622. p->sched_class->dequeue_task(rq, p, flags);
  1623. }
  1624. /*
  1625. * activate_task - move a task to the runqueue.
  1626. */
  1627. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1628. {
  1629. if (task_contributes_to_load(p))
  1630. rq->nr_uninterruptible--;
  1631. enqueue_task(rq, p, flags);
  1632. }
  1633. /*
  1634. * deactivate_task - remove a task from the runqueue.
  1635. */
  1636. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1637. {
  1638. if (task_contributes_to_load(p))
  1639. rq->nr_uninterruptible++;
  1640. dequeue_task(rq, p, flags);
  1641. }
  1642. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1643. /*
  1644. * There are no locks covering percpu hardirq/softirq time.
  1645. * They are only modified in account_system_vtime, on corresponding CPU
  1646. * with interrupts disabled. So, writes are safe.
  1647. * They are read and saved off onto struct rq in update_rq_clock().
  1648. * This may result in other CPU reading this CPU's irq time and can
  1649. * race with irq/account_system_vtime on this CPU. We would either get old
  1650. * or new value with a side effect of accounting a slice of irq time to wrong
  1651. * task when irq is in progress while we read rq->clock. That is a worthy
  1652. * compromise in place of having locks on each irq in account_system_time.
  1653. */
  1654. static DEFINE_PER_CPU(u64, cpu_hardirq_time);
  1655. static DEFINE_PER_CPU(u64, cpu_softirq_time);
  1656. static DEFINE_PER_CPU(u64, irq_start_time);
  1657. static int sched_clock_irqtime;
  1658. void enable_sched_clock_irqtime(void)
  1659. {
  1660. sched_clock_irqtime = 1;
  1661. }
  1662. void disable_sched_clock_irqtime(void)
  1663. {
  1664. sched_clock_irqtime = 0;
  1665. }
  1666. #ifndef CONFIG_64BIT
  1667. static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
  1668. static inline void irq_time_write_begin(void)
  1669. {
  1670. __this_cpu_inc(irq_time_seq.sequence);
  1671. smp_wmb();
  1672. }
  1673. static inline void irq_time_write_end(void)
  1674. {
  1675. smp_wmb();
  1676. __this_cpu_inc(irq_time_seq.sequence);
  1677. }
  1678. static inline u64 irq_time_read(int cpu)
  1679. {
  1680. u64 irq_time;
  1681. unsigned seq;
  1682. do {
  1683. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  1684. irq_time = per_cpu(cpu_softirq_time, cpu) +
  1685. per_cpu(cpu_hardirq_time, cpu);
  1686. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  1687. return irq_time;
  1688. }
  1689. #else /* CONFIG_64BIT */
  1690. static inline void irq_time_write_begin(void)
  1691. {
  1692. }
  1693. static inline void irq_time_write_end(void)
  1694. {
  1695. }
  1696. static inline u64 irq_time_read(int cpu)
  1697. {
  1698. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  1699. }
  1700. #endif /* CONFIG_64BIT */
  1701. /*
  1702. * Called before incrementing preempt_count on {soft,}irq_enter
  1703. * and before decrementing preempt_count on {soft,}irq_exit.
  1704. */
  1705. void account_system_vtime(struct task_struct *curr)
  1706. {
  1707. unsigned long flags;
  1708. s64 delta;
  1709. int cpu;
  1710. if (!sched_clock_irqtime)
  1711. return;
  1712. local_irq_save(flags);
  1713. cpu = smp_processor_id();
  1714. delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
  1715. __this_cpu_add(irq_start_time, delta);
  1716. irq_time_write_begin();
  1717. /*
  1718. * We do not account for softirq time from ksoftirqd here.
  1719. * We want to continue accounting softirq time to ksoftirqd thread
  1720. * in that case, so as not to confuse scheduler with a special task
  1721. * that do not consume any time, but still wants to run.
  1722. */
  1723. if (hardirq_count())
  1724. __this_cpu_add(cpu_hardirq_time, delta);
  1725. else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
  1726. __this_cpu_add(cpu_softirq_time, delta);
  1727. irq_time_write_end();
  1728. local_irq_restore(flags);
  1729. }
  1730. EXPORT_SYMBOL_GPL(account_system_vtime);
  1731. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  1732. #ifdef CONFIG_PARAVIRT
  1733. static inline u64 steal_ticks(u64 steal)
  1734. {
  1735. if (unlikely(steal > NSEC_PER_SEC))
  1736. return div_u64(steal, TICK_NSEC);
  1737. return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
  1738. }
  1739. #endif
  1740. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1741. {
  1742. /*
  1743. * In theory, the compile should just see 0 here, and optimize out the call
  1744. * to sched_rt_avg_update. But I don't trust it...
  1745. */
  1746. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  1747. s64 steal = 0, irq_delta = 0;
  1748. #endif
  1749. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1750. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  1751. /*
  1752. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  1753. * this case when a previous update_rq_clock() happened inside a
  1754. * {soft,}irq region.
  1755. *
  1756. * When this happens, we stop ->clock_task and only update the
  1757. * prev_irq_time stamp to account for the part that fit, so that a next
  1758. * update will consume the rest. This ensures ->clock_task is
  1759. * monotonic.
  1760. *
  1761. * It does however cause some slight miss-attribution of {soft,}irq
  1762. * time, a more accurate solution would be to update the irq_time using
  1763. * the current rq->clock timestamp, except that would require using
  1764. * atomic ops.
  1765. */
  1766. if (irq_delta > delta)
  1767. irq_delta = delta;
  1768. rq->prev_irq_time += irq_delta;
  1769. delta -= irq_delta;
  1770. #endif
  1771. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  1772. if (static_branch((&paravirt_steal_rq_enabled))) {
  1773. u64 st;
  1774. steal = paravirt_steal_clock(cpu_of(rq));
  1775. steal -= rq->prev_steal_time_rq;
  1776. if (unlikely(steal > delta))
  1777. steal = delta;
  1778. st = steal_ticks(steal);
  1779. steal = st * TICK_NSEC;
  1780. rq->prev_steal_time_rq += steal;
  1781. delta -= steal;
  1782. }
  1783. #endif
  1784. rq->clock_task += delta;
  1785. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  1786. if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
  1787. sched_rt_avg_update(rq, irq_delta + steal);
  1788. #endif
  1789. }
  1790. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1791. static int irqtime_account_hi_update(void)
  1792. {
  1793. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1794. unsigned long flags;
  1795. u64 latest_ns;
  1796. int ret = 0;
  1797. local_irq_save(flags);
  1798. latest_ns = this_cpu_read(cpu_hardirq_time);
  1799. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
  1800. ret = 1;
  1801. local_irq_restore(flags);
  1802. return ret;
  1803. }
  1804. static int irqtime_account_si_update(void)
  1805. {
  1806. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1807. unsigned long flags;
  1808. u64 latest_ns;
  1809. int ret = 0;
  1810. local_irq_save(flags);
  1811. latest_ns = this_cpu_read(cpu_softirq_time);
  1812. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
  1813. ret = 1;
  1814. local_irq_restore(flags);
  1815. return ret;
  1816. }
  1817. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  1818. #define sched_clock_irqtime (0)
  1819. #endif
  1820. #include "sched_idletask.c"
  1821. #include "sched_fair.c"
  1822. #include "sched_rt.c"
  1823. #include "sched_autogroup.c"
  1824. #include "sched_stoptask.c"
  1825. #ifdef CONFIG_SCHED_DEBUG
  1826. # include "sched_debug.c"
  1827. #endif
  1828. void sched_set_stop_task(int cpu, struct task_struct *stop)
  1829. {
  1830. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  1831. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  1832. if (stop) {
  1833. /*
  1834. * Make it appear like a SCHED_FIFO task, its something
  1835. * userspace knows about and won't get confused about.
  1836. *
  1837. * Also, it will make PI more or less work without too
  1838. * much confusion -- but then, stop work should not
  1839. * rely on PI working anyway.
  1840. */
  1841. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  1842. stop->sched_class = &stop_sched_class;
  1843. }
  1844. cpu_rq(cpu)->stop = stop;
  1845. if (old_stop) {
  1846. /*
  1847. * Reset it back to a normal scheduling class so that
  1848. * it can die in pieces.
  1849. */
  1850. old_stop->sched_class = &rt_sched_class;
  1851. }
  1852. }
  1853. /*
  1854. * __normal_prio - return the priority that is based on the static prio
  1855. */
  1856. static inline int __normal_prio(struct task_struct *p)
  1857. {
  1858. return p->static_prio;
  1859. }
  1860. /*
  1861. * Calculate the expected normal priority: i.e. priority
  1862. * without taking RT-inheritance into account. Might be
  1863. * boosted by interactivity modifiers. Changes upon fork,
  1864. * setprio syscalls, and whenever the interactivity
  1865. * estimator recalculates.
  1866. */
  1867. static inline int normal_prio(struct task_struct *p)
  1868. {
  1869. int prio;
  1870. if (task_has_rt_policy(p))
  1871. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1872. else
  1873. prio = __normal_prio(p);
  1874. return prio;
  1875. }
  1876. /*
  1877. * Calculate the current priority, i.e. the priority
  1878. * taken into account by the scheduler. This value might
  1879. * be boosted by RT tasks, or might be boosted by
  1880. * interactivity modifiers. Will be RT if the task got
  1881. * RT-boosted. If not then it returns p->normal_prio.
  1882. */
  1883. static int effective_prio(struct task_struct *p)
  1884. {
  1885. p->normal_prio = normal_prio(p);
  1886. /*
  1887. * If we are RT tasks or we were boosted to RT priority,
  1888. * keep the priority unchanged. Otherwise, update priority
  1889. * to the normal priority:
  1890. */
  1891. if (!rt_prio(p->prio))
  1892. return p->normal_prio;
  1893. return p->prio;
  1894. }
  1895. /**
  1896. * task_curr - is this task currently executing on a CPU?
  1897. * @p: the task in question.
  1898. */
  1899. inline int task_curr(const struct task_struct *p)
  1900. {
  1901. return cpu_curr(task_cpu(p)) == p;
  1902. }
  1903. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1904. const struct sched_class *prev_class,
  1905. int oldprio)
  1906. {
  1907. if (prev_class != p->sched_class) {
  1908. if (prev_class->switched_from)
  1909. prev_class->switched_from(rq, p);
  1910. p->sched_class->switched_to(rq, p);
  1911. } else if (oldprio != p->prio)
  1912. p->sched_class->prio_changed(rq, p, oldprio);
  1913. }
  1914. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  1915. {
  1916. const struct sched_class *class;
  1917. if (p->sched_class == rq->curr->sched_class) {
  1918. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  1919. } else {
  1920. for_each_class(class) {
  1921. if (class == rq->curr->sched_class)
  1922. break;
  1923. if (class == p->sched_class) {
  1924. resched_task(rq->curr);
  1925. break;
  1926. }
  1927. }
  1928. }
  1929. /*
  1930. * A queue event has occurred, and we're going to schedule. In
  1931. * this case, we can save a useless back to back clock update.
  1932. */
  1933. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  1934. rq->skip_clock_update = 1;
  1935. }
  1936. #ifdef CONFIG_SMP
  1937. /*
  1938. * Is this task likely cache-hot:
  1939. */
  1940. static int
  1941. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1942. {
  1943. s64 delta;
  1944. if (p->sched_class != &fair_sched_class)
  1945. return 0;
  1946. if (unlikely(p->policy == SCHED_IDLE))
  1947. return 0;
  1948. /*
  1949. * Buddy candidates are cache hot:
  1950. */
  1951. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1952. (&p->se == cfs_rq_of(&p->se)->next ||
  1953. &p->se == cfs_rq_of(&p->se)->last))
  1954. return 1;
  1955. if (sysctl_sched_migration_cost == -1)
  1956. return 1;
  1957. if (sysctl_sched_migration_cost == 0)
  1958. return 0;
  1959. delta = now - p->se.exec_start;
  1960. return delta < (s64)sysctl_sched_migration_cost;
  1961. }
  1962. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1963. {
  1964. #ifdef CONFIG_SCHED_DEBUG
  1965. /*
  1966. * We should never call set_task_cpu() on a blocked task,
  1967. * ttwu() will sort out the placement.
  1968. */
  1969. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1970. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1971. #ifdef CONFIG_LOCKDEP
  1972. /*
  1973. * The caller should hold either p->pi_lock or rq->lock, when changing
  1974. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  1975. *
  1976. * sched_move_task() holds both and thus holding either pins the cgroup,
  1977. * see set_task_rq().
  1978. *
  1979. * Furthermore, all task_rq users should acquire both locks, see
  1980. * task_rq_lock().
  1981. */
  1982. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  1983. lockdep_is_held(&task_rq(p)->lock)));
  1984. #endif
  1985. #endif
  1986. trace_sched_migrate_task(p, new_cpu);
  1987. if (task_cpu(p) != new_cpu) {
  1988. p->se.nr_migrations++;
  1989. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  1990. }
  1991. __set_task_cpu(p, new_cpu);
  1992. }
  1993. struct migration_arg {
  1994. struct task_struct *task;
  1995. int dest_cpu;
  1996. };
  1997. static int migration_cpu_stop(void *data);
  1998. /*
  1999. * wait_task_inactive - wait for a thread to unschedule.
  2000. *
  2001. * If @match_state is nonzero, it's the @p->state value just checked and
  2002. * not expected to change. If it changes, i.e. @p might have woken up,
  2003. * then return zero. When we succeed in waiting for @p to be off its CPU,
  2004. * we return a positive number (its total switch count). If a second call
  2005. * a short while later returns the same number, the caller can be sure that
  2006. * @p has remained unscheduled the whole time.
  2007. *
  2008. * The caller must ensure that the task *will* unschedule sometime soon,
  2009. * else this function might spin for a *long* time. This function can't
  2010. * be called with interrupts off, or it may introduce deadlock with
  2011. * smp_call_function() if an IPI is sent by the same process we are
  2012. * waiting to become inactive.
  2013. */
  2014. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  2015. {
  2016. unsigned long flags;
  2017. int running, on_rq;
  2018. unsigned long ncsw;
  2019. struct rq *rq;
  2020. for (;;) {
  2021. /*
  2022. * We do the initial early heuristics without holding
  2023. * any task-queue locks at all. We'll only try to get
  2024. * the runqueue lock when things look like they will
  2025. * work out!
  2026. */
  2027. rq = task_rq(p);
  2028. /*
  2029. * If the task is actively running on another CPU
  2030. * still, just relax and busy-wait without holding
  2031. * any locks.
  2032. *
  2033. * NOTE! Since we don't hold any locks, it's not
  2034. * even sure that "rq" stays as the right runqueue!
  2035. * But we don't care, since "task_running()" will
  2036. * return false if the runqueue has changed and p
  2037. * is actually now running somewhere else!
  2038. */
  2039. while (task_running(rq, p)) {
  2040. if (match_state && unlikely(p->state != match_state))
  2041. return 0;
  2042. cpu_relax();
  2043. }
  2044. /*
  2045. * Ok, time to look more closely! We need the rq
  2046. * lock now, to be *sure*. If we're wrong, we'll
  2047. * just go back and repeat.
  2048. */
  2049. rq = task_rq_lock(p, &flags);
  2050. trace_sched_wait_task(p);
  2051. running = task_running(rq, p);
  2052. on_rq = p->on_rq;
  2053. ncsw = 0;
  2054. if (!match_state || p->state == match_state)
  2055. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  2056. task_rq_unlock(rq, p, &flags);
  2057. /*
  2058. * If it changed from the expected state, bail out now.
  2059. */
  2060. if (unlikely(!ncsw))
  2061. break;
  2062. /*
  2063. * Was it really running after all now that we
  2064. * checked with the proper locks actually held?
  2065. *
  2066. * Oops. Go back and try again..
  2067. */
  2068. if (unlikely(running)) {
  2069. cpu_relax();
  2070. continue;
  2071. }
  2072. /*
  2073. * It's not enough that it's not actively running,
  2074. * it must be off the runqueue _entirely_, and not
  2075. * preempted!
  2076. *
  2077. * So if it was still runnable (but just not actively
  2078. * running right now), it's preempted, and we should
  2079. * yield - it could be a while.
  2080. */
  2081. if (unlikely(on_rq)) {
  2082. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  2083. set_current_state(TASK_UNINTERRUPTIBLE);
  2084. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  2085. continue;
  2086. }
  2087. /*
  2088. * Ahh, all good. It wasn't running, and it wasn't
  2089. * runnable, which means that it will never become
  2090. * running in the future either. We're all done!
  2091. */
  2092. break;
  2093. }
  2094. return ncsw;
  2095. }
  2096. /***
  2097. * kick_process - kick a running thread to enter/exit the kernel
  2098. * @p: the to-be-kicked thread
  2099. *
  2100. * Cause a process which is running on another CPU to enter
  2101. * kernel-mode, without any delay. (to get signals handled.)
  2102. *
  2103. * NOTE: this function doesn't have to take the runqueue lock,
  2104. * because all it wants to ensure is that the remote task enters
  2105. * the kernel. If the IPI races and the task has been migrated
  2106. * to another CPU then no harm is done and the purpose has been
  2107. * achieved as well.
  2108. */
  2109. void kick_process(struct task_struct *p)
  2110. {
  2111. int cpu;
  2112. preempt_disable();
  2113. cpu = task_cpu(p);
  2114. if ((cpu != smp_processor_id()) && task_curr(p))
  2115. smp_send_reschedule(cpu);
  2116. preempt_enable();
  2117. }
  2118. EXPORT_SYMBOL_GPL(kick_process);
  2119. #endif /* CONFIG_SMP */
  2120. #ifdef CONFIG_SMP
  2121. /*
  2122. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  2123. */
  2124. static int select_fallback_rq(int cpu, struct task_struct *p)
  2125. {
  2126. int dest_cpu;
  2127. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  2128. /* Look for allowed, online CPU in same node. */
  2129. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  2130. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  2131. return dest_cpu;
  2132. /* Any allowed, online CPU? */
  2133. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  2134. if (dest_cpu < nr_cpu_ids)
  2135. return dest_cpu;
  2136. /* No more Mr. Nice Guy. */
  2137. dest_cpu = cpuset_cpus_allowed_fallback(p);
  2138. /*
  2139. * Don't tell them about moving exiting tasks or
  2140. * kernel threads (both mm NULL), since they never
  2141. * leave kernel.
  2142. */
  2143. if (p->mm && printk_ratelimit()) {
  2144. printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
  2145. task_pid_nr(p), p->comm, cpu);
  2146. }
  2147. return dest_cpu;
  2148. }
  2149. /*
  2150. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  2151. */
  2152. static inline
  2153. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  2154. {
  2155. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  2156. /*
  2157. * In order not to call set_task_cpu() on a blocking task we need
  2158. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  2159. * cpu.
  2160. *
  2161. * Since this is common to all placement strategies, this lives here.
  2162. *
  2163. * [ this allows ->select_task() to simply return task_cpu(p) and
  2164. * not worry about this generic constraint ]
  2165. */
  2166. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  2167. !cpu_online(cpu)))
  2168. cpu = select_fallback_rq(task_cpu(p), p);
  2169. return cpu;
  2170. }
  2171. static void update_avg(u64 *avg, u64 sample)
  2172. {
  2173. s64 diff = sample - *avg;
  2174. *avg += diff >> 3;
  2175. }
  2176. #endif
  2177. static void
  2178. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  2179. {
  2180. #ifdef CONFIG_SCHEDSTATS
  2181. struct rq *rq = this_rq();
  2182. #ifdef CONFIG_SMP
  2183. int this_cpu = smp_processor_id();
  2184. if (cpu == this_cpu) {
  2185. schedstat_inc(rq, ttwu_local);
  2186. schedstat_inc(p, se.statistics.nr_wakeups_local);
  2187. } else {
  2188. struct sched_domain *sd;
  2189. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  2190. rcu_read_lock();
  2191. for_each_domain(this_cpu, sd) {
  2192. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2193. schedstat_inc(sd, ttwu_wake_remote);
  2194. break;
  2195. }
  2196. }
  2197. rcu_read_unlock();
  2198. }
  2199. if (wake_flags & WF_MIGRATED)
  2200. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  2201. #endif /* CONFIG_SMP */
  2202. schedstat_inc(rq, ttwu_count);
  2203. schedstat_inc(p, se.statistics.nr_wakeups);
  2204. if (wake_flags & WF_SYNC)
  2205. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  2206. #endif /* CONFIG_SCHEDSTATS */
  2207. }
  2208. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  2209. {
  2210. activate_task(rq, p, en_flags);
  2211. p->on_rq = 1;
  2212. /* if a worker is waking up, notify workqueue */
  2213. if (p->flags & PF_WQ_WORKER)
  2214. wq_worker_waking_up(p, cpu_of(rq));
  2215. }
  2216. /*
  2217. * Mark the task runnable and perform wakeup-preemption.
  2218. */
  2219. static void
  2220. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  2221. {
  2222. trace_sched_wakeup(p, true);
  2223. check_preempt_curr(rq, p, wake_flags);
  2224. p->state = TASK_RUNNING;
  2225. #ifdef CONFIG_SMP
  2226. if (p->sched_class->task_woken)
  2227. p->sched_class->task_woken(rq, p);
  2228. if (rq->idle_stamp) {
  2229. u64 delta = rq->clock - rq->idle_stamp;
  2230. u64 max = 2*sysctl_sched_migration_cost;
  2231. if (delta > max)
  2232. rq->avg_idle = max;
  2233. else
  2234. update_avg(&rq->avg_idle, delta);
  2235. rq->idle_stamp = 0;
  2236. }
  2237. #endif
  2238. }
  2239. static void
  2240. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  2241. {
  2242. #ifdef CONFIG_SMP
  2243. if (p->sched_contributes_to_load)
  2244. rq->nr_uninterruptible--;
  2245. #endif
  2246. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  2247. ttwu_do_wakeup(rq, p, wake_flags);
  2248. }
  2249. /*
  2250. * Called in case the task @p isn't fully descheduled from its runqueue,
  2251. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  2252. * since all we need to do is flip p->state to TASK_RUNNING, since
  2253. * the task is still ->on_rq.
  2254. */
  2255. static int ttwu_remote(struct task_struct *p, int wake_flags)
  2256. {
  2257. struct rq *rq;
  2258. int ret = 0;
  2259. rq = __task_rq_lock(p);
  2260. if (p->on_rq) {
  2261. ttwu_do_wakeup(rq, p, wake_flags);
  2262. ret = 1;
  2263. }
  2264. __task_rq_unlock(rq);
  2265. return ret;
  2266. }
  2267. #ifdef CONFIG_SMP
  2268. static void sched_ttwu_do_pending(struct task_struct *list)
  2269. {
  2270. struct rq *rq = this_rq();
  2271. raw_spin_lock(&rq->lock);
  2272. while (list) {
  2273. struct task_struct *p = list;
  2274. list = list->wake_entry;
  2275. ttwu_do_activate(rq, p, 0);
  2276. }
  2277. raw_spin_unlock(&rq->lock);
  2278. }
  2279. #ifdef CONFIG_HOTPLUG_CPU
  2280. static void sched_ttwu_pending(void)
  2281. {
  2282. struct rq *rq = this_rq();
  2283. struct task_struct *list = xchg(&rq->wake_list, NULL);
  2284. if (!list)
  2285. return;
  2286. sched_ttwu_do_pending(list);
  2287. }
  2288. #endif /* CONFIG_HOTPLUG_CPU */
  2289. void scheduler_ipi(void)
  2290. {
  2291. struct rq *rq = this_rq();
  2292. struct task_struct *list = xchg(&rq->wake_list, NULL);
  2293. if (!list)
  2294. return;
  2295. /*
  2296. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  2297. * traditionally all their work was done from the interrupt return
  2298. * path. Now that we actually do some work, we need to make sure
  2299. * we do call them.
  2300. *
  2301. * Some archs already do call them, luckily irq_enter/exit nest
  2302. * properly.
  2303. *
  2304. * Arguably we should visit all archs and update all handlers,
  2305. * however a fair share of IPIs are still resched only so this would
  2306. * somewhat pessimize the simple resched case.
  2307. */
  2308. irq_enter();
  2309. sched_ttwu_do_pending(list);
  2310. irq_exit();
  2311. }
  2312. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  2313. {
  2314. struct rq *rq = cpu_rq(cpu);
  2315. struct task_struct *next = rq->wake_list;
  2316. for (;;) {
  2317. struct task_struct *old = next;
  2318. p->wake_entry = next;
  2319. next = cmpxchg(&rq->wake_list, old, p);
  2320. if (next == old)
  2321. break;
  2322. }
  2323. if (!next)
  2324. smp_send_reschedule(cpu);
  2325. }
  2326. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2327. static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
  2328. {
  2329. struct rq *rq;
  2330. int ret = 0;
  2331. rq = __task_rq_lock(p);
  2332. if (p->on_cpu) {
  2333. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  2334. ttwu_do_wakeup(rq, p, wake_flags);
  2335. ret = 1;
  2336. }
  2337. __task_rq_unlock(rq);
  2338. return ret;
  2339. }
  2340. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2341. #endif /* CONFIG_SMP */
  2342. static void ttwu_queue(struct task_struct *p, int cpu)
  2343. {
  2344. struct rq *rq = cpu_rq(cpu);
  2345. #if defined(CONFIG_SMP)
  2346. if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
  2347. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  2348. ttwu_queue_remote(p, cpu);
  2349. return;
  2350. }
  2351. #endif
  2352. raw_spin_lock(&rq->lock);
  2353. ttwu_do_activate(rq, p, 0);
  2354. raw_spin_unlock(&rq->lock);
  2355. }
  2356. /**
  2357. * try_to_wake_up - wake up a thread
  2358. * @p: the thread to be awakened
  2359. * @state: the mask of task states that can be woken
  2360. * @wake_flags: wake modifier flags (WF_*)
  2361. *
  2362. * Put it on the run-queue if it's not already there. The "current"
  2363. * thread is always on the run-queue (except when the actual
  2364. * re-schedule is in progress), and as such you're allowed to do
  2365. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2366. * runnable without the overhead of this.
  2367. *
  2368. * Returns %true if @p was woken up, %false if it was already running
  2369. * or @state didn't match @p's state.
  2370. */
  2371. static int
  2372. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  2373. {
  2374. unsigned long flags;
  2375. int cpu, success = 0;
  2376. smp_wmb();
  2377. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2378. if (!(p->state & state))
  2379. goto out;
  2380. success = 1; /* we're going to change ->state */
  2381. cpu = task_cpu(p);
  2382. if (p->on_rq && ttwu_remote(p, wake_flags))
  2383. goto stat;
  2384. #ifdef CONFIG_SMP
  2385. /*
  2386. * If the owning (remote) cpu is still in the middle of schedule() with
  2387. * this task as prev, wait until its done referencing the task.
  2388. */
  2389. while (p->on_cpu) {
  2390. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2391. /*
  2392. * In case the architecture enables interrupts in
  2393. * context_switch(), we cannot busy wait, since that
  2394. * would lead to deadlocks when an interrupt hits and
  2395. * tries to wake up @prev. So bail and do a complete
  2396. * remote wakeup.
  2397. */
  2398. if (ttwu_activate_remote(p, wake_flags))
  2399. goto stat;
  2400. #else
  2401. cpu_relax();
  2402. #endif
  2403. }
  2404. /*
  2405. * Pairs with the smp_wmb() in finish_lock_switch().
  2406. */
  2407. smp_rmb();
  2408. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  2409. p->state = TASK_WAKING;
  2410. if (p->sched_class->task_waking)
  2411. p->sched_class->task_waking(p);
  2412. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  2413. if (task_cpu(p) != cpu) {
  2414. wake_flags |= WF_MIGRATED;
  2415. set_task_cpu(p, cpu);
  2416. }
  2417. #endif /* CONFIG_SMP */
  2418. ttwu_queue(p, cpu);
  2419. stat:
  2420. ttwu_stat(p, cpu, wake_flags);
  2421. out:
  2422. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2423. return success;
  2424. }
  2425. /**
  2426. * try_to_wake_up_local - try to wake up a local task with rq lock held
  2427. * @p: the thread to be awakened
  2428. *
  2429. * Put @p on the run-queue if it's not already there. The caller must
  2430. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  2431. * the current task.
