discontig_32.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487
  1. /*
  2. * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation
  3. * August 2002: added remote node KVA remap - Martin J. Bligh
  4. *
  5. * Copyright (C) 2002, IBM Corp.
  6. *
  7. * All rights reserved.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful, but
  15. * WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  17. * NON INFRINGEMENT. See the GNU General Public License for more
  18. * details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23. */
  24. #include <linux/mm.h>
  25. #include <linux/bootmem.h>
  26. #include <linux/mmzone.h>
  27. #include <linux/highmem.h>
  28. #include <linux/initrd.h>
  29. #include <linux/nodemask.h>
  30. #include <linux/module.h>
  31. #include <linux/kexec.h>
  32. #include <linux/pfn.h>
  33. #include <linux/swap.h>
  34. #include <linux/acpi.h>
  35. #include <asm/e820.h>
  36. #include <asm/setup.h>
  37. #include <asm/mmzone.h>
  38. #include <asm/bios_ebda.h>
  39. struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
  40. EXPORT_SYMBOL(node_data);
  41. static bootmem_data_t node0_bdata;
  42. /*
  43. * numa interface - we expect the numa architecture specific code to have
  44. * populated the following initialisation.
  45. *
  46. * 1) node_online_map - the map of all nodes configured (online) in the system
  47. * 2) node_start_pfn - the starting page frame number for a node
  48. * 3) node_end_pfn - the ending page fram number for a node
  49. */
  50. unsigned long node_start_pfn[MAX_NUMNODES] __read_mostly;
  51. unsigned long node_end_pfn[MAX_NUMNODES] __read_mostly;
  52. #ifdef CONFIG_DISCONTIGMEM
  53. /*
  54. * 4) physnode_map - the mapping between a pfn and owning node
  55. * physnode_map keeps track of the physical memory layout of a generic
  56. * numa node on a 64Mb break (each element of the array will
  57. * represent 64Mb of memory and will be marked by the node id. so,
  58. * if the first gig is on node 0, and the second gig is on node 1
  59. * physnode_map will contain:
  60. *
  61. * physnode_map[0-15] = 0;
  62. * physnode_map[16-31] = 1;
  63. * physnode_map[32- ] = -1;
  64. */
  65. s8 physnode_map[MAX_ELEMENTS] __read_mostly = { [0 ... (MAX_ELEMENTS - 1)] = -1};
  66. EXPORT_SYMBOL(physnode_map);
  67. void memory_present(int nid, unsigned long start, unsigned long end)
  68. {
  69. unsigned long pfn;
  70. printk(KERN_INFO "Node: %d, start_pfn: %ld, end_pfn: %ld\n",
  71. nid, start, end);
  72. printk(KERN_DEBUG " Setting physnode_map array to node %d for pfns:\n", nid);
  73. printk(KERN_DEBUG " ");
  74. for (pfn = start; pfn < end; pfn += PAGES_PER_ELEMENT) {
  75. physnode_map[pfn / PAGES_PER_ELEMENT] = nid;
  76. printk(KERN_CONT "%ld ", pfn);
  77. }
  78. printk(KERN_CONT "\n");
  79. }
  80. unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn,
  81. unsigned long end_pfn)
  82. {
  83. unsigned long nr_pages = end_pfn - start_pfn;
  84. if (!nr_pages)
  85. return 0;
  86. return (nr_pages + 1) * sizeof(struct page);
  87. }
  88. #endif
  89. extern unsigned long find_max_low_pfn(void);
  90. extern void add_one_highpage_init(struct page *, int, int);
  91. extern unsigned long highend_pfn, highstart_pfn;
  92. #define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE)
  93. unsigned long node_remap_size[MAX_NUMNODES];
  94. static void *node_remap_start_vaddr[MAX_NUMNODES];
  95. void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags);
  96. static unsigned long kva_start_pfn;
  97. static unsigned long kva_pages;
  98. /*
  99. * FLAT - support for basic PC memory model with discontig enabled, essentially
  100. * a single node with all available processors in it with a flat
  101. * memory map.
