coproc.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180
  1. /*
  2. * Copyright (C) 2012 - Virtual Open Systems and Columbia University
  3. * Authors: Rusty Russell <rusty@rustcorp.com.au>
  4. * Christoffer Dall <c.dall@virtualopensystems.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License, version 2, as
  8. * published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
  18. */
  19. #include <linux/mm.h>
  20. #include <linux/kvm_host.h>
  21. #include <linux/uaccess.h>
  22. #include <asm/kvm_arm.h>
  23. #include <asm/kvm_host.h>
  24. #include <asm/kvm_emulate.h>
  25. #include <asm/kvm_coproc.h>
  26. #include <asm/cacheflush.h>
  27. #include <asm/cputype.h>
  28. #include <trace/events/kvm.h>
  29. #include <asm/vfp.h>
  30. #include "../vfp/vfpinstr.h"
  31. #include "trace.h"
  32. #include "coproc.h"
  33. /******************************************************************************
  34. * Co-processor emulation
  35. *****************************************************************************/
  36. /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
  37. static u32 cache_levels;
  38. /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
  39. #define CSSELR_MAX 12
  40. int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
  41. {
  42. kvm_inject_undefined(vcpu);
  43. return 1;
  44. }
  45. int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
  46. {
  47. /*
  48. * We can get here, if the host has been built without VFPv3 support,
  49. * but the guest attempted a floating point operation.
  50. */
  51. kvm_inject_undefined(vcpu);
  52. return 1;
  53. }
  54. int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
  55. {
  56. kvm_inject_undefined(vcpu);
  57. return 1;
  58. }
  59. int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
  60. {
  61. kvm_inject_undefined(vcpu);
  62. return 1;
  63. }
  64. static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
  65. {
  66. /*
  67. * Compute guest MPIDR. No need to mess around with different clusters
  68. * but we read the 'U' bit from the underlying hardware directly.
  69. */
  70. vcpu->arch.cp15[c0_MPIDR] = (read_cpuid_mpidr() & MPIDR_SMP_BITMASK)
  71. | vcpu->vcpu_id;
  72. }
  73. /* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
  74. static bool access_actlr(struct kvm_vcpu *vcpu,
  75. const struct coproc_params *p,
  76. const struct coproc_reg *r)
  77. {
  78. if (p->is_write)
  79. return ignore_write(vcpu, p);
  80. *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.cp15[c1_ACTLR];
  81. return true;
  82. }
  83. /* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
  84. static bool access_cbar(struct kvm_vcpu *vcpu,
  85. const struct coproc_params *p,
  86. const struct coproc_reg *r)
  87. {
  88. if (p->is_write)
  89. return write_to_read_only(vcpu, p);
  90. return read_zero(vcpu, p);
  91. }
  92. /* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
  93. static bool access_l2ctlr(struct kvm_vcpu *vcpu,
  94. const struct coproc_params *p,
  95. const struct coproc_reg *r)
  96. {
  97. if (p->is_write)
  98. return ignore_write(vcpu, p);
  99. *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.cp15[c9_L2CTLR];
  100. return true;
  101. }
  102. static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
  103. {
  104. u32 l2ctlr, ncores;
  105. asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
  106. l2ctlr &= ~(3 << 24);
  107. ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
  108. l2ctlr |= (ncores & 3) << 24;
  109. vcpu->arch.cp15[c9_L2CTLR] = l2ctlr;
  110. }
  111. static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
  112. {
  113. u32 actlr;
  114. /* ACTLR contains SMP bit: make sure you create all cpus first! */
  115. asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
  116. /* Make the SMP bit consistent with the guest configuration */
  117. if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
  118. actlr |= 1U << 6;
  119. else
  120. actlr &= ~(1U << 6);
  121. vcpu->arch.cp15[c1_ACTLR] = actlr;
  122. }
  123. /*
  124. * TRM entries: A7:4.3.50, A15:4.3.49
  125. * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
  126. */
  127. static bool access_l2ectlr(struct kvm_vcpu *vcpu,
  128. const struct coproc_params *p,
  129. const struct coproc_reg *r)
  130. {
  131. if (p->is_write)
  132. return ignore_write(vcpu, p);
  133. *vcpu_reg(vcpu, p->Rt1) = 0;
  134. return true;
  135. }
  136. /* See note at ARM ARM B1.14.4 */
  137. static bool access_dcsw(struct kvm_vcpu *vcpu,
  138. const struct coproc_params *p,
  139. const struct coproc_reg *r)
