kvm_main.c 51 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "iodev.h"
  18. #include <linux/kvm_host.h>
  19. #include <linux/kvm.h>
  20. #include <linux/module.h>
  21. #include <linux/errno.h>
  22. #include <linux/percpu.h>
  23. #include <linux/gfp.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <asm/processor.h>
  43. #include <asm/io.h>
  44. #include <asm/uaccess.h>
  45. #include <asm/pgtable.h>
  46. #ifdef CONFIG_X86
  47. #include <asm/msidef.h>
  48. #endif
  49. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  50. #include "coalesced_mmio.h"
  51. #endif
  52. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  53. #include <linux/pci.h>
  54. #include <linux/interrupt.h>
  55. #include "irq.h"
  56. #endif
  57. MODULE_AUTHOR("Qumranet");
  58. MODULE_LICENSE("GPL");
  59. static int msi2intx = 1;
  60. module_param(msi2intx, bool, 0);
  61. DEFINE_SPINLOCK(kvm_lock);
  62. LIST_HEAD(vm_list);
  63. static cpumask_t cpus_hardware_enabled;
  64. struct kmem_cache *kvm_vcpu_cache;
  65. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  66. static __read_mostly struct preempt_ops kvm_preempt_ops;
  67. struct dentry *kvm_debugfs_dir;
  68. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  69. unsigned long arg);
  70. static bool kvm_rebooting;
  71. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  72. #ifdef CONFIG_X86
  73. static void assigned_device_msi_dispatch(struct kvm_assigned_dev_kernel *dev)
  74. {
  75. int vcpu_id;
  76. struct kvm_vcpu *vcpu;
  77. struct kvm_ioapic *ioapic = ioapic_irqchip(dev->kvm);
  78. int dest_id = (dev->guest_msi.address_lo & MSI_ADDR_DEST_ID_MASK)
  79. >> MSI_ADDR_DEST_ID_SHIFT;
  80. int vector = (dev->guest_msi.data & MSI_DATA_VECTOR_MASK)
  81. >> MSI_DATA_VECTOR_SHIFT;
  82. int dest_mode = test_bit(MSI_ADDR_DEST_MODE_SHIFT,
  83. (unsigned long *)&dev->guest_msi.address_lo);
  84. int trig_mode = test_bit(MSI_DATA_TRIGGER_SHIFT,
  85. (unsigned long *)&dev->guest_msi.data);
  86. int delivery_mode = test_bit(MSI_DATA_DELIVERY_MODE_SHIFT,
  87. (unsigned long *)&dev->guest_msi.data);
  88. u32 deliver_bitmask;
  89. BUG_ON(!ioapic);
  90. deliver_bitmask = kvm_ioapic_get_delivery_bitmask(ioapic,
  91. dest_id, dest_mode);
  92. /* IOAPIC delivery mode value is the same as MSI here */
  93. switch (delivery_mode) {
  94. case IOAPIC_LOWEST_PRIORITY:
  95. vcpu = kvm_get_lowest_prio_vcpu(ioapic->kvm, vector,
  96. deliver_bitmask);
  97. if (vcpu != NULL)
  98. kvm_apic_set_irq(vcpu, vector, trig_mode);
  99. else
  100. printk(KERN_INFO "kvm: null lowest priority vcpu!\n");
  101. break;
  102. case IOAPIC_FIXED:
  103. for (vcpu_id = 0; deliver_bitmask != 0; vcpu_id++) {
  104. if (!(deliver_bitmask & (1 << vcpu_id)))
  105. continue;
  106. deliver_bitmask &= ~(1 << vcpu_id);
  107. vcpu = ioapic->kvm->vcpus[vcpu_id];
  108. if (vcpu)
  109. kvm_apic_set_irq(vcpu, vector, trig_mode);
  110. }
  111. break;
  112. default:
  113. printk(KERN_INFO "kvm: unsupported MSI delivery mode\n");
  114. }
  115. }
  116. #else
  117. static void assigned_device_msi_dispatch(struct kvm_assigned_dev_kernel *dev) {}
  118. #endif
  119. static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
  120. int assigned_dev_id)
  121. {
  122. struct list_head *ptr;
  123. struct kvm_assigned_dev_kernel *match;
  124. list_for_each(ptr, head) {
  125. match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
  126. if (match->assigned_dev_id == assigned_dev_id)
  127. return match;
  128. }
  129. return NULL;
  130. }
  131. static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
  132. {
  133. struct kvm_assigned_dev_kernel *assigned_dev;
  134. assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
  135. interrupt_work);
  136. /* This is taken to safely inject irq inside the guest. When
  137. * the interrupt injection (or the ioapic code) uses a
  138. * finer-grained lock, update this
  139. */
  140. mutex_lock(&assigned_dev->kvm->lock);
  141. if (assigned_dev->irq_requested_type & KVM_ASSIGNED_DEV_GUEST_INTX)
  142. kvm_set_irq(assigned_dev->kvm,
  143. assigned_dev->irq_source_id,
  144. assigned_dev->guest_irq, 1);
  145. else if (assigned_dev->irq_requested_type &
  146. KVM_ASSIGNED_DEV_GUEST_MSI) {
  147. assigned_device_msi_dispatch(assigned_dev);
  148. enable_irq(assigned_dev->host_irq);
  149. }
  150. mutex_unlock(&assigned_dev->kvm->lock);
  151. kvm_put_kvm(assigned_dev->kvm);
  152. }
  153. static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
  154. {
  155. struct kvm_assigned_dev_kernel *assigned_dev =
  156. (struct kvm_assigned_dev_kernel *) dev_id;
  157. kvm_get_kvm(assigned_dev->kvm);
  158. schedule_work(&assigned_dev->interrupt_work);
  159. disable_irq_nosync(irq);
  160. return IRQ_HANDLED;
  161. }
  162. /* Ack the irq line for an assigned device */
  163. static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
  164. {
  165. struct kvm_assigned_dev_kernel *dev;
  166. if (kian->gsi == -1)
  167. return;
  168. dev = container_of(kian, struct kvm_assigned_dev_kernel,
  169. ack_notifier);
  170. kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
  171. enable_irq(dev->host_irq);
  172. }
  173. static void kvm_free_assigned_device(struct kvm *kvm,
  174. struct kvm_assigned_dev_kernel
  175. *assigned_dev)
  176. {
  177. if (irqchip_in_kernel(kvm) && assigned_dev->irq_requested_type)
  178. free_irq(assigned_dev->host_irq, (void *)assigned_dev);
  179. if (assigned_dev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)
  180. pci_disable_msi(assigned_dev->dev);
  181. kvm_unregister_irq_ack_notifier(&assigned_dev->ack_notifier);
  182. kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
  183. if (cancel_work_sync(&assigned_dev->interrupt_work))
  184. /* We had pending work. That means we will have to take
  185. * care of kvm_put_kvm.
