mmu.c 60 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "vmx.h"
  20. #include "mmu.h"
  21. #include <linux/kvm_host.h>
  22. #include <linux/types.h>
  23. #include <linux/string.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/module.h>
  27. #include <linux/swap.h>
  28. #include <linux/hugetlb.h>
  29. #include <linux/compiler.h>
  30. #include <asm/page.h>
  31. #include <asm/cmpxchg.h>
  32. #include <asm/io.h>
  33. /*
  34. * When setting this variable to true it enables Two-Dimensional-Paging
  35. * where the hardware walks 2 page tables:
  36. * 1. the guest-virtual to guest-physical
  37. * 2. while doing 1. it walks guest-physical to host-physical
  38. * If the hardware supports that we don't need to do shadow paging.
  39. */
  40. bool tdp_enabled = false;
  41. #undef MMU_DEBUG
  42. #undef AUDIT
  43. #ifdef AUDIT
  44. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  45. #else
  46. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  47. #endif
  48. #ifdef MMU_DEBUG
  49. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  50. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  51. #else
  52. #define pgprintk(x...) do { } while (0)
  53. #define rmap_printk(x...) do { } while (0)
  54. #endif
  55. #if defined(MMU_DEBUG) || defined(AUDIT)
  56. static int dbg = 0;
  57. module_param(dbg, bool, 0644);
  58. #endif
  59. #ifndef MMU_DEBUG
  60. #define ASSERT(x) do { } while (0)
  61. #else
  62. #define ASSERT(x) \
  63. if (!(x)) { \
  64. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  65. __FILE__, __LINE__, #x); \
  66. }
  67. #endif
  68. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  69. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  70. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  71. #define PT64_LEVEL_BITS 9
  72. #define PT64_LEVEL_SHIFT(level) \
  73. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  74. #define PT64_LEVEL_MASK(level) \
  75. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  76. #define PT64_INDEX(address, level)\
  77. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  78. #define PT32_LEVEL_BITS 10
  79. #define PT32_LEVEL_SHIFT(level) \
  80. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  81. #define PT32_LEVEL_MASK(level) \
  82. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  83. #define PT32_INDEX(address, level)\
  84. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  85. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  86. #define PT64_DIR_BASE_ADDR_MASK \
  87. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  88. #define PT32_BASE_ADDR_MASK PAGE_MASK
  89. #define PT32_DIR_BASE_ADDR_MASK \
  90. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  91. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  92. | PT64_NX_MASK)
  93. #define PFERR_PRESENT_MASK (1U << 0)
  94. #define PFERR_WRITE_MASK (1U << 1)
  95. #define PFERR_USER_MASK (1U << 2)
  96. #define PFERR_FETCH_MASK (1U << 4)
  97. #define PT_DIRECTORY_LEVEL 2
  98. #define PT_PAGE_TABLE_LEVEL 1
  99. #define RMAP_EXT 4
  100. #define ACC_EXEC_MASK 1
  101. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  102. #define ACC_USER_MASK PT_USER_MASK
  103. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  104. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  105. struct kvm_rmap_desc {
  106. u64 *shadow_ptes[RMAP_EXT];
  107. struct kvm_rmap_desc *more;
  108. };
  109. struct kvm_shadow_walk {
  110. int (*entry)(struct kvm_shadow_walk *walk, struct kvm_vcpu *vcpu,
  111. u64 addr, u64 *spte, int level);
  112. };
  113. static struct kmem_cache *pte_chain_cache;
  114. static struct kmem_cache *rmap_desc_cache;
  115. static struct kmem_cache *mmu_page_header_cache;
  116. static u64 __read_mostly shadow_trap_nonpresent_pte;
  117. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  118. static u64 __read_mostly shadow_base_present_pte;
  119. static u64 __read_mostly shadow_nx_mask;
  120. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  121. static u64 __read_mostly shadow_user_mask;
  122. static u64 __read_mostly shadow_accessed_mask;
  123. static u64 __read_mostly shadow_dirty_mask;
  124. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  125. {
  126. shadow_trap_nonpresent_pte = trap_pte;
  127. shadow_notrap_nonpresent_pte = notrap_pte;
  128. }
  129. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  130. void kvm_mmu_set_base_ptes(u64 base_pte)
  131. {
  132. shadow_base_present_pte = base_pte;
  133. }
  134. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  135. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  136. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  137. {
  138. shadow_user_mask = user_mask;
  139. shadow_accessed_mask = accessed_mask;
  140. shadow_dirty_mask = dirty_mask;
  141. shadow_nx_mask = nx_mask;
  142. shadow_x_mask = x_mask;
  143. }
  144. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  145. static int is_write_protection(struct kvm_vcpu *vcpu)
  146. {
  147. return vcpu->arch.cr0 & X86_CR0_WP;
  148. }
  149. static int is_cpuid_PSE36(void)
  150. {
  151. return 1;
  152. }
  153. static int is_nx(struct kvm_vcpu *vcpu)
  154. {
  155. return vcpu->arch.shadow_efer & EFER_NX;
  156. }
  157. static int is_present_pte(unsigned long pte)
  158. {
  159. return pte & PT_PRESENT_MASK;
  160. }
  161. static int is_shadow_present_pte(u64 pte)
  162. {
  163. return pte != shadow_trap_nonpresent_pte
  164. && pte != shadow_notrap_nonpresent_pte;
  165. }
  166. static int is_large_pte(u64 pte)
  167. {
  168. return pte & PT_PAGE_SIZE_MASK;
  169. }
  170. static int is_writeble_pte(unsigned long pte)
  171. {
  172. return pte & PT_WRITABLE_MASK;
  173. }
  174. static int is_dirty_pte(unsigned long pte)
  175. {
  176. return pte & shadow_dirty_mask;
  177. }
  178. static int is_rmap_pte(u64 pte)
  179. {
  180. return is_shadow_present_pte(pte);
  181. }
  182. static pfn_t spte_to_pfn(u64 pte)
  183. {
  184. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  185. }
  186. static gfn_t pse36_gfn_delta(u32 gpte)
  187. {
  188. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  189. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  190. }
  191. static void set_shadow_pte(u64 *sptep, u64 spte)
  192. {
  193. #ifdef CONFIG_X86_64
  194. set_64bit((unsigned long *)sptep, spte);
  195. #else
  196. set_64bit((unsigned long long *)sptep, spte);
  197. #endif
  198. }
  199. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  200. struct kmem_cache *base_cache, int min)
  201. {
  202. void *obj;
  203. if (cache->nobjs >= min)
  204. return 0;
  205. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  206. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  207. if (!obj)
  208. return -ENOMEM;
  209. cache->objects[cache->nobjs++] = obj;
  210. }
  211. return 0;
  212. }
  213. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  214. {
  215. while (mc->nobjs)
  216. kfree(mc->objects[--mc->nobjs]);
  217. }
  218. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  219. int min)
  220. {
  221. struct page *page;
  222. if (cache->nobjs >= min)
  223. return 0;
  224. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  225. page = alloc_page(GFP_KERNEL);
  226. if (!page)
  227. return -ENOMEM;
  228. set_page_private(page, 0);
  229. cache->objects[cache->nobjs++] = page_address(page);
  230. }
  231. return 0;
  232. }
  233. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  234. {
  235. while (mc->nobjs)
  236. free_page((unsigned long)mc->objects[--mc->nobjs]);
  237. }
  238. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  239. {
  240. int r;
  241. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  242. pte_chain_cache, 4);
  243. if (r)
  244. goto out;
  245. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  246. rmap_desc_cache, 1);
  247. if (r)
  248. goto out;
  249. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  250. if (r)
  251. goto out;
  252. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  253. mmu_page_header_cache, 4);
  254. out:
  255. return r;
  256. }
  257. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  258. {
  259. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
  260. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
  261. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  262. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
  263. }
  264. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  265. size_t size)
  266. {
  267. void *p;
  268. BUG_ON(!mc->nobjs);
  269. p = mc->objects[--mc->nobjs];
  270. memset(p, 0, size);
  271. return p;
  272. }
  273. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  274. {
  275. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  276. sizeof(struct kvm_pte_chain));
  277. }
  278. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  279. {
  280. kfree(pc);
  281. }
  282. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  283. {
  284. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  285. sizeof(struct kvm_rmap_desc));
  286. }
  287. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  288. {
  289. kfree(rd);
  290. }
  291. /*
  292. * Return the pointer to the largepage write count for a given
  293. * gfn, handling slots that are not large page aligned.