  102. */
  103. int __init get_memcfg_numa_flat(void)
  104. {
  105. printk("NUMA - single node, flat memory mode\n");
  106. /* Run the memory configuration and find the top of memory. */
  107. find_max_pfn();
  108. node_start_pfn[0] = 0;
  109. node_end_pfn[0] = max_pfn;
  110. memory_present(0, 0, max_pfn);
  111. node_remap_size[0] = node_memmap_size_bytes(0, 0, max_pfn);
  112. /* Indicate there is one node available. */
  113. nodes_clear(node_online_map);
  114. node_set_online(0);
  115. return 1;
  116. }
  117. /*
  118. * Find the highest page frame number we have available for the node
  119. */
  120. static void __init propagate_e820_map_node(int nid)
  121. {
  122. if (node_end_pfn[nid] > max_pfn)
  123. node_end_pfn[nid] = max_pfn;
  124. /*
  125. * if a user has given mem=XXXX, then we need to make sure
  126. * that the node _starts_ before that, too, not just ends
  127. */
  128. if (node_start_pfn[nid] > max_pfn)
  129. node_start_pfn[nid] = max_pfn;
  130. BUG_ON(node_start_pfn[nid] > node_end_pfn[nid]);
  131. }
  132. /*
  133. * Allocate memory for the pg_data_t for this node via a crude pre-bootmem
  134. * method. For node zero take this from the bottom of memory, for
  135. * subsequent nodes place them at node_remap_start_vaddr which contains
  136. * node local data in physically node local memory. See setup_memory()
  137. * for details.
  138. */
  139. static void __init allocate_pgdat(int nid)
  140. {
  141. if (nid && node_has_online_mem(nid))
  142. NODE_DATA(nid) = (pg_data_t *)node_remap_start_vaddr[nid];
  143. else {
  144. unsigned long pgdat_phys;
  145. pgdat_phys = find_e820_area(min_low_pfn<<PAGE_SHIFT,
  146. max_low_pfn<<PAGE_SHIFT, sizeof(pg_data_t),
  147. PAGE_SIZE);
  148. NODE_DATA(nid) = (pg_data_t *)(pfn_to_kaddr(pgdat_phys>>PAGE_SHIFT));
  149. reserve_early(pgdat_phys, pgdat_phys + sizeof(pg_data_t),
  150. "NODE_DATA");
  151. }
  152. printk(KERN_DEBUG "allocate_pgdat: node %d NODE_DATA %08lx\n",
  153. nid, (unsigned long)NODE_DATA(nid));
  154. }
  155. #ifdef CONFIG_DISCONTIGMEM
  156. /*
  157. * In the discontig memory model, a portion of the kernel virtual area (KVA)
  158. * is reserved and portions of nodes are mapped using it. This is to allow
  159. * node-local memory to be allocated for structures that would normally require
  160. * ZONE_NORMAL. The memory is allocated with alloc_remap() and callers
  161. * should be prepared to allocate from the bootmem allocator instead. This KVA
  162. * mechanism is incompatible with SPARSEMEM as it makes assumptions about the
  163. * layout of memory that are broken if alloc_remap() succeeds for some of the
  164. * map and fails for others
  165. */
  166. static unsigned long node_remap_start_pfn[MAX_NUMNODES];
  167. static void *node_remap_end_vaddr[MAX_NUMNODES];
  168. static void *node_remap_alloc_vaddr[MAX_NUMNODES];
  169. static unsigned long node_remap_offset[MAX_NUMNODES];
  170. void *alloc_remap(int nid, unsigned long size)
  171. {
  172. void *allocation = node_remap_alloc_vaddr[nid];
  173. size = ALIGN(size, L1_CACHE_BYTES);
  174. if (!allocation || (allocation + size) >= node_remap_end_vaddr[nid])
  175. return 0;
  176. node_remap_alloc_vaddr[nid] += size;
  177. memset(allocation, 0, size);
  178. return allocation;
  179. }
  180. void __init remap_numa_kva(void)
  181. {
  182. void *vaddr;
  183. unsigned long pfn;
  184. int node;
  185. for_each_online_node(node) {
  186. printk(KERN_DEBUG "remap_numa_kva: node %d\n", node);
  187. for (pfn=0; pfn < node_remap_size[node]; pfn += PTRS_PER_PTE) {
  188. vaddr = node_remap_start_vaddr[node]+(pfn<<PAGE_SHIFT);
  189. printk(KERN_DEBUG "remap_numa_kva: %08lx to pfn %08lx\n",
  190. (unsigned long)vaddr,
  191. node_remap_start_pfn[node] + pfn);
  192. set_pmd_pfn((ulong) vaddr,
  193. node_remap_start_pfn[node] + pfn,
  194. PAGE_KERNEL_LARGE);
  195. }
  196. }
  197. }
  198. static unsigned long calculate_numa_remap_pages(void)
  199. {
  200. int nid;
  201. unsigned long size, reserve_pages = 0;
  202. unsigned long pfn;
  203. for_each_online_node(nid) {
  204. unsigned old_end_pfn = node_end_pfn[nid];
  205. /*
  206. * The acpi/srat node info can show hot-add memroy zones
  207. * where memory could be added but not currently present.