  186. */
  187. kvm_put_kvm(kvm);
  188. pci_reset_function(assigned_dev->dev);
  189. pci_release_regions(assigned_dev->dev);
  190. pci_disable_device(assigned_dev->dev);
  191. pci_dev_put(assigned_dev->dev);
  192. list_del(&assigned_dev->list);
  193. kfree(assigned_dev);
  194. }
  195. void kvm_free_all_assigned_devices(struct kvm *kvm)
  196. {
  197. struct list_head *ptr, *ptr2;
  198. struct kvm_assigned_dev_kernel *assigned_dev;
  199. list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
  200. assigned_dev = list_entry(ptr,
  201. struct kvm_assigned_dev_kernel,
  202. list);
  203. kvm_free_assigned_device(kvm, assigned_dev);
  204. }
  205. }
  206. static int assigned_device_update_intx(struct kvm *kvm,
  207. struct kvm_assigned_dev_kernel *adev,
  208. struct kvm_assigned_irq *airq)
  209. {
  210. adev->guest_irq = airq->guest_irq;
  211. adev->ack_notifier.gsi = airq->guest_irq;
  212. if (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_INTX)
  213. return 0;
  214. if (irqchip_in_kernel(kvm)) {
  215. if (!msi2intx &&
  216. adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI) {
  217. free_irq(adev->host_irq, (void *)kvm);
  218. pci_disable_msi(adev->dev);
  219. }
  220. if (!capable(CAP_SYS_RAWIO))
  221. return -EPERM;
  222. if (airq->host_irq)
  223. adev->host_irq = airq->host_irq;
  224. else
  225. adev->host_irq = adev->dev->irq;
  226. /* Even though this is PCI, we don't want to use shared
  227. * interrupts. Sharing host devices with guest-assigned devices
  228. * on the same interrupt line is not a happy situation: there
  229. * are going to be long delays in accepting, acking, etc.
  230. */
  231. if (request_irq(adev->host_irq, kvm_assigned_dev_intr,
  232. 0, "kvm_assigned_intx_device", (void *)adev))
  233. return -EIO;
  234. }
  235. adev->irq_requested_type = KVM_ASSIGNED_DEV_GUEST_INTX |
  236. KVM_ASSIGNED_DEV_HOST_INTX;
  237. return 0;
  238. }
  239. #ifdef CONFIG_X86
  240. static int assigned_device_update_msi(struct kvm *kvm,
  241. struct kvm_assigned_dev_kernel *adev,
  242. struct kvm_assigned_irq *airq)
  243. {
  244. int r;
  245. if (airq->flags & KVM_DEV_IRQ_ASSIGN_ENABLE_MSI) {
  246. /* x86 don't care upper address of guest msi message addr */
  247. adev->irq_requested_type |= KVM_ASSIGNED_DEV_GUEST_MSI;
  248. adev->irq_requested_type &= ~KVM_ASSIGNED_DEV_GUEST_INTX;
  249. adev->guest_msi.address_lo = airq->guest_msi.addr_lo;
  250. adev->guest_msi.data = airq->guest_msi.data;
  251. adev->ack_notifier.gsi = -1;
  252. } else if (msi2intx) {
  253. adev->irq_requested_type |= KVM_ASSIGNED_DEV_GUEST_INTX;
  254. adev->irq_requested_type &= ~KVM_ASSIGNED_DEV_GUEST_MSI;
  255. adev->guest_irq = airq->guest_irq;
  256. adev->ack_notifier.gsi = airq->guest_irq;
  257. }
  258. if (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)
  259. return 0;
  260. if (irqchip_in_kernel(kvm)) {
  261. if (!msi2intx) {
  262. if (adev->irq_requested_type &
  263. KVM_ASSIGNED_DEV_HOST_INTX)
  264. free_irq(adev->host_irq, (void *)adev);
  265. r = pci_enable_msi(adev->dev);
  266. if (r)
  267. return r;
  268. }
  269. adev->host_irq = adev->dev->irq;
  270. if (request_irq(adev->host_irq, kvm_assigned_dev_intr, 0,
  271. "kvm_assigned_msi_device", (void *)adev))
  272. return -EIO;
  273. }
  274. if (!msi2intx)
  275. adev->irq_requested_type = KVM_ASSIGNED_DEV_GUEST_MSI;
  276. adev->irq_requested_type |= KVM_ASSIGNED_DEV_HOST_MSI;
  277. return 0;
  278. }
  279. #endif
  280. static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
  281. struct kvm_assigned_irq
  282. *assigned_irq)
  283. {
  284. int r = 0;
  285. struct kvm_assigned_dev_kernel *match;
  286. mutex_lock(&kvm->lock);
  287. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  288. assigned_irq->assigned_dev_id);
  289. if (!match) {
  290. mutex_unlock(&kvm->lock);
  291. return -EINVAL;
  292. }
  293. if (!match->irq_requested_type) {
  294. INIT_WORK(&match->interrupt_work,
  295. kvm_assigned_dev_interrupt_work_handler);
  296. if (irqchip_in_kernel(kvm)) {
  297. /* Register ack nofitier */
  298. match->ack_notifier.gsi = -1;
  299. match->ack_notifier.irq_acked =
  300. kvm_assigned_dev_ack_irq;
  301. kvm_register_irq_ack_notifier(kvm,
  302. &match->ack_notifier);
  303. /* Request IRQ source ID */
  304. r = kvm_request_irq_source_id(kvm);