  294. */
  295. static int *slot_largepage_idx(gfn_t gfn, struct kvm_memory_slot *slot)
  296. {
  297. unsigned long idx;
  298. idx = (gfn / KVM_PAGES_PER_HPAGE) -
  299. (slot->base_gfn / KVM_PAGES_PER_HPAGE);
  300. return &slot->lpage_info[idx].write_count;
  301. }
  302. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  303. {
  304. int *write_count;
  305. write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
  306. *write_count += 1;
  307. }
  308. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  309. {
  310. int *write_count;
  311. write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
  312. *write_count -= 1;
  313. WARN_ON(*write_count < 0);
  314. }
  315. static int has_wrprotected_page(struct kvm *kvm, gfn_t gfn)
  316. {
  317. struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
  318. int *largepage_idx;
  319. if (slot) {
  320. largepage_idx = slot_largepage_idx(gfn, slot);
  321. return *largepage_idx;
  322. }
  323. return 1;
  324. }
  325. static int host_largepage_backed(struct kvm *kvm, gfn_t gfn)
  326. {
  327. struct vm_area_struct *vma;
  328. unsigned long addr;
  329. int ret = 0;
  330. addr = gfn_to_hva(kvm, gfn);
  331. if (kvm_is_error_hva(addr))
  332. return ret;
  333. down_read(&current->mm->mmap_sem);
  334. vma = find_vma(current->mm, addr);
  335. if (vma && is_vm_hugetlb_page(vma))
  336. ret = 1;
  337. up_read(&current->mm->mmap_sem);
  338. return ret;
  339. }
  340. static int is_largepage_backed(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  341. {
  342. struct kvm_memory_slot *slot;
  343. if (has_wrprotected_page(vcpu->kvm, large_gfn))
  344. return 0;
  345. if (!host_largepage_backed(vcpu->kvm, large_gfn))
  346. return 0;
  347. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  348. if (slot && slot->dirty_bitmap)
  349. return 0;
  350. return 1;
  351. }
  352. /*
  353. * Take gfn and return the reverse mapping to it.
  354. * Note: gfn must be unaliased before this function get called
  355. */
  356. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int lpage)
  357. {
  358. struct kvm_memory_slot *slot;
  359. unsigned long idx;
  360. slot = gfn_to_memslot(kvm, gfn);
  361. if (!lpage)
  362. return &slot->rmap[gfn - slot->base_gfn];
  363. idx = (gfn / KVM_PAGES_PER_HPAGE) -
  364. (slot->base_gfn / KVM_PAGES_PER_HPAGE);
  365. return &slot->lpage_info[idx].rmap_pde;
  366. }
  367. /*
  368. * Reverse mapping data structures:
  369. *
  370. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  371. * that points to page_address(page).
  372. *
  373. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  374. * containing more mappings.
  375. */
  376. static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn, int lpage)
  377. {
  378. struct kvm_mmu_page *sp;
  379. struct kvm_rmap_desc *desc;
  380. unsigned long *rmapp;
  381. int i;
  382. if (!is_rmap_pte(*spte))
  383. return;
  384. gfn = unalias_gfn(vcpu->kvm, gfn);
  385. sp = page_header(__pa(spte));
  386. sp->gfns[spte - sp->spt] = gfn;
  387. rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage);
  388. if (!*rmapp) {
  389. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  390. *rmapp = (unsigned long)spte;
  391. } else if (!(*rmapp & 1)) {
  392. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  393. desc = mmu_alloc_rmap_desc(vcpu);
  394. desc->shadow_ptes[0] = (u64 *)*rmapp;
  395. desc->shadow_ptes[1] = spte;
  396. *rmapp = (unsigned long)desc | 1;
  397. } else {
  398. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  399. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  400. while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
  401. desc = desc->more;
  402. if (desc->shadow_ptes[RMAP_EXT-1]) {
  403. desc->more = mmu_alloc_rmap_desc(vcpu);
  404. desc = desc->more;
  405. }
  406. for (i = 0; desc->shadow_ptes[i]; ++i)
  407. ;
  408. desc->shadow_ptes[i] = spte;
  409. }
  410. }
  411. static void rmap_desc_remove_entry(unsigned long *rmapp,
  412. struct kvm_rmap_desc *desc,
  413. int i,
  414. struct kvm_rmap_desc *prev_desc)
  415. {
  416. int j;
  417. for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
  418. ;
  419. desc->shadow_ptes[i] = desc->shadow_ptes[j];
  420. desc->shadow_ptes[j] = NULL;
  421. if (j != 0)
  422. return;
  423. if (!prev_desc && !desc->more)
  424. *rmapp = (unsigned long)desc->shadow_ptes[0];
  425. else
  426. if (prev_desc)
  427. prev_desc->more = desc->more;
  428. else
  429. *rmapp = (unsigned long)desc->more | 1;
  430. mmu_free_rmap_desc(desc);
  431. }
  432. static void rmap_remove(struct kvm *kvm, u64 *spte)
  433. {
  434. struct kvm_rmap_desc *desc;
  435. struct kvm_rmap_desc *prev_desc;
  436. struct kvm_mmu_page *sp;
  437. pfn_t pfn;
  438. unsigned long *rmapp;
  439. int i;
  440. if (!is_rmap_pte(*spte))
  441. return;
  442. sp = page_header(__pa(spte));
  443. pfn = spte_to_pfn(*spte);
  444. if (*spte & shadow_accessed_mask)
  445. kvm_set_pfn_accessed(pfn);
  446. if (is_writeble_pte(*spte))
  447. kvm_release_pfn_dirty(pfn);
  448. else
  449. kvm_release_pfn_clean(pfn);
  450. rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], is_large_pte(*spte));
  451. if (!*rmapp) {
  452. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  453. BUG();
  454. } else if (!(*rmapp & 1)) {
  455. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  456. if ((u64 *)*rmapp != spte) {
  457. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  458. spte, *spte);
  459. BUG();
  460. }
  461. *rmapp = 0;
  462. } else {
  463. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  464. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  465. prev_desc = NULL;
  466. while (desc) {
  467. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
  468. if (desc->shadow_ptes[i] == spte) {
  469. rmap_desc_remove_entry(rmapp,
  470. desc, i,
  471. prev_desc);
  472. return;
  473. }
  474. prev_desc = desc;
  475. desc = desc->more;
  476. }
  477. BUG();
  478. }
  479. }
  480. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  481. {
  482. struct kvm_rmap_desc *desc;
  483. struct kvm_rmap_desc *prev_desc;
  484. u64 *prev_spte;
  485. int i;
  486. if (!*rmapp)
  487. return NULL;
  488. else if (!(*rmapp & 1)) {
  489. if (!spte)
  490. return (u64 *)*rmapp;
  491. return NULL;
  492. }
  493. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  494. prev_desc = NULL;
  495. prev_spte = NULL;
  496. while (desc) {
  497. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
  498. if (prev_spte == spte)
  499. return desc->shadow_ptes[i];
  500. prev_spte = desc->shadow_ptes[i];
  501. }
  502. desc = desc->more;
  503. }
  504. return NULL;
  505. }
  506. static void rmap_write_protect(struct kvm *kvm, u64 gfn)
  507. {
  508. unsigned long *rmapp;
  509. u64 *spte;
  510. int write_protected = 0;
  511. gfn = unalias_gfn(kvm, gfn);
  512. rmapp = gfn_to_rmap(kvm, gfn, 0);
  513. spte = rmap_next(kvm, rmapp, NULL);
  514. while (spte) {
  515. BUG_ON(!spte);
  516. BUG_ON(!(*spte & PT_PRESENT_MASK));
  517. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  518. if (is_writeble_pte(*spte)) {
  519. set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
  520. write_protected = 1;
  521. }
  522. spte = rmap_next(kvm, rmapp, spte);
  523. }
  524. if (write_protected) {
  525. pfn_t pfn;
  526. spte = rmap_next(kvm, rmapp, NULL);
  527. pfn = spte_to_pfn(*spte);
  528. kvm_set_pfn_dirty(pfn);
  529. }
  530. /* check for huge page mappings */
  531. rmapp = gfn_to_rmap(kvm, gfn, 1);
  532. spte = rmap_next(kvm, rmapp, NULL);
  533. while (spte) {
  534. BUG_ON(!spte);
  535. BUG_ON(!(*spte & PT_PRESENT_MASK));
  536. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  537. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  538. if (is_writeble_pte(*spte)) {
  539. rmap_remove(kvm, spte);
  540. --kvm->stat.lpages;
  541. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  542. spte = NULL;
  543. write_protected = 1;
  544. }
  545. spte = rmap_next(kvm, rmapp, spte);
  546. }
  547. if (write_protected)
  548. kvm_flush_remote_tlbs(kvm);
  549. account_shadowed(kvm, gfn);
  550. }
  551. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp)
  552. {
  553. u64 *spte;
  554. int need_tlb_flush = 0;
  555. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  556. BUG_ON(!(*spte & PT_PRESENT_MASK));
  557. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  558. rmap_remove(kvm, spte);
  559. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  560. need_tlb_flush = 1;
  561. }
  562. return need_tlb_flush;
  563. }
  564. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  565. int (*handler)(struct kvm *kvm, unsigned long *rmapp))
  566. {
  567. int i;
  568. int retval = 0;
  569. /*
  570. * If mmap_sem isn't taken, we can look the memslots with only
  571. * the mmu_lock by skipping over the slots with userspace_addr == 0.