  2432. */
  2433. static void try_to_wake_up_local(struct task_struct *p)
  2434. {
  2435. struct rq *rq = task_rq(p);
  2436. BUG_ON(rq != this_rq());
  2437. BUG_ON(p == current);
  2438. lockdep_assert_held(&rq->lock);
  2439. if (!raw_spin_trylock(&p->pi_lock)) {
  2440. raw_spin_unlock(&rq->lock);
  2441. raw_spin_lock(&p->pi_lock);
  2442. raw_spin_lock(&rq->lock);
  2443. }
  2444. if (!(p->state & TASK_NORMAL))
  2445. goto out;
  2446. if (!p->on_rq)
  2447. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  2448. ttwu_do_wakeup(rq, p, 0);
  2449. ttwu_stat(p, smp_processor_id(), 0);
  2450. out:
  2451. raw_spin_unlock(&p->pi_lock);
  2452. }
  2453. /**
  2454. * wake_up_process - Wake up a specific process
  2455. * @p: The process to be woken up.
  2456. *
  2457. * Attempt to wake up the nominated process and move it to the set of runnable
  2458. * processes. Returns 1 if the process was woken up, 0 if it was already
  2459. * running.
  2460. *
  2461. * It may be assumed that this function implies a write memory barrier before
  2462. * changing the task state if and only if any tasks are woken up.
  2463. */
  2464. int wake_up_process(struct task_struct *p)
  2465. {
  2466. return try_to_wake_up(p, TASK_ALL, 0);
  2467. }
  2468. EXPORT_SYMBOL(wake_up_process);
  2469. int wake_up_state(struct task_struct *p, unsigned int state)
  2470. {
  2471. return try_to_wake_up(p, state, 0);
  2472. }
  2473. /*
  2474. * Perform scheduler related setup for a newly forked process p.
  2475. * p is forked by current.
  2476. *
  2477. * __sched_fork() is basic setup used by init_idle() too:
  2478. */
  2479. static void __sched_fork(struct task_struct *p)
  2480. {
  2481. p->on_rq = 0;
  2482. p->se.on_rq = 0;
  2483. p->se.exec_start = 0;
  2484. p->se.sum_exec_runtime = 0;
  2485. p->se.prev_sum_exec_runtime = 0;
  2486. p->se.nr_migrations = 0;
  2487. p->se.vruntime = 0;
  2488. INIT_LIST_HEAD(&p->se.group_node);
  2489. #ifdef CONFIG_SCHEDSTATS
  2490. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2491. #endif
  2492. INIT_LIST_HEAD(&p->rt.run_list);
  2493. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2494. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2495. #endif
  2496. }
  2497. /*
  2498. * fork()/clone()-time setup:
  2499. */
  2500. void sched_fork(struct task_struct *p)
  2501. {
  2502. unsigned long flags;
  2503. int cpu = get_cpu();
  2504. __sched_fork(p);
  2505. /*
  2506. * We mark the process as running here. This guarantees that
  2507. * nobody will actually run it, and a signal or other external
  2508. * event cannot wake it up and insert it on the runqueue either.
  2509. */
  2510. p->state = TASK_RUNNING;
  2511. /*
  2512. * Make sure we do not leak PI boosting priority to the child.
  2513. */
  2514. p->prio = current->normal_prio;
  2515. /*
  2516. * Revert to default priority/policy on fork if requested.
  2517. */
  2518. if (unlikely(p->sched_reset_on_fork)) {
  2519. if (task_has_rt_policy(p)) {
  2520. p->policy = SCHED_NORMAL;
  2521. p->static_prio = NICE_TO_PRIO(0);
  2522. p->rt_priority = 0;
  2523. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  2524. p->static_prio = NICE_TO_PRIO(0);
  2525. p->prio = p->normal_prio = __normal_prio(p);
  2526. set_load_weight(p);
  2527. /*
  2528. * We don't need the reset flag anymore after the fork. It has
  2529. * fulfilled its duty:
  2530. */
  2531. p->sched_reset_on_fork = 0;
  2532. }
  2533. if (!rt_prio(p->prio))
  2534. p->sched_class = &fair_sched_class;
  2535. if (p->sched_class->task_fork)
  2536. p->sched_class->task_fork(p);
  2537. /*
  2538. * The child is not yet in the pid-hash so no cgroup attach races,
  2539. * and the cgroup is pinned to this child due to cgroup_fork()
  2540. * is ran before sched_fork().
  2541. *
  2542. * Silence PROVE_RCU.
  2543. */
  2544. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2545. set_task_cpu(p, cpu);
  2546. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2547. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2548. if (likely(sched_info_on()))
  2549. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2550. #endif
  2551. #if defined(CONFIG_SMP)
  2552. p->on_cpu = 0;
  2553. #endif
  2554. #ifdef CONFIG_PREEMPT_COUNT
  2555. /* Want to start with kernel preemption disabled. */
  2556. task_thread_info(p)->preempt_count = 1;
  2557. #endif
  2558. #ifdef CONFIG_SMP
  2559. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2560. #endif
  2561. put_cpu();
  2562. }
  2563. /*
  2564. * wake_up_new_task - wake up a newly created task for the first time.
  2565. *
  2566. * This function will do some initial scheduler statistics housekeeping
  2567. * that must be done for every newly created context, then puts the task
  2568. * on the runqueue and wakes it.
  2569. */
  2570. void wake_up_new_task(struct task_struct *p)
  2571. {
  2572. unsigned long flags;
  2573. struct rq *rq;
  2574. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2575. #ifdef CONFIG_SMP
  2576. /*
  2577. * Fork balancing, do it here and not earlier because:
  2578. * - cpus_allowed can change in the fork path
  2579. * - any previously selected cpu might disappear through hotplug
  2580. */
  2581. set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
  2582. #endif
  2583. rq = __task_rq_lock(p);
  2584. activate_task(rq, p, 0);
  2585. p->on_rq = 1;
  2586. trace_sched_wakeup_new(p, true);
  2587. check_preempt_curr(rq, p, WF_FORK);
  2588. #ifdef CONFIG_SMP
  2589. if (p->sched_class->task_woken)
  2590. p->sched_class->task_woken(rq, p);
  2591. #endif
  2592. task_rq_unlock(rq, p, &flags);
  2593. }
  2594. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2595. /**
  2596. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2597. * @notifier: notifier struct to register
  2598. */
  2599. void preempt_notifier_register(struct preempt_notifier *notifier)
  2600. {
  2601. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2602. }
  2603. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2604. /**
  2605. * preempt_notifier_unregister - no longer interested in preemption notifications
  2606. * @notifier: notifier struct to unregister
  2607. *
  2608. * This is safe to call from within a preemption notifier.
  2609. */
  2610. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2611. {
  2612. hlist_del(&notifier->link);
  2613. }
  2614. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2615. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2616. {
  2617. struct preempt_notifier *notifier;
  2618. struct hlist_node *node;
  2619. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2620. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2621. }
  2622. static void
  2623. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2624. struct task_struct *next)
  2625. {
  2626. struct preempt_notifier *notifier;
  2627. struct hlist_node *node;
  2628. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2629. notifier->ops->sched_out(notifier, next);
  2630. }
  2631. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2632. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2633. {
  2634. }
  2635. static void
  2636. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2637. struct task_struct *next)
  2638. {
  2639. }
  2640. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2641. /**
  2642. * prepare_task_switch - prepare to switch tasks
  2643. * @rq: the runqueue preparing to switch
  2644. * @prev: the current task that is being switched out
  2645. * @next: the task we are going to switch to.
  2646. *
  2647. * This is called with the rq lock held and interrupts off. It must
  2648. * be paired with a subsequent finish_task_switch after the context
  2649. * switch.
  2650. *
  2651. * prepare_task_switch sets up locking and calls architecture specific
  2652. * hooks.
  2653. */
  2654. static inline void
  2655. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2656. struct task_struct *next)
  2657. {
  2658. sched_info_switch(prev, next);
  2659. perf_event_task_sched_out(prev, next);
  2660. fire_sched_out_preempt_notifiers(prev, next);
  2661. prepare_lock_switch(rq, next);
  2662. prepare_arch_switch(next);
  2663. trace_sched_switch(prev, next);
  2664. }
  2665. /**
  2666. * finish_task_switch - clean up after a task-switch
  2667. * @rq: runqueue associated with task-switch
  2668. * @prev: the thread we just switched away from.
  2669. *
  2670. * finish_task_switch must be called after the context switch, paired
  2671. * with a prepare_task_switch call before the context switch.
  2672. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2673. * and do any other architecture-specific cleanup actions.
  2674. *
  2675. * Note that we may have delayed dropping an mm in context_switch(). If
  2676. * so, we finish that here outside of the runqueue lock. (Doing it
  2677. * with the lock held can cause deadlocks; see schedule() for
  2678. * details.)
  2679. */
  2680. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2681. __releases(rq->lock)
  2682. {
  2683. struct mm_struct *mm = rq->prev_mm;
  2684. long prev_state;
  2685. rq->prev_mm = NULL;
  2686. /*
  2687. * A task struct has one reference for the use as "current".
  2688. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2689. * schedule one last time. The schedule call will never return, and
  2690. * the scheduled task must drop that reference.
  2691. * The test for TASK_DEAD must occur while the runqueue locks are
  2692. * still held, otherwise prev could be scheduled on another cpu, die
  2693. * there before we look at prev->state, and then the reference would
  2694. * be dropped twice.
  2695. * Manfred Spraul <manfred@colorfullife.com>
  2696. */
  2697. prev_state = prev->state;
  2698. finish_arch_switch(prev);
  2699. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2700. local_irq_disable();
  2701. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2702. perf_event_task_sched_in(current);
  2703. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2704. local_irq_enable();
  2705. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2706. finish_lock_switch(rq, prev);
  2707. fire_sched_in_preempt_notifiers(current);
  2708. if (mm)
  2709. mmdrop(mm);
  2710. if (unlikely(prev_state == TASK_DEAD)) {
  2711. /*
  2712. * Remove function-return probe instances associated with this
  2713. * task and put them back on the free list.
  2714. */
  2715. kprobe_flush_task(prev);
  2716. put_task_struct(prev);
  2717. }
  2718. }
  2719. #ifdef CONFIG_SMP
  2720. /* assumes rq->lock is held */
  2721. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2722. {
  2723. if (prev->sched_class->pre_schedule)
  2724. prev->sched_class->pre_schedule(rq, prev);
  2725. }
  2726. /* rq->lock is NOT held, but preemption is disabled */
  2727. static inline void post_schedule(struct rq *rq)
  2728. {
  2729. if (rq->post_schedule) {
  2730. unsigned long flags;
  2731. raw_spin_lock_irqsave(&rq->lock, flags);
  2732. if (rq->curr->sched_class->post_schedule)
  2733. rq->curr->sched_class->post_schedule(rq);
  2734. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2735. rq->post_schedule = 0;
  2736. }
  2737. }
  2738. #else
  2739. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2740. {
  2741. }
  2742. static inline void post_schedule(struct rq *rq)
  2743. {
  2744. }
  2745. #endif
  2746. /**
  2747. * schedule_tail - first thing a freshly forked thread must call.
  2748. * @prev: the thread we just switched away from.
  2749. */
  2750. asmlinkage void schedule_tail(struct task_struct *prev)
  2751. __releases(rq->lock)
  2752. {
  2753. struct rq *rq = this_rq();
  2754. finish_task_switch(rq, prev);
  2755. /*
  2756. * FIXME: do we need to worry about rq being invalidated by the
  2757. * task_switch?
  2758. */
  2759. post_schedule(rq);
  2760. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2761. /* In this case, finish_task_switch does not reenable preemption */
  2762. preempt_enable();
  2763. #endif
  2764. if (current->set_child_tid)
  2765. put_user(task_pid_vnr(current), current->set_child_tid);
  2766. }
  2767. /*
  2768. * context_switch - switch to the new MM and the new
  2769. * thread's register state.
  2770. */
  2771. static inline void
  2772. context_switch(struct rq *rq, struct task_struct *prev,
  2773. struct task_struct *next)
  2774. {
  2775. struct mm_struct *mm, *oldmm;
  2776. prepare_task_switch(rq, prev, next);
  2777. mm = next->mm;
  2778. oldmm = prev->active_mm;
  2779. /*
  2780. * For paravirt, this is coupled with an exit in switch_to to
  2781. * combine the page table reload and the switch backend into
  2782. * one hypercall.
  2783. */
  2784. arch_start_context_switch(prev);
  2785. if (!mm) {
  2786. next->active_mm = oldmm;
  2787. atomic_inc(&oldmm->mm_count);
  2788. enter_lazy_tlb(oldmm, next);
  2789. } else
  2790. switch_mm(oldmm, mm, next);
  2791. if (!prev->mm) {
  2792. prev->active_mm = NULL;
  2793. rq->prev_mm = oldmm;
  2794. }
  2795. /*
  2796. * Since the runqueue lock will be released by the next
  2797. * task (which is an invalid locking op but in the case
  2798. * of the scheduler it's an obvious special-case), so we
  2799. * do an early lockdep release here:
  2800. */
  2801. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2802. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2803. #endif
  2804. /* Here we just switch the register state and the stack. */
  2805. switch_to(prev, next, prev);
  2806. barrier();
  2807. /*
  2808. * this_rq must be evaluated again because prev may have moved
  2809. * CPUs since it called schedule(), thus the 'rq' on its stack
  2810. * frame will be invalid.
  2811. */
  2812. finish_task_switch(this_rq(), prev);
  2813. }
  2814. /*
  2815. * nr_running, nr_uninterruptible and nr_context_switches:
  2816. *
  2817. * externally visible scheduler statistics: current number of runnable
  2818. * threads, current number of uninterruptible-sleeping threads, total
  2819. * number of context switches performed since bootup.
  2820. */
  2821. unsigned long nr_running(void)
  2822. {
  2823. unsigned long i, sum = 0;
  2824. for_each_online_cpu(i)
  2825. sum += cpu_rq(i)->nr_running;
  2826. return sum;
  2827. }
  2828. unsigned long nr_uninterruptible(void)
  2829. {
  2830. unsigned long i, sum = 0;
  2831. for_each_possible_cpu(i)
  2832. sum += cpu_rq(i)->nr_uninterruptible;
  2833. /*
  2834. * Since we read the counters lockless, it might be slightly
  2835. * inaccurate. Do not allow it to go below zero though:
  2836. */
  2837. if (unlikely((long)sum < 0))
  2838. sum = 0;
  2839. return sum;
  2840. }
  2841. unsigned long long nr_context_switches(void)
  2842. {
  2843. int i;
  2844. unsigned long long sum = 0;
  2845. for_each_possible_cpu(i)
  2846. sum += cpu_rq(i)->nr_switches;
  2847. return sum;
  2848. }
  2849. unsigned long nr_iowait(void)
  2850. {
  2851. unsigned long i, sum = 0;
  2852. for_each_possible_cpu(i)
  2853. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2854. return sum;
  2855. }
  2856. unsigned long nr_iowait_cpu(int cpu)
  2857. {
  2858. struct rq *this = cpu_rq(cpu);
  2859. return atomic_read(&this->nr_iowait);
  2860. }
  2861. unsigned long this_cpu_load(void)
  2862. {
  2863. struct rq *this = this_rq();
  2864. return this->cpu_load[0];
  2865. }
  2866. /* Variables and functions for calc_load */
  2867. static atomic_long_t calc_load_tasks;
  2868. static unsigned long calc_load_update;
  2869. unsigned long avenrun[3];
  2870. EXPORT_SYMBOL(avenrun);
  2871. static long calc_load_fold_active(struct rq *this_rq)
  2872. {
  2873. long nr_active, delta = 0;
  2874. nr_active = this_rq->nr_running;
  2875. nr_active += (long) this_rq->nr_uninterruptible;
  2876. if (nr_active != this_rq->calc_load_active) {
  2877. delta = nr_active - this_rq->calc_load_active;
  2878. this_rq->calc_load_active = nr_active;
  2879. }
  2880. return delta;
  2881. }
  2882. static unsigned long
  2883. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2884. {
  2885. load *= exp;
  2886. load += active * (FIXED_1 - exp);
  2887. load += 1UL << (FSHIFT - 1);
  2888. return load >> FSHIFT;
  2889. }
  2890. #ifdef CONFIG_NO_HZ
  2891. /*
  2892. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2893. *
  2894. * When making the ILB scale, we should try to pull this in as well.
  2895. */
  2896. static atomic_long_t calc_load_tasks_idle;
  2897. static void calc_load_account_idle(struct rq *this_rq)
  2898. {
  2899. long delta;
  2900. delta = calc_load_fold_active(this_rq);
  2901. if (delta)
  2902. atomic_long_add(delta, &calc_load_tasks_idle);
  2903. }
  2904. static long calc_load_fold_idle(void)
  2905. {
  2906. long delta = 0;
  2907. /*
  2908. * Its got a race, we don't care...
  2909. */
  2910. if (atomic_long_read(&calc_load_tasks_idle))
  2911. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2912. return delta;
  2913. }
  2914. /**
  2915. * fixed_power_int - compute: x^n, in O(log n) time
  2916. *
  2917. * @x: base of the power
  2918. * @frac_bits: fractional bits of @x
  2919. * @n: power to raise @x to.
  2920. *
  2921. * By exploiting the relation between the definition of the natural power
  2922. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  2923. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  2924. * (where: n_i \elem {0, 1}, the binary vector representing n),
  2925. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  2926. * of course trivially computable in O(log_2 n), the length of our binary
  2927. * vector.
  2928. */
  2929. static unsigned long
  2930. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  2931. {
  2932. unsigned long result = 1UL << frac_bits;
  2933. if (n) for (;;) {
  2934. if (n & 1) {
  2935. result *= x;
  2936. result += 1UL << (frac_bits - 1);
  2937. result >>= frac_bits;
  2938. }
  2939. n >>= 1;
  2940. if (!n)
  2941. break;
  2942. x *= x;
  2943. x += 1UL << (frac_bits - 1);
  2944. x >>= frac_bits;
  2945. }
  2946. return result;
  2947. }
  2948. /*
  2949. * a1 = a0 * e + a * (1 - e)
  2950. *
  2951. * a2 = a1 * e + a * (1 - e)
  2952. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  2953. * = a0 * e^2 + a * (1 - e) * (1 + e)
  2954. *
  2955. * a3 = a2 * e + a * (1 - e)
  2956. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  2957. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  2958. *
  2959. * ...
  2960. *
  2961. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  2962. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  2963. * = a0 * e^n + a * (1 - e^n)
  2964. *
  2965. * [1] application of the geometric series:
  2966. *
  2967. * n 1 - x^(n+1)
  2968. * S_n := \Sum x^i = -------------
  2969. * i=0 1 - x
  2970. */
  2971. static unsigned long
  2972. calc_load_n(unsigned long load, unsigned long exp,
  2973. unsigned long active, unsigned int n)
  2974. {
  2975. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  2976. }
  2977. /*
  2978. * NO_HZ can leave us missing all per-cpu ticks calling
  2979. * calc_load_account_active(), but since an idle CPU folds its delta into
  2980. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  2981. * in the pending idle delta if our idle period crossed a load cycle boundary.
  2982. *
  2983. * Once we've updated the global active value, we need to apply the exponential
  2984. * weights adjusted to the number of cycles missed.
  2985. */
  2986. static void calc_global_nohz(unsigned long ticks)
  2987. {
  2988. long delta, active, n;
  2989. if (time_before(jiffies, calc_load_update))
  2990. return;
  2991. /*
  2992. * If we crossed a calc_load_update boundary, make sure to fold
  2993. * any pending idle changes, the respective CPUs might have
  2994. * missed the tick driven calc_load_account_active() update
  2995. * due to NO_HZ.
  2996. */
  2997. delta = calc_load_fold_idle();
  2998. if (delta)
  2999. atomic_long_add(delta, &calc_load_tasks);
  3000. /*
  3001. * If we were idle for multiple load cycles, apply them.
  3002. */
  3003. if (ticks >= LOAD_FREQ) {
  3004. n = ticks / LOAD_FREQ;
  3005. active = atomic_long_read(&calc_load_tasks);
  3006. active = active > 0 ? active * FIXED_1 : 0;
  3007. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  3008. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  3009. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  3010. calc_load_update += n * LOAD_FREQ;
  3011. }
  3012. /*
  3013. * Its possible the remainder of the above division also crosses
  3014. * a LOAD_FREQ period, the regular check in calc_global_load()
  3015. * which comes after this will take care of that.
  3016. *
  3017. * Consider us being 11 ticks before a cycle completion, and us
  3018. * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
  3019. * age us 4 cycles, and the test in calc_global_load() will
  3020. * pick up the final one.
  3021. */
  3022. }
  3023. #else
  3024. static void calc_load_account_idle(struct rq *this_rq)
  3025. {
  3026. }
  3027. static inline long calc_load_fold_idle(void)
  3028. {
  3029. return 0;
  3030. }
  3031. static void calc_global_nohz(unsigned long ticks)
  3032. {
  3033. }
  3034. #endif
  3035. /**
  3036. * get_avenrun - get the load average array
  3037. * @loads: pointer to dest load array
  3038. * @offset: offset to add
  3039. * @shift: shift count to shift the result left
  3040. *
  3041. * These values are estimates at best, so no need for locking.
  3042. */
  3043. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  3044. {
  3045. loads[0] = (avenrun[0] + offset) << shift;
  3046. loads[1] = (avenrun[1] + offset) << shift;
  3047. loads[2] = (avenrun[2] + offset) << shift;
  3048. }
  3049. /*
  3050. * calc_load - update the avenrun load estimates 10 ticks after the
  3051. * CPUs have updated calc_load_tasks.
  3052. */
  3053. void calc_global_load(unsigned long ticks)
  3054. {
  3055. long active;
  3056. calc_global_nohz(ticks);
  3057. if (time_before(jiffies, calc_load_update + 10))
  3058. return;
  3059. active = atomic_long_read(&calc_load_tasks);
  3060. active = active > 0 ? active * FIXED_1 : 0;
  3061. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  3062. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  3063. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  3064. calc_load_update += LOAD_FREQ;
  3065. }
  3066. /*
  3067. * Called from update_cpu_load() to periodically update this CPU's
  3068. * active count.
  3069. */
  3070. static void calc_load_account_active(struct rq *this_rq)
  3071. {
  3072. long delta;
  3073. if (time_before(jiffies, this_rq->calc_load_update))
  3074. return;
  3075. delta = calc_load_fold_active(this_rq);
  3076. delta += calc_load_fold_idle();
  3077. if (delta)
  3078. atomic_long_add(delta, &calc_load_tasks);
  3079. this_rq->calc_load_update += LOAD_FREQ;
  3080. }
  3081. /*
  3082. * The exact cpuload at various idx values, calculated at every tick would be
  3083. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  3084. *
  3085. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  3086. * on nth tick when cpu may be busy, then we have:
  3087. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  3088. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  3089. *
  3090. * decay_load_missed() below does efficient calculation of
  3091. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  3092. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  3093. *
  3094. * The calculation is approximated on a 128 point scale.
  3095. * degrade_zero_ticks is the number of ticks after which load at any
  3096. * particular idx is approximated to be zero.
  3097. * degrade_factor is a precomputed table, a row for each load idx.
  3098. * Each column corresponds to degradation factor for a power of two ticks,
  3099. * based on 128 point scale.
  3100. * Example:
  3101. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  3102. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  3103. *
  3104. * With this power of 2 load factors, we can degrade the load n times
  3105. * by looking at 1 bits in n and doing as many mult/shift instead of
  3106. * n mult/shifts needed by the exact degradation.
  3107. */
  3108. #define DEGRADE_SHIFT 7
  3109. static const unsigned char
  3110. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  3111. static const unsigned char
  3112. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  3113. {0, 0, 0, 0, 0, 0, 0, 0},
  3114. {64, 32, 8, 0, 0, 0, 0, 0},
  3115. {96, 72, 40, 12, 1, 0, 0},
  3116. {112, 98, 75, 43, 15, 1, 0},
  3117. {120, 112, 98, 76, 45, 16, 2} };
  3118. /*
  3119. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  3120. * would be when CPU is idle and so we just decay the old load without
  3121. * adding any new load.
  3122. */
  3123. static unsigned long
  3124. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  3125. {
  3126. int j = 0;
  3127. if (!missed_updates)
  3128. return load;
  3129. if (missed_updates >= degrade_zero_ticks[idx])
  3130. return 0;
  3131. if (idx == 1)
  3132. return load >> missed_updates;
  3133. while (missed_updates) {
  3134. if (missed_updates % 2)
  3135. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  3136. missed_updates >>= 1;
  3137. j++;
  3138. }
  3139. return load;
  3140. }
  3141. /*
  3142. * Update rq->cpu_load[] statistics. This function is usually called every
  3143. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  3144. * every tick. We fix it up based on jiffies.
  3145. */
  3146. static void update_cpu_load(struct rq *this_rq)
  3147. {
  3148. unsigned long this_load = this_rq->load.weight;
  3149. unsigned long curr_jiffies = jiffies;
  3150. unsigned long pending_updates;
  3151. int i, scale;
  3152. this_rq->nr_load_updates++;
  3153. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  3154. if (curr_jiffies == this_rq->last_load_update_tick)
  3155. return;
  3156. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  3157. this_rq->last_load_update_tick = curr_jiffies;
  3158. /* Update our load: */
  3159. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  3160. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  3161. unsigned long old_load, new_load;
  3162. /* scale is effectively 1 << i now, and >> i divides by scale */
  3163. old_load = this_rq->cpu_load[i];
  3164. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  3165. new_load = this_load;
  3166. /*
  3167. * Round up the averaging division if load is increasing. This
  3168. * prevents us from getting stuck on 9 if the load is 10, for
  3169. * example.
  3170. */
  3171. if (new_load > old_load)
  3172. new_load += scale - 1;
  3173. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  3174. }
  3175. sched_avg_update(this_rq);
  3176. }
  3177. static void update_cpu_load_active(struct rq *this_rq)
  3178. {
  3179. update_cpu_load(this_rq);
  3180. calc_load_account_active(this_rq);
  3181. }
  3182. #ifdef CONFIG_SMP
  3183. /*
  3184. * sched_exec - execve() is a valuable balancing opportunity, because at
  3185. * this point the task has the smallest effective memory and cache footprint.
  3186. */
  3187. void sched_exec(void)
  3188. {
  3189. struct task_struct *p = current;
  3190. unsigned long flags;
  3191. int dest_cpu;
  3192. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3193. dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
  3194. if (dest_cpu == smp_processor_id())
  3195. goto unlock;
  3196. if (likely(cpu_active(dest_cpu))) {
  3197. struct migration_arg arg = { p, dest_cpu };
  3198. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3199. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  3200. return;
  3201. }
  3202. unlock:
  3203. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3204. }
  3205. #endif
  3206. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3207. EXPORT_PER_CPU_SYMBOL(kstat);
  3208. /*
  3209. * Return any ns on the sched_clock that have not yet been accounted in
  3210. * @p in case that task is currently running.
  3211. *
  3212. * Called with task_rq_lock() held on @rq.
  3213. */
  3214. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  3215. {
  3216. u64 ns = 0;
  3217. if (task_current(rq, p)) {
  3218. update_rq_clock(rq);
  3219. ns = rq->clock_task - p->se.exec_start;
  3220. if ((s64)ns < 0)
  3221. ns = 0;
  3222. }
  3223. return ns;
  3224. }
  3225. unsigned long long task_delta_exec(struct task_struct *p)
  3226. {
  3227. unsigned long flags;
  3228. struct rq *rq;
  3229. u64 ns = 0;
  3230. rq = task_rq_lock(p, &flags);
  3231. ns = do_task_delta_exec(p, rq);
  3232. task_rq_unlock(rq, p, &flags);
  3233. return ns;
  3234. }
  3235. /*
  3236. * Return accounted runtime for the task.
  3237. * In case the task is currently running, return the runtime plus current's
  3238. * pending runtime that have not been accounted yet.
  3239. */
  3240. unsigned long long task_sched_runtime(struct task_struct *p)
  3241. {
  3242. unsigned long flags;
  3243. struct rq *rq;
  3244. u64 ns = 0;
  3245. rq = task_rq_lock(p, &flags);
  3246. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  3247. task_rq_unlock(rq, p, &flags);
  3248. return ns;
  3249. }
  3250. /*
  3251. * Return sum_exec_runtime for the thread group.
  3252. * In case the task is currently running, return the sum plus current's
  3253. * pending runtime that have not been accounted yet.
  3254. *
  3255. * Note that the thread group might have other running tasks as well,
  3256. * so the return value not includes other pending runtime that other
  3257. * running tasks might have.