  305. if (r < 0)
  306. goto out_release;
  307. else
  308. match->irq_source_id = r;
  309. #ifdef CONFIG_X86
  310. /* Determine host device irq type, we can know the
  311. * result from dev->msi_enabled */
  312. if (msi2intx)
  313. pci_enable_msi(match->dev);
  314. #endif
  315. }
  316. }
  317. if ((!msi2intx &&
  318. (assigned_irq->flags & KVM_DEV_IRQ_ASSIGN_ENABLE_MSI)) ||
  319. (msi2intx && match->dev->msi_enabled)) {
  320. #ifdef CONFIG_X86
  321. r = assigned_device_update_msi(kvm, match, assigned_irq);
  322. if (r) {
  323. printk(KERN_WARNING "kvm: failed to enable "
  324. "MSI device!\n");
  325. goto out_release;
  326. }
  327. #else
  328. r = -ENOTTY;
  329. #endif
  330. } else if (assigned_irq->host_irq == 0 && match->dev->irq == 0) {
  331. /* Host device IRQ 0 means don't support INTx */
  332. if (!msi2intx) {
  333. printk(KERN_WARNING
  334. "kvm: wait device to enable MSI!\n");
  335. r = 0;
  336. } else {
  337. printk(KERN_WARNING
  338. "kvm: failed to enable MSI device!\n");
  339. r = -ENOTTY;
  340. goto out_release;
  341. }
  342. } else {
  343. /* Non-sharing INTx mode */
  344. r = assigned_device_update_intx(kvm, match, assigned_irq);
  345. if (r) {
  346. printk(KERN_WARNING "kvm: failed to enable "
  347. "INTx device!\n");
  348. goto out_release;
  349. }
  350. }
  351. mutex_unlock(&kvm->lock);
  352. return r;
  353. out_release:
  354. mutex_unlock(&kvm->lock);
  355. kvm_free_assigned_device(kvm, match);
  356. return r;
  357. }
  358. static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
  359. struct kvm_assigned_pci_dev *assigned_dev)
  360. {
  361. int r = 0;
  362. struct kvm_assigned_dev_kernel *match;
  363. struct pci_dev *dev;
  364. mutex_lock(&kvm->lock);
  365. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  366. assigned_dev->assigned_dev_id);
  367. if (match) {
  368. /* device already assigned */
  369. r = -EINVAL;
  370. goto out;
  371. }
  372. match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
  373. if (match == NULL) {
  374. printk(KERN_INFO "%s: Couldn't allocate memory\n",
  375. __func__);
  376. r = -ENOMEM;
  377. goto out;
  378. }
  379. dev = pci_get_bus_and_slot(assigned_dev->busnr,
  380. assigned_dev->devfn);
  381. if (!dev) {
  382. printk(KERN_INFO "%s: host device not found\n", __func__);
  383. r = -EINVAL;
  384. goto out_free;
  385. }
  386. if (pci_enable_device(dev)) {
  387. printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
  388. r = -EBUSY;
  389. goto out_put;
  390. }
  391. r = pci_request_regions(dev, "kvm_assigned_device");
  392. if (r) {
  393. printk(KERN_INFO "%s: Could not get access to device regions\n",
  394. __func__);
  395. goto out_disable;
  396. }
  397. pci_reset_function(dev);
  398. match->assigned_dev_id = assigned_dev->assigned_dev_id;
  399. match->host_busnr = assigned_dev->busnr;
  400. match->host_devfn = assigned_dev->devfn;
  401. match->dev = dev;
  402. match->kvm = kvm;
  403. list_add(&match->list, &kvm->arch.assigned_dev_head);
  404. if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
  405. r = kvm_iommu_map_guest(kvm, match);
  406. if (r)
  407. goto out_list_del;
  408. }
  409. out:
  410. mutex_unlock(&kvm->lock);
  411. return r;
  412. out_list_del:
  413. list_del(&match->list);
  414. pci_release_regions(dev);
  415. out_disable:
  416. pci_disable_device(dev);
  417. out_put:
  418. pci_dev_put(dev);
  419. out_free:
  420. kfree(match);
  421. mutex_unlock(&kvm->lock);
  422. return r;
  423. }
  424. #endif
  425. static inline int valid_vcpu(int n)
  426. {
  427. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  428. }
  429. inline int kvm_is_mmio_pfn(pfn_t pfn)
  430. {
  431. if (pfn_valid(pfn))
  432. return PageReserved(pfn_to_page(pfn));
  433. return true;
  434. }
  435. /*
  436. * Switches to specified vcpu, until a matching vcpu_put()
  437. */
  438. void vcpu_load(struct kvm_vcpu *vcpu)
  439. {
  440. int cpu;
  441. mutex_lock(&vcpu->mutex);
  442. cpu = get_cpu();
  443. preempt_notifier_register(&vcpu->preempt_notifier);
  444. kvm_arch_vcpu_load(vcpu, cpu);
  445. put_cpu();
  446. }
  447. void vcpu_put(struct kvm_vcpu *vcpu)
  448. {
  449. preempt_disable();
  450. kvm_arch_vcpu_put(vcpu);
  451. preempt_notifier_unregister(&vcpu->preempt_notifier);