  572. */
  573. for (i = 0; i < kvm->nmemslots; i++) {
  574. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  575. unsigned long start = memslot->userspace_addr;
  576. unsigned long end;
  577. /* mmu_lock protects userspace_addr */
  578. if (!start)
  579. continue;
  580. end = start + (memslot->npages << PAGE_SHIFT);
  581. if (hva >= start && hva < end) {
  582. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  583. retval |= handler(kvm, &memslot->rmap[gfn_offset]);
  584. retval |= handler(kvm,
  585. &memslot->lpage_info[
  586. gfn_offset /
  587. KVM_PAGES_PER_HPAGE].rmap_pde);
  588. }
  589. }
  590. return retval;
  591. }
  592. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  593. {
  594. return kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
  595. }
  596. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp)
  597. {
  598. u64 *spte;
  599. int young = 0;
  600. /* always return old for EPT */
  601. if (!shadow_accessed_mask)
  602. return 0;
  603. spte = rmap_next(kvm, rmapp, NULL);
  604. while (spte) {
  605. int _young;
  606. u64 _spte = *spte;
  607. BUG_ON(!(_spte & PT_PRESENT_MASK));
  608. _young = _spte & PT_ACCESSED_MASK;
  609. if (_young) {
  610. young = 1;
  611. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  612. }
  613. spte = rmap_next(kvm, rmapp, spte);
  614. }
  615. return young;
  616. }
  617. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  618. {
  619. return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
  620. }
  621. #ifdef MMU_DEBUG
  622. static int is_empty_shadow_page(u64 *spt)
  623. {
  624. u64 *pos;
  625. u64 *end;
  626. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  627. if (is_shadow_present_pte(*pos)) {
  628. printk(KERN_ERR "%s: %p %llx\n", __func__,
  629. pos, *pos);
  630. return 0;
  631. }
  632. return 1;
  633. }
  634. #endif
  635. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  636. {
  637. ASSERT(is_empty_shadow_page(sp->spt));
  638. list_del(&sp->link);
  639. __free_page(virt_to_page(sp->spt));
  640. __free_page(virt_to_page(sp->gfns));
  641. kfree(sp);
  642. ++kvm->arch.n_free_mmu_pages;
  643. }
  644. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  645. {
  646. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  647. }
  648. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  649. u64 *parent_pte)
  650. {
  651. struct kvm_mmu_page *sp;
  652. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  653. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  654. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  655. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  656. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  657. ASSERT(is_empty_shadow_page(sp->spt));
  658. sp->slot_bitmap = 0;
  659. sp->multimapped = 0;
  660. sp->parent_pte = parent_pte;
  661. --vcpu->kvm->arch.n_free_mmu_pages;
  662. return sp;
  663. }
  664. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  665. struct kvm_mmu_page *sp, u64 *parent_pte)
  666. {
  667. struct kvm_pte_chain *pte_chain;
  668. struct hlist_node *node;
  669. int i;
  670. if (!parent_pte)
  671. return;
  672. if (!sp->multimapped) {
  673. u64 *old = sp->parent_pte;
  674. if (!old) {
  675. sp->parent_pte = parent_pte;
  676. return;
  677. }
  678. sp->multimapped = 1;
  679. pte_chain = mmu_alloc_pte_chain(vcpu);
  680. INIT_HLIST_HEAD(&sp->parent_ptes);
  681. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  682. pte_chain->parent_ptes[0] = old;
  683. }
  684. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  685. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  686. continue;
  687. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  688. if (!pte_chain->parent_ptes[i]) {
  689. pte_chain->parent_ptes[i] = parent_pte;
  690. return;
  691. }
  692. }
  693. pte_chain = mmu_alloc_pte_chain(vcpu);
  694. BUG_ON(!pte_chain);
  695. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  696. pte_chain->parent_ptes[0] = parent_pte;
  697. }
  698. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  699. u64 *parent_pte)
  700. {
  701. struct kvm_pte_chain *pte_chain;
  702. struct hlist_node *node;
  703. int i;
  704. if (!sp->multimapped) {
  705. BUG_ON(sp->parent_pte != parent_pte);
  706. sp->parent_pte = NULL;
  707. return;
  708. }
  709. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  710. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  711. if (!pte_chain->parent_ptes[i])
  712. break;
  713. if (pte_chain->parent_ptes[i] != parent_pte)
  714. continue;
  715. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  716. && pte_chain->parent_ptes[i + 1]) {
  717. pte_chain->parent_ptes[i]
  718. = pte_chain->parent_ptes[i + 1];
  719. ++i;
  720. }
  721. pte_chain->parent_ptes[i] = NULL;
  722. if (i == 0) {
  723. hlist_del(&pte_chain->link);
  724. mmu_free_pte_chain(pte_chain);
  725. if (hlist_empty(&sp->parent_ptes)) {
  726. sp->multimapped = 0;
  727. sp->parent_pte = NULL;
  728. }
  729. }
  730. return;
  731. }
  732. BUG();
  733. }
  734. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  735. struct kvm_mmu_page *sp)
  736. {
  737. int i;
  738. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  739. sp->spt[i] = shadow_trap_nonpresent_pte;
  740. }
  741. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  742. struct kvm_mmu_page *sp)
  743. {
  744. return 1;
  745. }
  746. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
  747. {
  748. unsigned index;
  749. struct hlist_head *bucket;
  750. struct kvm_mmu_page *sp;
  751. struct hlist_node *node;
  752. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  753. index = kvm_page_table_hashfn(gfn);
  754. bucket = &kvm->arch.mmu_page_hash[index];
  755. hlist_for_each_entry(sp, node, bucket, hash_link)
  756. if (sp->gfn == gfn && !sp->role.metaphysical
  757. && !sp->role.invalid) {
  758. pgprintk("%s: found role %x\n",
  759. __func__, sp->role.word);
  760. return sp;
  761. }
  762. return NULL;
  763. }
  764. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  765. gfn_t gfn,
  766. gva_t gaddr,
  767. unsigned level,
  768. int metaphysical,
  769. unsigned access,
  770. u64 *parent_pte)
  771. {
  772. union kvm_mmu_page_role role;
  773. unsigned index;
  774. unsigned quadrant;
  775. struct hlist_head *bucket;
  776. struct kvm_mmu_page *sp;
  777. struct hlist_node *node;
  778. role.word = 0;
  779. role.glevels = vcpu->arch.mmu.root_level;
  780. role.level = level;
  781. role.metaphysical = metaphysical;
  782. role.access = access;
  783. if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  784. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  785. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  786. role.quadrant = quadrant;
  787. }
  788. pgprintk("%s: looking gfn %lx role %x\n", __func__,
  789. gfn, role.word);
  790. index = kvm_page_table_hashfn(gfn);
  791. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  792. hlist_for_each_entry(sp, node, bucket, hash_link)
  793. if (sp->gfn == gfn && sp->role.word == role.word) {
  794. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  795. pgprintk("%s: found\n", __func__);
  796. return sp;
  797. }
  798. ++vcpu->kvm->stat.mmu_cache_miss;
  799. sp = kvm_mmu_alloc_page(vcpu, parent_pte);
  800. if (!sp)
  801. return sp;
  802. pgprintk("%s: adding gfn %lx role %x\n", __func__, gfn, role.word);
  803. sp->gfn = gfn;
  804. sp->role = role;
  805. hlist_add_head(&sp->hash_link, bucket);
  806. if (!metaphysical)
  807. rmap_write_protect(vcpu->kvm, gfn);
  808. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  809. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  810. else
  811. nonpaging_prefetch_page(vcpu, sp);
  812. return sp;
  813. }
  814. static int walk_shadow(struct kvm_shadow_walk *walker,
  815. struct kvm_vcpu *vcpu, u64 addr)
  816. {
  817. hpa_t shadow_addr;
  818. int level;
  819. int r;
  820. u64 *sptep;
  821. unsigned index;
  822. shadow_addr = vcpu->arch.mmu.root_hpa;
  823. level = vcpu->arch.mmu.shadow_root_level;
  824. if (level == PT32E_ROOT_LEVEL) {
  825. shadow_addr = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  826. shadow_addr &= PT64_BASE_ADDR_MASK;
  827. --level;
  828. }
  829. while (level >= PT_PAGE_TABLE_LEVEL) {
  830. index = SHADOW_PT_INDEX(addr, level);
  831. sptep = ((u64 *)__va(shadow_addr)) + index;
  832. r = walker->entry(walker, vcpu, addr, sptep, level);
  833. if (r)
  834. return r;
  835. shadow_addr = *sptep & PT64_BASE_ADDR_MASK;
  836. --level;
  837. }
  838. return 0;
  839. }
  840. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  841. struct kvm_mmu_page *sp)
  842. {
  843. unsigned i;
  844. u64 *pt;
  845. u64 ent;
  846. pt = sp->spt;
  847. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  848. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  849. if (is_shadow_present_pte(pt[i]))
  850. rmap_remove(kvm, &pt[i]);
  851. pt[i] = shadow_trap_nonpresent_pte;
  852. }
  853. return;
  854. }
  855. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  856. ent = pt[i];