  3258. */
  3259. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  3260. {
  3261. struct task_cputime totals;
  3262. unsigned long flags;
  3263. struct rq *rq;
  3264. u64 ns;
  3265. rq = task_rq_lock(p, &flags);
  3266. thread_group_cputime(p, &totals);
  3267. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  3268. task_rq_unlock(rq, p, &flags);
  3269. return ns;
  3270. }
  3271. /*
  3272. * Account user cpu time to a process.
  3273. * @p: the process that the cpu time gets accounted to
  3274. * @cputime: the cpu time spent in user space since the last update
  3275. * @cputime_scaled: cputime scaled by cpu frequency
  3276. */
  3277. void account_user_time(struct task_struct *p, cputime_t cputime,
  3278. cputime_t cputime_scaled)
  3279. {
  3280. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3281. cputime64_t tmp;
  3282. /* Add user time to process. */
  3283. p->utime = cputime_add(p->utime, cputime);
  3284. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3285. account_group_user_time(p, cputime);
  3286. /* Add user time to cpustat. */
  3287. tmp = cputime_to_cputime64(cputime);
  3288. if (TASK_NICE(p) > 0)
  3289. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3290. else
  3291. cpustat->user = cputime64_add(cpustat->user, tmp);
  3292. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  3293. /* Account for user time used */
  3294. acct_update_integrals(p);
  3295. }
  3296. /*
  3297. * Account guest cpu time to a process.
  3298. * @p: the process that the cpu time gets accounted to
  3299. * @cputime: the cpu time spent in virtual machine since the last update
  3300. * @cputime_scaled: cputime scaled by cpu frequency
  3301. */
  3302. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  3303. cputime_t cputime_scaled)
  3304. {
  3305. cputime64_t tmp;
  3306. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3307. tmp = cputime_to_cputime64(cputime);
  3308. /* Add guest time to process. */
  3309. p->utime = cputime_add(p->utime, cputime);
  3310. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3311. account_group_user_time(p, cputime);
  3312. p->gtime = cputime_add(p->gtime, cputime);
  3313. /* Add guest time to cpustat. */
  3314. if (TASK_NICE(p) > 0) {
  3315. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3316. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  3317. } else {
  3318. cpustat->user = cputime64_add(cpustat->user, tmp);
  3319. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3320. }
  3321. }
  3322. /*
  3323. * Account system cpu time to a process and desired cpustat field
  3324. * @p: the process that the cpu time gets accounted to
  3325. * @cputime: the cpu time spent in kernel space since the last update
  3326. * @cputime_scaled: cputime scaled by cpu frequency
  3327. * @target_cputime64: pointer to cpustat field that has to be updated
  3328. */
  3329. static inline
  3330. void __account_system_time(struct task_struct *p, cputime_t cputime,
  3331. cputime_t cputime_scaled, cputime64_t *target_cputime64)
  3332. {
  3333. cputime64_t tmp = cputime_to_cputime64(cputime);
  3334. /* Add system time to process. */
  3335. p->stime = cputime_add(p->stime, cputime);
  3336. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  3337. account_group_system_time(p, cputime);
  3338. /* Add system time to cpustat. */
  3339. *target_cputime64 = cputime64_add(*target_cputime64, tmp);
  3340. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  3341. /* Account for system time used */
  3342. acct_update_integrals(p);
  3343. }
  3344. /*
  3345. * Account system cpu time to a process.
  3346. * @p: the process that the cpu time gets accounted to
  3347. * @hardirq_offset: the offset to subtract from hardirq_count()
  3348. * @cputime: the cpu time spent in kernel space since the last update
  3349. * @cputime_scaled: cputime scaled by cpu frequency
  3350. */
  3351. void account_system_time(struct task_struct *p, int hardirq_offset,
  3352. cputime_t cputime, cputime_t cputime_scaled)
  3353. {
  3354. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3355. cputime64_t *target_cputime64;
  3356. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3357. account_guest_time(p, cputime, cputime_scaled);
  3358. return;
  3359. }
  3360. if (hardirq_count() - hardirq_offset)
  3361. target_cputime64 = &cpustat->irq;
  3362. else if (in_serving_softirq())
  3363. target_cputime64 = &cpustat->softirq;
  3364. else
  3365. target_cputime64 = &cpustat->system;
  3366. __account_system_time(p, cputime, cputime_scaled, target_cputime64);
  3367. }
  3368. /*
  3369. * Account for involuntary wait time.
  3370. * @cputime: the cpu time spent in involuntary wait
  3371. */
  3372. void account_steal_time(cputime_t cputime)
  3373. {
  3374. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3375. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3376. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  3377. }
  3378. /*
  3379. * Account for idle time.
  3380. * @cputime: the cpu time spent in idle wait
  3381. */
  3382. void account_idle_time(cputime_t cputime)
  3383. {
  3384. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3385. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3386. struct rq *rq = this_rq();
  3387. if (atomic_read(&rq->nr_iowait) > 0)
  3388. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  3389. else
  3390. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  3391. }
  3392. static __always_inline bool steal_account_process_tick(void)
  3393. {
  3394. #ifdef CONFIG_PARAVIRT
  3395. if (static_branch(&paravirt_steal_enabled)) {
  3396. u64 steal, st = 0;
  3397. steal = paravirt_steal_clock(smp_processor_id());
  3398. steal -= this_rq()->prev_steal_time;
  3399. st = steal_ticks(steal);
  3400. this_rq()->prev_steal_time += st * TICK_NSEC;
  3401. account_steal_time(st);
  3402. return st;
  3403. }
  3404. #endif
  3405. return false;
  3406. }
  3407. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  3408. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  3409. /*
  3410. * Account a tick to a process and cpustat
  3411. * @p: the process that the cpu time gets accounted to
  3412. * @user_tick: is the tick from userspace
  3413. * @rq: the pointer to rq
  3414. *
  3415. * Tick demultiplexing follows the order
  3416. * - pending hardirq update
  3417. * - pending softirq update
  3418. * - user_time
  3419. * - idle_time
  3420. * - system time
  3421. * - check for guest_time
  3422. * - else account as system_time
  3423. *
  3424. * Check for hardirq is done both for system and user time as there is
  3425. * no timer going off while we are on hardirq and hence we may never get an
  3426. * opportunity to update it solely in system time.
  3427. * p->stime and friends are only updated on system time and not on irq
  3428. * softirq as those do not count in task exec_runtime any more.
  3429. */
  3430. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3431. struct rq *rq)
  3432. {
  3433. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3434. cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
  3435. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3436. if (steal_account_process_tick())
  3437. return;
  3438. if (irqtime_account_hi_update()) {
  3439. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3440. } else if (irqtime_account_si_update()) {
  3441. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3442. } else if (this_cpu_ksoftirqd() == p) {
  3443. /*
  3444. * ksoftirqd time do not get accounted in cpu_softirq_time.
  3445. * So, we have to handle it separately here.
  3446. * Also, p->stime needs to be updated for ksoftirqd.
  3447. */
  3448. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3449. &cpustat->softirq);
  3450. } else if (user_tick) {
  3451. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3452. } else if (p == rq->idle) {
  3453. account_idle_time(cputime_one_jiffy);
  3454. } else if (p->flags & PF_VCPU) { /* System time or guest time */
  3455. account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3456. } else {
  3457. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3458. &cpustat->system);
  3459. }
  3460. }
  3461. static void irqtime_account_idle_ticks(int ticks)
  3462. {
  3463. int i;
  3464. struct rq *rq = this_rq();
  3465. for (i = 0; i < ticks; i++)
  3466. irqtime_account_process_tick(current, 0, rq);
  3467. }
  3468. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  3469. static void irqtime_account_idle_ticks(int ticks) {}
  3470. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3471. struct rq *rq) {}
  3472. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  3473. /*
  3474. * Account a single tick of cpu time.
  3475. * @p: the process that the cpu time gets accounted to
  3476. * @user_tick: indicates if the tick is a user or a system tick
  3477. */
  3478. void account_process_tick(struct task_struct *p, int user_tick)
  3479. {
  3480. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3481. struct rq *rq = this_rq();
  3482. if (sched_clock_irqtime) {
  3483. irqtime_account_process_tick(p, user_tick, rq);
  3484. return;
  3485. }
  3486. if (steal_account_process_tick())
  3487. return;
  3488. if (user_tick)
  3489. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3490. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  3491. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  3492. one_jiffy_scaled);
  3493. else
  3494. account_idle_time(cputime_one_jiffy);
  3495. }
  3496. /*
  3497. * Account multiple ticks of steal time.
  3498. * @p: the process from which the cpu time has been stolen
  3499. * @ticks: number of stolen ticks
  3500. */
  3501. void account_steal_ticks(unsigned long ticks)
  3502. {
  3503. account_steal_time(jiffies_to_cputime(ticks));
  3504. }
  3505. /*
  3506. * Account multiple ticks of idle time.
  3507. * @ticks: number of stolen ticks
  3508. */
  3509. void account_idle_ticks(unsigned long ticks)
  3510. {
  3511. if (sched_clock_irqtime) {
  3512. irqtime_account_idle_ticks(ticks);
  3513. return;
  3514. }
  3515. account_idle_time(jiffies_to_cputime(ticks));
  3516. }
  3517. #endif
  3518. /*
  3519. * Use precise platform statistics if available:
  3520. */
  3521. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3522. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3523. {
  3524. *ut = p->utime;
  3525. *st = p->stime;
  3526. }
  3527. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3528. {
  3529. struct task_cputime cputime;
  3530. thread_group_cputime(p, &cputime);
  3531. *ut = cputime.utime;
  3532. *st = cputime.stime;
  3533. }
  3534. #else
  3535. #ifndef nsecs_to_cputime
  3536. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  3537. #endif
  3538. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3539. {
  3540. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  3541. /*
  3542. * Use CFS's precise accounting:
  3543. */
  3544. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  3545. if (total) {
  3546. u64 temp = rtime;
  3547. temp *= utime;
  3548. do_div(temp, total);
  3549. utime = (cputime_t)temp;
  3550. } else
  3551. utime = rtime;
  3552. /*
  3553. * Compare with previous values, to keep monotonicity:
  3554. */
  3555. p->prev_utime = max(p->prev_utime, utime);
  3556. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  3557. *ut = p->prev_utime;
  3558. *st = p->prev_stime;
  3559. }
  3560. /*
  3561. * Must be called with siglock held.
  3562. */
  3563. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3564. {
  3565. struct signal_struct *sig = p->signal;
  3566. struct task_cputime cputime;
  3567. cputime_t rtime, utime, total;
  3568. thread_group_cputime(p, &cputime);
  3569. total = cputime_add(cputime.utime, cputime.stime);
  3570. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  3571. if (total) {
  3572. u64 temp = rtime;
  3573. temp *= cputime.utime;
  3574. do_div(temp, total);
  3575. utime = (cputime_t)temp;
  3576. } else
  3577. utime = rtime;
  3578. sig->prev_utime = max(sig->prev_utime, utime);
  3579. sig->prev_stime = max(sig->prev_stime,
  3580. cputime_sub(rtime, sig->prev_utime));
  3581. *ut = sig->prev_utime;
  3582. *st = sig->prev_stime;
  3583. }
  3584. #endif
  3585. /*
  3586. * This function gets called by the timer code, with HZ frequency.
  3587. * We call it with interrupts disabled.
  3588. */
  3589. void scheduler_tick(void)
  3590. {
  3591. int cpu = smp_processor_id();
  3592. struct rq *rq = cpu_rq(cpu);
  3593. struct task_struct *curr = rq->curr;
  3594. sched_clock_tick();
  3595. raw_spin_lock(&rq->lock);
  3596. update_rq_clock(rq);
  3597. update_cpu_load_active(rq);
  3598. curr->sched_class->task_tick(rq, curr, 0);
  3599. raw_spin_unlock(&rq->lock);
  3600. perf_event_task_tick();
  3601. #ifdef CONFIG_SMP
  3602. rq->idle_at_tick = idle_cpu(cpu);
  3603. trigger_load_balance(rq, cpu);
  3604. #endif
  3605. }
  3606. notrace unsigned long get_parent_ip(unsigned long addr)
  3607. {
  3608. if (in_lock_functions(addr)) {
  3609. addr = CALLER_ADDR2;
  3610. if (in_lock_functions(addr))
  3611. addr = CALLER_ADDR3;
  3612. }
  3613. return addr;
  3614. }
  3615. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3616. defined(CONFIG_PREEMPT_TRACER))
  3617. void __kprobes add_preempt_count(int val)
  3618. {
  3619. #ifdef CONFIG_DEBUG_PREEMPT
  3620. /*
  3621. * Underflow?
  3622. */
  3623. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3624. return;
  3625. #endif
  3626. preempt_count() += val;
  3627. #ifdef CONFIG_DEBUG_PREEMPT
  3628. /*
  3629. * Spinlock count overflowing soon?
  3630. */
  3631. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3632. PREEMPT_MASK - 10);
  3633. #endif
  3634. if (preempt_count() == val)
  3635. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3636. }
  3637. EXPORT_SYMBOL(add_preempt_count);
  3638. void __kprobes sub_preempt_count(int val)
  3639. {
  3640. #ifdef CONFIG_DEBUG_PREEMPT
  3641. /*
  3642. * Underflow?
  3643. */
  3644. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3645. return;
  3646. /*
  3647. * Is the spinlock portion underflowing?
  3648. */
  3649. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3650. !(preempt_count() & PREEMPT_MASK)))
  3651. return;
  3652. #endif
  3653. if (preempt_count() == val)
  3654. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3655. preempt_count() -= val;
  3656. }
  3657. EXPORT_SYMBOL(sub_preempt_count);
  3658. #endif
  3659. /*
  3660. * Print scheduling while atomic bug:
  3661. */
  3662. static noinline void __schedule_bug(struct task_struct *prev)
  3663. {
  3664. struct pt_regs *regs = get_irq_regs();
  3665. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3666. prev->comm, prev->pid, preempt_count());
  3667. debug_show_held_locks(prev);
  3668. print_modules();
  3669. if (irqs_disabled())
  3670. print_irqtrace_events(prev);
  3671. if (regs)
  3672. show_regs(regs);
  3673. else
  3674. dump_stack();
  3675. }
  3676. /*
  3677. * Various schedule()-time debugging checks and statistics:
  3678. */
  3679. static inline void schedule_debug(struct task_struct *prev)
  3680. {
  3681. /*
  3682. * Test if we are atomic. Since do_exit() needs to call into
  3683. * schedule() atomically, we ignore that path for now.
  3684. * Otherwise, whine if we are scheduling when we should not be.
  3685. */
  3686. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3687. __schedule_bug(prev);
  3688. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3689. schedstat_inc(this_rq(), sched_count);
  3690. }
  3691. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3692. {
  3693. if (prev->on_rq || rq->skip_clock_update < 0)
  3694. update_rq_clock(rq);
  3695. prev->sched_class->put_prev_task(rq, prev);
  3696. }
  3697. /*
  3698. * Pick up the highest-prio task:
  3699. */
  3700. static inline struct task_struct *
  3701. pick_next_task(struct rq *rq)
  3702. {
  3703. const struct sched_class *class;
  3704. struct task_struct *p;
  3705. /*
  3706. * Optimization: we know that if all tasks are in
  3707. * the fair class we can call that function directly:
  3708. */
  3709. if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
  3710. p = fair_sched_class.pick_next_task(rq);
  3711. if (likely(p))
  3712. return p;
  3713. }
  3714. for_each_class(class) {
  3715. p = class->pick_next_task(rq);
  3716. if (p)
  3717. return p;
  3718. }
  3719. BUG(); /* the idle class will always have a runnable task */
  3720. }
  3721. /*
  3722. * schedule() is the main scheduler function.
  3723. */
  3724. asmlinkage void __sched schedule(void)
  3725. {
  3726. struct task_struct *prev, *next;
  3727. unsigned long *switch_count;
  3728. struct rq *rq;
  3729. int cpu;
  3730. need_resched:
  3731. preempt_disable();
  3732. cpu = smp_processor_id();
  3733. rq = cpu_rq(cpu);
  3734. rcu_note_context_switch(cpu);
  3735. prev = rq->curr;
  3736. schedule_debug(prev);
  3737. if (sched_feat(HRTICK))
  3738. hrtick_clear(rq);
  3739. raw_spin_lock_irq(&rq->lock);
  3740. switch_count = &prev->nivcsw;
  3741. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3742. if (unlikely(signal_pending_state(prev->state, prev))) {
  3743. prev->state = TASK_RUNNING;
  3744. } else {
  3745. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3746. prev->on_rq = 0;
  3747. /*
  3748. * If a worker went to sleep, notify and ask workqueue
  3749. * whether it wants to wake up a task to maintain
  3750. * concurrency.
  3751. */
  3752. if (prev->flags & PF_WQ_WORKER) {
  3753. struct task_struct *to_wakeup;
  3754. to_wakeup = wq_worker_sleeping(prev, cpu);
  3755. if (to_wakeup)
  3756. try_to_wake_up_local(to_wakeup);
  3757. }
  3758. /*
  3759. * If we are going to sleep and we have plugged IO
  3760. * queued, make sure to submit it to avoid deadlocks.
  3761. */
  3762. if (blk_needs_flush_plug(prev)) {
  3763. raw_spin_unlock(&rq->lock);
  3764. blk_schedule_flush_plug(prev);
  3765. raw_spin_lock(&rq->lock);
  3766. }
  3767. }
  3768. switch_count = &prev->nvcsw;
  3769. }
  3770. pre_schedule(rq, prev);
  3771. if (unlikely(!rq->nr_running))
  3772. idle_balance(cpu, rq);
  3773. put_prev_task(rq, prev);
  3774. next = pick_next_task(rq);
  3775. clear_tsk_need_resched(prev);
  3776. rq->skip_clock_update = 0;
  3777. if (likely(prev != next)) {
  3778. rq->nr_switches++;
  3779. rq->curr = next;
  3780. ++*switch_count;
  3781. context_switch(rq, prev, next); /* unlocks the rq */
  3782. /*
  3783. * The context switch have flipped the stack from under us
  3784. * and restored the local variables which were saved when
  3785. * this task called schedule() in the past. prev == current
  3786. * is still correct, but it can be moved to another cpu/rq.
  3787. */
  3788. cpu = smp_processor_id();
  3789. rq = cpu_rq(cpu);
  3790. } else
  3791. raw_spin_unlock_irq(&rq->lock);
  3792. post_schedule(rq);
  3793. preempt_enable_no_resched();
  3794. if (need_resched())
  3795. goto need_resched;
  3796. }
  3797. EXPORT_SYMBOL(schedule);
  3798. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3799. static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
  3800. {
  3801. if (lock->owner != owner)
  3802. return false;
  3803. /*
  3804. * Ensure we emit the owner->on_cpu, dereference _after_ checking
  3805. * lock->owner still matches owner, if that fails, owner might
  3806. * point to free()d memory, if it still matches, the rcu_read_lock()
  3807. * ensures the memory stays valid.
  3808. */
  3809. barrier();
  3810. return owner->on_cpu;
  3811. }
  3812. /*
  3813. * Look out! "owner" is an entirely speculative pointer
  3814. * access and not reliable.
  3815. */
  3816. int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  3817. {
  3818. if (!sched_feat(OWNER_SPIN))
  3819. return 0;
  3820. rcu_read_lock();
  3821. while (owner_running(lock, owner)) {
  3822. if (need_resched())
  3823. break;
  3824. arch_mutex_cpu_relax();
  3825. }
  3826. rcu_read_unlock();
  3827. /*
  3828. * We break out the loop above on need_resched() and when the
  3829. * owner changed, which is a sign for heavy contention. Return
  3830. * success only when lock->owner is NULL.
  3831. */
  3832. return lock->owner == NULL;
  3833. }
  3834. #endif
  3835. #ifdef CONFIG_PREEMPT
  3836. /*
  3837. * this is the entry point to schedule() from in-kernel preemption
  3838. * off of preempt_enable. Kernel preemptions off return from interrupt
  3839. * occur there and call schedule directly.
  3840. */
  3841. asmlinkage void __sched notrace preempt_schedule(void)
  3842. {
  3843. struct thread_info *ti = current_thread_info();
  3844. /*
  3845. * If there is a non-zero preempt_count or interrupts are disabled,
  3846. * we do not want to preempt the current task. Just return..
  3847. */
  3848. if (likely(ti->preempt_count || irqs_disabled()))
  3849. return;
  3850. do {
  3851. add_preempt_count_notrace(PREEMPT_ACTIVE);
  3852. schedule();
  3853. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  3854. /*
  3855. * Check again in case we missed a preemption opportunity
  3856. * between schedule and now.
  3857. */
  3858. barrier();
  3859. } while (need_resched());
  3860. }
  3861. EXPORT_SYMBOL(preempt_schedule);
  3862. /*
  3863. * this is the entry point to schedule() from kernel preemption
  3864. * off of irq context.
  3865. * Note, that this is called and return with irqs disabled. This will
  3866. * protect us against recursive calling from irq.
  3867. */
  3868. asmlinkage void __sched preempt_schedule_irq(void)
  3869. {
  3870. struct thread_info *ti = current_thread_info();
  3871. /* Catch callers which need to be fixed */
  3872. BUG_ON(ti->preempt_count || !irqs_disabled());
  3873. do {
  3874. add_preempt_count(PREEMPT_ACTIVE);
  3875. local_irq_enable();
  3876. schedule();
  3877. local_irq_disable();
  3878. sub_preempt_count(PREEMPT_ACTIVE);
  3879. /*
  3880. * Check again in case we missed a preemption opportunity
  3881. * between schedule and now.
  3882. */
  3883. barrier();
  3884. } while (need_resched());
  3885. }
  3886. #endif /* CONFIG_PREEMPT */
  3887. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3888. void *key)
  3889. {
  3890. return try_to_wake_up(curr->private, mode, wake_flags);
  3891. }
  3892. EXPORT_SYMBOL(default_wake_function);
  3893. /*
  3894. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3895. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3896. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3897. *
  3898. * There are circumstances in which we can try to wake a task which has already
  3899. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3900. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3901. */
  3902. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3903. int nr_exclusive, int wake_flags, void *key)
  3904. {
  3905. wait_queue_t *curr, *next;
  3906. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3907. unsigned flags = curr->flags;
  3908. if (curr->func(curr, mode, wake_flags, key) &&
  3909. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3910. break;
  3911. }
  3912. }
  3913. /**
  3914. * __wake_up - wake up threads blocked on a waitqueue.
  3915. * @q: the waitqueue
  3916. * @mode: which threads
  3917. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3918. * @key: is directly passed to the wakeup function
  3919. *
  3920. * It may be assumed that this function implies a write memory barrier before
  3921. * changing the task state if and only if any tasks are woken up.
  3922. */
  3923. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3924. int nr_exclusive, void *key)
  3925. {
  3926. unsigned long flags;
  3927. spin_lock_irqsave(&q->lock, flags);
  3928. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3929. spin_unlock_irqrestore(&q->lock, flags);
  3930. }
  3931. EXPORT_SYMBOL(__wake_up);
  3932. /*
  3933. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3934. */
  3935. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3936. {
  3937. __wake_up_common(q, mode, 1, 0, NULL);
  3938. }
  3939. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3940. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3941. {
  3942. __wake_up_common(q, mode, 1, 0, key);
  3943. }
  3944. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  3945. /**
  3946. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3947. * @q: the waitqueue
  3948. * @mode: which threads
  3949. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3950. * @key: opaque value to be passed to wakeup targets
  3951. *
  3952. * The sync wakeup differs that the waker knows that it will schedule
  3953. * away soon, so while the target thread will be woken up, it will not
  3954. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3955. * with each other. This can prevent needless bouncing between CPUs.
  3956. *
  3957. * On UP it can prevent extra preemption.
  3958. *
  3959. * It may be assumed that this function implies a write memory barrier before
  3960. * changing the task state if and only if any tasks are woken up.
  3961. */
  3962. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3963. int nr_exclusive, void *key)
  3964. {
  3965. unsigned long flags;
  3966. int wake_flags = WF_SYNC;
  3967. if (unlikely(!q))
  3968. return;
  3969. if (unlikely(!nr_exclusive))
  3970. wake_flags = 0;
  3971. spin_lock_irqsave(&q->lock, flags);
  3972. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3973. spin_unlock_irqrestore(&q->lock, flags);
  3974. }
  3975. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3976. /*
  3977. * __wake_up_sync - see __wake_up_sync_key()
  3978. */
  3979. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3980. {
  3981. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3982. }
  3983. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3984. /**
  3985. * complete: - signals a single thread waiting on this completion
  3986. * @x: holds the state of this particular completion
  3987. *
  3988. * This will wake up a single thread waiting on this completion. Threads will be
  3989. * awakened in the same order in which they were queued.
  3990. *
  3991. * See also complete_all(), wait_for_completion() and related routines.
  3992. *
  3993. * It may be assumed that this function implies a write memory barrier before
  3994. * changing the task state if and only if any tasks are woken up.
  3995. */
  3996. void complete(struct completion *x)
  3997. {
  3998. unsigned long flags;
  3999. spin_lock_irqsave(&x->wait.lock, flags);
  4000. x->done++;
  4001. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4002. spin_unlock_irqrestore(&x->wait.lock, flags);
  4003. }
  4004. EXPORT_SYMBOL(complete);
  4005. /**
  4006. * complete_all: - signals all threads waiting on this completion
  4007. * @x: holds the state of this particular completion
  4008. *
  4009. * This will wake up all threads waiting on this particular completion event.
  4010. *
  4011. * It may be assumed that this function implies a write memory barrier before
  4012. * changing the task state if and only if any tasks are woken up.
  4013. */
  4014. void complete_all(struct completion *x)
  4015. {
  4016. unsigned long flags;
  4017. spin_lock_irqsave(&x->wait.lock, flags);
  4018. x->done += UINT_MAX/2;
  4019. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4020. spin_unlock_irqrestore(&x->wait.lock, flags);
  4021. }
  4022. EXPORT_SYMBOL(complete_all);
  4023. static inline long __sched
  4024. do_wait_for_common(struct completion *x, long timeout, int state)
  4025. {
  4026. if (!x->done) {
  4027. DECLARE_WAITQUEUE(wait, current);
  4028. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  4029. do {
  4030. if (signal_pending_state(state, current)) {
  4031. timeout = -ERESTARTSYS;
  4032. break;
  4033. }
  4034. __set_current_state(state);
  4035. spin_unlock_irq(&x->wait.lock);
  4036. timeout = schedule_timeout(timeout);
  4037. spin_lock_irq(&x->wait.lock);
  4038. } while (!x->done && timeout);
  4039. __remove_wait_queue(&x->wait, &wait);
  4040. if (!x->done)
  4041. return timeout;
  4042. }
  4043. x->done--;
  4044. return timeout ?: 1;
  4045. }
  4046. static long __sched
  4047. wait_for_common(struct completion *x, long timeout, int state)
  4048. {
  4049. might_sleep();
  4050. spin_lock_irq(&x->wait.lock);
  4051. timeout = do_wait_for_common(x, timeout, state);
  4052. spin_unlock_irq(&x->wait.lock);
  4053. return timeout;
  4054. }
  4055. /**
  4056. * wait_for_completion: - waits for completion of a task
  4057. * @x: holds the state of this particular completion
  4058. *
  4059. * This waits to be signaled for completion of a specific task. It is NOT
  4060. * interruptible and there is no timeout.
  4061. *
  4062. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4063. * and interrupt capability. Also see complete().
  4064. */
  4065. void __sched wait_for_completion(struct completion *x)
  4066. {
  4067. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4068. }
  4069. EXPORT_SYMBOL(wait_for_completion);
  4070. /**
  4071. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4072. * @x: holds the state of this particular completion
  4073. * @timeout: timeout value in jiffies
  4074. *
  4075. * This waits for either a completion of a specific task to be signaled or for a
  4076. * specified timeout to expire. The timeout is in jiffies. It is not
  4077. * interruptible.
  4078. */
  4079. unsigned long __sched
  4080. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4081. {
  4082. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4083. }
  4084. EXPORT_SYMBOL(wait_for_completion_timeout);
  4085. /**
  4086. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4087. * @x: holds the state of this particular completion
  4088. *
  4089. * This waits for completion of a specific task to be signaled. It is
  4090. * interruptible.