  452. preempt_enable();
  453. mutex_unlock(&vcpu->mutex);
  454. }
  455. static void ack_flush(void *_completed)
  456. {
  457. }
  458. void kvm_flush_remote_tlbs(struct kvm *kvm)
  459. {
  460. int i, cpu, me;
  461. cpumask_t cpus;
  462. struct kvm_vcpu *vcpu;
  463. me = get_cpu();
  464. cpus_clear(cpus);
  465. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  466. vcpu = kvm->vcpus[i];
  467. if (!vcpu)
  468. continue;
  469. if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  470. continue;
  471. cpu = vcpu->cpu;
  472. if (cpu != -1 && cpu != me)
  473. cpu_set(cpu, cpus);
  474. }
  475. if (cpus_empty(cpus))
  476. goto out;
  477. ++kvm->stat.remote_tlb_flush;
  478. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  479. out:
  480. put_cpu();
  481. }
  482. void kvm_reload_remote_mmus(struct kvm *kvm)
  483. {
  484. int i, cpu, me;
  485. cpumask_t cpus;
  486. struct kvm_vcpu *vcpu;
  487. me = get_cpu();
  488. cpus_clear(cpus);
  489. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  490. vcpu = kvm->vcpus[i];
  491. if (!vcpu)
  492. continue;
  493. if (test_and_set_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  494. continue;
  495. cpu = vcpu->cpu;
  496. if (cpu != -1 && cpu != me)
  497. cpu_set(cpu, cpus);
  498. }
  499. if (cpus_empty(cpus))
  500. goto out;
  501. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  502. out:
  503. put_cpu();
  504. }
  505. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  506. {
  507. struct page *page;
  508. int r;
  509. mutex_init(&vcpu->mutex);
  510. vcpu->cpu = -1;
  511. vcpu->kvm = kvm;
  512. vcpu->vcpu_id = id;
  513. init_waitqueue_head(&vcpu->wq);
  514. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  515. if (!page) {
  516. r = -ENOMEM;
  517. goto fail;
  518. }
  519. vcpu->run = page_address(page);
  520. r = kvm_arch_vcpu_init(vcpu);
  521. if (r < 0)
  522. goto fail_free_run;
  523. return 0;
  524. fail_free_run:
  525. free_page((unsigned long)vcpu->run);
  526. fail:
  527. return r;
  528. }
  529. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  530. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  531. {
  532. kvm_arch_vcpu_uninit(vcpu);
  533. free_page((unsigned long)vcpu->run);
  534. }
  535. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  536. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  537. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  538. {
  539. return container_of(mn, struct kvm, mmu_notifier);
  540. }
  541. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  542. struct mm_struct *mm,
  543. unsigned long address)
  544. {
  545. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  546. int need_tlb_flush;
  547. /*
  548. * When ->invalidate_page runs, the linux pte has been zapped
  549. * already but the page is still allocated until
  550. * ->invalidate_page returns. So if we increase the sequence
  551. * here the kvm page fault will notice if the spte can't be
  552. * established because the page is going to be freed. If
  553. * instead the kvm page fault establishes the spte before
  554. * ->invalidate_page runs, kvm_unmap_hva will release it
  555. * before returning.
  556. *
  557. * The sequence increase only need to be seen at spin_unlock
  558. * time, and not at spin_lock time.
  559. *
  560. * Increasing the sequence after the spin_unlock would be
  561. * unsafe because the kvm page fault could then establish the
  562. * pte after kvm_unmap_hva returned, without noticing the page
  563. * is going to be freed.
  564. */
  565. spin_lock(&kvm->mmu_lock);
  566. kvm->mmu_notifier_seq++;
  567. need_tlb_flush = kvm_unmap_hva(kvm, address);
  568. spin_unlock(&kvm->mmu_lock);
  569. /* we've to flush the tlb before the pages can be freed */
  570. if (need_tlb_flush)
  571. kvm_flush_remote_tlbs(kvm);
  572. }
  573. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  574. struct mm_struct *mm,
  575. unsigned long start,
  576. unsigned long end)
  577. {
  578. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  579. int need_tlb_flush = 0;
  580. spin_lock(&kvm->mmu_lock);
  581. /*
  582. * The count increase must become visible at unlock time as no
  583. * spte can be established without taking the mmu_lock and
  584. * count is also read inside the mmu_lock critical section.