  857. if (is_shadow_present_pte(ent)) {
  858. if (!is_large_pte(ent)) {
  859. ent &= PT64_BASE_ADDR_MASK;
  860. mmu_page_remove_parent_pte(page_header(ent),
  861. &pt[i]);
  862. } else {
  863. --kvm->stat.lpages;
  864. rmap_remove(kvm, &pt[i]);
  865. }
  866. }
  867. pt[i] = shadow_trap_nonpresent_pte;
  868. }
  869. }
  870. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  871. {
  872. mmu_page_remove_parent_pte(sp, parent_pte);
  873. }
  874. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  875. {
  876. int i;
  877. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  878. if (kvm->vcpus[i])
  879. kvm->vcpus[i]->arch.last_pte_updated = NULL;
  880. }
  881. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  882. {
  883. u64 *parent_pte;
  884. while (sp->multimapped || sp->parent_pte) {
  885. if (!sp->multimapped)
  886. parent_pte = sp->parent_pte;
  887. else {
  888. struct kvm_pte_chain *chain;
  889. chain = container_of(sp->parent_ptes.first,
  890. struct kvm_pte_chain, link);
  891. parent_pte = chain->parent_ptes[0];
  892. }
  893. BUG_ON(!parent_pte);
  894. kvm_mmu_put_page(sp, parent_pte);
  895. set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
  896. }
  897. }
  898. static void kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  899. {
  900. ++kvm->stat.mmu_shadow_zapped;
  901. kvm_mmu_page_unlink_children(kvm, sp);
  902. kvm_mmu_unlink_parents(kvm, sp);
  903. kvm_flush_remote_tlbs(kvm);
  904. if (!sp->role.invalid && !sp->role.metaphysical)
  905. unaccount_shadowed(kvm, sp->gfn);
  906. if (!sp->root_count) {
  907. hlist_del(&sp->hash_link);
  908. kvm_mmu_free_page(kvm, sp);
  909. } else {
  910. sp->role.invalid = 1;
  911. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  912. kvm_reload_remote_mmus(kvm);
  913. }
  914. kvm_mmu_reset_last_pte_updated(kvm);
  915. }
  916. /*
  917. * Changing the number of mmu pages allocated to the vm
  918. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  919. */
  920. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  921. {
  922. /*
  923. * If we set the number of mmu pages to be smaller be than the
  924. * number of actived pages , we must to free some mmu pages before we
  925. * change the value
  926. */
  927. if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
  928. kvm_nr_mmu_pages) {
  929. int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
  930. - kvm->arch.n_free_mmu_pages;
  931. while (n_used_mmu_pages > kvm_nr_mmu_pages) {
  932. struct kvm_mmu_page *page;
  933. page = container_of(kvm->arch.active_mmu_pages.prev,
  934. struct kvm_mmu_page, link);
  935. kvm_mmu_zap_page(kvm, page);
  936. n_used_mmu_pages--;
  937. }
  938. kvm->arch.n_free_mmu_pages = 0;
  939. }
  940. else
  941. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  942. - kvm->arch.n_alloc_mmu_pages;
  943. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  944. }
  945. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  946. {
  947. unsigned index;
  948. struct hlist_head *bucket;
  949. struct kvm_mmu_page *sp;
  950. struct hlist_node *node, *n;
  951. int r;
  952. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  953. r = 0;
  954. index = kvm_page_table_hashfn(gfn);
  955. bucket = &kvm->arch.mmu_page_hash[index];
  956. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
  957. if (sp->gfn == gfn && !sp->role.metaphysical) {
  958. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  959. sp->role.word);
  960. kvm_mmu_zap_page(kvm, sp);
  961. r = 1;
  962. }
  963. return r;
  964. }
  965. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  966. {
  967. struct kvm_mmu_page *sp;
  968. while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
  969. pgprintk("%s: zap %lx %x\n", __func__, gfn, sp->role.word);
  970. kvm_mmu_zap_page(kvm, sp);
  971. }
  972. }
  973. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  974. {
  975. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
  976. struct kvm_mmu_page *sp = page_header(__pa(pte));
  977. __set_bit(slot, &sp->slot_bitmap);
  978. }
  979. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  980. {
  981. struct page *page;
  982. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  983. if (gpa == UNMAPPED_GVA)
  984. return NULL;
  985. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  986. return page;
  987. }
  988. static int set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
  989. unsigned pte_access, int user_fault,
  990. int write_fault, int dirty, int largepage,
  991. gfn_t gfn, pfn_t pfn, bool speculative)
  992. {
  993. u64 spte;
  994. int ret = 0;
  995. /*
  996. * We don't set the accessed bit, since we sometimes want to see
  997. * whether the guest actually used the pte (in order to detect
  998. * demand paging).
  999. */
  1000. spte = shadow_base_present_pte | shadow_dirty_mask;
  1001. if (!speculative)
  1002. spte |= shadow_accessed_mask;
  1003. if (!dirty)
  1004. pte_access &= ~ACC_WRITE_MASK;
  1005. if (pte_access & ACC_EXEC_MASK)
  1006. spte |= shadow_x_mask;
  1007. else
  1008. spte |= shadow_nx_mask;
  1009. if (pte_access & ACC_USER_MASK)
  1010. spte |= shadow_user_mask;
  1011. if (largepage)
  1012. spte |= PT_PAGE_SIZE_MASK;
  1013. spte |= (u64)pfn << PAGE_SHIFT;
  1014. if ((pte_access & ACC_WRITE_MASK)
  1015. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  1016. struct kvm_mmu_page *shadow;
  1017. if (largepage && has_wrprotected_page(vcpu->kvm, gfn)) {
  1018. ret = 1;
  1019. spte = shadow_trap_nonpresent_pte;
  1020. goto set_pte;
  1021. }
  1022. spte |= PT_WRITABLE_MASK;
  1023. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  1024. if (shadow) {
  1025. pgprintk("%s: found shadow page for %lx, marking ro\n",
  1026. __func__, gfn);
  1027. ret = 1;
  1028. pte_access &= ~ACC_WRITE_MASK;
  1029. if (is_writeble_pte(spte))
  1030. spte &= ~PT_WRITABLE_MASK;
  1031. }
  1032. }
  1033. if (pte_access & ACC_WRITE_MASK)
  1034. mark_page_dirty(vcpu->kvm, gfn);
  1035. set_pte:
  1036. set_shadow_pte(shadow_pte, spte);
  1037. return ret;
  1038. }
  1039. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
  1040. unsigned pt_access, unsigned pte_access,
  1041. int user_fault, int write_fault, int dirty,
  1042. int *ptwrite, int largepage, gfn_t gfn,
  1043. pfn_t pfn, bool speculative)
  1044. {
  1045. int was_rmapped = 0;
  1046. int was_writeble = is_writeble_pte(*shadow_pte);
  1047. pgprintk("%s: spte %llx access %x write_fault %d"
  1048. " user_fault %d gfn %lx\n",
  1049. __func__, *shadow_pte, pt_access,
  1050. write_fault, user_fault, gfn);
  1051. if (is_rmap_pte(*shadow_pte)) {
  1052. /*
  1053. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1054. * the parent of the now unreachable PTE.
  1055. */
  1056. if (largepage && !is_large_pte(*shadow_pte)) {
  1057. struct kvm_mmu_page *child;
  1058. u64 pte = *shadow_pte;
  1059. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1060. mmu_page_remove_parent_pte(child, shadow_pte);
  1061. } else if (pfn != spte_to_pfn(*shadow_pte)) {
  1062. pgprintk("hfn old %lx new %lx\n",
  1063. spte_to_pfn(*shadow_pte), pfn);
  1064. rmap_remove(vcpu->kvm, shadow_pte);
  1065. } else {
  1066. if (largepage)
  1067. was_rmapped = is_large_pte(*shadow_pte);
  1068. else
  1069. was_rmapped = 1;
  1070. }
  1071. }
  1072. if (set_spte(vcpu, shadow_pte, pte_access, user_fault, write_fault,
  1073. dirty, largepage, gfn, pfn, speculative)) {
  1074. if (write_fault)
  1075. *ptwrite = 1;
  1076. kvm_x86_ops->tlb_flush(vcpu);
  1077. }
  1078. pgprintk("%s: setting spte %llx\n", __func__, *shadow_pte);
  1079. pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
  1080. is_large_pte(*shadow_pte)? "2MB" : "4kB",
  1081. is_present_pte(*shadow_pte)?"RW":"R", gfn,
  1082. *shadow_pte, shadow_pte);
  1083. if (!was_rmapped && is_large_pte(*shadow_pte))
  1084. ++vcpu->kvm->stat.lpages;
  1085. page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
  1086. if (!was_rmapped) {
  1087. rmap_add(vcpu, shadow_pte, gfn, largepage);
  1088. if (!is_rmap_pte(*shadow_pte))
  1089. kvm_release_pfn_clean(pfn);
  1090. } else {
  1091. if (was_writeble)
  1092. kvm_release_pfn_dirty(pfn);
  1093. else
  1094. kvm_release_pfn_clean(pfn);
  1095. }
  1096. if (speculative) {
  1097. vcpu->arch.last_pte_updated = shadow_pte;
  1098. vcpu->arch.last_pte_gfn = gfn;
  1099. }
  1100. }
  1101. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1102. {
  1103. }
  1104. struct direct_shadow_walk {
  1105. struct kvm_shadow_walk walker;
  1106. pfn_t pfn;
  1107. int write;
  1108. int largepage;
  1109. int pt_write;
  1110. };
  1111. static int direct_map_entry(struct kvm_shadow_walk *_walk,
  1112. struct kvm_vcpu *vcpu,
  1113. u64 addr, u64 *sptep, int level)
  1114. {
  1115. struct direct_shadow_walk *walk =
  1116. container_of(_walk, struct direct_shadow_walk, walker);
  1117. struct kvm_mmu_page *sp;
  1118. gfn_t pseudo_gfn;
  1119. gfn_t gfn = addr >> PAGE_SHIFT;
  1120. if (level == PT_PAGE_TABLE_LEVEL