  208. */
  209. if (node_start_pfn[nid] > max_pfn)
  210. continue;
  211. if (node_end_pfn[nid] > max_pfn)
  212. node_end_pfn[nid] = max_pfn;
  213. /* ensure the remap includes space for the pgdat. */
  214. size = node_remap_size[nid] + sizeof(pg_data_t);
  215. /* convert size to large (pmd size) pages, rounding up */
  216. size = (size + LARGE_PAGE_BYTES - 1) / LARGE_PAGE_BYTES;
  217. /* now the roundup is correct, convert to PAGE_SIZE pages */
  218. size = size * PTRS_PER_PTE;
  219. /*
  220. * Validate the region we are allocating only contains valid
  221. * pages.
  222. */
  223. for (pfn = node_end_pfn[nid] - size;
  224. pfn < node_end_pfn[nid]; pfn++)
  225. if (!page_is_ram(pfn))
  226. break;
  227. if (pfn != node_end_pfn[nid])
  228. size = 0;
  229. printk("Reserving %ld pages of KVA for lmem_map of node %d\n",
  230. size, nid);
  231. node_remap_size[nid] = size;
  232. node_remap_offset[nid] = reserve_pages;
  233. reserve_pages += size;
  234. printk("Shrinking node %d from %ld pages to %ld pages\n",
  235. nid, node_end_pfn[nid], node_end_pfn[nid] - size);
  236. if (node_end_pfn[nid] & (PTRS_PER_PTE-1)) {
  237. /*
  238. * Align node_end_pfn[] and node_remap_start_pfn[] to
  239. * pmd boundary. remap_numa_kva will barf otherwise.
  240. */
  241. printk("Shrinking node %d further by %ld pages for proper alignment\n",
  242. nid, node_end_pfn[nid] & (PTRS_PER_PTE-1));
  243. size += node_end_pfn[nid] & (PTRS_PER_PTE-1);
  244. }
  245. node_end_pfn[nid] -= size;
  246. node_remap_start_pfn[nid] = node_end_pfn[nid];
  247. shrink_active_range(nid, old_end_pfn, node_end_pfn[nid]);
  248. }
  249. printk("Reserving total of %ld pages for numa KVA remap\n",
  250. reserve_pages);
  251. return reserve_pages;
  252. }
  253. static void init_remap_allocator(int nid)
  254. {
  255. node_remap_start_vaddr[nid] = pfn_to_kaddr(
  256. kva_start_pfn + node_remap_offset[nid]);
  257. node_remap_end_vaddr[nid] = node_remap_start_vaddr[nid] +
  258. (node_remap_size[nid] * PAGE_SIZE);
  259. node_remap_alloc_vaddr[nid] = node_remap_start_vaddr[nid] +
  260. ALIGN(sizeof(pg_data_t), PAGE_SIZE);
  261. printk ("node %d will remap to vaddr %08lx - %08lx\n", nid,
  262. (ulong) node_remap_start_vaddr[nid],
  263. (ulong) node_remap_end_vaddr[nid]);
  264. }
  265. #else
  266. void *alloc_remap(int nid, unsigned long size)
  267. {
  268. return NULL;
  269. }
  270. static unsigned long calculate_numa_remap_pages(void)
  271. {
  272. return 0;
  273. }
  274. static void init_remap_allocator(int nid)
  275. {
  276. }
  277. void __init remap_numa_kva(void)
  278. {
  279. }
  280. #endif /* CONFIG_DISCONTIGMEM */
  281. extern void setup_bootmem_allocator(void);
  282. unsigned long __init setup_memory(void)
  283. {
  284. int nid;
  285. unsigned long system_start_pfn, system_max_low_pfn;
  286. unsigned long wasted_pages;
  287. /*
  288. * When mapping a NUMA machine we allocate the node_mem_map arrays
  289. * from node local memory. They are then mapped directly into KVA
  290. * between zone normal and vmalloc space. Calculate the size of
  291. * this space and use it to adjust the boundary between ZONE_NORMAL
  292. * and ZONE_HIGHMEM.
  293. */
  294. get_memcfg_numa();
  295. kva_pages = calculate_numa_remap_pages();
  296. /* partially used pages are not usable - thus round upwards */
  297. system_start_pfn = min_low_pfn = PFN_UP(init_pg_tables_end);
  298. kva_start_pfn = find_max_low_pfn() - kva_pages;
  299. #ifdef CONFIG_BLK_DEV_INITRD
  300. /* Numa kva area is below the initrd */
  301. if (initrd_start)
  302. kva_start_pfn = PFN_DOWN(initrd_start - PAGE_OFFSET)
  303. - kva_pages;
  304. #endif
  305. /*
  306. * We waste pages past at the end of the KVA for no good reason other
  307. * than how it is located. This is bad.