  585. */
  586. kvm->mmu_notifier_count++;
  587. for (; start < end; start += PAGE_SIZE)
  588. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  589. spin_unlock(&kvm->mmu_lock);
  590. /* we've to flush the tlb before the pages can be freed */
  591. if (need_tlb_flush)
  592. kvm_flush_remote_tlbs(kvm);
  593. }
  594. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  595. struct mm_struct *mm,
  596. unsigned long start,
  597. unsigned long end)
  598. {
  599. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  600. spin_lock(&kvm->mmu_lock);
  601. /*
  602. * This sequence increase will notify the kvm page fault that
  603. * the page that is going to be mapped in the spte could have
  604. * been freed.
  605. */
  606. kvm->mmu_notifier_seq++;
  607. /*
  608. * The above sequence increase must be visible before the
  609. * below count decrease but both values are read by the kvm
  610. * page fault under mmu_lock spinlock so we don't need to add
  611. * a smb_wmb() here in between the two.
  612. */
  613. kvm->mmu_notifier_count--;
  614. spin_unlock(&kvm->mmu_lock);
  615. BUG_ON(kvm->mmu_notifier_count < 0);
  616. }
  617. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  618. struct mm_struct *mm,
  619. unsigned long address)
  620. {
  621. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  622. int young;
  623. spin_lock(&kvm->mmu_lock);
  624. young = kvm_age_hva(kvm, address);
  625. spin_unlock(&kvm->mmu_lock);
  626. if (young)
  627. kvm_flush_remote_tlbs(kvm);
  628. return young;
  629. }
  630. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  631. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  632. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  633. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  634. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  635. };
  636. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  637. static struct kvm *kvm_create_vm(void)
  638. {
  639. struct kvm *kvm = kvm_arch_create_vm();
  640. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  641. struct page *page;
  642. #endif
  643. if (IS_ERR(kvm))
  644. goto out;
  645. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  646. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  647. if (!page) {
  648. kfree(kvm);
  649. return ERR_PTR(-ENOMEM);
  650. }
  651. kvm->coalesced_mmio_ring =
  652. (struct kvm_coalesced_mmio_ring *)page_address(page);
  653. #endif
  654. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  655. {
  656. int err;
  657. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  658. err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  659. if (err) {
  660. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  661. put_page(page);
  662. #endif
  663. kfree(kvm);
  664. return ERR_PTR(err);
  665. }
  666. }
  667. #endif
  668. kvm->mm = current->mm;
  669. atomic_inc(&kvm->mm->mm_count);
  670. spin_lock_init(&kvm->mmu_lock);
  671. kvm_io_bus_init(&kvm->pio_bus);
  672. mutex_init(&kvm->lock);
  673. kvm_io_bus_init(&kvm->mmio_bus);
  674. init_rwsem(&kvm->slots_lock);
  675. atomic_set(&kvm->users_count, 1);
  676. spin_lock(&kvm_lock);
  677. list_add(&kvm->vm_list, &vm_list);
  678. spin_unlock(&kvm_lock);
  679. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  680. kvm_coalesced_mmio_init(kvm);
  681. #endif
  682. out:
  683. return kvm;
  684. }
  685. /*
  686. * Free any memory in @free but not in @dont.
  687. */
  688. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  689. struct kvm_memory_slot *dont)
  690. {
  691. if (!dont || free->rmap != dont->rmap)
  692. vfree(free->rmap);
  693. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  694. vfree(free->dirty_bitmap);
  695. if (!dont || free->lpage_info != dont->lpage_info)
  696. vfree(free->lpage_info);
  697. free->npages = 0;
  698. free->dirty_bitmap = NULL;
  699. free->rmap = NULL;
  700. free->lpage_info = NULL;
  701. }
  702. void kvm_free_physmem(struct kvm *kvm)
  703. {
  704. int i;
  705. for (i = 0; i < kvm->nmemslots; ++i)
  706. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  707. }
  708. static void kvm_destroy_vm(struct kvm *kvm)
  709. {
  710. struct mm_struct *mm = kvm->mm;
  711. spin_lock(&kvm_lock);
  712. list_del(&kvm->vm_list);
  713. spin_unlock(&kvm_lock);
  714. kvm_io_bus_destroy(&kvm->pio_bus);
  715. kvm_io_bus_destroy(&kvm->mmio_bus);
  716. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  717. if (kvm->coalesced_mmio_ring != NULL)
  718. free_page((unsigned long)kvm->coalesced_mmio_ring);
  719. #endif
  720. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  721. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  722. #endif
  723. kvm_arch_destroy_vm(kvm);
  724. mmdrop(mm);
  725. }
  726. void kvm_get_kvm(struct kvm *kvm)
  727. {
  728. atomic_inc(&kvm->users_count);
  729. }
  730. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  731. void kvm_put_kvm(struct kvm *kvm)
  732. {
  733. if (atomic_dec_and_test(&kvm->users_count))
  734. kvm_destroy_vm(kvm);
  735. }
  736. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  737. static int kvm_vm_release(struct inode *inode, struct file *filp)
  738. {
  739. struct kvm *kvm = filp->private_data;
  740. kvm_put_kvm(kvm);
  741. return 0;
  742. }
  743. /*
  744. * Allocate some memory and give it an address in the guest physical address
  745. * space.