  1121. || (walk->largepage && level == PT_DIRECTORY_LEVEL)) {
  1122. mmu_set_spte(vcpu, sptep, ACC_ALL, ACC_ALL,
  1123. 0, walk->write, 1, &walk->pt_write,
  1124. walk->largepage, gfn, walk->pfn, false);
  1125. ++vcpu->stat.pf_fixed;
  1126. return 1;
  1127. }
  1128. if (*sptep == shadow_trap_nonpresent_pte) {
  1129. pseudo_gfn = (addr & PT64_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1130. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, (gva_t)addr, level - 1,
  1131. 1, ACC_ALL, sptep);
  1132. if (!sp) {
  1133. pgprintk("nonpaging_map: ENOMEM\n");
  1134. kvm_release_pfn_clean(walk->pfn);
  1135. return -ENOMEM;
  1136. }
  1137. set_shadow_pte(sptep,
  1138. __pa(sp->spt)
  1139. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1140. | shadow_user_mask | shadow_x_mask);
  1141. }
  1142. return 0;
  1143. }
  1144. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1145. int largepage, gfn_t gfn, pfn_t pfn)
  1146. {
  1147. int r;
  1148. struct direct_shadow_walk walker = {
  1149. .walker = { .entry = direct_map_entry, },
  1150. .pfn = pfn,
  1151. .largepage = largepage,
  1152. .write = write,
  1153. .pt_write = 0,
  1154. };
  1155. r = walk_shadow(&walker.walker, vcpu, gfn << PAGE_SHIFT);
  1156. if (r < 0)
  1157. return r;
  1158. return walker.pt_write;
  1159. }
  1160. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1161. {
  1162. int r;
  1163. int largepage = 0;
  1164. pfn_t pfn;
  1165. unsigned long mmu_seq;
  1166. if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
  1167. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1168. largepage = 1;
  1169. }
  1170. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1171. smp_rmb();
  1172. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1173. /* mmio */
  1174. if (is_error_pfn(pfn)) {
  1175. kvm_release_pfn_clean(pfn);
  1176. return 1;
  1177. }
  1178. spin_lock(&vcpu->kvm->mmu_lock);
  1179. if (mmu_notifier_retry(vcpu, mmu_seq))
  1180. goto out_unlock;
  1181. kvm_mmu_free_some_pages(vcpu);
  1182. r = __direct_map(vcpu, v, write, largepage, gfn, pfn);
  1183. spin_unlock(&vcpu->kvm->mmu_lock);
  1184. return r;
  1185. out_unlock:
  1186. spin_unlock(&vcpu->kvm->mmu_lock);
  1187. kvm_release_pfn_clean(pfn);
  1188. return 0;
  1189. }
  1190. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1191. {
  1192. int i;
  1193. struct kvm_mmu_page *sp;
  1194. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1195. return;
  1196. spin_lock(&vcpu->kvm->mmu_lock);
  1197. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1198. hpa_t root = vcpu->arch.mmu.root_hpa;
  1199. sp = page_header(root);
  1200. --sp->root_count;
  1201. if (!sp->root_count && sp->role.invalid)
  1202. kvm_mmu_zap_page(vcpu->kvm, sp);
  1203. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1204. spin_unlock(&vcpu->kvm->mmu_lock);
  1205. return;
  1206. }
  1207. for (i = 0; i < 4; ++i) {
  1208. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1209. if (root) {
  1210. root &= PT64_BASE_ADDR_MASK;
  1211. sp = page_header(root);
  1212. --sp->root_count;
  1213. if (!sp->root_count && sp->role.invalid)
  1214. kvm_mmu_zap_page(vcpu->kvm, sp);
  1215. }
  1216. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1217. }
  1218. spin_unlock(&vcpu->kvm->mmu_lock);
  1219. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1220. }
  1221. static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1222. {
  1223. int i;
  1224. gfn_t root_gfn;
  1225. struct kvm_mmu_page *sp;
  1226. int metaphysical = 0;
  1227. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1228. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1229. hpa_t root = vcpu->arch.mmu.root_hpa;
  1230. ASSERT(!VALID_PAGE(root));
  1231. if (tdp_enabled)
  1232. metaphysical = 1;
  1233. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1234. PT64_ROOT_LEVEL, metaphysical,
  1235. ACC_ALL, NULL);
  1236. root = __pa(sp->spt);
  1237. ++sp->root_count;
  1238. vcpu->arch.mmu.root_hpa = root;
  1239. return;
  1240. }
  1241. metaphysical = !is_paging(vcpu);
  1242. if (tdp_enabled)
  1243. metaphysical = 1;
  1244. for (i = 0; i < 4; ++i) {
  1245. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1246. ASSERT(!VALID_PAGE(root));
  1247. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1248. if (!is_present_pte(vcpu->arch.pdptrs[i])) {
  1249. vcpu->arch.mmu.pae_root[i] = 0;
  1250. continue;
  1251. }
  1252. root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
  1253. } else if (vcpu->arch.mmu.root_level == 0)
  1254. root_gfn = 0;
  1255. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1256. PT32_ROOT_LEVEL, metaphysical,
  1257. ACC_ALL, NULL);
  1258. root = __pa(sp->spt);
  1259. ++sp->root_count;
  1260. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1261. }
  1262. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1263. }
  1264. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  1265. {
  1266. return vaddr;
  1267. }
  1268. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1269. u32 error_code)
  1270. {
  1271. gfn_t gfn;
  1272. int r;
  1273. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1274. r = mmu_topup_memory_caches(vcpu);
  1275. if (r)
  1276. return r;
  1277. ASSERT(vcpu);
  1278. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1279. gfn = gva >> PAGE_SHIFT;
  1280. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1281. error_code & PFERR_WRITE_MASK, gfn);
  1282. }
  1283. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1284. u32 error_code)
  1285. {
  1286. pfn_t pfn;
  1287. int r;
  1288. int largepage = 0;
  1289. gfn_t gfn = gpa >> PAGE_SHIFT;
  1290. unsigned long mmu_seq;
  1291. ASSERT(vcpu);
  1292. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1293. r = mmu_topup_memory_caches(vcpu);
  1294. if (r)
  1295. return r;
  1296. if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
  1297. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1298. largepage = 1;
  1299. }
  1300. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1301. smp_rmb();
  1302. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1303. if (is_error_pfn(pfn)) {
  1304. kvm_release_pfn_clean(pfn);
  1305. return 1;
  1306. }
  1307. spin_lock(&vcpu->kvm->mmu_lock);
  1308. if (mmu_notifier_retry(vcpu, mmu_seq))
  1309. goto out_unlock;
  1310. kvm_mmu_free_some_pages(vcpu);
  1311. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  1312. largepage, gfn, pfn);
  1313. spin_unlock(&vcpu->kvm->mmu_lock);
  1314. return r;
  1315. out_unlock:
  1316. spin_unlock(&vcpu->kvm->mmu_lock);
  1317. kvm_release_pfn_clean(pfn);
  1318. return 0;
  1319. }
  1320. static void nonpaging_free(struct kvm_vcpu *vcpu)
  1321. {
  1322. mmu_free_roots(vcpu);
  1323. }
  1324. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  1325. {
  1326. struct kvm_mmu *context = &vcpu->arch.mmu;
  1327. context->new_cr3 = nonpaging_new_cr3;
  1328. context->page_fault = nonpaging_page_fault;
  1329. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1330. context->free = nonpaging_free;
  1331. context->prefetch_page = nonpaging_prefetch_page;
  1332. context->sync_page = nonpaging_sync_page;
  1333. context->root_level = 0;
  1334. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1335. context->root_hpa = INVALID_PAGE;
  1336. return 0;
  1337. }
  1338. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1339. {
  1340. ++vcpu->stat.tlb_flush;
  1341. kvm_x86_ops->tlb_flush(vcpu);
  1342. }
  1343. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  1344. {
  1345. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  1346. mmu_free_roots(vcpu);
  1347. }
  1348. static void inject_page_fault(struct kvm_vcpu *vcpu,
  1349. u64 addr,
  1350. u32 err_code)
  1351. {
  1352. kvm_inject_page_fault(vcpu, addr, err_code);
  1353. }
  1354. static void paging_free(struct kvm_vcpu *vcpu)
  1355. {
  1356. nonpaging_free(vcpu);
  1357. }
  1358. #define PTTYPE 64
  1359. #include "paging_tmpl.h"
  1360. #undef PTTYPE
  1361. #define PTTYPE 32
  1362. #include "paging_tmpl.h"
  1363. #undef PTTYPE
  1364. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  1365. {
  1366. struct kvm_mmu *context = &vcpu->arch.mmu;
  1367. ASSERT(is_pae(vcpu));
  1368. context->new_cr3 = paging_new_cr3;
  1369. context->page_fault = paging64_page_fault;
  1370. context->gva_to_gpa = paging64_gva_to_gpa;
  1371. context->prefetch_page = paging64_prefetch_page;
  1372. context->sync_page = paging64_sync_page;
  1373. context->free = paging_free;
  1374. context->root_level = level;
  1375. context->shadow_root_level = level;
  1376. context->root_hpa = INVALID_PAGE;
  1377. return 0;
  1378. }
  1379. static int paging64_init_context(struct kvm_vcpu *vcpu)
  1380. {
  1381. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  1382. }
  1383. static int paging32_init_context(struct kvm_vcpu *vcpu)
  1384. {
  1385. struct kvm_mmu *context = &vcpu->arch.mmu;
  1386. context->new_cr3 = paging_new_cr3;
  1387. context->page_fault = paging32_page_fault;
  1388. context->gva_to_gpa = paging32_gva_to_gpa;