  4091. */
  4092. int __sched wait_for_completion_interruptible(struct completion *x)
  4093. {
  4094. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4095. if (t == -ERESTARTSYS)
  4096. return t;
  4097. return 0;
  4098. }
  4099. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4100. /**
  4101. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4102. * @x: holds the state of this particular completion
  4103. * @timeout: timeout value in jiffies
  4104. *
  4105. * This waits for either a completion of a specific task to be signaled or for a
  4106. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4107. */
  4108. long __sched
  4109. wait_for_completion_interruptible_timeout(struct completion *x,
  4110. unsigned long timeout)
  4111. {
  4112. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4113. }
  4114. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4115. /**
  4116. * wait_for_completion_killable: - waits for completion of a task (killable)
  4117. * @x: holds the state of this particular completion
  4118. *
  4119. * This waits to be signaled for completion of a specific task. It can be
  4120. * interrupted by a kill signal.
  4121. */
  4122. int __sched wait_for_completion_killable(struct completion *x)
  4123. {
  4124. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4125. if (t == -ERESTARTSYS)
  4126. return t;
  4127. return 0;
  4128. }
  4129. EXPORT_SYMBOL(wait_for_completion_killable);
  4130. /**
  4131. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  4132. * @x: holds the state of this particular completion
  4133. * @timeout: timeout value in jiffies
  4134. *
  4135. * This waits for either a completion of a specific task to be
  4136. * signaled or for a specified timeout to expire. It can be
  4137. * interrupted by a kill signal. The timeout is in jiffies.
  4138. */
  4139. long __sched
  4140. wait_for_completion_killable_timeout(struct completion *x,
  4141. unsigned long timeout)
  4142. {
  4143. return wait_for_common(x, timeout, TASK_KILLABLE);
  4144. }
  4145. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  4146. /**
  4147. * try_wait_for_completion - try to decrement a completion without blocking
  4148. * @x: completion structure
  4149. *
  4150. * Returns: 0 if a decrement cannot be done without blocking
  4151. * 1 if a decrement succeeded.
  4152. *
  4153. * If a completion is being used as a counting completion,
  4154. * attempt to decrement the counter without blocking. This
  4155. * enables us to avoid waiting if the resource the completion
  4156. * is protecting is not available.
  4157. */
  4158. bool try_wait_for_completion(struct completion *x)
  4159. {
  4160. unsigned long flags;
  4161. int ret = 1;
  4162. spin_lock_irqsave(&x->wait.lock, flags);
  4163. if (!x->done)
  4164. ret = 0;
  4165. else
  4166. x->done--;
  4167. spin_unlock_irqrestore(&x->wait.lock, flags);
  4168. return ret;
  4169. }
  4170. EXPORT_SYMBOL(try_wait_for_completion);
  4171. /**
  4172. * completion_done - Test to see if a completion has any waiters
  4173. * @x: completion structure
  4174. *
  4175. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4176. * 1 if there are no waiters.
  4177. *
  4178. */
  4179. bool completion_done(struct completion *x)
  4180. {
  4181. unsigned long flags;
  4182. int ret = 1;
  4183. spin_lock_irqsave(&x->wait.lock, flags);
  4184. if (!x->done)
  4185. ret = 0;
  4186. spin_unlock_irqrestore(&x->wait.lock, flags);
  4187. return ret;
  4188. }
  4189. EXPORT_SYMBOL(completion_done);
  4190. static long __sched
  4191. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4192. {
  4193. unsigned long flags;
  4194. wait_queue_t wait;
  4195. init_waitqueue_entry(&wait, current);
  4196. __set_current_state(state);
  4197. spin_lock_irqsave(&q->lock, flags);
  4198. __add_wait_queue(q, &wait);
  4199. spin_unlock(&q->lock);
  4200. timeout = schedule_timeout(timeout);
  4201. spin_lock_irq(&q->lock);
  4202. __remove_wait_queue(q, &wait);
  4203. spin_unlock_irqrestore(&q->lock, flags);
  4204. return timeout;
  4205. }
  4206. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4207. {
  4208. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4209. }
  4210. EXPORT_SYMBOL(interruptible_sleep_on);
  4211. long __sched
  4212. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4213. {
  4214. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4215. }
  4216. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4217. void __sched sleep_on(wait_queue_head_t *q)
  4218. {
  4219. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4220. }
  4221. EXPORT_SYMBOL(sleep_on);
  4222. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4223. {
  4224. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4225. }
  4226. EXPORT_SYMBOL(sleep_on_timeout);
  4227. #ifdef CONFIG_RT_MUTEXES
  4228. /*
  4229. * rt_mutex_setprio - set the current priority of a task
  4230. * @p: task
  4231. * @prio: prio value (kernel-internal form)
  4232. *
  4233. * This function changes the 'effective' priority of a task. It does
  4234. * not touch ->normal_prio like __setscheduler().
  4235. *
  4236. * Used by the rt_mutex code to implement priority inheritance logic.
  4237. */
  4238. void rt_mutex_setprio(struct task_struct *p, int prio)
  4239. {
  4240. int oldprio, on_rq, running;
  4241. struct rq *rq;
  4242. const struct sched_class *prev_class;
  4243. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4244. rq = __task_rq_lock(p);
  4245. trace_sched_pi_setprio(p, prio);
  4246. oldprio = p->prio;
  4247. prev_class = p->sched_class;
  4248. on_rq = p->on_rq;
  4249. running = task_current(rq, p);
  4250. if (on_rq)
  4251. dequeue_task(rq, p, 0);
  4252. if (running)
  4253. p->sched_class->put_prev_task(rq, p);
  4254. if (rt_prio(prio))
  4255. p->sched_class = &rt_sched_class;
  4256. else
  4257. p->sched_class = &fair_sched_class;
  4258. p->prio = prio;
  4259. if (running)
  4260. p->sched_class->set_curr_task(rq);
  4261. if (on_rq)
  4262. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  4263. check_class_changed(rq, p, prev_class, oldprio);
  4264. __task_rq_unlock(rq);
  4265. }
  4266. #endif
  4267. void set_user_nice(struct task_struct *p, long nice)
  4268. {
  4269. int old_prio, delta, on_rq;
  4270. unsigned long flags;
  4271. struct rq *rq;
  4272. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4273. return;
  4274. /*
  4275. * We have to be careful, if called from sys_setpriority(),
  4276. * the task might be in the middle of scheduling on another CPU.
  4277. */
  4278. rq = task_rq_lock(p, &flags);
  4279. /*
  4280. * The RT priorities are set via sched_setscheduler(), but we still
  4281. * allow the 'normal' nice value to be set - but as expected
  4282. * it wont have any effect on scheduling until the task is
  4283. * SCHED_FIFO/SCHED_RR:
  4284. */
  4285. if (task_has_rt_policy(p)) {
  4286. p->static_prio = NICE_TO_PRIO(nice);
  4287. goto out_unlock;
  4288. }
  4289. on_rq = p->on_rq;
  4290. if (on_rq)
  4291. dequeue_task(rq, p, 0);
  4292. p->static_prio = NICE_TO_PRIO(nice);
  4293. set_load_weight(p);
  4294. old_prio = p->prio;
  4295. p->prio = effective_prio(p);
  4296. delta = p->prio - old_prio;
  4297. if (on_rq) {
  4298. enqueue_task(rq, p, 0);
  4299. /*
  4300. * If the task increased its priority or is running and
  4301. * lowered its priority, then reschedule its CPU:
  4302. */
  4303. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4304. resched_task(rq->curr);
  4305. }
  4306. out_unlock:
  4307. task_rq_unlock(rq, p, &flags);
  4308. }
  4309. EXPORT_SYMBOL(set_user_nice);
  4310. /*
  4311. * can_nice - check if a task can reduce its nice value
  4312. * @p: task
  4313. * @nice: nice value
  4314. */
  4315. int can_nice(const struct task_struct *p, const int nice)
  4316. {
  4317. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4318. int nice_rlim = 20 - nice;
  4319. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  4320. capable(CAP_SYS_NICE));
  4321. }
  4322. #ifdef __ARCH_WANT_SYS_NICE
  4323. /*
  4324. * sys_nice - change the priority of the current process.
  4325. * @increment: priority increment
  4326. *
  4327. * sys_setpriority is a more generic, but much slower function that
  4328. * does similar things.
  4329. */
  4330. SYSCALL_DEFINE1(nice, int, increment)
  4331. {
  4332. long nice, retval;
  4333. /*
  4334. * Setpriority might change our priority at the same moment.
  4335. * We don't have to worry. Conceptually one call occurs first
  4336. * and we have a single winner.
  4337. */
  4338. if (increment < -40)
  4339. increment = -40;
  4340. if (increment > 40)
  4341. increment = 40;
  4342. nice = TASK_NICE(current) + increment;
  4343. if (nice < -20)
  4344. nice = -20;
  4345. if (nice > 19)
  4346. nice = 19;
  4347. if (increment < 0 && !can_nice(current, nice))
  4348. return -EPERM;
  4349. retval = security_task_setnice(current, nice);
  4350. if (retval)
  4351. return retval;
  4352. set_user_nice(current, nice);
  4353. return 0;
  4354. }
  4355. #endif
  4356. /**
  4357. * task_prio - return the priority value of a given task.
  4358. * @p: the task in question.
  4359. *
  4360. * This is the priority value as seen by users in /proc.
  4361. * RT tasks are offset by -200. Normal tasks are centered
  4362. * around 0, value goes from -16 to +15.
  4363. */
  4364. int task_prio(const struct task_struct *p)
  4365. {
  4366. return p->prio - MAX_RT_PRIO;
  4367. }
  4368. /**
  4369. * task_nice - return the nice value of a given task.
  4370. * @p: the task in question.
  4371. */
  4372. int task_nice(const struct task_struct *p)
  4373. {
  4374. return TASK_NICE(p);
  4375. }
  4376. EXPORT_SYMBOL(task_nice);
  4377. /**
  4378. * idle_cpu - is a given cpu idle currently?
  4379. * @cpu: the processor in question.
  4380. */
  4381. int idle_cpu(int cpu)
  4382. {
  4383. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4384. }
  4385. /**
  4386. * idle_task - return the idle task for a given cpu.
  4387. * @cpu: the processor in question.
  4388. */
  4389. struct task_struct *idle_task(int cpu)
  4390. {
  4391. return cpu_rq(cpu)->idle;
  4392. }
  4393. /**
  4394. * find_process_by_pid - find a process with a matching PID value.
  4395. * @pid: the pid in question.
  4396. */
  4397. static struct task_struct *find_process_by_pid(pid_t pid)
  4398. {
  4399. return pid ? find_task_by_vpid(pid) : current;
  4400. }
  4401. /* Actually do priority change: must hold rq lock. */
  4402. static void
  4403. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4404. {
  4405. p->policy = policy;
  4406. p->rt_priority = prio;
  4407. p->normal_prio = normal_prio(p);
  4408. /* we are holding p->pi_lock already */
  4409. p->prio = rt_mutex_getprio(p);
  4410. if (rt_prio(p->prio))
  4411. p->sched_class = &rt_sched_class;
  4412. else
  4413. p->sched_class = &fair_sched_class;
  4414. set_load_weight(p);
  4415. }
  4416. /*
  4417. * check the target process has a UID that matches the current process's
  4418. */
  4419. static bool check_same_owner(struct task_struct *p)
  4420. {
  4421. const struct cred *cred = current_cred(), *pcred;
  4422. bool match;
  4423. rcu_read_lock();
  4424. pcred = __task_cred(p);
  4425. if (cred->user->user_ns == pcred->user->user_ns)
  4426. match = (cred->euid == pcred->euid ||
  4427. cred->euid == pcred->uid);
  4428. else
  4429. match = false;
  4430. rcu_read_unlock();
  4431. return match;
  4432. }
  4433. static int __sched_setscheduler(struct task_struct *p, int policy,
  4434. const struct sched_param *param, bool user)
  4435. {
  4436. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4437. unsigned long flags;
  4438. const struct sched_class *prev_class;
  4439. struct rq *rq;
  4440. int reset_on_fork;
  4441. /* may grab non-irq protected spin_locks */
  4442. BUG_ON(in_interrupt());
  4443. recheck:
  4444. /* double check policy once rq lock held */
  4445. if (policy < 0) {
  4446. reset_on_fork = p->sched_reset_on_fork;
  4447. policy = oldpolicy = p->policy;
  4448. } else {
  4449. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  4450. policy &= ~SCHED_RESET_ON_FORK;
  4451. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4452. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4453. policy != SCHED_IDLE)
  4454. return -EINVAL;
  4455. }
  4456. /*
  4457. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4458. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4459. * SCHED_BATCH and SCHED_IDLE is 0.
  4460. */
  4461. if (param->sched_priority < 0 ||
  4462. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4463. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4464. return -EINVAL;
  4465. if (rt_policy(policy) != (param->sched_priority != 0))
  4466. return -EINVAL;
  4467. /*
  4468. * Allow unprivileged RT tasks to decrease priority:
  4469. */
  4470. if (user && !capable(CAP_SYS_NICE)) {
  4471. if (rt_policy(policy)) {
  4472. unsigned long rlim_rtprio =
  4473. task_rlimit(p, RLIMIT_RTPRIO);
  4474. /* can't set/change the rt policy */
  4475. if (policy != p->policy && !rlim_rtprio)
  4476. return -EPERM;
  4477. /* can't increase priority */
  4478. if (param->sched_priority > p->rt_priority &&
  4479. param->sched_priority > rlim_rtprio)
  4480. return -EPERM;
  4481. }
  4482. /*
  4483. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  4484. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  4485. */
  4486. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  4487. if (!can_nice(p, TASK_NICE(p)))
  4488. return -EPERM;
  4489. }
  4490. /* can't change other user's priorities */
  4491. if (!check_same_owner(p))
  4492. return -EPERM;
  4493. /* Normal users shall not reset the sched_reset_on_fork flag */
  4494. if (p->sched_reset_on_fork && !reset_on_fork)
  4495. return -EPERM;
  4496. }
  4497. if (user) {
  4498. retval = security_task_setscheduler(p);
  4499. if (retval)
  4500. return retval;
  4501. }
  4502. /*
  4503. * make sure no PI-waiters arrive (or leave) while we are
  4504. * changing the priority of the task:
  4505. *
  4506. * To be able to change p->policy safely, the appropriate
  4507. * runqueue lock must be held.
  4508. */
  4509. rq = task_rq_lock(p, &flags);
  4510. /*
  4511. * Changing the policy of the stop threads its a very bad idea
  4512. */
  4513. if (p == rq->stop) {
  4514. task_rq_unlock(rq, p, &flags);
  4515. return -EINVAL;
  4516. }
  4517. /*
  4518. * If not changing anything there's no need to proceed further:
  4519. */
  4520. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  4521. param->sched_priority == p->rt_priority))) {
  4522. __task_rq_unlock(rq);
  4523. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4524. return 0;
  4525. }
  4526. #ifdef CONFIG_RT_GROUP_SCHED
  4527. if (user) {
  4528. /*
  4529. * Do not allow realtime tasks into groups that have no runtime
  4530. * assigned.
  4531. */
  4532. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4533. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  4534. !task_group_is_autogroup(task_group(p))) {
  4535. task_rq_unlock(rq, p, &flags);
  4536. return -EPERM;
  4537. }
  4538. }
  4539. #endif
  4540. /* recheck policy now with rq lock held */
  4541. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4542. policy = oldpolicy = -1;
  4543. task_rq_unlock(rq, p, &flags);
  4544. goto recheck;
  4545. }
  4546. on_rq = p->on_rq;
  4547. running = task_current(rq, p);
  4548. if (on_rq)
  4549. deactivate_task(rq, p, 0);
  4550. if (running)
  4551. p->sched_class->put_prev_task(rq, p);
  4552. p->sched_reset_on_fork = reset_on_fork;
  4553. oldprio = p->prio;
  4554. prev_class = p->sched_class;
  4555. __setscheduler(rq, p, policy, param->sched_priority);
  4556. if (running)
  4557. p->sched_class->set_curr_task(rq);
  4558. if (on_rq)
  4559. activate_task(rq, p, 0);
  4560. check_class_changed(rq, p, prev_class, oldprio);
  4561. task_rq_unlock(rq, p, &flags);
  4562. rt_mutex_adjust_pi(p);
  4563. return 0;
  4564. }
  4565. /**
  4566. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4567. * @p: the task in question.
  4568. * @policy: new policy.
  4569. * @param: structure containing the new RT priority.
  4570. *
  4571. * NOTE that the task may be already dead.
  4572. */
  4573. int sched_setscheduler(struct task_struct *p, int policy,
  4574. const struct sched_param *param)
  4575. {
  4576. return __sched_setscheduler(p, policy, param, true);
  4577. }
  4578. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4579. /**
  4580. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4581. * @p: the task in question.
  4582. * @policy: new policy.
  4583. * @param: structure containing the new RT priority.
  4584. *
  4585. * Just like sched_setscheduler, only don't bother checking if the
  4586. * current context has permission. For example, this is needed in
  4587. * stop_machine(): we create temporary high priority worker threads,
  4588. * but our caller might not have that capability.
  4589. */
  4590. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4591. const struct sched_param *param)
  4592. {
  4593. return __sched_setscheduler(p, policy, param, false);
  4594. }
  4595. static int
  4596. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4597. {
  4598. struct sched_param lparam;
  4599. struct task_struct *p;
  4600. int retval;
  4601. if (!param || pid < 0)
  4602. return -EINVAL;
  4603. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4604. return -EFAULT;
  4605. rcu_read_lock();
  4606. retval = -ESRCH;
  4607. p = find_process_by_pid(pid);
  4608. if (p != NULL)
  4609. retval = sched_setscheduler(p, policy, &lparam);
  4610. rcu_read_unlock();
  4611. return retval;
  4612. }
  4613. /**
  4614. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4615. * @pid: the pid in question.
  4616. * @policy: new policy.
  4617. * @param: structure containing the new RT priority.
  4618. */
  4619. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4620. struct sched_param __user *, param)
  4621. {
  4622. /* negative values for policy are not valid */
  4623. if (policy < 0)
  4624. return -EINVAL;
  4625. return do_sched_setscheduler(pid, policy, param);
  4626. }
  4627. /**
  4628. * sys_sched_setparam - set/change the RT priority of a thread
  4629. * @pid: the pid in question.
  4630. * @param: structure containing the new RT priority.
  4631. */
  4632. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4633. {
  4634. return do_sched_setscheduler(pid, -1, param);
  4635. }
  4636. /**
  4637. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4638. * @pid: the pid in question.
  4639. */
  4640. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4641. {
  4642. struct task_struct *p;
  4643. int retval;
  4644. if (pid < 0)
  4645. return -EINVAL;
  4646. retval = -ESRCH;
  4647. rcu_read_lock();
  4648. p = find_process_by_pid(pid);
  4649. if (p) {
  4650. retval = security_task_getscheduler(p);
  4651. if (!retval)
  4652. retval = p->policy
  4653. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  4654. }
  4655. rcu_read_unlock();
  4656. return retval;
  4657. }
  4658. /**
  4659. * sys_sched_getparam - get the RT priority of a thread
  4660. * @pid: the pid in question.
  4661. * @param: structure containing the RT priority.
  4662. */
  4663. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4664. {
  4665. struct sched_param lp;
  4666. struct task_struct *p;
  4667. int retval;
  4668. if (!param || pid < 0)
  4669. return -EINVAL;
  4670. rcu_read_lock();
  4671. p = find_process_by_pid(pid);
  4672. retval = -ESRCH;
  4673. if (!p)
  4674. goto out_unlock;
  4675. retval = security_task_getscheduler(p);
  4676. if (retval)
  4677. goto out_unlock;
  4678. lp.sched_priority = p->rt_priority;
  4679. rcu_read_unlock();
  4680. /*
  4681. * This one might sleep, we cannot do it with a spinlock held ...
  4682. */
  4683. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4684. return retval;
  4685. out_unlock:
  4686. rcu_read_unlock();
  4687. return retval;
  4688. }
  4689. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4690. {
  4691. cpumask_var_t cpus_allowed, new_mask;
  4692. struct task_struct *p;
  4693. int retval;
  4694. get_online_cpus();
  4695. rcu_read_lock();
  4696. p = find_process_by_pid(pid);
  4697. if (!p) {
  4698. rcu_read_unlock();
  4699. put_online_cpus();
  4700. return -ESRCH;
  4701. }
  4702. /* Prevent p going away */
  4703. get_task_struct(p);
  4704. rcu_read_unlock();
  4705. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4706. retval = -ENOMEM;
  4707. goto out_put_task;
  4708. }
  4709. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4710. retval = -ENOMEM;
  4711. goto out_free_cpus_allowed;
  4712. }
  4713. retval = -EPERM;
  4714. if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
  4715. goto out_unlock;
  4716. retval = security_task_setscheduler(p);
  4717. if (retval)
  4718. goto out_unlock;
  4719. cpuset_cpus_allowed(p, cpus_allowed);
  4720. cpumask_and(new_mask, in_mask, cpus_allowed);
  4721. again:
  4722. retval = set_cpus_allowed_ptr(p, new_mask);
  4723. if (!retval) {
  4724. cpuset_cpus_allowed(p, cpus_allowed);
  4725. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4726. /*
  4727. * We must have raced with a concurrent cpuset
  4728. * update. Just reset the cpus_allowed to the
  4729. * cpuset's cpus_allowed
  4730. */
  4731. cpumask_copy(new_mask, cpus_allowed);
  4732. goto again;
  4733. }
  4734. }
  4735. out_unlock:
  4736. free_cpumask_var(new_mask);
  4737. out_free_cpus_allowed:
  4738. free_cpumask_var(cpus_allowed);
  4739. out_put_task:
  4740. put_task_struct(p);
  4741. put_online_cpus();
  4742. return retval;
  4743. }
  4744. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4745. struct cpumask *new_mask)
  4746. {
  4747. if (len < cpumask_size())
  4748. cpumask_clear(new_mask);
  4749. else if (len > cpumask_size())
  4750. len = cpumask_size();
  4751. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4752. }
  4753. /**
  4754. * sys_sched_setaffinity - set the cpu affinity of a process
  4755. * @pid: pid of the process
  4756. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4757. * @user_mask_ptr: user-space pointer to the new cpu mask
  4758. */
  4759. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4760. unsigned long __user *, user_mask_ptr)
  4761. {
  4762. cpumask_var_t new_mask;
  4763. int retval;
  4764. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4765. return -ENOMEM;
  4766. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4767. if (retval == 0)
  4768. retval = sched_setaffinity(pid, new_mask);
  4769. free_cpumask_var(new_mask);
  4770. return retval;
  4771. }
  4772. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4773. {
  4774. struct task_struct *p;
  4775. unsigned long flags;
  4776. int retval;
  4777. get_online_cpus();
  4778. rcu_read_lock();
  4779. retval = -ESRCH;
  4780. p = find_process_by_pid(pid);
  4781. if (!p)
  4782. goto out_unlock;
  4783. retval = security_task_getscheduler(p);
  4784. if (retval)
  4785. goto out_unlock;
  4786. raw_spin_lock_irqsave(&p->pi_lock, flags);
  4787. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4788. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4789. out_unlock:
  4790. rcu_read_unlock();
  4791. put_online_cpus();
  4792. return retval;
  4793. }
  4794. /**
  4795. * sys_sched_getaffinity - get the cpu affinity of a process
  4796. * @pid: pid of the process
  4797. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4798. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4799. */
  4800. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4801. unsigned long __user *, user_mask_ptr)
  4802. {
  4803. int ret;
  4804. cpumask_var_t mask;
  4805. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4806. return -EINVAL;
  4807. if (len & (sizeof(unsigned long)-1))
  4808. return -EINVAL;
  4809. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4810. return -ENOMEM;
  4811. ret = sched_getaffinity(pid, mask);
  4812. if (ret == 0) {
  4813. size_t retlen = min_t(size_t, len, cpumask_size());
  4814. if (copy_to_user(user_mask_ptr, mask, retlen))
  4815. ret = -EFAULT;
  4816. else
  4817. ret = retlen;
  4818. }
  4819. free_cpumask_var(mask);
  4820. return ret;
  4821. }
  4822. /**
  4823. * sys_sched_yield - yield the current processor to other threads.
  4824. *
  4825. * This function yields the current CPU to other tasks. If there are no
  4826. * other threads running on this CPU then this function will return.
  4827. */
  4828. SYSCALL_DEFINE0(sched_yield)
  4829. {
  4830. struct rq *rq = this_rq_lock();
  4831. schedstat_inc(rq, yld_count);
  4832. current->sched_class->yield_task(rq);
  4833. /*
  4834. * Since we are going to call schedule() anyway, there's
  4835. * no need to preempt or enable interrupts:
  4836. */
  4837. __release(rq->lock);
  4838. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4839. do_raw_spin_unlock(&rq->lock);
  4840. preempt_enable_no_resched();
  4841. schedule();
  4842. return 0;
  4843. }
  4844. static inline int should_resched(void)
  4845. {
  4846. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4847. }
  4848. static void __cond_resched(void)
  4849. {
  4850. add_preempt_count(PREEMPT_ACTIVE);
  4851. schedule();
  4852. sub_preempt_count(PREEMPT_ACTIVE);
  4853. }
  4854. int __sched _cond_resched(void)
  4855. {
  4856. if (should_resched()) {
  4857. __cond_resched();
  4858. return 1;
  4859. }
  4860. return 0;
  4861. }
  4862. EXPORT_SYMBOL(_cond_resched);
  4863. /*
  4864. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4865. * call schedule, and on return reacquire the lock.
  4866. *
  4867. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4868. * operations here to prevent schedule() from being called twice (once via
  4869. * spin_unlock(), once by hand).
  4870. */
  4871. int __cond_resched_lock(spinlock_t *lock)
  4872. {
  4873. int resched = should_resched();
  4874. int ret = 0;
  4875. lockdep_assert_held(lock);
  4876. if (spin_needbreak(lock) || resched) {
  4877. spin_unlock(lock);
  4878. if (resched)
  4879. __cond_resched();
  4880. else
  4881. cpu_relax();
  4882. ret = 1;
  4883. spin_lock(lock);
  4884. }
  4885. return ret;
  4886. }
  4887. EXPORT_SYMBOL(__cond_resched_lock);
  4888. int __sched __cond_resched_softirq(void)
  4889. {
  4890. BUG_ON(!in_softirq());
  4891. if (should_resched()) {
  4892. local_bh_enable();
  4893. __cond_resched();
  4894. local_bh_disable();
  4895. return 1;
  4896. }
  4897. return 0;
  4898. }
  4899. EXPORT_SYMBOL(__cond_resched_softirq);
  4900. /**
  4901. * yield - yield the current processor to other threads.
  4902. *
  4903. * This is a shortcut for kernel-space yielding - it marks the
  4904. * thread runnable and calls sys_sched_yield().
  4905. */
  4906. void __sched yield(void)
  4907. {
  4908. set_current_state(TASK_RUNNING);
  4909. sys_sched_yield();
  4910. }
  4911. EXPORT_SYMBOL(yield);
  4912. /**
  4913. * yield_to - yield the current processor to another thread in
  4914. * your thread group, or accelerate that thread toward the
  4915. * processor it's on.
  4916. * @p: target task
  4917. * @preempt: whether task preemption is allowed or not
  4918. *
  4919. * It's the caller's job to ensure that the target task struct
  4920. * can't go away on us before we can do any checks.
  4921. *
  4922. * Returns true if we indeed boosted the target task.
  4923. */
  4924. bool __sched yield_to(struct task_struct *p, bool preempt)
  4925. {
  4926. struct task_struct *curr = current;
  4927. struct rq *rq, *p_rq;
  4928. unsigned long flags;
  4929. bool yielded = 0;
  4930. local_irq_save(flags);
  4931. rq = this_rq();
  4932. again:
  4933. p_rq = task_rq(p);
  4934. double_rq_lock(rq, p_rq);
  4935. while (task_rq(p) != p_rq) {
  4936. double_rq_unlock(rq, p_rq);
  4937. goto again;
  4938. }
  4939. if (!curr->sched_class->yield_to_task)
  4940. goto out;
  4941. if (curr->sched_class != p->sched_class)
  4942. goto out;
  4943. if (task_running(p_rq, p) || p->state)
  4944. goto out;
  4945. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  4946. if (yielded) {
  4947. schedstat_inc(rq, yld_count);
  4948. /*
  4949. * Make p's CPU reschedule; pick_next_entity takes care of
  4950. * fairness.
  4951. */
  4952. if (preempt && rq != p_rq)
  4953. resched_task(p_rq->curr);
  4954. }
  4955. out:
  4956. double_rq_unlock(rq, p_rq);
  4957. local_irq_restore(flags);
  4958. if (yielded)
  4959. schedule();
  4960. return yielded;
  4961. }
  4962. EXPORT_SYMBOL_GPL(yield_to);
  4963. /*
  4964. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4965. * that process accounting knows that this is a task in IO wait state.