  746. *
  747. * Discontiguous memory is allowed, mostly for framebuffers.
  748. *
  749. * Must be called holding mmap_sem for write.
  750. */
  751. int __kvm_set_memory_region(struct kvm *kvm,
  752. struct kvm_userspace_memory_region *mem,
  753. int user_alloc)
  754. {
  755. int r;
  756. gfn_t base_gfn;
  757. unsigned long npages;
  758. unsigned long i;
  759. struct kvm_memory_slot *memslot;
  760. struct kvm_memory_slot old, new;
  761. r = -EINVAL;
  762. /* General sanity checks */
  763. if (mem->memory_size & (PAGE_SIZE - 1))
  764. goto out;
  765. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  766. goto out;
  767. if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
  768. goto out;
  769. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  770. goto out;
  771. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  772. goto out;
  773. memslot = &kvm->memslots[mem->slot];
  774. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  775. npages = mem->memory_size >> PAGE_SHIFT;
  776. if (!npages)
  777. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  778. new = old = *memslot;
  779. new.base_gfn = base_gfn;
  780. new.npages = npages;
  781. new.flags = mem->flags;
  782. /* Disallow changing a memory slot's size. */
  783. r = -EINVAL;
  784. if (npages && old.npages && npages != old.npages)
  785. goto out_free;
  786. /* Check for overlaps */
  787. r = -EEXIST;
  788. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  789. struct kvm_memory_slot *s = &kvm->memslots[i];
  790. if (s == memslot)
  791. continue;
  792. if (!((base_gfn + npages <= s->base_gfn) ||
  793. (base_gfn >= s->base_gfn + s->npages)))
  794. goto out_free;
  795. }
  796. /* Free page dirty bitmap if unneeded */
  797. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  798. new.dirty_bitmap = NULL;
  799. r = -ENOMEM;
  800. /* Allocate if a slot is being created */
  801. #ifndef CONFIG_S390
  802. if (npages && !new.rmap) {
  803. new.rmap = vmalloc(npages * sizeof(struct page *));
  804. if (!new.rmap)
  805. goto out_free;
  806. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  807. new.user_alloc = user_alloc;
  808. /*
  809. * hva_to_rmmap() serialzies with the mmu_lock and to be
  810. * safe it has to ignore memslots with !user_alloc &&
  811. * !userspace_addr.
  812. */
  813. if (user_alloc)
  814. new.userspace_addr = mem->userspace_addr;
  815. else
  816. new.userspace_addr = 0;
  817. }
  818. if (npages && !new.lpage_info) {
  819. int largepages = npages / KVM_PAGES_PER_HPAGE;
  820. if (npages % KVM_PAGES_PER_HPAGE)
  821. largepages++;
  822. if (base_gfn % KVM_PAGES_PER_HPAGE)
  823. largepages++;
  824. new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
  825. if (!new.lpage_info)
  826. goto out_free;
  827. memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
  828. if (base_gfn % KVM_PAGES_PER_HPAGE)
  829. new.lpage_info[0].write_count = 1;
  830. if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
  831. new.lpage_info[largepages-1].write_count = 1;
  832. }
  833. /* Allocate page dirty bitmap if needed */
  834. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  835. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  836. new.dirty_bitmap = vmalloc(dirty_bytes);
  837. if (!new.dirty_bitmap)
  838. goto out_free;
  839. memset(new.dirty_bitmap, 0, dirty_bytes);
  840. }
  841. #endif /* not defined CONFIG_S390 */
  842. if (!npages)
  843. kvm_arch_flush_shadow(kvm);
  844. spin_lock(&kvm->mmu_lock);
  845. if (mem->slot >= kvm->nmemslots)
  846. kvm->nmemslots = mem->slot + 1;
  847. *memslot = new;
  848. spin_unlock(&kvm->mmu_lock);
  849. r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
  850. if (r) {
  851. spin_lock(&kvm->mmu_lock);
  852. *memslot = old;
  853. spin_unlock(&kvm->mmu_lock);
  854. goto out_free;
  855. }
  856. kvm_free_physmem_slot(&old, &new);
  857. #ifdef CONFIG_DMAR
  858. /* map the pages in iommu page table */
  859. r = kvm_iommu_map_pages(kvm, base_gfn, npages);
  860. if (r)
  861. goto out;
  862. #endif
  863. return 0;
  864. out_free:
  865. kvm_free_physmem_slot(&new, &old);
  866. out:
  867. return r;
  868. }
  869. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  870. int kvm_set_memory_region(struct kvm *kvm,
  871. struct kvm_userspace_memory_region *mem,
  872. int user_alloc)
  873. {
  874. int r;
  875. down_write(&kvm->slots_lock);
  876. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  877. up_write(&kvm->slots_lock);
  878. return r;
  879. }
  880. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  881. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  882. struct
  883. kvm_userspace_memory_region *mem,
  884. int user_alloc)
  885. {
  886. if (mem->slot >= KVM_MEMORY_SLOTS)
  887. return -EINVAL;
  888. return kvm_set_memory_region(kvm, mem, user_alloc);
  889. }
  890. int kvm_get_dirty_log(struct kvm *kvm,
  891. struct kvm_dirty_log *log, int *is_dirty)
  892. {
  893. struct kvm_memory_slot *memslot;
  894. int r, i;
  895. int n;
  896. unsigned long any = 0;