  1389. context->free = paging_free;
  1390. context->prefetch_page = paging32_prefetch_page;
  1391. context->sync_page = paging32_sync_page;
  1392. context->root_level = PT32_ROOT_LEVEL;
  1393. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1394. context->root_hpa = INVALID_PAGE;
  1395. return 0;
  1396. }
  1397. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  1398. {
  1399. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  1400. }
  1401. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  1402. {
  1403. struct kvm_mmu *context = &vcpu->arch.mmu;
  1404. context->new_cr3 = nonpaging_new_cr3;
  1405. context->page_fault = tdp_page_fault;
  1406. context->free = nonpaging_free;
  1407. context->prefetch_page = nonpaging_prefetch_page;
  1408. context->sync_page = nonpaging_sync_page;
  1409. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  1410. context->root_hpa = INVALID_PAGE;
  1411. if (!is_paging(vcpu)) {
  1412. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1413. context->root_level = 0;
  1414. } else if (is_long_mode(vcpu)) {
  1415. context->gva_to_gpa = paging64_gva_to_gpa;
  1416. context->root_level = PT64_ROOT_LEVEL;
  1417. } else if (is_pae(vcpu)) {
  1418. context->gva_to_gpa = paging64_gva_to_gpa;
  1419. context->root_level = PT32E_ROOT_LEVEL;
  1420. } else {
  1421. context->gva_to_gpa = paging32_gva_to_gpa;
  1422. context->root_level = PT32_ROOT_LEVEL;
  1423. }
  1424. return 0;
  1425. }
  1426. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  1427. {
  1428. ASSERT(vcpu);
  1429. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1430. if (!is_paging(vcpu))
  1431. return nonpaging_init_context(vcpu);
  1432. else if (is_long_mode(vcpu))
  1433. return paging64_init_context(vcpu);
  1434. else if (is_pae(vcpu))
  1435. return paging32E_init_context(vcpu);
  1436. else
  1437. return paging32_init_context(vcpu);
  1438. }
  1439. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  1440. {
  1441. vcpu->arch.update_pte.pfn = bad_pfn;
  1442. if (tdp_enabled)
  1443. return init_kvm_tdp_mmu(vcpu);
  1444. else
  1445. return init_kvm_softmmu(vcpu);
  1446. }
  1447. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  1448. {
  1449. ASSERT(vcpu);
  1450. if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
  1451. vcpu->arch.mmu.free(vcpu);
  1452. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1453. }
  1454. }
  1455. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  1456. {
  1457. destroy_kvm_mmu(vcpu);
  1458. return init_kvm_mmu(vcpu);
  1459. }
  1460. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  1461. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  1462. {
  1463. int r;
  1464. r = mmu_topup_memory_caches(vcpu);
  1465. if (r)
  1466. goto out;
  1467. spin_lock(&vcpu->kvm->mmu_lock);
  1468. kvm_mmu_free_some_pages(vcpu);
  1469. mmu_alloc_roots(vcpu);
  1470. spin_unlock(&vcpu->kvm->mmu_lock);
  1471. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  1472. kvm_mmu_flush_tlb(vcpu);
  1473. out:
  1474. return r;
  1475. }
  1476. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  1477. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  1478. {
  1479. mmu_free_roots(vcpu);
  1480. }
  1481. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  1482. struct kvm_mmu_page *sp,
  1483. u64 *spte)
  1484. {
  1485. u64 pte;
  1486. struct kvm_mmu_page *child;
  1487. pte = *spte;
  1488. if (is_shadow_present_pte(pte)) {
  1489. if (sp->role.level == PT_PAGE_TABLE_LEVEL ||
  1490. is_large_pte(pte))
  1491. rmap_remove(vcpu->kvm, spte);
  1492. else {
  1493. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1494. mmu_page_remove_parent_pte(child, spte);
  1495. }
  1496. }
  1497. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  1498. if (is_large_pte(pte))
  1499. --vcpu->kvm->stat.lpages;
  1500. }
  1501. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  1502. struct kvm_mmu_page *sp,
  1503. u64 *spte,
  1504. const void *new)
  1505. {
  1506. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  1507. if (!vcpu->arch.update_pte.largepage ||
  1508. sp->role.glevels == PT32_ROOT_LEVEL) {
  1509. ++vcpu->kvm->stat.mmu_pde_zapped;
  1510. return;
  1511. }
  1512. }
  1513. ++vcpu->kvm->stat.mmu_pte_updated;
  1514. if (sp->role.glevels == PT32_ROOT_LEVEL)
  1515. paging32_update_pte(vcpu, sp, spte, new);
  1516. else
  1517. paging64_update_pte(vcpu, sp, spte, new);
  1518. }
  1519. static bool need_remote_flush(u64 old, u64 new)
  1520. {
  1521. if (!is_shadow_present_pte(old))
  1522. return false;
  1523. if (!is_shadow_present_pte(new))
  1524. return true;
  1525. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  1526. return true;
  1527. old ^= PT64_NX_MASK;
  1528. new ^= PT64_NX_MASK;
  1529. return (old & ~new & PT64_PERM_MASK) != 0;
  1530. }
  1531. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
  1532. {
  1533. if (need_remote_flush(old, new))
  1534. kvm_flush_remote_tlbs(vcpu->kvm);
  1535. else
  1536. kvm_mmu_flush_tlb(vcpu);
  1537. }
  1538. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  1539. {
  1540. u64 *spte = vcpu->arch.last_pte_updated;
  1541. return !!(spte && (*spte & shadow_accessed_mask));
  1542. }
  1543. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  1544. const u8 *new, int bytes)
  1545. {
  1546. gfn_t gfn;
  1547. int r;
  1548. u64 gpte = 0;
  1549. pfn_t pfn;
  1550. vcpu->arch.update_pte.largepage = 0;
  1551. if (bytes != 4 && bytes != 8)
  1552. return;
  1553. /*
  1554. * Assume that the pte write on a page table of the same type
  1555. * as the current vcpu paging mode. This is nearly always true
  1556. * (might be false while changing modes). Note it is verified later
  1557. * by update_pte().
  1558. */
  1559. if (is_pae(vcpu)) {
  1560. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  1561. if ((bytes == 4) && (gpa % 4 == 0)) {
  1562. r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
  1563. if (r)
  1564. return;
  1565. memcpy((void *)&gpte + (gpa % 8), new, 4);
  1566. } else if ((bytes == 8) && (gpa % 8 == 0)) {
  1567. memcpy((void *)&gpte, new, 8);
  1568. }
  1569. } else {
  1570. if ((bytes == 4) && (gpa % 4 == 0))
  1571. memcpy((void *)&gpte, new, 4);
  1572. }
  1573. if (!is_present_pte(gpte))
  1574. return;
  1575. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1576. if (is_large_pte(gpte) && is_largepage_backed(vcpu, gfn)) {
  1577. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1578. vcpu->arch.update_pte.largepage = 1;
  1579. }
  1580. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1581. smp_rmb();
  1582. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1583. if (is_error_pfn(pfn)) {
  1584. kvm_release_pfn_clean(pfn);
  1585. return;
  1586. }
  1587. vcpu->arch.update_pte.gfn = gfn;
  1588. vcpu->arch.update_pte.pfn = pfn;
  1589. }
  1590. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  1591. {
  1592. u64 *spte = vcpu->arch.last_pte_updated;
  1593. if (spte
  1594. && vcpu->arch.last_pte_gfn == gfn
  1595. && shadow_accessed_mask
  1596. && !(*spte & shadow_accessed_mask)
  1597. && is_shadow_present_pte(*spte))
  1598. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  1599. }
  1600. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  1601. const u8 *new, int bytes)
  1602. {
  1603. gfn_t gfn = gpa >> PAGE_SHIFT;
  1604. struct kvm_mmu_page *sp;
  1605. struct hlist_node *node, *n;
  1606. struct hlist_head *bucket;
  1607. unsigned index;
  1608. u64 entry, gentry;
  1609. u64 *spte;
  1610. unsigned offset = offset_in_page(gpa);
  1611. unsigned pte_size;
  1612. unsigned page_offset;
  1613. unsigned misaligned;
  1614. unsigned quadrant;
  1615. int level;
  1616. int flooded = 0;
  1617. int npte;
  1618. int r;
  1619. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  1620. mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
  1621. spin_lock(&vcpu->kvm->mmu_lock);
  1622. kvm_mmu_access_page(vcpu, gfn);
  1623. kvm_mmu_free_some_pages(vcpu);
  1624. ++vcpu->kvm->stat.mmu_pte_write;
  1625. kvm_mmu_audit(vcpu, "pre pte write");
  1626. if (gfn == vcpu->arch.last_pt_write_gfn
  1627. && !last_updated_pte_accessed(vcpu)) {
  1628. ++vcpu->arch.last_pt_write_count;
  1629. if (vcpu->arch.last_pt_write_count >= 3)
  1630. flooded = 1;
  1631. } else {
  1632. vcpu->arch.last_pt_write_gfn = gfn;
  1633. vcpu->arch.last_pt_write_count = 1;
  1634. vcpu->arch.last_pte_updated = NULL;
  1635. }
  1636. index = kvm_page_table_hashfn(gfn);
  1637. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1638. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
  1639. if (sp->gfn != gfn || sp->role.metaphysical || sp->role.invalid)
  1640. continue;
  1641. pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  1642. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  1643. misaligned |= bytes < 4;
  1644. if (misaligned || flooded) {
  1645. /*
  1646. * Misaligned accesses are too much trouble to fix
  1647. * up; also, they usually indicate a page is not used
  1648. * as a page table.