  140. {
  141. unsigned long val;
  142. int cpu;
  143. if (!p->is_write)
  144. return read_from_write_only(vcpu, p);
  145. cpu = get_cpu();
  146. cpumask_setall(&vcpu->arch.require_dcache_flush);
  147. cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush);
  148. /* If we were already preempted, take the long way around */
  149. if (cpu != vcpu->arch.last_pcpu) {
  150. flush_cache_all();
  151. goto done;
  152. }
  153. val = *vcpu_reg(vcpu, p->Rt1);
  154. switch (p->CRm) {
  155. case 6: /* Upgrade DCISW to DCCISW, as per HCR.SWIO */
  156. case 14: /* DCCISW */
  157. asm volatile("mcr p15, 0, %0, c7, c14, 2" : : "r" (val));
  158. break;
  159. case 10: /* DCCSW */
  160. asm volatile("mcr p15, 0, %0, c7, c10, 2" : : "r" (val));
  161. break;
  162. }
  163. done:
  164. put_cpu();
  165. return true;
  166. }
  167. /*
  168. * We could trap ID_DFR0 and tell the guest we don't support performance
  169. * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
  170. * NAKed, so it will read the PMCR anyway.
  171. *
  172. * Therefore we tell the guest we have 0 counters. Unfortunately, we
  173. * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
  174. * all PM registers, which doesn't crash the guest kernel at least.
  175. */
  176. static bool pm_fake(struct kvm_vcpu *vcpu,
  177. const struct coproc_params *p,
  178. const struct coproc_reg *r)
  179. {
  180. if (p->is_write)
  181. return ignore_write(vcpu, p);
  182. else
  183. return read_zero(vcpu, p);
  184. }
  185. #define access_pmcr pm_fake
  186. #define access_pmcntenset pm_fake
  187. #define access_pmcntenclr pm_fake
  188. #define access_pmovsr pm_fake
  189. #define access_pmselr pm_fake
  190. #define access_pmceid0 pm_fake
  191. #define access_pmceid1 pm_fake
  192. #define access_pmccntr pm_fake
  193. #define access_pmxevtyper pm_fake
  194. #define access_pmxevcntr pm_fake
  195. #define access_pmuserenr pm_fake
  196. #define access_pmintenset pm_fake
  197. #define access_pmintenclr pm_fake
  198. /* Architected CP15 registers.
  199. * CRn denotes the primary register number, but is copied to the CRm in the
  200. * user space API for 64-bit register access in line with the terminology used
  201. * in the ARM ARM.
  202. * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
  203. * registers preceding 32-bit ones.
  204. */
  205. static const struct coproc_reg cp15_regs[] = {
  206. /* MPIDR: we use VMPIDR for guest access. */
  207. { CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
  208. NULL, reset_mpidr, c0_MPIDR },
  209. /* CSSELR: swapped by interrupt.S. */
  210. { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
  211. NULL, reset_unknown, c0_CSSELR },
  212. /* ACTLR: trapped by HCR.TAC bit. */
  213. { CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
  214. access_actlr, reset_actlr, c1_ACTLR },
  215. /* CPACR: swapped by interrupt.S. */
  216. { CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
  217. NULL, reset_val, c1_CPACR, 0x00000000 },
  218. /* TTBR0/TTBR1: swapped by interrupt.S. */
  219. { CRm64( 2), Op1( 0), is64, NULL, reset_unknown64, c2_TTBR0 },
  220. { CRm64( 2), Op1( 1), is64, NULL, reset_unknown64, c2_TTBR1 },
  221. /* TTBCR: swapped by interrupt.S. */
  222. { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
  223. NULL, reset_val, c2_TTBCR, 0x00000000 },
  224. /* DACR: swapped by interrupt.S. */
  225. { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
  226. NULL, reset_unknown, c3_DACR },
  227. /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
  228. { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
  229. NULL, reset_unknown, c5_DFSR },
  230. { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
  231. NULL, reset_unknown, c5_IFSR },
  232. { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
  233. NULL, reset_unknown, c5_ADFSR },
  234. { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
  235. NULL, reset_unknown, c5_AIFSR },
  236. /* DFAR/IFAR: swapped by interrupt.S. */
  237. { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
  238. NULL, reset_unknown, c6_DFAR },
  239. { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
  240. NULL, reset_unknown, c6_IFAR },
  241. /* PAR swapped by interrupt.S */
  242. { CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
  243. /*
  244. * DC{C,I,CI}SW operations:
  245. */
  246. { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
  247. { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
  248. { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
  249. /*
  250. * L2CTLR access (guest wants to know #CPUs).