  897. r = -EINVAL;
  898. if (log->slot >= KVM_MEMORY_SLOTS)
  899. goto out;
  900. memslot = &kvm->memslots[log->slot];
  901. r = -ENOENT;
  902. if (!memslot->dirty_bitmap)
  903. goto out;
  904. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  905. for (i = 0; !any && i < n/sizeof(long); ++i)
  906. any = memslot->dirty_bitmap[i];
  907. r = -EFAULT;
  908. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  909. goto out;
  910. if (any)
  911. *is_dirty = 1;
  912. r = 0;
  913. out:
  914. return r;
  915. }
  916. int is_error_page(struct page *page)
  917. {
  918. return page == bad_page;
  919. }
  920. EXPORT_SYMBOL_GPL(is_error_page);
  921. int is_error_pfn(pfn_t pfn)
  922. {
  923. return pfn == bad_pfn;
  924. }
  925. EXPORT_SYMBOL_GPL(is_error_pfn);
  926. static inline unsigned long bad_hva(void)
  927. {
  928. return PAGE_OFFSET;
  929. }
  930. int kvm_is_error_hva(unsigned long addr)
  931. {
  932. return addr == bad_hva();
  933. }
  934. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  935. struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
  936. {
  937. int i;
  938. for (i = 0; i < kvm->nmemslots; ++i) {
  939. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  940. if (gfn >= memslot->base_gfn
  941. && gfn < memslot->base_gfn + memslot->npages)
  942. return memslot;
  943. }
  944. return NULL;
  945. }
  946. EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
  947. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  948. {
  949. gfn = unalias_gfn(kvm, gfn);
  950. return gfn_to_memslot_unaliased(kvm, gfn);
  951. }
  952. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  953. {
  954. int i;
  955. gfn = unalias_gfn(kvm, gfn);
  956. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  957. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  958. if (gfn >= memslot->base_gfn
  959. && gfn < memslot->base_gfn + memslot->npages)
  960. return 1;
  961. }
  962. return 0;
  963. }
  964. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  965. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  966. {
  967. struct kvm_memory_slot *slot;
  968. gfn = unalias_gfn(kvm, gfn);
  969. slot = gfn_to_memslot_unaliased(kvm, gfn);
  970. if (!slot)
  971. return bad_hva();
  972. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  973. }
  974. EXPORT_SYMBOL_GPL(gfn_to_hva);
  975. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  976. {
  977. struct page *page[1];
  978. unsigned long addr;
  979. int npages;
  980. pfn_t pfn;
  981. might_sleep();
  982. addr = gfn_to_hva(kvm, gfn);
  983. if (kvm_is_error_hva(addr)) {
  984. get_page(bad_page);
  985. return page_to_pfn(bad_page);
  986. }
  987. npages = get_user_pages_fast(addr, 1, 1, page);
  988. if (unlikely(npages != 1)) {
  989. struct vm_area_struct *vma;
  990. down_read(&current->mm->mmap_sem);
  991. vma = find_vma(current->mm, addr);
  992. if (vma == NULL || addr < vma->vm_start ||
  993. !(vma->vm_flags & VM_PFNMAP)) {
  994. up_read(&current->mm->mmap_sem);
  995. get_page(bad_page);
  996. return page_to_pfn(bad_page);
  997. }
  998. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  999. up_read(&current->mm->mmap_sem);
  1000. BUG_ON(!kvm_is_mmio_pfn(pfn));
  1001. } else
  1002. pfn = page_to_pfn(page[0]);
  1003. return pfn;
  1004. }
  1005. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  1006. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  1007. {
  1008. pfn_t pfn;
  1009. pfn = gfn_to_pfn(kvm, gfn);
  1010. if (!kvm_is_mmio_pfn(pfn))
  1011. return pfn_to_page(pfn);
  1012. WARN_ON(kvm_is_mmio_pfn(pfn));
  1013. get_page(bad_page);
  1014. return bad_page;
  1015. }
  1016. EXPORT_SYMBOL_GPL(gfn_to_page);
  1017. void kvm_release_page_clean(struct page *page)
  1018. {
  1019. kvm_release_pfn_clean(page_to_pfn(page));
  1020. }
  1021. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  1022. void kvm_release_pfn_clean(pfn_t pfn)
  1023. {
  1024. if (!kvm_is_mmio_pfn(pfn))
  1025. put_page(pfn_to_page(pfn));
  1026. }
  1027. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  1028. void kvm_release_page_dirty(struct page *page)
  1029. {
  1030. kvm_release_pfn_dirty(page_to_pfn(page));
  1031. }
  1032. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  1033. void kvm_release_pfn_dirty(pfn_t pfn)
  1034. {
  1035. kvm_set_pfn_dirty(pfn);
  1036. kvm_release_pfn_clean(pfn);
  1037. }
  1038. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  1039. void kvm_set_page_dirty(struct page *page)
  1040. {
  1041. kvm_set_pfn_dirty(page_to_pfn(page));
  1042. }
  1043. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  1044. void kvm_set_pfn_dirty(pfn_t pfn)
  1045. {
  1046. if (!kvm_is_mmio_pfn(pfn)) {
  1047. struct page *page = pfn_to_page(pfn);
  1048. if (!PageReserved(page))
  1049. SetPageDirty(page);
  1050. }
  1051. }
  1052. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  1053. void kvm_set_pfn_accessed(pfn_t pfn)
  1054. {
  1055. if (!kvm_is_mmio_pfn(pfn))
  1056. mark_page_accessed(pfn_to_page(pfn));
  1057. }