  1649. *
  1650. * If we're seeing too many writes to a page,
  1651. * it may no longer be a page table, or we may be
  1652. * forking, in which case it is better to unmap the
  1653. * page.
  1654. */
  1655. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  1656. gpa, bytes, sp->role.word);
  1657. kvm_mmu_zap_page(vcpu->kvm, sp);
  1658. ++vcpu->kvm->stat.mmu_flooded;
  1659. continue;
  1660. }
  1661. page_offset = offset;
  1662. level = sp->role.level;
  1663. npte = 1;
  1664. if (sp->role.glevels == PT32_ROOT_LEVEL) {
  1665. page_offset <<= 1; /* 32->64 */
  1666. /*
  1667. * A 32-bit pde maps 4MB while the shadow pdes map
  1668. * only 2MB. So we need to double the offset again
  1669. * and zap two pdes instead of one.
  1670. */
  1671. if (level == PT32_ROOT_LEVEL) {
  1672. page_offset &= ~7; /* kill rounding error */
  1673. page_offset <<= 1;
  1674. npte = 2;
  1675. }
  1676. quadrant = page_offset >> PAGE_SHIFT;
  1677. page_offset &= ~PAGE_MASK;
  1678. if (quadrant != sp->role.quadrant)
  1679. continue;
  1680. }
  1681. spte = &sp->spt[page_offset / sizeof(*spte)];
  1682. if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
  1683. gentry = 0;
  1684. r = kvm_read_guest_atomic(vcpu->kvm,
  1685. gpa & ~(u64)(pte_size - 1),
  1686. &gentry, pte_size);
  1687. new = (const void *)&gentry;
  1688. if (r < 0)
  1689. new = NULL;
  1690. }
  1691. while (npte--) {
  1692. entry = *spte;
  1693. mmu_pte_write_zap_pte(vcpu, sp, spte);
  1694. if (new)
  1695. mmu_pte_write_new_pte(vcpu, sp, spte, new);
  1696. mmu_pte_write_flush_tlb(vcpu, entry, *spte);
  1697. ++spte;
  1698. }
  1699. }
  1700. kvm_mmu_audit(vcpu, "post pte write");
  1701. spin_unlock(&vcpu->kvm->mmu_lock);
  1702. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  1703. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  1704. vcpu->arch.update_pte.pfn = bad_pfn;
  1705. }
  1706. }
  1707. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  1708. {
  1709. gpa_t gpa;
  1710. int r;
  1711. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  1712. spin_lock(&vcpu->kvm->mmu_lock);
  1713. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1714. spin_unlock(&vcpu->kvm->mmu_lock);
  1715. return r;
  1716. }
  1717. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  1718. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  1719. {
  1720. while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
  1721. struct kvm_mmu_page *sp;
  1722. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  1723. struct kvm_mmu_page, link);
  1724. kvm_mmu_zap_page(vcpu->kvm, sp);
  1725. ++vcpu->kvm->stat.mmu_recycled;
  1726. }
  1727. }
  1728. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  1729. {
  1730. int r;
  1731. enum emulation_result er;
  1732. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  1733. if (r < 0)
  1734. goto out;
  1735. if (!r) {
  1736. r = 1;
  1737. goto out;
  1738. }
  1739. r = mmu_topup_memory_caches(vcpu);
  1740. if (r)
  1741. goto out;
  1742. er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
  1743. switch (er) {
  1744. case EMULATE_DONE:
  1745. return 1;
  1746. case EMULATE_DO_MMIO:
  1747. ++vcpu->stat.mmio_exits;
  1748. return 0;
  1749. case EMULATE_FAIL:
  1750. kvm_report_emulation_failure(vcpu, "pagetable");
  1751. return 1;
  1752. default:
  1753. BUG();
  1754. }
  1755. out:
  1756. return r;
  1757. }
  1758. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  1759. void kvm_enable_tdp(void)
  1760. {
  1761. tdp_enabled = true;
  1762. }
  1763. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  1764. void kvm_disable_tdp(void)
  1765. {
  1766. tdp_enabled = false;
  1767. }
  1768. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  1769. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  1770. {
  1771. struct kvm_mmu_page *sp;
  1772. while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  1773. sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
  1774. struct kvm_mmu_page, link);
  1775. kvm_mmu_zap_page(vcpu->kvm, sp);
  1776. cond_resched();
  1777. }
  1778. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  1779. }
  1780. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  1781. {
  1782. struct page *page;
  1783. int i;
  1784. ASSERT(vcpu);
  1785. if (vcpu->kvm->arch.n_requested_mmu_pages)
  1786. vcpu->kvm->arch.n_free_mmu_pages =
  1787. vcpu->kvm->arch.n_requested_mmu_pages;
  1788. else
  1789. vcpu->kvm->arch.n_free_mmu_pages =
  1790. vcpu->kvm->arch.n_alloc_mmu_pages;
  1791. /*
  1792. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  1793. * Therefore we need to allocate shadow page tables in the first
  1794. * 4GB of memory, which happens to fit the DMA32 zone.
  1795. */
  1796. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  1797. if (!page)
  1798. goto error_1;
  1799. vcpu->arch.mmu.pae_root = page_address(page);
  1800. for (i = 0; i < 4; ++i)
  1801. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1802. return 0;
  1803. error_1:
  1804. free_mmu_pages(vcpu);
  1805. return -ENOMEM;
  1806. }
  1807. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  1808. {
  1809. ASSERT(vcpu);
  1810. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1811. return alloc_mmu_pages(vcpu);
  1812. }
  1813. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  1814. {
  1815. ASSERT(vcpu);
  1816. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1817. return init_kvm_mmu(vcpu);
  1818. }
  1819. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  1820. {
  1821. ASSERT(vcpu);
  1822. destroy_kvm_mmu(vcpu);
  1823. free_mmu_pages(vcpu);
  1824. mmu_free_memory_caches(vcpu);
  1825. }
  1826. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  1827. {
  1828. struct kvm_mmu_page *sp;
  1829. spin_lock(&kvm->mmu_lock);
  1830. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  1831. int i;
  1832. u64 *pt;
  1833. if (!test_bit(slot, &sp->slot_bitmap))
  1834. continue;
  1835. pt = sp->spt;
  1836. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1837. /* avoid RMW */
  1838. if (pt[i] & PT_WRITABLE_MASK)
  1839. pt[i] &= ~PT_WRITABLE_MASK;
  1840. }
  1841. kvm_flush_remote_tlbs(kvm);
  1842. spin_unlock(&kvm->mmu_lock);
  1843. }
  1844. void kvm_mmu_zap_all(struct kvm *kvm)
  1845. {
  1846. struct kvm_mmu_page *sp, *node;
  1847. spin_lock(&kvm->mmu_lock);
  1848. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  1849. kvm_mmu_zap_page(kvm, sp);
  1850. spin_unlock(&kvm->mmu_lock);
  1851. kvm_flush_remote_tlbs(kvm);
  1852. }
  1853. static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
  1854. {
  1855. struct kvm_mmu_page *page;
  1856. page = container_of(kvm->arch.active_mmu_pages.prev,
  1857. struct kvm_mmu_page, link);
  1858. kvm_mmu_zap_page(kvm, page);
  1859. }
  1860. static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
  1861. {
  1862. struct kvm *kvm;
  1863. struct kvm *kvm_freed = NULL;
  1864. int cache_count = 0;
  1865. spin_lock(&kvm_lock);
  1866. list_for_each_entry(kvm, &vm_list, vm_list) {
  1867. int npages;
  1868. if (!down_read_trylock(&kvm->slots_lock))
  1869. continue;
  1870. spin_lock(&kvm->mmu_lock);
  1871. npages = kvm->arch.n_alloc_mmu_pages -
  1872. kvm->arch.n_free_mmu_pages;
  1873. cache_count += npages;
  1874. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  1875. kvm_mmu_remove_one_alloc_mmu_page(kvm);
  1876. cache_count--;
  1877. kvm_freed = kvm;
  1878. }
  1879. nr_to_scan--;
  1880. spin_unlock(&kvm->mmu_lock);
  1881. up_read(&kvm->slots_lock);
  1882. }
  1883. if (kvm_freed)
  1884. list_move_tail(&kvm_freed->vm_list, &vm_list);
  1885. spin_unlock(&kvm_lock);
  1886. return cache_count;
  1887. }
  1888. static struct shrinker mmu_shrinker = {
  1889. .shrink = mmu_shrink,
  1890. .seeks = DEFAULT_SEEKS * 10,
  1891. };
  1892. static void mmu_destroy_caches(void)
  1893. {
  1894. if (pte_chain_cache)
  1895. kmem_cache_destroy(pte_chain_cache);
  1896. if (rmap_desc_cache)
  1897. kmem_cache_destroy(rmap_desc_cache);
  1898. if (mmu_page_header_cache)
  1899. kmem_cache_destroy(mmu_page_header_cache);
  1900. }
  1901. void kvm_mmu_module_exit(void)
  1902. {
  1903. mmu_destroy_caches();
  1904. unregister_shrinker(&mmu_shrinker);
  1905. }
  1906. int kvm_mmu_module_init(void)
  1907. {
  1908. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  1909. sizeof(struct kvm_pte_chain),
  1910. 0, 0, NULL);
  1911. if (!pte_chain_cache)
  1912. goto nomem;
  1913. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  1914. sizeof(struct kvm_rmap_desc),
  1915. 0, 0, NULL);
  1916. if (!rmap_desc_cache)
  1917. goto nomem;
  1918. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  1919. sizeof(struct kvm_mmu_page),
  1920. 0, 0, NULL);
  1921. if (!mmu_page_header_cache)
  1922. goto nomem;
  1923. register_shrinker(&mmu_shrinker);
  1924. return 0;
  1925. nomem:
  1926. mmu_destroy_caches();
  1927. return -ENOMEM;
  1928. }
  1929. /*
  1930. * Caculate mmu pages needed for kvm.