  251. */
  252. { CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
  253. access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
  254. { CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
  255. /*
  256. * Dummy performance monitor implementation.
  257. */
  258. { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
  259. { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
  260. { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
  261. { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
  262. { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
  263. { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
  264. { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
  265. { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
  266. { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
  267. { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
  268. { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
  269. { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
  270. { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
  271. /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
  272. { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
  273. NULL, reset_unknown, c10_PRRR},
  274. { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
  275. NULL, reset_unknown, c10_NMRR},
  276. /* VBAR: swapped by interrupt.S. */
  277. { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
  278. NULL, reset_val, c12_VBAR, 0x00000000 },
  279. /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
  280. { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
  281. NULL, reset_val, c13_CID, 0x00000000 },
  282. { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
  283. NULL, reset_unknown, c13_TID_URW },
  284. { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
  285. NULL, reset_unknown, c13_TID_URO },
  286. { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
  287. NULL, reset_unknown, c13_TID_PRIV },
  288. /* CNTKCTL: swapped by interrupt.S. */
  289. { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
  290. NULL, reset_val, c14_CNTKCTL, 0x00000000 },
  291. /* The Configuration Base Address Register. */
  292. { CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
  293. };
  294. /* Target specific emulation tables */
  295. static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
  296. void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
  297. {
  298. unsigned int i;
  299. for (i = 1; i < table->num; i++)
  300. BUG_ON(cmp_reg(&table->table[i-1],
  301. &table->table[i]) >= 0);
  302. target_tables[table->target] = table;
  303. }
  304. /* Get specific register table for this target. */
  305. static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
  306. {
  307. struct kvm_coproc_target_table *table;
  308. table = target_tables[target];
  309. *num = table->num;
  310. return table->table;
  311. }
  312. static const struct coproc_reg *find_reg(const struct coproc_params *params,
  313. const struct coproc_reg table[],
  314. unsigned int num)
  315. {
  316. unsigned int i;
  317. for (i = 0; i < num; i++) {
  318. const struct coproc_reg *r = &table[i];
  319. if (params->is_64bit != r->is_64)
  320. continue;
  321. if (params->CRn != r->CRn)
  322. continue;
  323. if (params->CRm != r->CRm)
  324. continue;
  325. if (params->Op1 != r->Op1)
  326. continue;
  327. if (params->Op2 != r->Op2)
  328. continue;
  329. return r;
  330. }
  331. return NULL;
  332. }
  333. static int emulate_cp15(struct kvm_vcpu *vcpu,
  334. const struct coproc_params *params)
  335. {
  336. size_t num;
  337. const struct coproc_reg *table, *r;
  338. trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
  339. params->CRm, params->Op2, params->is_write);
  340. table = get_target_table(vcpu->arch.target, &num);
  341. /* Search target-specific then generic table. */
  342. r = find_reg(params, table, num);
  343. if (!r)
  344. r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
  345. if (likely(r)) {
  346. /* If we don't have an accessor, we should never get here! */
  347. BUG_ON(!r->access);
  348. if (likely(r->access(vcpu, params, r))) {
  349. /* Skip instruction, since it was emulated */
  350. kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
  351. return 1;
  352. }
  353. /* If access function fails, it should complain. */
  354. } else {
  355. kvm_err("Unsupported guest CP15 access at: %08lx\n",
  356. *vcpu_pc(vcpu));
  357. print_cp_instr(params);
  358. }
  359. kvm_inject_undefined(vcpu);
  360. return 1;