  4966. */
  4967. void __sched io_schedule(void)
  4968. {
  4969. struct rq *rq = raw_rq();
  4970. delayacct_blkio_start();
  4971. atomic_inc(&rq->nr_iowait);
  4972. blk_flush_plug(current);
  4973. current->in_iowait = 1;
  4974. schedule();
  4975. current->in_iowait = 0;
  4976. atomic_dec(&rq->nr_iowait);
  4977. delayacct_blkio_end();
  4978. }
  4979. EXPORT_SYMBOL(io_schedule);
  4980. long __sched io_schedule_timeout(long timeout)
  4981. {
  4982. struct rq *rq = raw_rq();
  4983. long ret;
  4984. delayacct_blkio_start();
  4985. atomic_inc(&rq->nr_iowait);
  4986. blk_flush_plug(current);
  4987. current->in_iowait = 1;
  4988. ret = schedule_timeout(timeout);
  4989. current->in_iowait = 0;
  4990. atomic_dec(&rq->nr_iowait);
  4991. delayacct_blkio_end();
  4992. return ret;
  4993. }
  4994. /**
  4995. * sys_sched_get_priority_max - return maximum RT priority.
  4996. * @policy: scheduling class.
  4997. *
  4998. * this syscall returns the maximum rt_priority that can be used
  4999. * by a given scheduling class.
  5000. */
  5001. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5002. {
  5003. int ret = -EINVAL;
  5004. switch (policy) {
  5005. case SCHED_FIFO:
  5006. case SCHED_RR:
  5007. ret = MAX_USER_RT_PRIO-1;
  5008. break;
  5009. case SCHED_NORMAL:
  5010. case SCHED_BATCH:
  5011. case SCHED_IDLE:
  5012. ret = 0;
  5013. break;
  5014. }
  5015. return ret;
  5016. }
  5017. /**
  5018. * sys_sched_get_priority_min - return minimum RT priority.
  5019. * @policy: scheduling class.
  5020. *
  5021. * this syscall returns the minimum rt_priority that can be used
  5022. * by a given scheduling class.
  5023. */
  5024. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5025. {
  5026. int ret = -EINVAL;
  5027. switch (policy) {
  5028. case SCHED_FIFO:
  5029. case SCHED_RR:
  5030. ret = 1;
  5031. break;
  5032. case SCHED_NORMAL:
  5033. case SCHED_BATCH:
  5034. case SCHED_IDLE:
  5035. ret = 0;
  5036. }
  5037. return ret;
  5038. }
  5039. /**
  5040. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5041. * @pid: pid of the process.
  5042. * @interval: userspace pointer to the timeslice value.
  5043. *
  5044. * this syscall writes the default timeslice value of a given process
  5045. * into the user-space timespec buffer. A value of '0' means infinity.
  5046. */
  5047. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5048. struct timespec __user *, interval)
  5049. {
  5050. struct task_struct *p;
  5051. unsigned int time_slice;
  5052. unsigned long flags;
  5053. struct rq *rq;
  5054. int retval;
  5055. struct timespec t;
  5056. if (pid < 0)
  5057. return -EINVAL;
  5058. retval = -ESRCH;
  5059. rcu_read_lock();
  5060. p = find_process_by_pid(pid);
  5061. if (!p)
  5062. goto out_unlock;
  5063. retval = security_task_getscheduler(p);
  5064. if (retval)
  5065. goto out_unlock;
  5066. rq = task_rq_lock(p, &flags);
  5067. time_slice = p->sched_class->get_rr_interval(rq, p);
  5068. task_rq_unlock(rq, p, &flags);
  5069. rcu_read_unlock();
  5070. jiffies_to_timespec(time_slice, &t);
  5071. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5072. return retval;
  5073. out_unlock:
  5074. rcu_read_unlock();
  5075. return retval;
  5076. }
  5077. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5078. void sched_show_task(struct task_struct *p)
  5079. {
  5080. unsigned long free = 0;
  5081. unsigned state;
  5082. state = p->state ? __ffs(p->state) + 1 : 0;
  5083. printk(KERN_INFO "%-15.15s %c", p->comm,
  5084. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5085. #if BITS_PER_LONG == 32
  5086. if (state == TASK_RUNNING)
  5087. printk(KERN_CONT " running ");
  5088. else
  5089. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  5090. #else
  5091. if (state == TASK_RUNNING)
  5092. printk(KERN_CONT " running task ");
  5093. else
  5094. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  5095. #endif
  5096. #ifdef CONFIG_DEBUG_STACK_USAGE
  5097. free = stack_not_used(p);
  5098. #endif
  5099. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  5100. task_pid_nr(p), task_pid_nr(p->real_parent),
  5101. (unsigned long)task_thread_info(p)->flags);
  5102. show_stack(p, NULL);
  5103. }
  5104. void show_state_filter(unsigned long state_filter)
  5105. {
  5106. struct task_struct *g, *p;
  5107. #if BITS_PER_LONG == 32
  5108. printk(KERN_INFO
  5109. " task PC stack pid father\n");
  5110. #else
  5111. printk(KERN_INFO
  5112. " task PC stack pid father\n");
  5113. #endif
  5114. read_lock(&tasklist_lock);
  5115. do_each_thread(g, p) {
  5116. /*
  5117. * reset the NMI-timeout, listing all files on a slow
  5118. * console might take a lot of time:
  5119. */
  5120. touch_nmi_watchdog();
  5121. if (!state_filter || (p->state & state_filter))
  5122. sched_show_task(p);
  5123. } while_each_thread(g, p);
  5124. touch_all_softlockup_watchdogs();
  5125. #ifdef CONFIG_SCHED_DEBUG
  5126. sysrq_sched_debug_show();
  5127. #endif
  5128. read_unlock(&tasklist_lock);
  5129. /*
  5130. * Only show locks if all tasks are dumped:
  5131. */
  5132. if (!state_filter)
  5133. debug_show_all_locks();
  5134. }
  5135. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5136. {
  5137. idle->sched_class = &idle_sched_class;
  5138. }
  5139. /**
  5140. * init_idle - set up an idle thread for a given CPU
  5141. * @idle: task in question
  5142. * @cpu: cpu the idle task belongs to
  5143. *
  5144. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5145. * flag, to make booting more robust.
  5146. */
  5147. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5148. {
  5149. struct rq *rq = cpu_rq(cpu);
  5150. unsigned long flags;
  5151. raw_spin_lock_irqsave(&rq->lock, flags);
  5152. __sched_fork(idle);
  5153. idle->state = TASK_RUNNING;
  5154. idle->se.exec_start = sched_clock();
  5155. do_set_cpus_allowed(idle, cpumask_of(cpu));
  5156. /*
  5157. * We're having a chicken and egg problem, even though we are
  5158. * holding rq->lock, the cpu isn't yet set to this cpu so the
  5159. * lockdep check in task_group() will fail.
  5160. *
  5161. * Similar case to sched_fork(). / Alternatively we could
  5162. * use task_rq_lock() here and obtain the other rq->lock.
  5163. *
  5164. * Silence PROVE_RCU
  5165. */
  5166. rcu_read_lock();
  5167. __set_task_cpu(idle, cpu);
  5168. rcu_read_unlock();
  5169. rq->curr = rq->idle = idle;
  5170. #if defined(CONFIG_SMP)
  5171. idle->on_cpu = 1;
  5172. #endif
  5173. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5174. /* Set the preempt count _outside_ the spinlocks! */
  5175. task_thread_info(idle)->preempt_count = 0;
  5176. /*
  5177. * The idle tasks have their own, simple scheduling class:
  5178. */
  5179. idle->sched_class = &idle_sched_class;
  5180. ftrace_graph_init_idle_task(idle, cpu);
  5181. }
  5182. /*
  5183. * In a system that switches off the HZ timer nohz_cpu_mask
  5184. * indicates which cpus entered this state. This is used
  5185. * in the rcu update to wait only for active cpus. For system
  5186. * which do not switch off the HZ timer nohz_cpu_mask should
  5187. * always be CPU_BITS_NONE.
  5188. */
  5189. cpumask_var_t nohz_cpu_mask;
  5190. /*
  5191. * Increase the granularity value when there are more CPUs,
  5192. * because with more CPUs the 'effective latency' as visible
  5193. * to users decreases. But the relationship is not linear,
  5194. * so pick a second-best guess by going with the log2 of the
  5195. * number of CPUs.
  5196. *
  5197. * This idea comes from the SD scheduler of Con Kolivas:
  5198. */
  5199. static int get_update_sysctl_factor(void)
  5200. {
  5201. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  5202. unsigned int factor;
  5203. switch (sysctl_sched_tunable_scaling) {
  5204. case SCHED_TUNABLESCALING_NONE:
  5205. factor = 1;
  5206. break;
  5207. case SCHED_TUNABLESCALING_LINEAR:
  5208. factor = cpus;
  5209. break;
  5210. case SCHED_TUNABLESCALING_LOG:
  5211. default:
  5212. factor = 1 + ilog2(cpus);
  5213. break;
  5214. }
  5215. return factor;
  5216. }
  5217. static void update_sysctl(void)
  5218. {
  5219. unsigned int factor = get_update_sysctl_factor();
  5220. #define SET_SYSCTL(name) \
  5221. (sysctl_##name = (factor) * normalized_sysctl_##name)
  5222. SET_SYSCTL(sched_min_granularity);
  5223. SET_SYSCTL(sched_latency);
  5224. SET_SYSCTL(sched_wakeup_granularity);
  5225. #undef SET_SYSCTL
  5226. }
  5227. static inline void sched_init_granularity(void)
  5228. {
  5229. update_sysctl();
  5230. }
  5231. #ifdef CONFIG_SMP
  5232. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  5233. {
  5234. if (p->sched_class && p->sched_class->set_cpus_allowed)
  5235. p->sched_class->set_cpus_allowed(p, new_mask);
  5236. else {
  5237. cpumask_copy(&p->cpus_allowed, new_mask);
  5238. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5239. }
  5240. }
  5241. /*
  5242. * This is how migration works:
  5243. *
  5244. * 1) we invoke migration_cpu_stop() on the target CPU using
  5245. * stop_one_cpu().
  5246. * 2) stopper starts to run (implicitly forcing the migrated thread
  5247. * off the CPU)
  5248. * 3) it checks whether the migrated task is still in the wrong runqueue.
  5249. * 4) if it's in the wrong runqueue then the migration thread removes
  5250. * it and puts it into the right queue.
  5251. * 5) stopper completes and stop_one_cpu() returns and the migration
  5252. * is done.
  5253. */
  5254. /*
  5255. * Change a given task's CPU affinity. Migrate the thread to a
  5256. * proper CPU and schedule it away if the CPU it's executing on
  5257. * is removed from the allowed bitmask.
  5258. *
  5259. * NOTE: the caller must have a valid reference to the task, the
  5260. * task must not exit() & deallocate itself prematurely. The
  5261. * call is not atomic; no spinlocks may be held.
  5262. */
  5263. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5264. {
  5265. unsigned long flags;
  5266. struct rq *rq;
  5267. unsigned int dest_cpu;
  5268. int ret = 0;
  5269. rq = task_rq_lock(p, &flags);
  5270. if (cpumask_equal(&p->cpus_allowed, new_mask))
  5271. goto out;
  5272. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  5273. ret = -EINVAL;
  5274. goto out;
  5275. }
  5276. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
  5277. ret = -EINVAL;
  5278. goto out;
  5279. }
  5280. do_set_cpus_allowed(p, new_mask);
  5281. /* Can the task run on the task's current CPU? If so, we're done */
  5282. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5283. goto out;
  5284. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  5285. if (p->on_rq) {
  5286. struct migration_arg arg = { p, dest_cpu };
  5287. /* Need help from migration thread: drop lock and wait. */
  5288. task_rq_unlock(rq, p, &flags);
  5289. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  5290. tlb_migrate_finish(p->mm);
  5291. return 0;
  5292. }
  5293. out:
  5294. task_rq_unlock(rq, p, &flags);
  5295. return ret;
  5296. }
  5297. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5298. /*
  5299. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5300. * this because either it can't run here any more (set_cpus_allowed()
  5301. * away from this CPU, or CPU going down), or because we're
  5302. * attempting to rebalance this task on exec (sched_exec).
  5303. *
  5304. * So we race with normal scheduler movements, but that's OK, as long
  5305. * as the task is no longer on this CPU.
  5306. *
  5307. * Returns non-zero if task was successfully migrated.
  5308. */
  5309. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5310. {
  5311. struct rq *rq_dest, *rq_src;
  5312. int ret = 0;
  5313. if (unlikely(!cpu_active(dest_cpu)))
  5314. return ret;
  5315. rq_src = cpu_rq(src_cpu);
  5316. rq_dest = cpu_rq(dest_cpu);
  5317. raw_spin_lock(&p->pi_lock);
  5318. double_rq_lock(rq_src, rq_dest);
  5319. /* Already moved. */
  5320. if (task_cpu(p) != src_cpu)
  5321. goto done;
  5322. /* Affinity changed (again). */
  5323. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5324. goto fail;
  5325. /*
  5326. * If we're not on a rq, the next wake-up will ensure we're
  5327. * placed properly.
  5328. */
  5329. if (p->on_rq) {
  5330. deactivate_task(rq_src, p, 0);
  5331. set_task_cpu(p, dest_cpu);
  5332. activate_task(rq_dest, p, 0);
  5333. check_preempt_curr(rq_dest, p, 0);
  5334. }
  5335. done:
  5336. ret = 1;
  5337. fail:
  5338. double_rq_unlock(rq_src, rq_dest);
  5339. raw_spin_unlock(&p->pi_lock);
  5340. return ret;
  5341. }
  5342. /*
  5343. * migration_cpu_stop - this will be executed by a highprio stopper thread
  5344. * and performs thread migration by bumping thread off CPU then
  5345. * 'pushing' onto another runqueue.
  5346. */
  5347. static int migration_cpu_stop(void *data)
  5348. {
  5349. struct migration_arg *arg = data;
  5350. /*
  5351. * The original target cpu might have gone down and we might
  5352. * be on another cpu but it doesn't matter.
  5353. */
  5354. local_irq_disable();
  5355. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  5356. local_irq_enable();
  5357. return 0;
  5358. }
  5359. #ifdef CONFIG_HOTPLUG_CPU
  5360. /*
  5361. * Ensures that the idle task is using init_mm right before its cpu goes
  5362. * offline.
  5363. */
  5364. void idle_task_exit(void)
  5365. {
  5366. struct mm_struct *mm = current->active_mm;
  5367. BUG_ON(cpu_online(smp_processor_id()));
  5368. if (mm != &init_mm)
  5369. switch_mm(mm, &init_mm, current);
  5370. mmdrop(mm);
  5371. }
  5372. /*
  5373. * While a dead CPU has no uninterruptible tasks queued at this point,
  5374. * it might still have a nonzero ->nr_uninterruptible counter, because
  5375. * for performance reasons the counter is not stricly tracking tasks to
  5376. * their home CPUs. So we just add the counter to another CPU's counter,
  5377. * to keep the global sum constant after CPU-down:
  5378. */
  5379. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5380. {
  5381. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  5382. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5383. rq_src->nr_uninterruptible = 0;
  5384. }
  5385. /*
  5386. * remove the tasks which were accounted by rq from calc_load_tasks.
  5387. */
  5388. static void calc_global_load_remove(struct rq *rq)
  5389. {
  5390. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  5391. rq->calc_load_active = 0;
  5392. }
  5393. #ifdef CONFIG_CFS_BANDWIDTH
  5394. static void unthrottle_offline_cfs_rqs(struct rq *rq)
  5395. {
  5396. struct cfs_rq *cfs_rq;
  5397. for_each_leaf_cfs_rq(rq, cfs_rq) {
  5398. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  5399. if (!cfs_rq->runtime_enabled)
  5400. continue;
  5401. /*
  5402. * clock_task is not advancing so we just need to make sure
  5403. * there's some valid quota amount
  5404. */
  5405. cfs_rq->runtime_remaining = cfs_b->quota;
  5406. if (cfs_rq_throttled(cfs_rq))
  5407. unthrottle_cfs_rq(cfs_rq);
  5408. }
  5409. }
  5410. #else
  5411. static void unthrottle_offline_cfs_rqs(struct rq *rq) {}
  5412. #endif
  5413. /*
  5414. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  5415. * try_to_wake_up()->select_task_rq().
  5416. *
  5417. * Called with rq->lock held even though we'er in stop_machine() and
  5418. * there's no concurrency possible, we hold the required locks anyway
  5419. * because of lock validation efforts.
  5420. */
  5421. static void migrate_tasks(unsigned int dead_cpu)
  5422. {
  5423. struct rq *rq = cpu_rq(dead_cpu);
  5424. struct task_struct *next, *stop = rq->stop;
  5425. int dest_cpu;
  5426. /*
  5427. * Fudge the rq selection such that the below task selection loop
  5428. * doesn't get stuck on the currently eligible stop task.
  5429. *
  5430. * We're currently inside stop_machine() and the rq is either stuck
  5431. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  5432. * either way we should never end up calling schedule() until we're
  5433. * done here.
  5434. */
  5435. rq->stop = NULL;
  5436. /* Ensure any throttled groups are reachable by pick_next_task */
  5437. unthrottle_offline_cfs_rqs(rq);
  5438. for ( ; ; ) {
  5439. /*
  5440. * There's this thread running, bail when that's the only
  5441. * remaining thread.
  5442. */
  5443. if (rq->nr_running == 1)
  5444. break;
  5445. next = pick_next_task(rq);
  5446. BUG_ON(!next);
  5447. next->sched_class->put_prev_task(rq, next);
  5448. /* Find suitable destination for @next, with force if needed. */
  5449. dest_cpu = select_fallback_rq(dead_cpu, next);
  5450. raw_spin_unlock(&rq->lock);
  5451. __migrate_task(next, dead_cpu, dest_cpu);
  5452. raw_spin_lock(&rq->lock);
  5453. }
  5454. rq->stop = stop;
  5455. }
  5456. #endif /* CONFIG_HOTPLUG_CPU */
  5457. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5458. static struct ctl_table sd_ctl_dir[] = {
  5459. {
  5460. .procname = "sched_domain",
  5461. .mode = 0555,
  5462. },
  5463. {}
  5464. };
  5465. static struct ctl_table sd_ctl_root[] = {
  5466. {
  5467. .procname = "kernel",
  5468. .mode = 0555,
  5469. .child = sd_ctl_dir,
  5470. },
  5471. {}
  5472. };
  5473. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5474. {
  5475. struct ctl_table *entry =
  5476. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5477. return entry;
  5478. }
  5479. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5480. {
  5481. struct ctl_table *entry;
  5482. /*
  5483. * In the intermediate directories, both the child directory and
  5484. * procname are dynamically allocated and could fail but the mode
  5485. * will always be set. In the lowest directory the names are
  5486. * static strings and all have proc handlers.
  5487. */
  5488. for (entry = *tablep; entry->mode; entry++) {
  5489. if (entry->child)
  5490. sd_free_ctl_entry(&entry->child);
  5491. if (entry->proc_handler == NULL)
  5492. kfree(entry->procname);
  5493. }
  5494. kfree(*tablep);
  5495. *tablep = NULL;
  5496. }
  5497. static void
  5498. set_table_entry(struct ctl_table *entry,
  5499. const char *procname, void *data, int maxlen,
  5500. mode_t mode, proc_handler *proc_handler)
  5501. {
  5502. entry->procname = procname;
  5503. entry->data = data;
  5504. entry->maxlen = maxlen;
  5505. entry->mode = mode;
  5506. entry->proc_handler = proc_handler;
  5507. }
  5508. static struct ctl_table *
  5509. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5510. {
  5511. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5512. if (table == NULL)
  5513. return NULL;
  5514. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5515. sizeof(long), 0644, proc_doulongvec_minmax);
  5516. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5517. sizeof(long), 0644, proc_doulongvec_minmax);
  5518. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5519. sizeof(int), 0644, proc_dointvec_minmax);
  5520. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5521. sizeof(int), 0644, proc_dointvec_minmax);
  5522. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5523. sizeof(int), 0644, proc_dointvec_minmax);
  5524. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5525. sizeof(int), 0644, proc_dointvec_minmax);
  5526. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5527. sizeof(int), 0644, proc_dointvec_minmax);
  5528. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5529. sizeof(int), 0644, proc_dointvec_minmax);
  5530. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5531. sizeof(int), 0644, proc_dointvec_minmax);
  5532. set_table_entry(&table[9], "cache_nice_tries",
  5533. &sd->cache_nice_tries,
  5534. sizeof(int), 0644, proc_dointvec_minmax);
  5535. set_table_entry(&table[10], "flags", &sd->flags,
  5536. sizeof(int), 0644, proc_dointvec_minmax);
  5537. set_table_entry(&table[11], "name", sd->name,
  5538. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5539. /* &table[12] is terminator */
  5540. return table;
  5541. }
  5542. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5543. {
  5544. struct ctl_table *entry, *table;
  5545. struct sched_domain *sd;
  5546. int domain_num = 0, i;
  5547. char buf[32];
  5548. for_each_domain(cpu, sd)
  5549. domain_num++;
  5550. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5551. if (table == NULL)
  5552. return NULL;
  5553. i = 0;
  5554. for_each_domain(cpu, sd) {
  5555. snprintf(buf, 32, "domain%d", i);
  5556. entry->procname = kstrdup(buf, GFP_KERNEL);
  5557. entry->mode = 0555;
  5558. entry->child = sd_alloc_ctl_domain_table(sd);
  5559. entry++;
  5560. i++;
  5561. }
  5562. return table;
  5563. }
  5564. static struct ctl_table_header *sd_sysctl_header;
  5565. static void register_sched_domain_sysctl(void)
  5566. {
  5567. int i, cpu_num = num_possible_cpus();
  5568. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5569. char buf[32];
  5570. WARN_ON(sd_ctl_dir[0].child);
  5571. sd_ctl_dir[0].child = entry;
  5572. if (entry == NULL)
  5573. return;
  5574. for_each_possible_cpu(i) {
  5575. snprintf(buf, 32, "cpu%d", i);
  5576. entry->procname = kstrdup(buf, GFP_KERNEL);
  5577. entry->mode = 0555;
  5578. entry->child = sd_alloc_ctl_cpu_table(i);
  5579. entry++;
  5580. }
  5581. WARN_ON(sd_sysctl_header);
  5582. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5583. }
  5584. /* may be called multiple times per register */
  5585. static void unregister_sched_domain_sysctl(void)
  5586. {
  5587. if (sd_sysctl_header)
  5588. unregister_sysctl_table(sd_sysctl_header);
  5589. sd_sysctl_header = NULL;
  5590. if (sd_ctl_dir[0].child)
  5591. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5592. }
  5593. #else
  5594. static void register_sched_domain_sysctl(void)
  5595. {
  5596. }
  5597. static void unregister_sched_domain_sysctl(void)
  5598. {
  5599. }
  5600. #endif
  5601. static void set_rq_online(struct rq *rq)
  5602. {
  5603. if (!rq->online) {
  5604. const struct sched_class *class;
  5605. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5606. rq->online = 1;
  5607. for_each_class(class) {
  5608. if (class->rq_online)
  5609. class->rq_online(rq);
  5610. }
  5611. }
  5612. }
  5613. static void set_rq_offline(struct rq *rq)
  5614. {
  5615. if (rq->online) {
  5616. const struct sched_class *class;
  5617. for_each_class(class) {
  5618. if (class->rq_offline)
  5619. class->rq_offline(rq);
  5620. }
  5621. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5622. rq->online = 0;
  5623. }
  5624. }
  5625. /*
  5626. * migration_call - callback that gets triggered when a CPU is added.
  5627. * Here we can start up the necessary migration thread for the new CPU.
  5628. */
  5629. static int __cpuinit
  5630. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5631. {
  5632. int cpu = (long)hcpu;
  5633. unsigned long flags;
  5634. struct rq *rq = cpu_rq(cpu);
  5635. switch (action & ~CPU_TASKS_FROZEN) {
  5636. case CPU_UP_PREPARE:
  5637. rq->calc_load_update = calc_load_update;
  5638. break;
  5639. case CPU_ONLINE:
  5640. /* Update our root-domain */
  5641. raw_spin_lock_irqsave(&rq->lock, flags);
  5642. if (rq->rd) {
  5643. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5644. set_rq_online(rq);
  5645. }
  5646. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5647. break;
  5648. #ifdef CONFIG_HOTPLUG_CPU
  5649. case CPU_DYING:
  5650. sched_ttwu_pending();
  5651. /* Update our root-domain */
  5652. raw_spin_lock_irqsave(&rq->lock, flags);
  5653. if (rq->rd) {
  5654. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5655. set_rq_offline(rq);
  5656. }
  5657. migrate_tasks(cpu);
  5658. BUG_ON(rq->nr_running != 1); /* the migration thread */
  5659. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5660. migrate_nr_uninterruptible(rq);
  5661. calc_global_load_remove(rq);
  5662. break;
  5663. #endif
  5664. }
  5665. update_max_interval();
  5666. return NOTIFY_OK;
  5667. }
  5668. /*
  5669. * Register at high priority so that task migration (migrate_all_tasks)
  5670. * happens before everything else. This has to be lower priority than
  5671. * the notifier in the perf_event subsystem, though.