  1931. */
  1932. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  1933. {
  1934. int i;
  1935. unsigned int nr_mmu_pages;
  1936. unsigned int nr_pages = 0;
  1937. for (i = 0; i < kvm->nmemslots; i++)
  1938. nr_pages += kvm->memslots[i].npages;
  1939. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  1940. nr_mmu_pages = max(nr_mmu_pages,
  1941. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  1942. return nr_mmu_pages;
  1943. }
  1944. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  1945. unsigned len)
  1946. {
  1947. if (len > buffer->len)
  1948. return NULL;
  1949. return buffer->ptr;
  1950. }
  1951. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  1952. unsigned len)
  1953. {
  1954. void *ret;
  1955. ret = pv_mmu_peek_buffer(buffer, len);
  1956. if (!ret)
  1957. return ret;
  1958. buffer->ptr += len;
  1959. buffer->len -= len;
  1960. buffer->processed += len;
  1961. return ret;
  1962. }
  1963. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  1964. gpa_t addr, gpa_t value)
  1965. {
  1966. int bytes = 8;
  1967. int r;
  1968. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  1969. bytes = 4;
  1970. r = mmu_topup_memory_caches(vcpu);
  1971. if (r)
  1972. return r;
  1973. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  1974. return -EFAULT;
  1975. return 1;
  1976. }
  1977. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1978. {
  1979. kvm_x86_ops->tlb_flush(vcpu);
  1980. return 1;
  1981. }
  1982. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  1983. {
  1984. spin_lock(&vcpu->kvm->mmu_lock);
  1985. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  1986. spin_unlock(&vcpu->kvm->mmu_lock);
  1987. return 1;
  1988. }
  1989. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  1990. struct kvm_pv_mmu_op_buffer *buffer)
  1991. {
  1992. struct kvm_mmu_op_header *header;
  1993. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  1994. if (!header)
  1995. return 0;
  1996. switch (header->op) {
  1997. case KVM_MMU_OP_WRITE_PTE: {
  1998. struct kvm_mmu_op_write_pte *wpte;
  1999. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  2000. if (!wpte)
  2001. return 0;
  2002. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  2003. wpte->pte_val);
  2004. }
  2005. case KVM_MMU_OP_FLUSH_TLB: {
  2006. struct kvm_mmu_op_flush_tlb *ftlb;
  2007. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  2008. if (!ftlb)
  2009. return 0;
  2010. return kvm_pv_mmu_flush_tlb(vcpu);
  2011. }
  2012. case KVM_MMU_OP_RELEASE_PT: {
  2013. struct kvm_mmu_op_release_pt *rpt;
  2014. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  2015. if (!rpt)
  2016. return 0;
  2017. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  2018. }
  2019. default: return 0;
  2020. }
  2021. }
  2022. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  2023. gpa_t addr, unsigned long *ret)
  2024. {
  2025. int r;
  2026. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  2027. buffer->ptr = buffer->buf;
  2028. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  2029. buffer->processed = 0;
  2030. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  2031. if (r)
  2032. goto out;
  2033. while (buffer->len) {
  2034. r = kvm_pv_mmu_op_one(vcpu, buffer);
  2035. if (r < 0)
  2036. goto out;
  2037. if (r == 0)
  2038. break;
  2039. }
  2040. r = 1;
  2041. out:
  2042. *ret = buffer->processed;
  2043. return r;
  2044. }
  2045. #ifdef AUDIT
  2046. static const char *audit_msg;
  2047. static gva_t canonicalize(gva_t gva)
  2048. {
  2049. #ifdef CONFIG_X86_64
  2050. gva = (long long)(gva << 16) >> 16;
  2051. #endif
  2052. return gva;
  2053. }
  2054. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  2055. gva_t va, int level)
  2056. {
  2057. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  2058. int i;
  2059. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  2060. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  2061. u64 ent = pt[i];
  2062. if (ent == shadow_trap_nonpresent_pte)
  2063. continue;
  2064. va = canonicalize(va);
  2065. if (level > 1) {
  2066. if (ent == shadow_notrap_nonpresent_pte)
  2067. printk(KERN_ERR "audit: (%s) nontrapping pte"
  2068. " in nonleaf level: levels %d gva %lx"
  2069. " level %d pte %llx\n", audit_msg,
  2070. vcpu->arch.mmu.root_level, va, level, ent);
  2071. audit_mappings_page(vcpu, ent, va, level - 1);
  2072. } else {
  2073. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
  2074. hpa_t hpa = (hpa_t)gpa_to_pfn(vcpu, gpa) << PAGE_SHIFT;
  2075. if (is_shadow_present_pte(ent)
  2076. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  2077. printk(KERN_ERR "xx audit error: (%s) levels %d"
  2078. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  2079. audit_msg, vcpu->arch.mmu.root_level,
  2080. va, gpa, hpa, ent,
  2081. is_shadow_present_pte(ent));
  2082. else if (ent == shadow_notrap_nonpresent_pte
  2083. && !is_error_hpa(hpa))
  2084. printk(KERN_ERR "audit: (%s) notrap shadow,"
  2085. " valid guest gva %lx\n", audit_msg, va);
  2086. kvm_release_pfn_clean(pfn);
  2087. }
  2088. }
  2089. }
  2090. static void audit_mappings(struct kvm_vcpu *vcpu)
  2091. {
  2092. unsigned i;
  2093. if (vcpu->arch.mmu.root_level == 4)
  2094. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  2095. else
  2096. for (i = 0; i < 4; ++i)
  2097. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  2098. audit_mappings_page(vcpu,
  2099. vcpu->arch.mmu.pae_root[i],
  2100. i << 30,
  2101. 2);
  2102. }
  2103. static int count_rmaps(struct kvm_vcpu *vcpu)
  2104. {
  2105. int nmaps = 0;
  2106. int i, j, k;
  2107. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  2108. struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
  2109. struct kvm_rmap_desc *d;
  2110. for (j = 0; j < m->npages; ++j) {
  2111. unsigned long *rmapp = &m->rmap[j];
  2112. if (!*rmapp)
  2113. continue;
  2114. if (!(*rmapp & 1)) {
  2115. ++nmaps;
  2116. continue;
  2117. }
  2118. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  2119. while (d) {
  2120. for (k = 0; k < RMAP_EXT; ++k)
  2121. if (d->shadow_ptes[k])
  2122. ++nmaps;
  2123. else
  2124. break;
  2125. d = d->more;
  2126. }
  2127. }
  2128. }
  2129. return nmaps;
  2130. }
  2131. static int count_writable_mappings(struct kvm_vcpu *vcpu)
  2132. {
  2133. int nmaps = 0;
  2134. struct kvm_mmu_page *sp;
  2135. int i;
  2136. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2137. u64 *pt = sp->spt;
  2138. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  2139. continue;
  2140. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2141. u64 ent = pt[i];
  2142. if (!(ent & PT_PRESENT_MASK))
  2143. continue;
  2144. if (!(ent & PT_WRITABLE_MASK))
  2145. continue;
  2146. ++nmaps;
  2147. }
  2148. }
  2149. return nmaps;
  2150. }
  2151. static void audit_rmap(struct kvm_vcpu *vcpu)
  2152. {
  2153. int n_rmap = count_rmaps(vcpu);
  2154. int n_actual = count_writable_mappings(vcpu);
  2155. if (n_rmap != n_actual)
  2156. printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
  2157. __func__, audit_msg, n_rmap, n_actual);
  2158. }
  2159. static void audit_write_protection(struct kvm_vcpu *vcpu)
  2160. {
  2161. struct kvm_mmu_page *sp;
  2162. struct kvm_memory_slot *slot;
  2163. unsigned long *rmapp;
  2164. gfn_t gfn;
  2165. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2166. if (sp->role.metaphysical)
  2167. continue;
  2168. slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
  2169. gfn = unalias_gfn(vcpu->kvm, sp->gfn);
  2170. rmapp = &slot->rmap[gfn - slot->base_gfn];
  2171. if (*rmapp)
  2172. printk(KERN_ERR "%s: (%s) shadow page has writable"
  2173. " mappings: gfn %lx role %x\n",
  2174. __func__, audit_msg, sp->gfn,
  2175. sp->role.word);
  2176. }
  2177. }
  2178. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  2179. {
  2180. int olddbg = dbg;
  2181. dbg = 0;
  2182. audit_msg = msg;
  2183. audit_rmap(vcpu);
  2184. audit_write_protection(vcpu);
  2185. audit_mappings(vcpu);
  2186. dbg = olddbg;
  2187. }
  2188. #endif