  361. }
  362. /**
  363. * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
  364. * @vcpu: The VCPU pointer
  365. * @run: The kvm_run struct
  366. */
  367. int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
  368. {
  369. struct coproc_params params;
  370. params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
  371. params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
  372. params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
  373. params.is_64bit = true;
  374. params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
  375. params.Op2 = 0;
  376. params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
  377. params.CRn = 0;
  378. return emulate_cp15(vcpu, &params);
  379. }
  380. static void reset_coproc_regs(struct kvm_vcpu *vcpu,
  381. const struct coproc_reg *table, size_t num)
  382. {
  383. unsigned long i;
  384. for (i = 0; i < num; i++)
  385. if (table[i].reset)
  386. table[i].reset(vcpu, &table[i]);
  387. }
  388. /**
  389. * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
  390. * @vcpu: The VCPU pointer
  391. * @run: The kvm_run struct
  392. */
  393. int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
  394. {
  395. struct coproc_params params;
  396. params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
  397. params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
  398. params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
  399. params.is_64bit = false;
  400. params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
  401. params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
  402. params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
  403. params.Rt2 = 0;
  404. return emulate_cp15(vcpu, &params);
  405. }
  406. /******************************************************************************
  407. * Userspace API
  408. *****************************************************************************/
  409. static bool index_to_params(u64 id, struct coproc_params *params)
  410. {
  411. switch (id & KVM_REG_SIZE_MASK) {
  412. case KVM_REG_SIZE_U32:
  413. /* Any unused index bits means it's not valid. */
  414. if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
  415. | KVM_REG_ARM_COPROC_MASK
  416. | KVM_REG_ARM_32_CRN_MASK
  417. | KVM_REG_ARM_CRM_MASK
  418. | KVM_REG_ARM_OPC1_MASK
  419. | KVM_REG_ARM_32_OPC2_MASK))
  420. return false;
  421. params->is_64bit = false;
  422. params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
  423. >> KVM_REG_ARM_32_CRN_SHIFT);
  424. params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
  425. >> KVM_REG_ARM_CRM_SHIFT);
  426. params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
  427. >> KVM_REG_ARM_OPC1_SHIFT);
  428. params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
  429. >> KVM_REG_ARM_32_OPC2_SHIFT);
  430. return true;
  431. case KVM_REG_SIZE_U64:
  432. /* Any unused index bits means it's not valid. */
  433. if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
  434. | KVM_REG_ARM_COPROC_MASK
  435. | KVM_REG_ARM_CRM_MASK
  436. | KVM_REG_ARM_OPC1_MASK))
  437. return false;
  438. params->is_64bit = true;
  439. /* CRm to CRn: see cp15_to_index for details */
  440. params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
  441. >> KVM_REG_ARM_CRM_SHIFT);
  442. params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
  443. >> KVM_REG_ARM_OPC1_SHIFT);
  444. params->Op2 = 0;
  445. params->CRm = 0;
  446. return true;
  447. default:
  448. return false;
  449. }
  450. }
  451. /* Decode an index value, and find the cp15 coproc_reg entry. */
  452. static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
  453. u64 id)
  454. {
  455. size_t num;
  456. const struct coproc_reg *table, *r;
  457. struct coproc_params params;
  458. /* We only do cp15 for now. */
  459. if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
  460. return NULL;
  461. if (!index_to_params(id, &params))
  462. return NULL;
  463. table = get_target_table(vcpu->arch.target, &num);
  464. r = find_reg(&params, table, num);
  465. if (!r)
  466. r = find_reg(&params, cp15_regs, ARRAY_SIZE(cp15_regs));
  467. /* Not saved in the cp15 array? */
  468. if (r && !r->reg)
  469. r = NULL;
  470. return r;
  471. }
  472. /*
  473. * These are the invariant cp15 registers: we let the guest see the host
  474. * versions of these, so they're part of the guest state.
  475. *
  476. * A future CPU may provide a mechanism to present different values to
  477. * the guest, or a future kvm may trap them.