  5672. */
  5673. static struct notifier_block __cpuinitdata migration_notifier = {
  5674. .notifier_call = migration_call,
  5675. .priority = CPU_PRI_MIGRATION,
  5676. };
  5677. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  5678. unsigned long action, void *hcpu)
  5679. {
  5680. switch (action & ~CPU_TASKS_FROZEN) {
  5681. case CPU_ONLINE:
  5682. case CPU_DOWN_FAILED:
  5683. set_cpu_active((long)hcpu, true);
  5684. return NOTIFY_OK;
  5685. default:
  5686. return NOTIFY_DONE;
  5687. }
  5688. }
  5689. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  5690. unsigned long action, void *hcpu)
  5691. {
  5692. switch (action & ~CPU_TASKS_FROZEN) {
  5693. case CPU_DOWN_PREPARE:
  5694. set_cpu_active((long)hcpu, false);
  5695. return NOTIFY_OK;
  5696. default:
  5697. return NOTIFY_DONE;
  5698. }
  5699. }
  5700. static int __init migration_init(void)
  5701. {
  5702. void *cpu = (void *)(long)smp_processor_id();
  5703. int err;
  5704. /* Initialize migration for the boot CPU */
  5705. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5706. BUG_ON(err == NOTIFY_BAD);
  5707. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5708. register_cpu_notifier(&migration_notifier);
  5709. /* Register cpu active notifiers */
  5710. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  5711. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  5712. return 0;
  5713. }
  5714. early_initcall(migration_init);
  5715. #endif
  5716. #ifdef CONFIG_SMP
  5717. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  5718. #ifdef CONFIG_SCHED_DEBUG
  5719. static __read_mostly int sched_domain_debug_enabled;
  5720. static int __init sched_domain_debug_setup(char *str)
  5721. {
  5722. sched_domain_debug_enabled = 1;
  5723. return 0;
  5724. }
  5725. early_param("sched_debug", sched_domain_debug_setup);
  5726. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5727. struct cpumask *groupmask)
  5728. {
  5729. struct sched_group *group = sd->groups;
  5730. char str[256];
  5731. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5732. cpumask_clear(groupmask);
  5733. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5734. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5735. printk("does not load-balance\n");
  5736. if (sd->parent)
  5737. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5738. " has parent");
  5739. return -1;
  5740. }
  5741. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5742. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5743. printk(KERN_ERR "ERROR: domain->span does not contain "
  5744. "CPU%d\n", cpu);
  5745. }
  5746. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5747. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5748. " CPU%d\n", cpu);
  5749. }
  5750. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5751. do {
  5752. if (!group) {
  5753. printk("\n");
  5754. printk(KERN_ERR "ERROR: group is NULL\n");
  5755. break;
  5756. }
  5757. if (!group->sgp->power) {
  5758. printk(KERN_CONT "\n");
  5759. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5760. "set\n");
  5761. break;
  5762. }
  5763. if (!cpumask_weight(sched_group_cpus(group))) {
  5764. printk(KERN_CONT "\n");
  5765. printk(KERN_ERR "ERROR: empty group\n");
  5766. break;
  5767. }
  5768. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5769. printk(KERN_CONT "\n");
  5770. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5771. break;
  5772. }
  5773. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5774. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5775. printk(KERN_CONT " %s", str);
  5776. if (group->sgp->power != SCHED_POWER_SCALE) {
  5777. printk(KERN_CONT " (cpu_power = %d)",
  5778. group->sgp->power);
  5779. }
  5780. group = group->next;
  5781. } while (group != sd->groups);
  5782. printk(KERN_CONT "\n");
  5783. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5784. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5785. if (sd->parent &&
  5786. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5787. printk(KERN_ERR "ERROR: parent span is not a superset "
  5788. "of domain->span\n");
  5789. return 0;
  5790. }
  5791. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5792. {
  5793. int level = 0;
  5794. if (!sched_domain_debug_enabled)
  5795. return;
  5796. if (!sd) {
  5797. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5798. return;
  5799. }
  5800. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5801. for (;;) {
  5802. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  5803. break;
  5804. level++;
  5805. sd = sd->parent;
  5806. if (!sd)
  5807. break;
  5808. }
  5809. }
  5810. #else /* !CONFIG_SCHED_DEBUG */
  5811. # define sched_domain_debug(sd, cpu) do { } while (0)
  5812. #endif /* CONFIG_SCHED_DEBUG */
  5813. static int sd_degenerate(struct sched_domain *sd)
  5814. {
  5815. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5816. return 1;
  5817. /* Following flags need at least 2 groups */
  5818. if (sd->flags & (SD_LOAD_BALANCE |
  5819. SD_BALANCE_NEWIDLE |
  5820. SD_BALANCE_FORK |
  5821. SD_BALANCE_EXEC |
  5822. SD_SHARE_CPUPOWER |
  5823. SD_SHARE_PKG_RESOURCES)) {
  5824. if (sd->groups != sd->groups->next)
  5825. return 0;
  5826. }
  5827. /* Following flags don't use groups */
  5828. if (sd->flags & (SD_WAKE_AFFINE))
  5829. return 0;
  5830. return 1;
  5831. }
  5832. static int
  5833. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5834. {
  5835. unsigned long cflags = sd->flags, pflags = parent->flags;
  5836. if (sd_degenerate(parent))
  5837. return 1;
  5838. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5839. return 0;
  5840. /* Flags needing groups don't count if only 1 group in parent */
  5841. if (parent->groups == parent->groups->next) {
  5842. pflags &= ~(SD_LOAD_BALANCE |
  5843. SD_BALANCE_NEWIDLE |
  5844. SD_BALANCE_FORK |
  5845. SD_BALANCE_EXEC |
  5846. SD_SHARE_CPUPOWER |
  5847. SD_SHARE_PKG_RESOURCES);
  5848. if (nr_node_ids == 1)
  5849. pflags &= ~SD_SERIALIZE;
  5850. }
  5851. if (~cflags & pflags)
  5852. return 0;
  5853. return 1;
  5854. }
  5855. static void free_rootdomain(struct rcu_head *rcu)
  5856. {
  5857. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  5858. cpupri_cleanup(&rd->cpupri);
  5859. free_cpumask_var(rd->rto_mask);
  5860. free_cpumask_var(rd->online);
  5861. free_cpumask_var(rd->span);
  5862. kfree(rd);
  5863. }
  5864. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5865. {
  5866. struct root_domain *old_rd = NULL;
  5867. unsigned long flags;
  5868. raw_spin_lock_irqsave(&rq->lock, flags);
  5869. if (rq->rd) {
  5870. old_rd = rq->rd;
  5871. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5872. set_rq_offline(rq);
  5873. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5874. /*
  5875. * If we dont want to free the old_rt yet then
  5876. * set old_rd to NULL to skip the freeing later
  5877. * in this function:
  5878. */
  5879. if (!atomic_dec_and_test(&old_rd->refcount))
  5880. old_rd = NULL;
  5881. }
  5882. atomic_inc(&rd->refcount);
  5883. rq->rd = rd;
  5884. cpumask_set_cpu(rq->cpu, rd->span);
  5885. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5886. set_rq_online(rq);
  5887. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5888. if (old_rd)
  5889. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  5890. }
  5891. static int init_rootdomain(struct root_domain *rd)
  5892. {
  5893. memset(rd, 0, sizeof(*rd));
  5894. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5895. goto out;
  5896. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5897. goto free_span;
  5898. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5899. goto free_online;
  5900. if (cpupri_init(&rd->cpupri) != 0)
  5901. goto free_rto_mask;
  5902. return 0;
  5903. free_rto_mask:
  5904. free_cpumask_var(rd->rto_mask);
  5905. free_online:
  5906. free_cpumask_var(rd->online);
  5907. free_span:
  5908. free_cpumask_var(rd->span);
  5909. out:
  5910. return -ENOMEM;
  5911. }
  5912. static void init_defrootdomain(void)
  5913. {
  5914. init_rootdomain(&def_root_domain);
  5915. atomic_set(&def_root_domain.refcount, 1);
  5916. }
  5917. static struct root_domain *alloc_rootdomain(void)
  5918. {
  5919. struct root_domain *rd;
  5920. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5921. if (!rd)
  5922. return NULL;
  5923. if (init_rootdomain(rd) != 0) {
  5924. kfree(rd);
  5925. return NULL;
  5926. }
  5927. return rd;
  5928. }
  5929. static void free_sched_groups(struct sched_group *sg, int free_sgp)
  5930. {
  5931. struct sched_group *tmp, *first;
  5932. if (!sg)
  5933. return;
  5934. first = sg;
  5935. do {
  5936. tmp = sg->next;
  5937. if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
  5938. kfree(sg->sgp);
  5939. kfree(sg);
  5940. sg = tmp;
  5941. } while (sg != first);
  5942. }
  5943. static void free_sched_domain(struct rcu_head *rcu)
  5944. {
  5945. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  5946. /*
  5947. * If its an overlapping domain it has private groups, iterate and
  5948. * nuke them all.
  5949. */
  5950. if (sd->flags & SD_OVERLAP) {
  5951. free_sched_groups(sd->groups, 1);
  5952. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  5953. kfree(sd->groups->sgp);
  5954. kfree(sd->groups);
  5955. }
  5956. kfree(sd);
  5957. }
  5958. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  5959. {
  5960. call_rcu(&sd->rcu, free_sched_domain);
  5961. }
  5962. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  5963. {
  5964. for (; sd; sd = sd->parent)
  5965. destroy_sched_domain(sd, cpu);
  5966. }
  5967. /*
  5968. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5969. * hold the hotplug lock.
  5970. */
  5971. static void
  5972. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5973. {
  5974. struct rq *rq = cpu_rq(cpu);
  5975. struct sched_domain *tmp;
  5976. /* Remove the sched domains which do not contribute to scheduling. */
  5977. for (tmp = sd; tmp; ) {
  5978. struct sched_domain *parent = tmp->parent;
  5979. if (!parent)
  5980. break;
  5981. if (sd_parent_degenerate(tmp, parent)) {
  5982. tmp->parent = parent->parent;
  5983. if (parent->parent)
  5984. parent->parent->child = tmp;
  5985. destroy_sched_domain(parent, cpu);
  5986. } else
  5987. tmp = tmp->parent;
  5988. }
  5989. if (sd && sd_degenerate(sd)) {
  5990. tmp = sd;
  5991. sd = sd->parent;
  5992. destroy_sched_domain(tmp, cpu);
  5993. if (sd)
  5994. sd->child = NULL;
  5995. }
  5996. sched_domain_debug(sd, cpu);
  5997. rq_attach_root(rq, rd);
  5998. tmp = rq->sd;
  5999. rcu_assign_pointer(rq->sd, sd);
  6000. destroy_sched_domains(tmp, cpu);
  6001. }
  6002. /* cpus with isolated domains */
  6003. static cpumask_var_t cpu_isolated_map;
  6004. /* Setup the mask of cpus configured for isolated domains */
  6005. static int __init isolated_cpu_setup(char *str)
  6006. {
  6007. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  6008. cpulist_parse(str, cpu_isolated_map);
  6009. return 1;
  6010. }
  6011. __setup("isolcpus=", isolated_cpu_setup);
  6012. #define SD_NODES_PER_DOMAIN 16
  6013. #ifdef CONFIG_NUMA
  6014. /**
  6015. * find_next_best_node - find the next node to include in a sched_domain
  6016. * @node: node whose sched_domain we're building
  6017. * @used_nodes: nodes already in the sched_domain
  6018. *
  6019. * Find the next node to include in a given scheduling domain. Simply
  6020. * finds the closest node not already in the @used_nodes map.
  6021. *
  6022. * Should use nodemask_t.
  6023. */
  6024. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6025. {
  6026. int i, n, val, min_val, best_node = -1;
  6027. min_val = INT_MAX;
  6028. for (i = 0; i < nr_node_ids; i++) {
  6029. /* Start at @node */
  6030. n = (node + i) % nr_node_ids;
  6031. if (!nr_cpus_node(n))
  6032. continue;
  6033. /* Skip already used nodes */
  6034. if (node_isset(n, *used_nodes))
  6035. continue;
  6036. /* Simple min distance search */
  6037. val = node_distance(node, n);
  6038. if (val < min_val) {
  6039. min_val = val;
  6040. best_node = n;
  6041. }
  6042. }
  6043. if (best_node != -1)
  6044. node_set(best_node, *used_nodes);
  6045. return best_node;
  6046. }
  6047. /**
  6048. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6049. * @node: node whose cpumask we're constructing
  6050. * @span: resulting cpumask
  6051. *
  6052. * Given a node, construct a good cpumask for its sched_domain to span. It
  6053. * should be one that prevents unnecessary balancing, but also spreads tasks
  6054. * out optimally.
  6055. */
  6056. static void sched_domain_node_span(int node, struct cpumask *span)
  6057. {
  6058. nodemask_t used_nodes;
  6059. int i;
  6060. cpumask_clear(span);
  6061. nodes_clear(used_nodes);
  6062. cpumask_or(span, span, cpumask_of_node(node));
  6063. node_set(node, used_nodes);
  6064. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6065. int next_node = find_next_best_node(node, &used_nodes);
  6066. if (next_node < 0)
  6067. break;
  6068. cpumask_or(span, span, cpumask_of_node(next_node));
  6069. }
  6070. }
  6071. static const struct cpumask *cpu_node_mask(int cpu)
  6072. {
  6073. lockdep_assert_held(&sched_domains_mutex);
  6074. sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
  6075. return sched_domains_tmpmask;
  6076. }
  6077. static const struct cpumask *cpu_allnodes_mask(int cpu)
  6078. {
  6079. return cpu_possible_mask;
  6080. }
  6081. #endif /* CONFIG_NUMA */
  6082. static const struct cpumask *cpu_cpu_mask(int cpu)
  6083. {
  6084. return cpumask_of_node(cpu_to_node(cpu));
  6085. }
  6086. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6087. struct sd_data {
  6088. struct sched_domain **__percpu sd;
  6089. struct sched_group **__percpu sg;
  6090. struct sched_group_power **__percpu sgp;
  6091. };
  6092. struct s_data {
  6093. struct sched_domain ** __percpu sd;
  6094. struct root_domain *rd;
  6095. };
  6096. enum s_alloc {
  6097. sa_rootdomain,
  6098. sa_sd,
  6099. sa_sd_storage,
  6100. sa_none,
  6101. };
  6102. struct sched_domain_topology_level;
  6103. typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
  6104. typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
  6105. #define SDTL_OVERLAP 0x01
  6106. struct sched_domain_topology_level {
  6107. sched_domain_init_f init;
  6108. sched_domain_mask_f mask;
  6109. int flags;
  6110. struct sd_data data;
  6111. };
  6112. static int
  6113. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  6114. {
  6115. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  6116. const struct cpumask *span = sched_domain_span(sd);
  6117. struct cpumask *covered = sched_domains_tmpmask;
  6118. struct sd_data *sdd = sd->private;
  6119. struct sched_domain *child;
  6120. int i;
  6121. cpumask_clear(covered);
  6122. for_each_cpu(i, span) {
  6123. struct cpumask *sg_span;
  6124. if (cpumask_test_cpu(i, covered))
  6125. continue;
  6126. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6127. GFP_KERNEL, cpu_to_node(i));
  6128. if (!sg)
  6129. goto fail;
  6130. sg_span = sched_group_cpus(sg);
  6131. child = *per_cpu_ptr(sdd->sd, i);
  6132. if (child->child) {
  6133. child = child->child;
  6134. cpumask_copy(sg_span, sched_domain_span(child));
  6135. } else
  6136. cpumask_set_cpu(i, sg_span);
  6137. cpumask_or(covered, covered, sg_span);
  6138. sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
  6139. atomic_inc(&sg->sgp->ref);
  6140. if (cpumask_test_cpu(cpu, sg_span))
  6141. groups = sg;
  6142. if (!first)
  6143. first = sg;
  6144. if (last)
  6145. last->next = sg;
  6146. last = sg;
  6147. last->next = first;
  6148. }
  6149. sd->groups = groups;
  6150. return 0;
  6151. fail:
  6152. free_sched_groups(first, 0);
  6153. return -ENOMEM;
  6154. }
  6155. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  6156. {
  6157. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  6158. struct sched_domain *child = sd->child;
  6159. if (child)
  6160. cpu = cpumask_first(sched_domain_span(child));
  6161. if (sg) {
  6162. *sg = *per_cpu_ptr(sdd->sg, cpu);
  6163. (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
  6164. atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
  6165. }
  6166. return cpu;
  6167. }
  6168. /*
  6169. * build_sched_groups will build a circular linked list of the groups
  6170. * covered by the given span, and will set each group's ->cpumask correctly,
  6171. * and ->cpu_power to 0.
  6172. *
  6173. * Assumes the sched_domain tree is fully constructed
  6174. */
  6175. static int
  6176. build_sched_groups(struct sched_domain *sd, int cpu)
  6177. {
  6178. struct sched_group *first = NULL, *last = NULL;
  6179. struct sd_data *sdd = sd->private;
  6180. const struct cpumask *span = sched_domain_span(sd);
  6181. struct cpumask *covered;
  6182. int i;
  6183. get_group(cpu, sdd, &sd->groups);
  6184. atomic_inc(&sd->groups->ref);
  6185. if (cpu != cpumask_first(sched_domain_span(sd)))
  6186. return 0;
  6187. lockdep_assert_held(&sched_domains_mutex);
  6188. covered = sched_domains_tmpmask;
  6189. cpumask_clear(covered);
  6190. for_each_cpu(i, span) {
  6191. struct sched_group *sg;
  6192. int group = get_group(i, sdd, &sg);
  6193. int j;
  6194. if (cpumask_test_cpu(i, covered))
  6195. continue;
  6196. cpumask_clear(sched_group_cpus(sg));
  6197. sg->sgp->power = 0;
  6198. for_each_cpu(j, span) {
  6199. if (get_group(j, sdd, NULL) != group)
  6200. continue;
  6201. cpumask_set_cpu(j, covered);
  6202. cpumask_set_cpu(j, sched_group_cpus(sg));
  6203. }
  6204. if (!first)
  6205. first = sg;
  6206. if (last)
  6207. last->next = sg;
  6208. last = sg;
  6209. }
  6210. last->next = first;
  6211. return 0;
  6212. }
  6213. /*
  6214. * Initialize sched groups cpu_power.
  6215. *
  6216. * cpu_power indicates the capacity of sched group, which is used while
  6217. * distributing the load between different sched groups in a sched domain.
  6218. * Typically cpu_power for all the groups in a sched domain will be same unless
  6219. * there are asymmetries in the topology. If there are asymmetries, group
  6220. * having more cpu_power will pickup more load compared to the group having
  6221. * less cpu_power.
  6222. */
  6223. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6224. {
  6225. struct sched_group *sg = sd->groups;
  6226. WARN_ON(!sd || !sg);
  6227. do {
  6228. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  6229. sg = sg->next;
  6230. } while (sg != sd->groups);
  6231. if (cpu != group_first_cpu(sg))
  6232. return;
  6233. update_group_power(sd, cpu);
  6234. }
  6235. /*
  6236. * Initializers for schedule domains
  6237. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6238. */
  6239. #ifdef CONFIG_SCHED_DEBUG
  6240. # define SD_INIT_NAME(sd, type) sd->name = #type
  6241. #else
  6242. # define SD_INIT_NAME(sd, type) do { } while (0)
  6243. #endif
  6244. #define SD_INIT_FUNC(type) \
  6245. static noinline struct sched_domain * \
  6246. sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
  6247. { \
  6248. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
  6249. *sd = SD_##type##_INIT; \
  6250. SD_INIT_NAME(sd, type); \
  6251. sd->private = &tl->data; \
  6252. return sd; \
  6253. }
  6254. SD_INIT_FUNC(CPU)
  6255. #ifdef CONFIG_NUMA
  6256. SD_INIT_FUNC(ALLNODES)
  6257. SD_INIT_FUNC(NODE)
  6258. #endif
  6259. #ifdef CONFIG_SCHED_SMT
  6260. SD_INIT_FUNC(SIBLING)
  6261. #endif
  6262. #ifdef CONFIG_SCHED_MC
  6263. SD_INIT_FUNC(MC)
  6264. #endif
  6265. #ifdef CONFIG_SCHED_BOOK
  6266. SD_INIT_FUNC(BOOK)
  6267. #endif
  6268. static int default_relax_domain_level = -1;
  6269. int sched_domain_level_max;
  6270. static int __init setup_relax_domain_level(char *str)
  6271. {
  6272. unsigned long val;
  6273. val = simple_strtoul(str, NULL, 0);
  6274. if (val < sched_domain_level_max)
  6275. default_relax_domain_level = val;
  6276. return 1;
  6277. }
  6278. __setup("relax_domain_level=", setup_relax_domain_level);
  6279. static void set_domain_attribute(struct sched_domain *sd,
  6280. struct sched_domain_attr *attr)
  6281. {
  6282. int request;
  6283. if (!attr || attr->relax_domain_level < 0) {
  6284. if (default_relax_domain_level < 0)
  6285. return;
  6286. else
  6287. request = default_relax_domain_level;
  6288. } else
  6289. request = attr->relax_domain_level;
  6290. if (request < sd->level) {
  6291. /* turn off idle balance on this domain */
  6292. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6293. } else {
  6294. /* turn on idle balance on this domain */
  6295. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6296. }
  6297. }
  6298. static void __sdt_free(const struct cpumask *cpu_map);
  6299. static int __sdt_alloc(const struct cpumask *cpu_map);
  6300. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  6301. const struct cpumask *cpu_map)
  6302. {
  6303. switch (what) {
  6304. case sa_rootdomain:
  6305. if (!atomic_read(&d->rd->refcount))
  6306. free_rootdomain(&d->rd->rcu); /* fall through */
  6307. case sa_sd:
  6308. free_percpu(d->sd); /* fall through */
  6309. case sa_sd_storage:
  6310. __sdt_free(cpu_map); /* fall through */
  6311. case sa_none:
  6312. break;
  6313. }
  6314. }
  6315. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  6316. const struct cpumask *cpu_map)
  6317. {
  6318. memset(d, 0, sizeof(*d));
  6319. if (__sdt_alloc(cpu_map))
  6320. return sa_sd_storage;
  6321. d->sd = alloc_percpu(struct sched_domain *);
  6322. if (!d->sd)
  6323. return sa_sd_storage;
  6324. d->rd = alloc_rootdomain();
  6325. if (!d->rd)
  6326. return sa_sd;
  6327. return sa_rootdomain;
  6328. }
  6329. /*
  6330. * NULL the sd_data elements we've used to build the sched_domain and
  6331. * sched_group structure so that the subsequent __free_domain_allocs()
  6332. * will not free the data we're using.
  6333. */
  6334. static void claim_allocations(int cpu, struct sched_domain *sd)
  6335. {
  6336. struct sd_data *sdd = sd->private;
  6337. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  6338. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  6339. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  6340. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  6341. if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
  6342. *per_cpu_ptr(sdd->sgp, cpu) = NULL;
  6343. }
  6344. #ifdef CONFIG_SCHED_SMT
  6345. static const struct cpumask *cpu_smt_mask(int cpu)
  6346. {
  6347. return topology_thread_cpumask(cpu);
  6348. }
  6349. #endif
  6350. /*
  6351. * Topology list, bottom-up.
  6352. */
  6353. static struct sched_domain_topology_level default_topology[] = {
  6354. #ifdef CONFIG_SCHED_SMT
  6355. { sd_init_SIBLING, cpu_smt_mask, },
  6356. #endif
  6357. #ifdef CONFIG_SCHED_MC
  6358. { sd_init_MC, cpu_coregroup_mask, },
  6359. #endif
  6360. #ifdef CONFIG_SCHED_BOOK
  6361. { sd_init_BOOK, cpu_book_mask, },
  6362. #endif
  6363. { sd_init_CPU, cpu_cpu_mask, },
  6364. #ifdef CONFIG_NUMA
  6365. { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
  6366. { sd_init_ALLNODES, cpu_allnodes_mask, },
  6367. #endif
  6368. { NULL, },
  6369. };
  6370. static struct sched_domain_topology_level *sched_domain_topology = default_topology;
  6371. static int __sdt_alloc(const struct cpumask *cpu_map)
  6372. {
  6373. struct sched_domain_topology_level *tl;
  6374. int j;
  6375. for (tl = sched_domain_topology; tl->init; tl++) {
  6376. struct sd_data *sdd = &tl->data;
  6377. sdd->sd = alloc_percpu(struct sched_domain *);
  6378. if (!sdd->sd)
  6379. return -ENOMEM;
  6380. sdd->sg = alloc_percpu(struct sched_group *);
  6381. if (!sdd->sg)
  6382. return -ENOMEM;
  6383. sdd->sgp = alloc_percpu(struct sched_group_power *);
  6384. if (!sdd->sgp)
  6385. return -ENOMEM;
  6386. for_each_cpu(j, cpu_map) {
  6387. struct sched_domain *sd;
  6388. struct sched_group *sg;
  6389. struct sched_group_power *sgp;
  6390. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  6391. GFP_KERNEL, cpu_to_node(j));
  6392. if (!sd)
  6393. return -ENOMEM;
  6394. *per_cpu_ptr(sdd->sd, j) = sd;
  6395. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6396. GFP_KERNEL, cpu_to_node(j));
  6397. if (!sg)
  6398. return -ENOMEM;
  6399. *per_cpu_ptr(sdd->sg, j) = sg;
  6400. sgp = kzalloc_node(sizeof(struct sched_group_power),
  6401. GFP_KERNEL, cpu_to_node(j));
  6402. if (!sgp)
  6403. return -ENOMEM;
  6404. *per_cpu_ptr(sdd->sgp, j) = sgp;
  6405. }
  6406. }
  6407. return 0;
  6408. }
  6409. static void __sdt_free(const struct cpumask *cpu_map)
  6410. {
  6411. struct sched_domain_topology_level *tl;
  6412. int j;
  6413. for (tl = sched_domain_topology; tl->init; tl++) {
  6414. struct sd_data *sdd = &tl->data;
  6415. for_each_cpu(j, cpu_map) {
  6416. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
  6417. if (sd && (sd->flags & SD_OVERLAP))
  6418. free_sched_groups(sd->groups, 0);
  6419. kfree(*per_cpu_ptr(sdd->sg, j));
  6420. kfree(*per_cpu_ptr(sdd->sgp, j));
  6421. }
  6422. free_percpu(sdd->sd);
  6423. free_percpu(sdd->sg);
  6424. free_percpu(sdd->sgp);
  6425. }
  6426. }
  6427. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  6428. struct s_data *d, const struct cpumask *cpu_map,
  6429. struct sched_domain_attr *attr, struct sched_domain *child,
  6430. int cpu)
  6431. {
  6432. struct sched_domain *sd = tl->init(tl, cpu);
  6433. if (!sd)
  6434. return child;
  6435. set_domain_attribute(sd, attr);
  6436. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  6437. if (child) {
  6438. sd->level = child->level + 1;
  6439. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  6440. child->parent = sd;
  6441. }
  6442. sd->child = child;
  6443. return sd;
  6444. }
  6445. /*
  6446. * Build sched domains for a given set of cpus and attach the sched domains
  6447. * to the individual cpus
  6448. */
  6449. static int build_sched_domains(const struct cpumask *cpu_map,
  6450. struct sched_domain_attr *attr)
  6451. {
  6452. enum s_alloc alloc_state = sa_none;
  6453. struct sched_domain *sd;
  6454. struct s_data d;
  6455. int i, ret = -ENOMEM;
  6456. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  6457. if (alloc_state != sa_rootdomain)
  6458. goto error;
  6459. /* Set up domains for cpus specified by the cpu_map. */
  6460. for_each_cpu(i, cpu_map) {
  6461. struct sched_domain_topology_level *tl;
  6462. sd = NULL;
  6463. for (tl = sched_domain_topology; tl->init; tl++) {
  6464. sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
  6465. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  6466. sd->flags |= SD_OVERLAP;
  6467. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  6468. break;
  6469. }
  6470. while (sd->child)
  6471. sd = sd->child;
  6472. *per_cpu_ptr(d.sd, i) = sd;
  6473. }
  6474. /* Build the groups for the domains */
  6475. for_each_cpu(i, cpu_map) {
  6476. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  6477. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  6478. if (sd->flags & SD_OVERLAP) {
  6479. if (build_overlap_sched_groups(sd, i))
  6480. goto error;
  6481. } else {
  6482. if (build_sched_groups(sd, i))
  6483. goto error;
  6484. }
  6485. }
  6486. }
  6487. /* Calculate CPU power for physical packages and nodes */
  6488. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  6489. if (!cpumask_test_cpu(i, cpu_map))
  6490. continue;
  6491. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  6492. claim_allocations(i, sd);
  6493. init_sched_groups_power(i, sd);
  6494. }
  6495. }
  6496. /* Attach the domains */
  6497. rcu_read_lock();
  6498. for_each_cpu(i, cpu_map) {
  6499. sd = *per_cpu_ptr(d.sd, i);
  6500. cpu_attach_domain(sd, d.rd, i);
  6501. }
  6502. rcu_read_unlock();
  6503. ret = 0;
  6504. error:
  6505. __free_domain_allocs(&d, alloc_state, cpu_map);
  6506. return ret;
  6507. }
  6508. static cpumask_var_t *doms_cur; /* current sched domains */
  6509. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6510. static struct sched_domain_attr *dattr_cur;
  6511. /* attribues of custom domains in 'doms_cur' */
  6512. /*
  6513. * Special case: If a kmalloc of a doms_cur partition (array of
  6514. * cpumask) fails, then fallback to a single sched domain,
  6515. * as determined by the single cpumask fallback_doms.
  6516. */
  6517. static cpumask_var_t fallback_doms;
  6518. /*
  6519. * arch_update_cpu_topology lets virtualized architectures update the
  6520. * cpu core maps. It is supposed to return 1 if the topology changed
  6521. * or 0 if it stayed the same.
  6522. */
  6523. int __attribute__((weak)) arch_update_cpu_topology(void)
  6524. {
  6525. return 0;
  6526. }
  6527. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6528. {
  6529. int i;
  6530. cpumask_var_t *doms;
  6531. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6532. if (!doms)
  6533. return NULL;
  6534. for (i = 0; i < ndoms; i++) {
  6535. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6536. free_sched_domains(doms, i);
  6537. return NULL;
  6538. }
  6539. }
  6540. return doms;
  6541. }
  6542. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6543. {
  6544. unsigned int i;
  6545. for (i = 0; i < ndoms; i++)
  6546. free_cpumask_var(doms[i]);
  6547. kfree(doms);
  6548. }
  6549. /*
  6550. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6551. * For now this just excludes isolated cpus, but could be used to
  6552. * exclude other special cases in the future.
  6553. */
  6554. static int init_sched_domains(const struct cpumask *cpu_map)
  6555. {
  6556. int err;
  6557. arch_update_cpu_topology();
  6558. ndoms_cur = 1;
  6559. doms_cur = alloc_sched_domains(ndoms_cur);
  6560. if (!doms_cur)
  6561. doms_cur = &fallback_doms;
  6562. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6563. dattr_cur = NULL;
  6564. err = build_sched_domains(doms_cur[0], NULL);
  6565. register_sched_domain_sysctl();
  6566. return err;
  6567. }
  6568. /*
  6569. * Detach sched domains from a group of cpus specified in cpu_map
  6570. * These cpus will now be attached to the NULL domain
  6571. */
  6572. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6573. {
  6574. int i;
  6575. rcu_read_lock();
  6576. for_each_cpu(i, cpu_map)
  6577. cpu_attach_domain(NULL, &def_root_domain, i);
  6578. rcu_read_unlock();
  6579. }
  6580. /* handle null as "default" */
  6581. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6582. struct sched_domain_attr *new, int idx_new)
  6583. {
  6584. struct sched_domain_attr tmp;
  6585. /* fast path */
  6586. if (!new && !cur)
  6587. return 1;
  6588. tmp = SD_ATTR_INIT;
  6589. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6590. new ? (new + idx_new) : &tmp,
  6591. sizeof(struct sched_domain_attr));
  6592. }
  6593. /*
  6594. * Partition sched domains as specified by the 'ndoms_new'
  6595. * cpumasks in the array doms_new[] of cpumasks. This compares
  6596. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6597. * It destroys each deleted domain and builds each new domain.