  308. */
  309. wasted_pages = kva_start_pfn & (PTRS_PER_PTE-1);
  310. kva_start_pfn -= wasted_pages;
  311. kva_pages += wasted_pages;
  312. system_max_low_pfn = max_low_pfn = find_max_low_pfn();
  313. printk("kva_start_pfn ~ %ld find_max_low_pfn() ~ %ld\n",
  314. kva_start_pfn, max_low_pfn);
  315. printk("max_pfn = %ld\n", max_pfn);
  316. /* avoid clash with initrd */
  317. reserve_early(kva_start_pfn<<PAGE_SHIFT,
  318. (kva_start_pfn + kva_pages)<<PAGE_SHIFT,
  319. "KVA PG");
  320. #ifdef CONFIG_HIGHMEM
  321. highstart_pfn = highend_pfn = max_pfn;
  322. if (max_pfn > system_max_low_pfn)
  323. highstart_pfn = system_max_low_pfn;
  324. printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
  325. pages_to_mb(highend_pfn - highstart_pfn));
  326. num_physpages = highend_pfn;
  327. high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1;
  328. #else
  329. num_physpages = system_max_low_pfn;
  330. high_memory = (void *) __va(system_max_low_pfn * PAGE_SIZE - 1) + 1;
  331. #endif
  332. printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
  333. pages_to_mb(system_max_low_pfn));
  334. printk("min_low_pfn = %ld, max_low_pfn = %ld, highstart_pfn = %ld\n",
  335. min_low_pfn, max_low_pfn, highstart_pfn);
  336. printk("Low memory ends at vaddr %08lx\n",
  337. (ulong) pfn_to_kaddr(max_low_pfn));
  338. for_each_online_node(nid) {
  339. init_remap_allocator(nid);
  340. allocate_pgdat(nid);
  341. }
  342. printk("High memory starts at vaddr %08lx\n",
  343. (ulong) pfn_to_kaddr(highstart_pfn));
  344. for_each_online_node(nid)
  345. propagate_e820_map_node(nid);
  346. memset(NODE_DATA(0), 0, sizeof(struct pglist_data));
  347. NODE_DATA(0)->bdata = &node0_bdata;
  348. setup_bootmem_allocator();
  349. return max_low_pfn;
  350. }
  351. void __init zone_sizes_init(void)
  352. {
  353. int nid;
  354. unsigned long max_zone_pfns[MAX_NR_ZONES];
  355. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  356. max_zone_pfns[ZONE_DMA] =
  357. virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
  358. max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
  359. #ifdef CONFIG_HIGHMEM
  360. max_zone_pfns[ZONE_HIGHMEM] = highend_pfn;
  361. #endif
  362. /* If SRAT has not registered memory, register it now */
  363. if (find_max_pfn_with_active_regions() == 0) {
  364. for_each_online_node(nid) {
  365. if (node_has_online_mem(nid))
  366. add_active_range(nid, node_start_pfn[nid],
  367. node_end_pfn[nid]);
  368. }
  369. }
  370. free_area_init_nodes(max_zone_pfns);
  371. return;
  372. }
  373. void __init set_highmem_pages_init(int bad_ppro)
  374. {
  375. #ifdef CONFIG_HIGHMEM
  376. struct zone *zone;
  377. struct page *page;
  378. for_each_zone(zone) {
  379. unsigned long node_pfn, zone_start_pfn, zone_end_pfn;
  380. if (!is_highmem(zone))
  381. continue;
  382. zone_start_pfn = zone->zone_start_pfn;
  383. zone_end_pfn = zone_start_pfn + zone->spanned_pages;
  384. printk("Initializing %s for node %d (%08lx:%08lx)\n",
  385. zone->name, zone_to_nid(zone),
  386. zone_start_pfn, zone_end_pfn);
  387. for (node_pfn = zone_start_pfn; node_pfn < zone_end_pfn; node_pfn++) {
  388. if (!pfn_valid(node_pfn))
  389. continue;
  390. page = pfn_to_page(node_pfn);
  391. add_one_highpage_init(page, node_pfn, bad_ppro);
  392. }
  393. }
  394. totalram_pages += totalhigh_pages;
  395. #endif
  396. }
  397. #ifdef CONFIG_MEMORY_HOTPLUG
  398. static int paddr_to_nid(u64 addr)
  399. {
  400. int nid;
  401. unsigned long pfn = PFN_DOWN(addr);
  402. for_each_node(nid)
  403. if (node_start_pfn[nid] <= pfn &&
  404. pfn < node_end_pfn[nid])
  405. return nid;
  406. return -1;
  407. }
  408. /*
  409. * This function is used to ask node id BEFORE memmap and mem_section's
  410. * initialization (pfn_to_nid() can't be used yet).
  411. * If _PXM is not defined on ACPI's DSDT, node id must be found by this.
  412. */
  413. int memory_add_physaddr_to_nid(u64 addr)
  414. {
  415. int nid = paddr_to_nid(addr);
  416. return (nid >= 0) ? nid : 0;
  417. }
  418. EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
  419. #endif