  478. */
  479. /* Unfortunately, there's no register-argument for mrc, so generate. */
  480. #define FUNCTION_FOR32(crn, crm, op1, op2, name) \
  481. static void get_##name(struct kvm_vcpu *v, \
  482. const struct coproc_reg *r) \
  483. { \
  484. u32 val; \
  485. \
  486. asm volatile("mrc p15, " __stringify(op1) \
  487. ", %0, c" __stringify(crn) \
  488. ", c" __stringify(crm) \
  489. ", " __stringify(op2) "\n" : "=r" (val)); \
  490. ((struct coproc_reg *)r)->val = val; \
  491. }
  492. FUNCTION_FOR32(0, 0, 0, 0, MIDR)
  493. FUNCTION_FOR32(0, 0, 0, 1, CTR)
  494. FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
  495. FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
  496. FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
  497. FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
  498. FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
  499. FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
  500. FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
  501. FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
  502. FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
  503. FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
  504. FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
  505. FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
  506. FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
  507. FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
  508. FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
  509. FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
  510. FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
  511. FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
  512. FUNCTION_FOR32(0, 0, 1, 7, AIDR)
  513. /* ->val is filled in by kvm_invariant_coproc_table_init() */
  514. static struct coproc_reg invariant_cp15[] = {
  515. { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
  516. { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
  517. { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
  518. { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
  519. { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
  520. { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
  521. { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
  522. { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
  523. { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
  524. { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
  525. { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
  526. { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
  527. { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
  528. { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
  529. { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
  530. { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
  531. { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
  532. { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
  533. { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
  534. { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
  535. { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
  536. };
  537. static int reg_from_user(void *val, const void __user *uaddr, u64 id)
  538. {
  539. /* This Just Works because we are little endian. */
  540. if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
  541. return -EFAULT;
  542. return 0;
  543. }
  544. static int reg_to_user(void __user *uaddr, const void *val, u64 id)
  545. {
  546. /* This Just Works because we are little endian. */
  547. if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
  548. return -EFAULT;
  549. return 0;
  550. }
  551. static int get_invariant_cp15(u64 id, void __user *uaddr)
  552. {
  553. struct coproc_params params;
  554. const struct coproc_reg *r;
  555. if (!index_to_params(id, &params))
  556. return -ENOENT;
  557. r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
  558. if (!r)
  559. return -ENOENT;
  560. return reg_to_user(uaddr, &r->val, id);
  561. }
  562. static int set_invariant_cp15(u64 id, void __user *uaddr)
  563. {
  564. struct coproc_params params;
  565. const struct coproc_reg *r;
  566. int err;
  567. u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
  568. if (!index_to_params(id, &params))
  569. return -ENOENT;
  570. r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
  571. if (!r)
  572. return -ENOENT;
  573. err = reg_from_user(&val, uaddr, id);
  574. if (err)
  575. return err;
  576. /* This is what we mean by invariant: you can't change it. */
  577. if (r->val != val)
  578. return -EINVAL;
  579. return 0;
  580. }
  581. static bool is_valid_cache(u32 val)
  582. {
  583. u32 level, ctype;
  584. if (val >= CSSELR_MAX)
  585. return -ENOENT;
  586. /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
  587. level = (val >> 1);