  6598. *
  6599. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6600. * The masks don't intersect (don't overlap.) We should setup one
  6601. * sched domain for each mask. CPUs not in any of the cpumasks will
  6602. * not be load balanced. If the same cpumask appears both in the
  6603. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6604. * it as it is.
  6605. *
  6606. * The passed in 'doms_new' should be allocated using
  6607. * alloc_sched_domains. This routine takes ownership of it and will
  6608. * free_sched_domains it when done with it. If the caller failed the
  6609. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6610. * and partition_sched_domains() will fallback to the single partition
  6611. * 'fallback_doms', it also forces the domains to be rebuilt.
  6612. *
  6613. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6614. * ndoms_new == 0 is a special case for destroying existing domains,
  6615. * and it will not create the default domain.
  6616. *
  6617. * Call with hotplug lock held
  6618. */
  6619. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6620. struct sched_domain_attr *dattr_new)
  6621. {
  6622. int i, j, n;
  6623. int new_topology;
  6624. mutex_lock(&sched_domains_mutex);
  6625. /* always unregister in case we don't destroy any domains */
  6626. unregister_sched_domain_sysctl();
  6627. /* Let architecture update cpu core mappings. */
  6628. new_topology = arch_update_cpu_topology();
  6629. n = doms_new ? ndoms_new : 0;
  6630. /* Destroy deleted domains */
  6631. for (i = 0; i < ndoms_cur; i++) {
  6632. for (j = 0; j < n && !new_topology; j++) {
  6633. if (cpumask_equal(doms_cur[i], doms_new[j])
  6634. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6635. goto match1;
  6636. }
  6637. /* no match - a current sched domain not in new doms_new[] */
  6638. detach_destroy_domains(doms_cur[i]);
  6639. match1:
  6640. ;
  6641. }
  6642. if (doms_new == NULL) {
  6643. ndoms_cur = 0;
  6644. doms_new = &fallback_doms;
  6645. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6646. WARN_ON_ONCE(dattr_new);
  6647. }
  6648. /* Build new domains */
  6649. for (i = 0; i < ndoms_new; i++) {
  6650. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6651. if (cpumask_equal(doms_new[i], doms_cur[j])
  6652. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6653. goto match2;
  6654. }
  6655. /* no match - add a new doms_new */
  6656. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  6657. match2:
  6658. ;
  6659. }
  6660. /* Remember the new sched domains */
  6661. if (doms_cur != &fallback_doms)
  6662. free_sched_domains(doms_cur, ndoms_cur);
  6663. kfree(dattr_cur); /* kfree(NULL) is safe */
  6664. doms_cur = doms_new;
  6665. dattr_cur = dattr_new;
  6666. ndoms_cur = ndoms_new;
  6667. register_sched_domain_sysctl();
  6668. mutex_unlock(&sched_domains_mutex);
  6669. }
  6670. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6671. static void reinit_sched_domains(void)
  6672. {
  6673. get_online_cpus();
  6674. /* Destroy domains first to force the rebuild */
  6675. partition_sched_domains(0, NULL, NULL);
  6676. rebuild_sched_domains();
  6677. put_online_cpus();
  6678. }
  6679. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6680. {
  6681. unsigned int level = 0;
  6682. if (sscanf(buf, "%u", &level) != 1)
  6683. return -EINVAL;
  6684. /*
  6685. * level is always be positive so don't check for
  6686. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6687. * What happens on 0 or 1 byte write,
  6688. * need to check for count as well?
  6689. */
  6690. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6691. return -EINVAL;
  6692. if (smt)
  6693. sched_smt_power_savings = level;
  6694. else
  6695. sched_mc_power_savings = level;
  6696. reinit_sched_domains();
  6697. return count;
  6698. }
  6699. #ifdef CONFIG_SCHED_MC
  6700. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6701. struct sysdev_class_attribute *attr,
  6702. char *page)
  6703. {
  6704. return sprintf(page, "%u\n", sched_mc_power_savings);
  6705. }
  6706. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6707. struct sysdev_class_attribute *attr,
  6708. const char *buf, size_t count)
  6709. {
  6710. return sched_power_savings_store(buf, count, 0);
  6711. }
  6712. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6713. sched_mc_power_savings_show,
  6714. sched_mc_power_savings_store);
  6715. #endif
  6716. #ifdef CONFIG_SCHED_SMT
  6717. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6718. struct sysdev_class_attribute *attr,
  6719. char *page)
  6720. {
  6721. return sprintf(page, "%u\n", sched_smt_power_savings);
  6722. }
  6723. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6724. struct sysdev_class_attribute *attr,
  6725. const char *buf, size_t count)
  6726. {
  6727. return sched_power_savings_store(buf, count, 1);
  6728. }
  6729. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6730. sched_smt_power_savings_show,
  6731. sched_smt_power_savings_store);
  6732. #endif
  6733. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6734. {
  6735. int err = 0;
  6736. #ifdef CONFIG_SCHED_SMT
  6737. if (smt_capable())
  6738. err = sysfs_create_file(&cls->kset.kobj,
  6739. &attr_sched_smt_power_savings.attr);
  6740. #endif
  6741. #ifdef CONFIG_SCHED_MC
  6742. if (!err && mc_capable())
  6743. err = sysfs_create_file(&cls->kset.kobj,
  6744. &attr_sched_mc_power_savings.attr);
  6745. #endif
  6746. return err;
  6747. }
  6748. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6749. /*
  6750. * Update cpusets according to cpu_active mask. If cpusets are
  6751. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6752. * around partition_sched_domains().
  6753. */
  6754. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6755. void *hcpu)
  6756. {
  6757. switch (action & ~CPU_TASKS_FROZEN) {
  6758. case CPU_ONLINE:
  6759. case CPU_DOWN_FAILED:
  6760. cpuset_update_active_cpus();
  6761. return NOTIFY_OK;
  6762. default:
  6763. return NOTIFY_DONE;
  6764. }
  6765. }
  6766. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6767. void *hcpu)
  6768. {
  6769. switch (action & ~CPU_TASKS_FROZEN) {
  6770. case CPU_DOWN_PREPARE:
  6771. cpuset_update_active_cpus();
  6772. return NOTIFY_OK;
  6773. default:
  6774. return NOTIFY_DONE;
  6775. }
  6776. }
  6777. static int update_runtime(struct notifier_block *nfb,
  6778. unsigned long action, void *hcpu)
  6779. {
  6780. int cpu = (int)(long)hcpu;
  6781. switch (action) {
  6782. case CPU_DOWN_PREPARE:
  6783. case CPU_DOWN_PREPARE_FROZEN:
  6784. disable_runtime(cpu_rq(cpu));
  6785. return NOTIFY_OK;
  6786. case CPU_DOWN_FAILED:
  6787. case CPU_DOWN_FAILED_FROZEN:
  6788. case CPU_ONLINE:
  6789. case CPU_ONLINE_FROZEN:
  6790. enable_runtime(cpu_rq(cpu));
  6791. return NOTIFY_OK;
  6792. default:
  6793. return NOTIFY_DONE;
  6794. }
  6795. }
  6796. void __init sched_init_smp(void)
  6797. {
  6798. cpumask_var_t non_isolated_cpus;
  6799. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6800. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6801. get_online_cpus();
  6802. mutex_lock(&sched_domains_mutex);
  6803. init_sched_domains(cpu_active_mask);
  6804. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6805. if (cpumask_empty(non_isolated_cpus))
  6806. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6807. mutex_unlock(&sched_domains_mutex);
  6808. put_online_cpus();
  6809. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6810. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6811. /* RT runtime code needs to handle some hotplug events */
  6812. hotcpu_notifier(update_runtime, 0);
  6813. init_hrtick();
  6814. /* Move init over to a non-isolated CPU */
  6815. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6816. BUG();
  6817. sched_init_granularity();
  6818. free_cpumask_var(non_isolated_cpus);
  6819. init_sched_rt_class();
  6820. }
  6821. #else
  6822. void __init sched_init_smp(void)
  6823. {
  6824. sched_init_granularity();
  6825. }
  6826. #endif /* CONFIG_SMP */
  6827. const_debug unsigned int sysctl_timer_migration = 1;
  6828. int in_sched_functions(unsigned long addr)
  6829. {
  6830. return in_lock_functions(addr) ||
  6831. (addr >= (unsigned long)__sched_text_start
  6832. && addr < (unsigned long)__sched_text_end);
  6833. }
  6834. static void init_cfs_rq(struct cfs_rq *cfs_rq)
  6835. {
  6836. cfs_rq->tasks_timeline = RB_ROOT;
  6837. INIT_LIST_HEAD(&cfs_rq->tasks);
  6838. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6839. #ifndef CONFIG_64BIT
  6840. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  6841. #endif
  6842. }
  6843. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6844. {
  6845. struct rt_prio_array *array;
  6846. int i;
  6847. array = &rt_rq->active;
  6848. for (i = 0; i < MAX_RT_PRIO; i++) {
  6849. INIT_LIST_HEAD(array->queue + i);
  6850. __clear_bit(i, array->bitmap);
  6851. }
  6852. /* delimiter for bitsearch: */
  6853. __set_bit(MAX_RT_PRIO, array->bitmap);
  6854. #if defined CONFIG_SMP
  6855. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6856. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6857. rt_rq->rt_nr_migratory = 0;
  6858. rt_rq->overloaded = 0;
  6859. plist_head_init(&rt_rq->pushable_tasks);
  6860. #endif
  6861. rt_rq->rt_time = 0;
  6862. rt_rq->rt_throttled = 0;
  6863. rt_rq->rt_runtime = 0;
  6864. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6865. }
  6866. #ifdef CONFIG_FAIR_GROUP_SCHED
  6867. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6868. struct sched_entity *se, int cpu,
  6869. struct sched_entity *parent)
  6870. {
  6871. struct rq *rq = cpu_rq(cpu);
  6872. cfs_rq->tg = tg;
  6873. cfs_rq->rq = rq;
  6874. #ifdef CONFIG_SMP
  6875. /* allow initial update_cfs_load() to truncate */
  6876. cfs_rq->load_stamp = 1;
  6877. #endif
  6878. init_cfs_rq_runtime(cfs_rq);
  6879. tg->cfs_rq[cpu] = cfs_rq;
  6880. tg->se[cpu] = se;
  6881. /* se could be NULL for root_task_group */
  6882. if (!se)
  6883. return;
  6884. if (!parent)
  6885. se->cfs_rq = &rq->cfs;
  6886. else
  6887. se->cfs_rq = parent->my_q;
  6888. se->my_q = cfs_rq;
  6889. update_load_set(&se->load, 0);
  6890. se->parent = parent;
  6891. }
  6892. #endif
  6893. #ifdef CONFIG_RT_GROUP_SCHED
  6894. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6895. struct sched_rt_entity *rt_se, int cpu,
  6896. struct sched_rt_entity *parent)
  6897. {
  6898. struct rq *rq = cpu_rq(cpu);
  6899. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6900. rt_rq->rt_nr_boosted = 0;
  6901. rt_rq->rq = rq;
  6902. rt_rq->tg = tg;
  6903. tg->rt_rq[cpu] = rt_rq;
  6904. tg->rt_se[cpu] = rt_se;
  6905. if (!rt_se)
  6906. return;
  6907. if (!parent)
  6908. rt_se->rt_rq = &rq->rt;
  6909. else
  6910. rt_se->rt_rq = parent->my_q;
  6911. rt_se->my_q = rt_rq;
  6912. rt_se->parent = parent;
  6913. INIT_LIST_HEAD(&rt_se->run_list);
  6914. }
  6915. #endif
  6916. void __init sched_init(void)
  6917. {
  6918. int i, j;
  6919. unsigned long alloc_size = 0, ptr;
  6920. #ifdef CONFIG_FAIR_GROUP_SCHED
  6921. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6922. #endif
  6923. #ifdef CONFIG_RT_GROUP_SCHED
  6924. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6925. #endif
  6926. #ifdef CONFIG_CPUMASK_OFFSTACK
  6927. alloc_size += num_possible_cpus() * cpumask_size();
  6928. #endif
  6929. if (alloc_size) {
  6930. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6931. #ifdef CONFIG_FAIR_GROUP_SCHED
  6932. root_task_group.se = (struct sched_entity **)ptr;
  6933. ptr += nr_cpu_ids * sizeof(void **);
  6934. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6935. ptr += nr_cpu_ids * sizeof(void **);
  6936. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6937. #ifdef CONFIG_RT_GROUP_SCHED
  6938. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6939. ptr += nr_cpu_ids * sizeof(void **);
  6940. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6941. ptr += nr_cpu_ids * sizeof(void **);
  6942. #endif /* CONFIG_RT_GROUP_SCHED */
  6943. #ifdef CONFIG_CPUMASK_OFFSTACK
  6944. for_each_possible_cpu(i) {
  6945. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6946. ptr += cpumask_size();
  6947. }
  6948. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6949. }
  6950. #ifdef CONFIG_SMP
  6951. init_defrootdomain();
  6952. #endif
  6953. init_rt_bandwidth(&def_rt_bandwidth,
  6954. global_rt_period(), global_rt_runtime());
  6955. #ifdef CONFIG_RT_GROUP_SCHED
  6956. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6957. global_rt_period(), global_rt_runtime());
  6958. #endif /* CONFIG_RT_GROUP_SCHED */
  6959. #ifdef CONFIG_CGROUP_SCHED
  6960. list_add(&root_task_group.list, &task_groups);
  6961. INIT_LIST_HEAD(&root_task_group.children);
  6962. autogroup_init(&init_task);
  6963. #endif /* CONFIG_CGROUP_SCHED */
  6964. for_each_possible_cpu(i) {
  6965. struct rq *rq;
  6966. rq = cpu_rq(i);
  6967. raw_spin_lock_init(&rq->lock);
  6968. rq->nr_running = 0;
  6969. rq->calc_load_active = 0;
  6970. rq->calc_load_update = jiffies + LOAD_FREQ;
  6971. init_cfs_rq(&rq->cfs);
  6972. init_rt_rq(&rq->rt, rq);
  6973. #ifdef CONFIG_FAIR_GROUP_SCHED
  6974. root_task_group.shares = root_task_group_load;
  6975. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6976. /*
  6977. * How much cpu bandwidth does root_task_group get?
  6978. *
  6979. * In case of task-groups formed thr' the cgroup filesystem, it
  6980. * gets 100% of the cpu resources in the system. This overall
  6981. * system cpu resource is divided among the tasks of
  6982. * root_task_group and its child task-groups in a fair manner,
  6983. * based on each entity's (task or task-group's) weight
  6984. * (se->load.weight).
  6985. *
  6986. * In other words, if root_task_group has 10 tasks of weight
  6987. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6988. * then A0's share of the cpu resource is:
  6989. *
  6990. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6991. *
  6992. * We achieve this by letting root_task_group's tasks sit
  6993. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  6994. */
  6995. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  6996. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  6997. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6998. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6999. #ifdef CONFIG_RT_GROUP_SCHED
  7000. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7001. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  7002. #endif
  7003. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7004. rq->cpu_load[j] = 0;
  7005. rq->last_load_update_tick = jiffies;
  7006. #ifdef CONFIG_SMP
  7007. rq->sd = NULL;
  7008. rq->rd = NULL;
  7009. rq->cpu_power = SCHED_POWER_SCALE;
  7010. rq->post_schedule = 0;
  7011. rq->active_balance = 0;
  7012. rq->next_balance = jiffies;
  7013. rq->push_cpu = 0;
  7014. rq->cpu = i;
  7015. rq->online = 0;
  7016. rq->idle_stamp = 0;
  7017. rq->avg_idle = 2*sysctl_sched_migration_cost;
  7018. rq_attach_root(rq, &def_root_domain);
  7019. #ifdef CONFIG_NO_HZ
  7020. rq->nohz_balance_kick = 0;
  7021. init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
  7022. #endif
  7023. #endif
  7024. init_rq_hrtick(rq);
  7025. atomic_set(&rq->nr_iowait, 0);
  7026. }
  7027. set_load_weight(&init_task);
  7028. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7029. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7030. #endif
  7031. #ifdef CONFIG_SMP
  7032. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7033. #endif
  7034. #ifdef CONFIG_RT_MUTEXES
  7035. plist_head_init(&init_task.pi_waiters);
  7036. #endif
  7037. /*
  7038. * The boot idle thread does lazy MMU switching as well:
  7039. */
  7040. atomic_inc(&init_mm.mm_count);
  7041. enter_lazy_tlb(&init_mm, current);
  7042. /*
  7043. * Make us the idle thread. Technically, schedule() should not be
  7044. * called from this thread, however somewhere below it might be,
  7045. * but because we are the idle thread, we just pick up running again
  7046. * when this runqueue becomes "idle".
  7047. */
  7048. init_idle(current, smp_processor_id());
  7049. calc_load_update = jiffies + LOAD_FREQ;
  7050. /*
  7051. * During early bootup we pretend to be a normal task:
  7052. */
  7053. current->sched_class = &fair_sched_class;
  7054. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  7055. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  7056. #ifdef CONFIG_SMP
  7057. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  7058. #ifdef CONFIG_NO_HZ
  7059. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  7060. alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
  7061. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  7062. atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
  7063. atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
  7064. #endif
  7065. /* May be allocated at isolcpus cmdline parse time */
  7066. if (cpu_isolated_map == NULL)
  7067. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  7068. #endif /* SMP */
  7069. scheduler_running = 1;
  7070. }
  7071. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  7072. static inline int preempt_count_equals(int preempt_offset)
  7073. {
  7074. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  7075. return (nested == preempt_offset);
  7076. }
  7077. void __might_sleep(const char *file, int line, int preempt_offset)
  7078. {
  7079. static unsigned long prev_jiffy; /* ratelimiting */
  7080. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  7081. system_state != SYSTEM_RUNNING || oops_in_progress)
  7082. return;
  7083. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7084. return;
  7085. prev_jiffy = jiffies;
  7086. printk(KERN_ERR
  7087. "BUG: sleeping function called from invalid context at %s:%d\n",
  7088. file, line);
  7089. printk(KERN_ERR
  7090. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7091. in_atomic(), irqs_disabled(),
  7092. current->pid, current->comm);
  7093. debug_show_held_locks(current);
  7094. if (irqs_disabled())
  7095. print_irqtrace_events(current);
  7096. dump_stack();
  7097. }
  7098. EXPORT_SYMBOL(__might_sleep);
  7099. #endif
  7100. #ifdef CONFIG_MAGIC_SYSRQ
  7101. static void normalize_task(struct rq *rq, struct task_struct *p)
  7102. {
  7103. const struct sched_class *prev_class = p->sched_class;
  7104. int old_prio = p->prio;
  7105. int on_rq;
  7106. on_rq = p->on_rq;
  7107. if (on_rq)
  7108. deactivate_task(rq, p, 0);
  7109. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7110. if (on_rq) {
  7111. activate_task(rq, p, 0);
  7112. resched_task(rq->curr);
  7113. }
  7114. check_class_changed(rq, p, prev_class, old_prio);
  7115. }
  7116. void normalize_rt_tasks(void)
  7117. {
  7118. struct task_struct *g, *p;
  7119. unsigned long flags;
  7120. struct rq *rq;
  7121. read_lock_irqsave(&tasklist_lock, flags);
  7122. do_each_thread(g, p) {
  7123. /*
  7124. * Only normalize user tasks:
  7125. */
  7126. if (!p->mm)
  7127. continue;
  7128. p->se.exec_start = 0;
  7129. #ifdef CONFIG_SCHEDSTATS
  7130. p->se.statistics.wait_start = 0;
  7131. p->se.statistics.sleep_start = 0;
  7132. p->se.statistics.block_start = 0;
  7133. #endif
  7134. if (!rt_task(p)) {
  7135. /*
  7136. * Renice negative nice level userspace
  7137. * tasks back to 0:
  7138. */
  7139. if (TASK_NICE(p) < 0 && p->mm)
  7140. set_user_nice(p, 0);
  7141. continue;
  7142. }
  7143. raw_spin_lock(&p->pi_lock);
  7144. rq = __task_rq_lock(p);
  7145. normalize_task(rq, p);
  7146. __task_rq_unlock(rq);
  7147. raw_spin_unlock(&p->pi_lock);
  7148. } while_each_thread(g, p);
  7149. read_unlock_irqrestore(&tasklist_lock, flags);
  7150. }
  7151. #endif /* CONFIG_MAGIC_SYSRQ */
  7152. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  7153. /*
  7154. * These functions are only useful for the IA64 MCA handling, or kdb.
  7155. *
  7156. * They can only be called when the whole system has been
  7157. * stopped - every CPU needs to be quiescent, and no scheduling
  7158. * activity can take place. Using them for anything else would
  7159. * be a serious bug, and as a result, they aren't even visible
  7160. * under any other configuration.
  7161. */
  7162. /**
  7163. * curr_task - return the current task for a given cpu.
  7164. * @cpu: the processor in question.
  7165. *
  7166. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7167. */
  7168. struct task_struct *curr_task(int cpu)
  7169. {
  7170. return cpu_curr(cpu);
  7171. }
  7172. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  7173. #ifdef CONFIG_IA64
  7174. /**
  7175. * set_curr_task - set the current task for a given cpu.
  7176. * @cpu: the processor in question.
  7177. * @p: the task pointer to set.
  7178. *
  7179. * Description: This function must only be used when non-maskable interrupts
  7180. * are serviced on a separate stack. It allows the architecture to switch the
  7181. * notion of the current task on a cpu in a non-blocking manner. This function
  7182. * must be called with all CPU's synchronized, and interrupts disabled, the
  7183. * and caller must save the original value of the current task (see
  7184. * curr_task() above) and restore that value before reenabling interrupts and
  7185. * re-starting the system.
  7186. *
  7187. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7188. */
  7189. void set_curr_task(int cpu, struct task_struct *p)
  7190. {
  7191. cpu_curr(cpu) = p;
  7192. }
  7193. #endif
  7194. #ifdef CONFIG_FAIR_GROUP_SCHED
  7195. static void free_fair_sched_group(struct task_group *tg)
  7196. {
  7197. int i;
  7198. destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
  7199. for_each_possible_cpu(i) {
  7200. if (tg->cfs_rq)
  7201. kfree(tg->cfs_rq[i]);
  7202. if (tg->se)
  7203. kfree(tg->se[i]);
  7204. }
  7205. kfree(tg->cfs_rq);
  7206. kfree(tg->se);
  7207. }
  7208. static
  7209. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7210. {
  7211. struct cfs_rq *cfs_rq;
  7212. struct sched_entity *se;
  7213. int i;
  7214. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7215. if (!tg->cfs_rq)
  7216. goto err;
  7217. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7218. if (!tg->se)
  7219. goto err;
  7220. tg->shares = NICE_0_LOAD;
  7221. init_cfs_bandwidth(tg_cfs_bandwidth(tg));
  7222. for_each_possible_cpu(i) {
  7223. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7224. GFP_KERNEL, cpu_to_node(i));
  7225. if (!cfs_rq)
  7226. goto err;
  7227. se = kzalloc_node(sizeof(struct sched_entity),
  7228. GFP_KERNEL, cpu_to_node(i));
  7229. if (!se)
  7230. goto err_free_rq;
  7231. init_cfs_rq(cfs_rq);
  7232. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  7233. }
  7234. return 1;
  7235. err_free_rq:
  7236. kfree(cfs_rq);
  7237. err:
  7238. return 0;
  7239. }
  7240. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7241. {
  7242. struct rq *rq = cpu_rq(cpu);
  7243. unsigned long flags;
  7244. /*
  7245. * Only empty task groups can be destroyed; so we can speculatively
  7246. * check on_list without danger of it being re-added.
  7247. */
  7248. if (!tg->cfs_rq[cpu]->on_list)
  7249. return;
  7250. raw_spin_lock_irqsave(&rq->lock, flags);
  7251. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  7252. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7253. }
  7254. #else /* !CONFIG_FAIR_GROUP_SCHED */
  7255. static inline void free_fair_sched_group(struct task_group *tg)
  7256. {
  7257. }
  7258. static inline
  7259. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7260. {
  7261. return 1;
  7262. }
  7263. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7264. {
  7265. }
  7266. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7267. #ifdef CONFIG_RT_GROUP_SCHED
  7268. static void free_rt_sched_group(struct task_group *tg)
  7269. {
  7270. int i;
  7271. if (tg->rt_se)
  7272. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7273. for_each_possible_cpu(i) {
  7274. if (tg->rt_rq)
  7275. kfree(tg->rt_rq[i]);
  7276. if (tg->rt_se)
  7277. kfree(tg->rt_se[i]);
  7278. }
  7279. kfree(tg->rt_rq);
  7280. kfree(tg->rt_se);
  7281. }
  7282. static
  7283. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7284. {
  7285. struct rt_rq *rt_rq;
  7286. struct sched_rt_entity *rt_se;
  7287. int i;
  7288. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7289. if (!tg->rt_rq)
  7290. goto err;
  7291. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7292. if (!tg->rt_se)
  7293. goto err;
  7294. init_rt_bandwidth(&tg->rt_bandwidth,
  7295. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7296. for_each_possible_cpu(i) {
  7297. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7298. GFP_KERNEL, cpu_to_node(i));
  7299. if (!rt_rq)
  7300. goto err;
  7301. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7302. GFP_KERNEL, cpu_to_node(i));
  7303. if (!rt_se)
  7304. goto err_free_rq;
  7305. init_rt_rq(rt_rq, cpu_rq(i));
  7306. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  7307. init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
  7308. }
  7309. return 1;
  7310. err_free_rq:
  7311. kfree(rt_rq);
  7312. err:
  7313. return 0;
  7314. }
  7315. #else /* !CONFIG_RT_GROUP_SCHED */
  7316. static inline void free_rt_sched_group(struct task_group *tg)
  7317. {
  7318. }
  7319. static inline
  7320. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7321. {
  7322. return 1;
  7323. }
  7324. #endif /* CONFIG_RT_GROUP_SCHED */
  7325. #ifdef CONFIG_CGROUP_SCHED
  7326. static void free_sched_group(struct task_group *tg)
  7327. {
  7328. free_fair_sched_group(tg);
  7329. free_rt_sched_group(tg);
  7330. autogroup_free(tg);
  7331. kfree(tg);
  7332. }
  7333. /* allocate runqueue etc for a new task group */
  7334. struct task_group *sched_create_group(struct task_group *parent)
  7335. {
  7336. struct task_group *tg;
  7337. unsigned long flags;
  7338. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7339. if (!tg)
  7340. return ERR_PTR(-ENOMEM);
  7341. if (!alloc_fair_sched_group(tg, parent))
  7342. goto err;
  7343. if (!alloc_rt_sched_group(tg, parent))
  7344. goto err;
  7345. spin_lock_irqsave(&task_group_lock, flags);
  7346. list_add_rcu(&tg->list, &task_groups);
  7347. WARN_ON(!parent); /* root should already exist */
  7348. tg->parent = parent;
  7349. INIT_LIST_HEAD(&tg->children);
  7350. list_add_rcu(&tg->siblings, &parent->children);
  7351. spin_unlock_irqrestore(&task_group_lock, flags);
  7352. return tg;
  7353. err:
  7354. free_sched_group(tg);
  7355. return ERR_PTR(-ENOMEM);
  7356. }
  7357. /* rcu callback to free various structures associated with a task group */
  7358. static void free_sched_group_rcu(struct rcu_head *rhp)
  7359. {
  7360. /* now it should be safe to free those cfs_rqs */
  7361. free_sched_group(container_of(rhp, struct task_group, rcu));
  7362. }
  7363. /* Destroy runqueue etc associated with a task group */
  7364. void sched_destroy_group(struct task_group *tg)
  7365. {
  7366. unsigned long flags;
  7367. int i;
  7368. /* end participation in shares distribution */
  7369. for_each_possible_cpu(i)
  7370. unregister_fair_sched_group(tg, i);
  7371. spin_lock_irqsave(&task_group_lock, flags);
  7372. list_del_rcu(&tg->list);
  7373. list_del_rcu(&tg->siblings);
  7374. spin_unlock_irqrestore(&task_group_lock, flags);
  7375. /* wait for possible concurrent references to cfs_rqs complete */
  7376. call_rcu(&tg->rcu, free_sched_group_rcu);
  7377. }
  7378. /* change task's runqueue when it moves between groups.