  588. ctype = (cache_levels >> (level * 3)) & 7;
  589. switch (ctype) {
  590. case 0: /* No cache */
  591. return false;
  592. case 1: /* Instruction cache only */
  593. return (val & 1);
  594. case 2: /* Data cache only */
  595. case 4: /* Unified cache */
  596. return !(val & 1);
  597. case 3: /* Separate instruction and data caches */
  598. return true;
  599. default: /* Reserved: we can't know instruction or data. */
  600. return false;
  601. }
  602. }
  603. /* Which cache CCSIDR represents depends on CSSELR value. */
  604. static u32 get_ccsidr(u32 csselr)
  605. {
  606. u32 ccsidr;
  607. /* Make sure noone else changes CSSELR during this! */
  608. local_irq_disable();
  609. /* Put value into CSSELR */
  610. asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
  611. isb();
  612. /* Read result out of CCSIDR */
  613. asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
  614. local_irq_enable();
  615. return ccsidr;
  616. }
  617. static int demux_c15_get(u64 id, void __user *uaddr)
  618. {
  619. u32 val;
  620. u32 __user *uval = uaddr;
  621. /* Fail if we have unknown bits set. */
  622. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  623. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  624. return -ENOENT;
  625. switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
  626. case KVM_REG_ARM_DEMUX_ID_CCSIDR:
  627. if (KVM_REG_SIZE(id) != 4)
  628. return -ENOENT;
  629. val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
  630. >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
  631. if (!is_valid_cache(val))
  632. return -ENOENT;
  633. return put_user(get_ccsidr(val), uval);
  634. default:
  635. return -ENOENT;
  636. }
  637. }
  638. static int demux_c15_set(u64 id, void __user *uaddr)
  639. {
  640. u32 val, newval;
  641. u32 __user *uval = uaddr;
  642. /* Fail if we have unknown bits set. */
  643. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  644. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  645. return -ENOENT;
  646. switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
  647. case KVM_REG_ARM_DEMUX_ID_CCSIDR:
  648. if (KVM_REG_SIZE(id) != 4)
  649. return -ENOENT;
  650. val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
  651. >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
  652. if (!is_valid_cache(val))
  653. return -ENOENT;
  654. if (get_user(newval, uval))
  655. return -EFAULT;
  656. /* This is also invariant: you can't change it. */
  657. if (newval != get_ccsidr(val))
  658. return -EINVAL;
  659. return 0;
  660. default:
  661. return -ENOENT;
  662. }
  663. }
  664. #ifdef CONFIG_VFPv3
  665. static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
  666. KVM_REG_ARM_VFP_FPSCR,
  667. KVM_REG_ARM_VFP_FPINST,
  668. KVM_REG_ARM_VFP_FPINST2,
  669. KVM_REG_ARM_VFP_MVFR0,
  670. KVM_REG_ARM_VFP_MVFR1,
  671. KVM_REG_ARM_VFP_FPSID };
  672. static unsigned int num_fp_regs(void)
  673. {
  674. if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
  675. return 32;
  676. else
  677. return 16;
  678. }
  679. static unsigned int num_vfp_regs(void)
  680. {
  681. /* Normal FP regs + control regs. */
  682. return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
  683. }
  684. static int copy_vfp_regids(u64 __user *uindices)
  685. {
  686. unsigned int i;
  687. const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
  688. const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
  689. for (i = 0; i < num_fp_regs(); i++) {
  690. if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
  691. uindices))
  692. return -EFAULT;
  693. uindices++;
  694. }
  695. for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
  696. if (put_user(u32reg | vfp_sysregs[i], uindices))
  697. return -EFAULT;
  698. uindices++;
  699. }
  700. return num_vfp_regs();
  701. }
  702. static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
  703. {
  704. u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
  705. u32 val;
  706. /* Fail if we have unknown bits set. */
  707. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  708. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  709. return -ENOENT;
  710. if (vfpid < num_fp_regs()) {
  711. if (KVM_REG_SIZE(id) != 8)
  712. return -ENOENT;
  713. return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpregs[vfpid],
  714. id);
  715. }
  716. /* FP control registers are all 32 bit. */
  717. if (KVM_REG_SIZE(id) != 4)
  718. return -ENOENT;
  719. switch (vfpid) {
  720. case KVM_REG_ARM_VFP_FPEXC:
  721. return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpexc, id);
  722. case KVM_REG_ARM_VFP_FPSCR:
  723. return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpscr, id);
  724. case KVM_REG_ARM_VFP_FPINST:
  725. return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpinst, id);
  726. case KVM_REG_ARM_VFP_FPINST2:
  727. return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpinst2, id);
  728. case KVM_REG_ARM_VFP_MVFR0:
  729. val = fmrx(MVFR0);
  730. return reg_to_user(uaddr, &val, id);
  731. case KVM_REG_ARM_VFP_MVFR1:
  732. val = fmrx(MVFR1);
  733. return reg_to_user(uaddr, &val, id);
  734. case KVM_REG_ARM_VFP_FPSID:
  735. val = fmrx(FPSID);
  736. return reg_to_user(uaddr, &val, id);
  737. default:
  738. return -ENOENT;
  739. }
  740. }
  741. static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
  742. {
  743. u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
  744. u32 val;
  745. /* Fail if we have unknown bits set. */
  746. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  747. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  748. return -ENOENT;
  749. if (vfpid < num_fp_regs()) {
  750. if (KVM_REG_SIZE(id) != 8)
  751. return -ENOENT;
  752. return reg_from_user(&vcpu->arch.vfp_guest.fpregs[vfpid],
  753. uaddr, id);
  754. }
  755. /* FP control registers are all 32 bit. */
  756. if (KVM_REG_SIZE(id) != 4)
  757. return -ENOENT;
  758. switch (vfpid) {
  759. case KVM_REG_ARM_VFP_FPEXC:
  760. return reg_from_user(&vcpu->arch.vfp_guest.fpexc, uaddr, id);
  761. case KVM_REG_ARM_VFP_FPSCR:
  762. return reg_from_user(&vcpu->arch.vfp_guest.fpscr, uaddr, id);
  763. case KVM_REG_ARM_VFP_FPINST:
  764. return reg_from_user(&vcpu->arch.vfp_guest.fpinst, uaddr, id);
  765. case KVM_REG_ARM_VFP_FPINST2:
  766. return reg_from_user(&vcpu->arch.vfp_guest.fpinst2, uaddr, id);
  767. /* These are invariant. */
  768. case KVM_REG_ARM_VFP_MVFR0:
  769. if (reg_from_user(&val, uaddr, id))
  770. return -EFAULT;
  771. if (val != fmrx(MVFR0))
  772. return -EINVAL;
  773. return 0;
  774. case KVM_REG_ARM_VFP_MVFR1:
  775. if (reg_from_user(&val, uaddr, id))
  776. return -EFAULT;
  777. if (val != fmrx(MVFR1))
  778. return -EINVAL;
  779. return 0;
  780. case KVM_REG_ARM_VFP_FPSID:
  781. if (reg_from_user(&val, uaddr, id))
  782. return -EFAULT;
  783. if (val != fmrx(FPSID))
  784. return -EINVAL;
  785. return 0;
  786. default:
  787. return -ENOENT;
  788. }
  789. }
  790. #else /* !CONFIG_VFPv3 */
  791. static unsigned int num_vfp_regs(void)
  792. {
  793. return 0;
  794. }
  795. static int copy_vfp_regids(u64 __user *uindices)
  796. {
  797. return 0;
  798. }
  799. static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
  800. {
  801. return -ENOENT;
  802. }
  803. static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
  804. {
  805. return -ENOENT;
  806. }
  807. #endif /* !CONFIG_VFPv3 */
  808. int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
  809. {
  810. const struct coproc_reg *r;
  811. void __user *uaddr = (void __user *)(long)reg->addr;
  812. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
  813. return demux_c15_get(reg->id, uaddr);
  814. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
  815. return vfp_get_reg(vcpu, reg->id, uaddr);
  816. r = index_to_coproc_reg(vcpu, reg->id);
  817. if (!r)
  818. return get_invariant_cp15(reg->id, uaddr);
  819. /* Note: copies two regs if size is 64 bit. */
  820. return reg_to_user(uaddr, &vcpu->arch.cp15[r->reg], reg->id);
  821. }
  822. int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
  823. {
  824. const struct coproc_reg *r;
  825. void __user *uaddr = (void __user *)(long)reg->addr;
  826. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
  827. return demux_c15_set(reg->id, uaddr);
  828. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
  829. return vfp_set_reg(vcpu, reg->id, uaddr);
  830. r = index_to_coproc_reg(vcpu, reg->id);
  831. if (!r)
  832. return set_invariant_cp15(reg->id, uaddr);
  833. /* Note: copies two regs if size is 64 bit */
  834. return reg_from_user(&vcpu->arch.cp15[r->reg], uaddr, reg->id);
  835. }
  836. static unsigned int num_demux_regs(void)
  837. {
  838. unsigned int i, count = 0;
  839. for (i = 0; i < CSSELR_MAX; i++)
  840. if (is_valid_cache(i))
  841. count++;
  842. return count;
  843. }
  844. static int write_demux_regids(u64 __user *uindices)
  845. {
  846. u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
  847. unsigned int i;
  848. val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
  849. for (i = 0; i < CSSELR_MAX; i++) {
  850. if (!is_valid_cache(i))
  851. continue;
  852. if (put_user(val | i, uindices))
  853. return -EFAULT;
  854. uindices++;
  855. }
  856. return 0;
  857. }
  858. static u64 cp15_to_index(const struct coproc_reg *reg)
  859. {
  860. u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
  861. if (reg->is_64) {
  862. val |= KVM_REG_SIZE_U64;
  863. val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
  864. /*
  865. * CRn always denotes the primary coproc. reg. nr. for the
  866. * in-kernel representation, but the user space API uses the