  7379. * The caller of this function should have put the task in its new group
  7380. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7381. * reflect its new group.
  7382. */
  7383. void sched_move_task(struct task_struct *tsk)
  7384. {
  7385. int on_rq, running;
  7386. unsigned long flags;
  7387. struct rq *rq;
  7388. rq = task_rq_lock(tsk, &flags);
  7389. running = task_current(rq, tsk);
  7390. on_rq = tsk->on_rq;
  7391. if (on_rq)
  7392. dequeue_task(rq, tsk, 0);
  7393. if (unlikely(running))
  7394. tsk->sched_class->put_prev_task(rq, tsk);
  7395. #ifdef CONFIG_FAIR_GROUP_SCHED
  7396. if (tsk->sched_class->task_move_group)
  7397. tsk->sched_class->task_move_group(tsk, on_rq);
  7398. else
  7399. #endif
  7400. set_task_rq(tsk, task_cpu(tsk));
  7401. if (unlikely(running))
  7402. tsk->sched_class->set_curr_task(rq);
  7403. if (on_rq)
  7404. enqueue_task(rq, tsk, 0);
  7405. task_rq_unlock(rq, tsk, &flags);
  7406. }
  7407. #endif /* CONFIG_CGROUP_SCHED */
  7408. #ifdef CONFIG_FAIR_GROUP_SCHED
  7409. static DEFINE_MUTEX(shares_mutex);
  7410. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7411. {
  7412. int i;
  7413. unsigned long flags;
  7414. /*
  7415. * We can't change the weight of the root cgroup.
  7416. */
  7417. if (!tg->se[0])
  7418. return -EINVAL;
  7419. shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
  7420. mutex_lock(&shares_mutex);
  7421. if (tg->shares == shares)
  7422. goto done;
  7423. tg->shares = shares;
  7424. for_each_possible_cpu(i) {
  7425. struct rq *rq = cpu_rq(i);
  7426. struct sched_entity *se;
  7427. se = tg->se[i];
  7428. /* Propagate contribution to hierarchy */
  7429. raw_spin_lock_irqsave(&rq->lock, flags);
  7430. for_each_sched_entity(se)
  7431. update_cfs_shares(group_cfs_rq(se));
  7432. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7433. }
  7434. done:
  7435. mutex_unlock(&shares_mutex);
  7436. return 0;
  7437. }
  7438. unsigned long sched_group_shares(struct task_group *tg)
  7439. {
  7440. return tg->shares;
  7441. }
  7442. #endif
  7443. #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
  7444. static unsigned long to_ratio(u64 period, u64 runtime)
  7445. {
  7446. if (runtime == RUNTIME_INF)
  7447. return 1ULL << 20;
  7448. return div64_u64(runtime << 20, period);
  7449. }
  7450. #endif
  7451. #ifdef CONFIG_RT_GROUP_SCHED
  7452. /*
  7453. * Ensure that the real time constraints are schedulable.
  7454. */
  7455. static DEFINE_MUTEX(rt_constraints_mutex);
  7456. /* Must be called with tasklist_lock held */
  7457. static inline int tg_has_rt_tasks(struct task_group *tg)
  7458. {
  7459. struct task_struct *g, *p;
  7460. do_each_thread(g, p) {
  7461. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7462. return 1;
  7463. } while_each_thread(g, p);
  7464. return 0;
  7465. }
  7466. struct rt_schedulable_data {
  7467. struct task_group *tg;
  7468. u64 rt_period;
  7469. u64 rt_runtime;
  7470. };
  7471. static int tg_rt_schedulable(struct task_group *tg, void *data)
  7472. {
  7473. struct rt_schedulable_data *d = data;
  7474. struct task_group *child;
  7475. unsigned long total, sum = 0;
  7476. u64 period, runtime;
  7477. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7478. runtime = tg->rt_bandwidth.rt_runtime;
  7479. if (tg == d->tg) {
  7480. period = d->rt_period;
  7481. runtime = d->rt_runtime;
  7482. }
  7483. /*
  7484. * Cannot have more runtime than the period.
  7485. */
  7486. if (runtime > period && runtime != RUNTIME_INF)
  7487. return -EINVAL;
  7488. /*
  7489. * Ensure we don't starve existing RT tasks.
  7490. */
  7491. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7492. return -EBUSY;
  7493. total = to_ratio(period, runtime);
  7494. /*
  7495. * Nobody can have more than the global setting allows.
  7496. */
  7497. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7498. return -EINVAL;
  7499. /*
  7500. * The sum of our children's runtime should not exceed our own.
  7501. */
  7502. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7503. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7504. runtime = child->rt_bandwidth.rt_runtime;
  7505. if (child == d->tg) {
  7506. period = d->rt_period;
  7507. runtime = d->rt_runtime;
  7508. }
  7509. sum += to_ratio(period, runtime);
  7510. }
  7511. if (sum > total)
  7512. return -EINVAL;
  7513. return 0;
  7514. }
  7515. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7516. {
  7517. int ret;
  7518. struct rt_schedulable_data data = {
  7519. .tg = tg,
  7520. .rt_period = period,
  7521. .rt_runtime = runtime,
  7522. };
  7523. rcu_read_lock();
  7524. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  7525. rcu_read_unlock();
  7526. return ret;
  7527. }
  7528. static int tg_set_rt_bandwidth(struct task_group *tg,
  7529. u64 rt_period, u64 rt_runtime)
  7530. {
  7531. int i, err = 0;
  7532. mutex_lock(&rt_constraints_mutex);
  7533. read_lock(&tasklist_lock);
  7534. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7535. if (err)
  7536. goto unlock;
  7537. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7538. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7539. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7540. for_each_possible_cpu(i) {
  7541. struct rt_rq *rt_rq = tg->rt_rq[i];
  7542. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7543. rt_rq->rt_runtime = rt_runtime;
  7544. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7545. }
  7546. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7547. unlock:
  7548. read_unlock(&tasklist_lock);
  7549. mutex_unlock(&rt_constraints_mutex);
  7550. return err;
  7551. }
  7552. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7553. {
  7554. u64 rt_runtime, rt_period;
  7555. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7556. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7557. if (rt_runtime_us < 0)
  7558. rt_runtime = RUNTIME_INF;
  7559. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  7560. }
  7561. long sched_group_rt_runtime(struct task_group *tg)
  7562. {
  7563. u64 rt_runtime_us;
  7564. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7565. return -1;
  7566. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7567. do_div(rt_runtime_us, NSEC_PER_USEC);
  7568. return rt_runtime_us;
  7569. }
  7570. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7571. {
  7572. u64 rt_runtime, rt_period;
  7573. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7574. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7575. if (rt_period == 0)
  7576. return -EINVAL;
  7577. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  7578. }
  7579. long sched_group_rt_period(struct task_group *tg)
  7580. {
  7581. u64 rt_period_us;
  7582. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7583. do_div(rt_period_us, NSEC_PER_USEC);
  7584. return rt_period_us;
  7585. }
  7586. static int sched_rt_global_constraints(void)
  7587. {
  7588. u64 runtime, period;
  7589. int ret = 0;
  7590. if (sysctl_sched_rt_period <= 0)
  7591. return -EINVAL;
  7592. runtime = global_rt_runtime();
  7593. period = global_rt_period();
  7594. /*
  7595. * Sanity check on the sysctl variables.
  7596. */
  7597. if (runtime > period && runtime != RUNTIME_INF)
  7598. return -EINVAL;
  7599. mutex_lock(&rt_constraints_mutex);
  7600. read_lock(&tasklist_lock);
  7601. ret = __rt_schedulable(NULL, 0, 0);
  7602. read_unlock(&tasklist_lock);
  7603. mutex_unlock(&rt_constraints_mutex);
  7604. return ret;
  7605. }
  7606. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7607. {
  7608. /* Don't accept realtime tasks when there is no way for them to run */
  7609. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7610. return 0;
  7611. return 1;
  7612. }
  7613. #else /* !CONFIG_RT_GROUP_SCHED */
  7614. static int sched_rt_global_constraints(void)
  7615. {
  7616. unsigned long flags;
  7617. int i;
  7618. if (sysctl_sched_rt_period <= 0)
  7619. return -EINVAL;
  7620. /*
  7621. * There's always some RT tasks in the root group
  7622. * -- migration, kstopmachine etc..
  7623. */
  7624. if (sysctl_sched_rt_runtime == 0)
  7625. return -EBUSY;
  7626. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7627. for_each_possible_cpu(i) {
  7628. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7629. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7630. rt_rq->rt_runtime = global_rt_runtime();
  7631. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7632. }
  7633. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7634. return 0;
  7635. }
  7636. #endif /* CONFIG_RT_GROUP_SCHED */
  7637. int sched_rt_handler(struct ctl_table *table, int write,
  7638. void __user *buffer, size_t *lenp,
  7639. loff_t *ppos)
  7640. {
  7641. int ret;
  7642. int old_period, old_runtime;
  7643. static DEFINE_MUTEX(mutex);
  7644. mutex_lock(&mutex);
  7645. old_period = sysctl_sched_rt_period;
  7646. old_runtime = sysctl_sched_rt_runtime;
  7647. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7648. if (!ret && write) {
  7649. ret = sched_rt_global_constraints();
  7650. if (ret) {
  7651. sysctl_sched_rt_period = old_period;
  7652. sysctl_sched_rt_runtime = old_runtime;
  7653. } else {
  7654. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7655. def_rt_bandwidth.rt_period =
  7656. ns_to_ktime(global_rt_period());
  7657. }
  7658. }
  7659. mutex_unlock(&mutex);
  7660. return ret;
  7661. }
  7662. #ifdef CONFIG_CGROUP_SCHED
  7663. /* return corresponding task_group object of a cgroup */
  7664. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7665. {
  7666. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7667. struct task_group, css);
  7668. }
  7669. static struct cgroup_subsys_state *
  7670. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7671. {
  7672. struct task_group *tg, *parent;
  7673. if (!cgrp->parent) {
  7674. /* This is early initialization for the top cgroup */
  7675. return &root_task_group.css;
  7676. }
  7677. parent = cgroup_tg(cgrp->parent);
  7678. tg = sched_create_group(parent);
  7679. if (IS_ERR(tg))
  7680. return ERR_PTR(-ENOMEM);
  7681. return &tg->css;
  7682. }
  7683. static void
  7684. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7685. {
  7686. struct task_group *tg = cgroup_tg(cgrp);
  7687. sched_destroy_group(tg);
  7688. }
  7689. static int
  7690. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7691. {
  7692. #ifdef CONFIG_RT_GROUP_SCHED
  7693. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7694. return -EINVAL;
  7695. #else
  7696. /* We don't support RT-tasks being in separate groups */
  7697. if (tsk->sched_class != &fair_sched_class)
  7698. return -EINVAL;
  7699. #endif
  7700. return 0;
  7701. }
  7702. static void
  7703. cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7704. {
  7705. sched_move_task(tsk);
  7706. }
  7707. static void
  7708. cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7709. struct cgroup *old_cgrp, struct task_struct *task)
  7710. {
  7711. /*
  7712. * cgroup_exit() is called in the copy_process() failure path.
  7713. * Ignore this case since the task hasn't ran yet, this avoids
  7714. * trying to poke a half freed task state from generic code.
  7715. */
  7716. if (!(task->flags & PF_EXITING))
  7717. return;
  7718. sched_move_task(task);
  7719. }
  7720. #ifdef CONFIG_FAIR_GROUP_SCHED
  7721. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7722. u64 shareval)
  7723. {
  7724. return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
  7725. }
  7726. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7727. {
  7728. struct task_group *tg = cgroup_tg(cgrp);
  7729. return (u64) scale_load_down(tg->shares);
  7730. }
  7731. #ifdef CONFIG_CFS_BANDWIDTH
  7732. static DEFINE_MUTEX(cfs_constraints_mutex);
  7733. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  7734. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  7735. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  7736. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  7737. {
  7738. int i, ret = 0, runtime_enabled;
  7739. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
  7740. if (tg == &root_task_group)
  7741. return -EINVAL;
  7742. /*
  7743. * Ensure we have at some amount of bandwidth every period. This is
  7744. * to prevent reaching a state of large arrears when throttled via
  7745. * entity_tick() resulting in prolonged exit starvation.
  7746. */
  7747. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  7748. return -EINVAL;
  7749. /*
  7750. * Likewise, bound things on the otherside by preventing insane quota
  7751. * periods. This also allows us to normalize in computing quota
  7752. * feasibility.
  7753. */
  7754. if (period > max_cfs_quota_period)
  7755. return -EINVAL;
  7756. mutex_lock(&cfs_constraints_mutex);
  7757. ret = __cfs_schedulable(tg, period, quota);
  7758. if (ret)
  7759. goto out_unlock;
  7760. runtime_enabled = quota != RUNTIME_INF;
  7761. raw_spin_lock_irq(&cfs_b->lock);
  7762. cfs_b->period = ns_to_ktime(period);
  7763. cfs_b->quota = quota;
  7764. __refill_cfs_bandwidth_runtime(cfs_b);
  7765. /* restart the period timer (if active) to handle new period expiry */
  7766. if (runtime_enabled && cfs_b->timer_active) {
  7767. /* force a reprogram */
  7768. cfs_b->timer_active = 0;
  7769. __start_cfs_bandwidth(cfs_b);
  7770. }
  7771. raw_spin_unlock_irq(&cfs_b->lock);
  7772. for_each_possible_cpu(i) {
  7773. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  7774. struct rq *rq = rq_of(cfs_rq);
  7775. raw_spin_lock_irq(&rq->lock);
  7776. cfs_rq->runtime_enabled = runtime_enabled;
  7777. cfs_rq->runtime_remaining = 0;
  7778. if (cfs_rq_throttled(cfs_rq))
  7779. unthrottle_cfs_rq(cfs_rq);
  7780. raw_spin_unlock_irq(&rq->lock);
  7781. }
  7782. out_unlock:
  7783. mutex_unlock(&cfs_constraints_mutex);
  7784. return ret;
  7785. }
  7786. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  7787. {
  7788. u64 quota, period;
  7789. period = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
  7790. if (cfs_quota_us < 0)
  7791. quota = RUNTIME_INF;
  7792. else
  7793. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  7794. return tg_set_cfs_bandwidth(tg, period, quota);
  7795. }
  7796. long tg_get_cfs_quota(struct task_group *tg)
  7797. {
  7798. u64 quota_us;
  7799. if (tg_cfs_bandwidth(tg)->quota == RUNTIME_INF)
  7800. return -1;
  7801. quota_us = tg_cfs_bandwidth(tg)->quota;
  7802. do_div(quota_us, NSEC_PER_USEC);
  7803. return quota_us;
  7804. }
  7805. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  7806. {
  7807. u64 quota, period;
  7808. period = (u64)cfs_period_us * NSEC_PER_USEC;
  7809. quota = tg_cfs_bandwidth(tg)->quota;
  7810. if (period <= 0)
  7811. return -EINVAL;
  7812. return tg_set_cfs_bandwidth(tg, period, quota);
  7813. }
  7814. long tg_get_cfs_period(struct task_group *tg)
  7815. {
  7816. u64 cfs_period_us;
  7817. cfs_period_us = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
  7818. do_div(cfs_period_us, NSEC_PER_USEC);
  7819. return cfs_period_us;
  7820. }
  7821. static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
  7822. {
  7823. return tg_get_cfs_quota(cgroup_tg(cgrp));
  7824. }
  7825. static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
  7826. s64 cfs_quota_us)
  7827. {
  7828. return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
  7829. }
  7830. static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7831. {
  7832. return tg_get_cfs_period(cgroup_tg(cgrp));
  7833. }
  7834. static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7835. u64 cfs_period_us)
  7836. {
  7837. return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
  7838. }
  7839. struct cfs_schedulable_data {
  7840. struct task_group *tg;
  7841. u64 period, quota;
  7842. };
  7843. /*
  7844. * normalize group quota/period to be quota/max_period
  7845. * note: units are usecs
  7846. */
  7847. static u64 normalize_cfs_quota(struct task_group *tg,
  7848. struct cfs_schedulable_data *d)
  7849. {
  7850. u64 quota, period;
  7851. if (tg == d->tg) {
  7852. period = d->period;
  7853. quota = d->quota;
  7854. } else {
  7855. period = tg_get_cfs_period(tg);
  7856. quota = tg_get_cfs_quota(tg);
  7857. }
  7858. /* note: these should typically be equivalent */
  7859. if (quota == RUNTIME_INF || quota == -1)
  7860. return RUNTIME_INF;
  7861. return to_ratio(period, quota);
  7862. }
  7863. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  7864. {
  7865. struct cfs_schedulable_data *d = data;
  7866. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
  7867. s64 quota = 0, parent_quota = -1;
  7868. if (!tg->parent) {
  7869. quota = RUNTIME_INF;
  7870. } else {
  7871. struct cfs_bandwidth *parent_b = tg_cfs_bandwidth(tg->parent);
  7872. quota = normalize_cfs_quota(tg, d);
  7873. parent_quota = parent_b->hierarchal_quota;
  7874. /*
  7875. * ensure max(child_quota) <= parent_quota, inherit when no
  7876. * limit is set
  7877. */
  7878. if (quota == RUNTIME_INF)
  7879. quota = parent_quota;
  7880. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  7881. return -EINVAL;
  7882. }
  7883. cfs_b->hierarchal_quota = quota;
  7884. return 0;
  7885. }
  7886. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  7887. {
  7888. int ret;
  7889. struct cfs_schedulable_data data = {
  7890. .tg = tg,
  7891. .period = period,
  7892. .quota = quota,
  7893. };
  7894. if (quota != RUNTIME_INF) {
  7895. do_div(data.period, NSEC_PER_USEC);
  7896. do_div(data.quota, NSEC_PER_USEC);
  7897. }
  7898. rcu_read_lock();
  7899. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  7900. rcu_read_unlock();
  7901. return ret;
  7902. }
  7903. static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7904. struct cgroup_map_cb *cb)
  7905. {
  7906. struct task_group *tg = cgroup_tg(cgrp);
  7907. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
  7908. cb->fill(cb, "nr_periods", cfs_b->nr_periods);
  7909. cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
  7910. cb->fill(cb, "throttled_time", cfs_b->throttled_time);
  7911. return 0;
  7912. }
  7913. #endif /* CONFIG_CFS_BANDWIDTH */
  7914. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7915. #ifdef CONFIG_RT_GROUP_SCHED
  7916. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7917. s64 val)
  7918. {
  7919. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7920. }
  7921. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7922. {
  7923. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7924. }
  7925. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7926. u64 rt_period_us)
  7927. {
  7928. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7929. }
  7930. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7931. {
  7932. return sched_group_rt_period(cgroup_tg(cgrp));
  7933. }
  7934. #endif /* CONFIG_RT_GROUP_SCHED */
  7935. static struct cftype cpu_files[] = {
  7936. #ifdef CONFIG_FAIR_GROUP_SCHED
  7937. {
  7938. .name = "shares",
  7939. .read_u64 = cpu_shares_read_u64,
  7940. .write_u64 = cpu_shares_write_u64,
  7941. },
  7942. #endif
  7943. #ifdef CONFIG_CFS_BANDWIDTH
  7944. {
  7945. .name = "cfs_quota_us",
  7946. .read_s64 = cpu_cfs_quota_read_s64,
  7947. .write_s64 = cpu_cfs_quota_write_s64,
  7948. },
  7949. {
  7950. .name = "cfs_period_us",
  7951. .read_u64 = cpu_cfs_period_read_u64,
  7952. .write_u64 = cpu_cfs_period_write_u64,
  7953. },
  7954. {
  7955. .name = "stat",
  7956. .read_map = cpu_stats_show,
  7957. },
  7958. #endif
  7959. #ifdef CONFIG_RT_GROUP_SCHED
  7960. {
  7961. .name = "rt_runtime_us",
  7962. .read_s64 = cpu_rt_runtime_read,
  7963. .write_s64 = cpu_rt_runtime_write,
  7964. },
  7965. {
  7966. .name = "rt_period_us",
  7967. .read_u64 = cpu_rt_period_read_uint,
  7968. .write_u64 = cpu_rt_period_write_uint,
  7969. },
  7970. #endif
  7971. };
  7972. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7973. {
  7974. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7975. }
  7976. struct cgroup_subsys cpu_cgroup_subsys = {
  7977. .name = "cpu",
  7978. .create = cpu_cgroup_create,
  7979. .destroy = cpu_cgroup_destroy,
  7980. .can_attach_task = cpu_cgroup_can_attach_task,
  7981. .attach_task = cpu_cgroup_attach_task,
  7982. .exit = cpu_cgroup_exit,
  7983. .populate = cpu_cgroup_populate,
  7984. .subsys_id = cpu_cgroup_subsys_id,
  7985. .early_init = 1,
  7986. };
  7987. #endif /* CONFIG_CGROUP_SCHED */
  7988. #ifdef CONFIG_CGROUP_CPUACCT
  7989. /*
  7990. * CPU accounting code for task groups.
  7991. *
  7992. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7993. * (balbir@in.ibm.com).
  7994. */
  7995. /* track cpu usage of a group of tasks and its child groups */
  7996. struct cpuacct {
  7997. struct cgroup_subsys_state css;
  7998. /* cpuusage holds pointer to a u64-type object on every cpu */
  7999. u64 __percpu *cpuusage;
  8000. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  8001. struct cpuacct *parent;
  8002. };
  8003. struct cgroup_subsys cpuacct_subsys;
  8004. /* return cpu accounting group corresponding to this container */
  8005. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  8006. {
  8007. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  8008. struct cpuacct, css);
  8009. }
  8010. /* return cpu accounting group to which this task belongs */
  8011. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  8012. {
  8013. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  8014. struct cpuacct, css);
  8015. }
  8016. /* create a new cpu accounting group */
  8017. static struct cgroup_subsys_state *cpuacct_create(
  8018. struct cgroup_subsys *ss, struct cgroup *cgrp)
  8019. {
  8020. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  8021. int i;
  8022. if (!ca)
  8023. goto out;
  8024. ca->cpuusage = alloc_percpu(u64);
  8025. if (!ca->cpuusage)
  8026. goto out_free_ca;
  8027. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  8028. if (percpu_counter_init(&ca->cpustat[i], 0))
  8029. goto out_free_counters;
  8030. if (cgrp->parent)
  8031. ca->parent = cgroup_ca(cgrp->parent);
  8032. return &ca->css;
  8033. out_free_counters:
  8034. while (--i >= 0)
  8035. percpu_counter_destroy(&ca->cpustat[i]);
  8036. free_percpu(ca->cpuusage);
  8037. out_free_ca:
  8038. kfree(ca);
  8039. out:
  8040. return ERR_PTR(-ENOMEM);
  8041. }
  8042. /* destroy an existing cpu accounting group */
  8043. static void
  8044. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8045. {
  8046. struct cpuacct *ca = cgroup_ca(cgrp);
  8047. int i;
  8048. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  8049. percpu_counter_destroy(&ca->cpustat[i]);
  8050. free_percpu(ca->cpuusage);
  8051. kfree(ca);
  8052. }
  8053. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  8054. {
  8055. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8056. u64 data;
  8057. #ifndef CONFIG_64BIT
  8058. /*
  8059. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  8060. */
  8061. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  8062. data = *cpuusage;
  8063. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  8064. #else
  8065. data = *cpuusage;
  8066. #endif
  8067. return data;
  8068. }
  8069. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  8070. {
  8071. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8072. #ifndef CONFIG_64BIT
  8073. /*
  8074. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  8075. */
  8076. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  8077. *cpuusage = val;
  8078. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  8079. #else
  8080. *cpuusage = val;
  8081. #endif
  8082. }
  8083. /* return total cpu usage (in nanoseconds) of a group */
  8084. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  8085. {
  8086. struct cpuacct *ca = cgroup_ca(cgrp);
  8087. u64 totalcpuusage = 0;
  8088. int i;
  8089. for_each_present_cpu(i)
  8090. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  8091. return totalcpuusage;
  8092. }
  8093. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  8094. u64 reset)
  8095. {
  8096. struct cpuacct *ca = cgroup_ca(cgrp);
  8097. int err = 0;
  8098. int i;
  8099. if (reset) {
  8100. err = -EINVAL;
  8101. goto out;
  8102. }
  8103. for_each_present_cpu(i)
  8104. cpuacct_cpuusage_write(ca, i, 0);
  8105. out:
  8106. return err;
  8107. }
  8108. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  8109. struct seq_file *m)
  8110. {
  8111. struct cpuacct *ca = cgroup_ca(cgroup);
  8112. u64 percpu;
  8113. int i;
  8114. for_each_present_cpu(i) {
  8115. percpu = cpuacct_cpuusage_read(ca, i);
  8116. seq_printf(m, "%llu ", (unsigned long long) percpu);
  8117. }
  8118. seq_printf(m, "\n");
  8119. return 0;
  8120. }
  8121. static const char *cpuacct_stat_desc[] = {
  8122. [CPUACCT_STAT_USER] = "user",
  8123. [CPUACCT_STAT_SYSTEM] = "system",
  8124. };
  8125. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  8126. struct cgroup_map_cb *cb)
  8127. {
  8128. struct cpuacct *ca = cgroup_ca(cgrp);
  8129. int i;
  8130. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  8131. s64 val = percpu_counter_read(&ca->cpustat[i]);
  8132. val = cputime64_to_clock_t(val);
  8133. cb->fill(cb, cpuacct_stat_desc[i], val);
  8134. }
  8135. return 0;
  8136. }
  8137. static struct cftype files[] = {
  8138. {
  8139. .name = "usage",
  8140. .read_u64 = cpuusage_read,
  8141. .write_u64 = cpuusage_write,
  8142. },
  8143. {
  8144. .name = "usage_percpu",
  8145. .read_seq_string = cpuacct_percpu_seq_read,
  8146. },
  8147. {
  8148. .name = "stat",
  8149. .read_map = cpuacct_stats_show,
  8150. },
  8151. };
  8152. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8153. {
  8154. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  8155. }
  8156. /*
  8157. * charge this task's execution time to its accounting group.
  8158. *
  8159. * called with rq->lock held.
  8160. */
  8161. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  8162. {
  8163. struct cpuacct *ca;
  8164. int cpu;
  8165. if (unlikely(!cpuacct_subsys.active))
  8166. return;
  8167. cpu = task_cpu(tsk);
  8168. rcu_read_lock();
  8169. ca = task_ca(tsk);
  8170. for (; ca; ca = ca->parent) {
  8171. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8172. *cpuusage += cputime;
  8173. }
  8174. rcu_read_unlock();
  8175. }
  8176. /*
  8177. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  8178. * in cputime_t units. As a result, cpuacct_update_stats calls
  8179. * percpu_counter_add with values large enough to always overflow the
  8180. * per cpu batch limit causing bad SMP scalability.
  8181. *
  8182. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  8183. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  8184. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  8185. */
  8186. #ifdef CONFIG_SMP
  8187. #define CPUACCT_BATCH \
  8188. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  8189. #else
  8190. #define CPUACCT_BATCH 0
  8191. #endif
  8192. /*
  8193. * Charge the system/user time to the task's accounting group.
  8194. */
  8195. static void cpuacct_update_stats(struct task_struct *tsk,
  8196. enum cpuacct_stat_index idx, cputime_t val)
  8197. {
  8198. struct cpuacct *ca;
  8199. int batch = CPUACCT_BATCH;
  8200. if (unlikely(!cpuacct_subsys.active))
  8201. return;
  8202. rcu_read_lock();
  8203. ca = task_ca(tsk);
  8204. do {
  8205. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  8206. ca = ca->parent;
  8207. } while (ca);
  8208. rcu_read_unlock();
  8209. }
  8210. struct cgroup_subsys cpuacct_subsys = {
  8211. .name = "cpuacct",
  8212. .create = cpuacct_create,
  8213. .destroy = cpuacct_destroy,
  8214. .populate = cpuacct_populate,
  8215. .subsys_id = cpuacct_subsys_id,
  8216. };
  8217. #endif /* CONFIG_CGROUP_CPUACCT */