  867. * CRm for the encoding, because it is modelled after the
  868. * MRRC/MCRR instructions: see the ARM ARM rev. c page
  869. * B3-1445
  870. */
  871. val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
  872. } else {
  873. val |= KVM_REG_SIZE_U32;
  874. val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
  875. val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
  876. val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
  877. val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
  878. }
  879. return val;
  880. }
  881. static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
  882. {
  883. if (!*uind)
  884. return true;
  885. if (put_user(cp15_to_index(reg), *uind))
  886. return false;
  887. (*uind)++;
  888. return true;
  889. }
  890. /* Assumed ordered tables, see kvm_coproc_table_init. */
  891. static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
  892. {
  893. const struct coproc_reg *i1, *i2, *end1, *end2;
  894. unsigned int total = 0;
  895. size_t num;
  896. /* We check for duplicates here, to allow arch-specific overrides. */
  897. i1 = get_target_table(vcpu->arch.target, &num);
  898. end1 = i1 + num;
  899. i2 = cp15_regs;
  900. end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
  901. BUG_ON(i1 == end1 || i2 == end2);
  902. /* Walk carefully, as both tables may refer to the same register. */
  903. while (i1 || i2) {
  904. int cmp = cmp_reg(i1, i2);
  905. /* target-specific overrides generic entry. */
  906. if (cmp <= 0) {
  907. /* Ignore registers we trap but don't save. */
  908. if (i1->reg) {
  909. if (!copy_reg_to_user(i1, &uind))
  910. return -EFAULT;
  911. total++;
  912. }
  913. } else {
  914. /* Ignore registers we trap but don't save. */
  915. if (i2->reg) {
  916. if (!copy_reg_to_user(i2, &uind))
  917. return -EFAULT;
  918. total++;
  919. }
  920. }
  921. if (cmp <= 0 && ++i1 == end1)
  922. i1 = NULL;
  923. if (cmp >= 0 && ++i2 == end2)
  924. i2 = NULL;
  925. }
  926. return total;
  927. }
  928. unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
  929. {
  930. return ARRAY_SIZE(invariant_cp15)
  931. + num_demux_regs()
  932. + num_vfp_regs()
  933. + walk_cp15(vcpu, (u64 __user *)NULL);
  934. }
  935. int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
  936. {
  937. unsigned int i;
  938. int err;
  939. /* Then give them all the invariant registers' indices. */
  940. for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
  941. if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
  942. return -EFAULT;
  943. uindices++;
  944. }
  945. err = walk_cp15(vcpu, uindices);
  946. if (err < 0)
  947. return err;
  948. uindices += err;
  949. err = copy_vfp_regids(uindices);
  950. if (err < 0)
  951. return err;
  952. uindices += err;
  953. return write_demux_regids(uindices);
  954. }
  955. void kvm_coproc_table_init(void)
  956. {
  957. unsigned int i;
  958. /* Make sure tables are unique and in order. */
  959. for (i = 1; i < ARRAY_SIZE(cp15_regs); i++)
  960. BUG_ON(cmp_reg(&cp15_regs[i-1], &cp15_regs[i]) >= 0);
  961. /* We abuse the reset function to overwrite the table itself. */
  962. for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
  963. invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
  964. /*
  965. * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
  966. *
  967. * If software reads the Cache Type fields from Ctype1
  968. * upwards, once it has seen a value of 0b000, no caches
  969. * exist at further-out levels of the hierarchy. So, for
  970. * example, if Ctype3 is the first Cache Type field with a
  971. * value of 0b000, the values of Ctype4 to Ctype7 must be
  972. * ignored.
  973. */
  974. asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
  975. for (i = 0; i < 7; i++)
  976. if (((cache_levels >> (i*3)) & 7) == 0)
  977. break;
  978. /* Clear all higher bits. */
  979. cache_levels &= (1 << (i*3))-1;
  980. }
  981. /**
  982. * kvm_reset_coprocs - sets cp15 registers to reset value
  983. * @vcpu: The VCPU pointer
  984. *
  985. * This function finds the right table above and sets the registers on the
  986. * virtual CPU struct to their architecturally defined reset values.
  987. */
  988. void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
  989. {
  990. size_t num;
  991. const struct coproc_reg *table;
  992. /* Catch someone adding a register without putting in reset entry. */
  993. memset(vcpu->arch.cp15, 0x42, sizeof(vcpu->arch.cp15));
  994. /* Generic chip reset first (so target could override). */
  995. reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
  996. table = get_target_table(vcpu->arch.target, &num);
  997. reset_coproc_regs(vcpu, table, num);
  998. for (num = 1; num < NR_CP15_REGS; num++)
  999. if (vcpu->arch.cp15[num] == 0x42424242)
  1000. panic("Didn't reset vcpu->arch.cp15[%zi]", num);
  1001. }