  1058. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  1059. void kvm_get_pfn(pfn_t pfn)
  1060. {
  1061. if (!kvm_is_mmio_pfn(pfn))
  1062. get_page(pfn_to_page(pfn));
  1063. }
  1064. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  1065. static int next_segment(unsigned long len, int offset)
  1066. {
  1067. if (len > PAGE_SIZE - offset)
  1068. return PAGE_SIZE - offset;
  1069. else
  1070. return len;
  1071. }
  1072. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  1073. int len)
  1074. {
  1075. int r;
  1076. unsigned long addr;
  1077. addr = gfn_to_hva(kvm, gfn);
  1078. if (kvm_is_error_hva(addr))
  1079. return -EFAULT;
  1080. r = copy_from_user(data, (void __user *)addr + offset, len);
  1081. if (r)
  1082. return -EFAULT;
  1083. return 0;
  1084. }
  1085. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  1086. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  1087. {
  1088. gfn_t gfn = gpa >> PAGE_SHIFT;
  1089. int seg;
  1090. int offset = offset_in_page(gpa);
  1091. int ret;
  1092. while ((seg = next_segment(len, offset)) != 0) {
  1093. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  1094. if (ret < 0)
  1095. return ret;
  1096. offset = 0;
  1097. len -= seg;
  1098. data += seg;
  1099. ++gfn;
  1100. }
  1101. return 0;
  1102. }
  1103. EXPORT_SYMBOL_GPL(kvm_read_guest);
  1104. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  1105. unsigned long len)
  1106. {
  1107. int r;
  1108. unsigned long addr;
  1109. gfn_t gfn = gpa >> PAGE_SHIFT;
  1110. int offset = offset_in_page(gpa);
  1111. addr = gfn_to_hva(kvm, gfn);
  1112. if (kvm_is_error_hva(addr))
  1113. return -EFAULT;
  1114. pagefault_disable();
  1115. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  1116. pagefault_enable();
  1117. if (r)
  1118. return -EFAULT;
  1119. return 0;
  1120. }
  1121. EXPORT_SYMBOL(kvm_read_guest_atomic);
  1122. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  1123. int offset, int len)
  1124. {
  1125. int r;
  1126. unsigned long addr;
  1127. addr = gfn_to_hva(kvm, gfn);
  1128. if (kvm_is_error_hva(addr))
  1129. return -EFAULT;
  1130. r = copy_to_user((void __user *)addr + offset, data, len);
  1131. if (r)
  1132. return -EFAULT;
  1133. mark_page_dirty(kvm, gfn);
  1134. return 0;
  1135. }
  1136. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  1137. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  1138. unsigned long len)
  1139. {
  1140. gfn_t gfn = gpa >> PAGE_SHIFT;
  1141. int seg;
  1142. int offset = offset_in_page(gpa);
  1143. int ret;
  1144. while ((seg = next_segment(len, offset)) != 0) {
  1145. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  1146. if (ret < 0)
  1147. return ret;
  1148. offset = 0;
  1149. len -= seg;
  1150. data += seg;
  1151. ++gfn;
  1152. }
  1153. return 0;
  1154. }
  1155. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  1156. {
  1157. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  1158. }
  1159. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1160. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1161. {
  1162. gfn_t gfn = gpa >> PAGE_SHIFT;
  1163. int seg;
  1164. int offset = offset_in_page(gpa);
  1165. int ret;
  1166. while ((seg = next_segment(len, offset)) != 0) {
  1167. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1168. if (ret < 0)
  1169. return ret;
  1170. offset = 0;
  1171. len -= seg;
  1172. ++gfn;
  1173. }
  1174. return 0;
  1175. }
  1176. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1177. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1178. {
  1179. struct kvm_memory_slot *memslot;
  1180. gfn = unalias_gfn(kvm, gfn);
  1181. memslot = gfn_to_memslot_unaliased(kvm, gfn);
  1182. if (memslot && memslot->dirty_bitmap) {
  1183. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1184. /* avoid RMW */
  1185. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  1186. set_bit(rel_gfn, memslot->dirty_bitmap);
  1187. }
  1188. }
  1189. /*
  1190. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1191. */
  1192. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1193. {
  1194. DEFINE_WAIT(wait);
  1195. for (;;) {
  1196. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1197. if (kvm_cpu_has_interrupt(vcpu) ||
  1198. kvm_cpu_has_pending_timer(vcpu) ||
  1199. kvm_arch_vcpu_runnable(vcpu)) {
  1200. set_bit(KVM_REQ_UNHALT, &vcpu->requests);
  1201. break;
  1202. }
  1203. if (signal_pending(current))
  1204. break;
  1205. vcpu_put(vcpu);
  1206. schedule();
  1207. vcpu_load(vcpu);
  1208. }
  1209. finish_wait(&vcpu->wq, &wait);
  1210. }
  1211. void kvm_resched(struct kvm_vcpu *vcpu)
  1212. {
  1213. if (!need_resched())
  1214. return;
  1215. cond_resched();
  1216. }
  1217. EXPORT_SYMBOL_GPL(kvm_resched);
  1218. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1219. {
  1220. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1221. struct page *page;
  1222. if (vmf->pgoff == 0)
  1223. page = virt_to_page(vcpu->run);
  1224. #ifdef CONFIG_X86
  1225. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1226. page = virt_to_page(vcpu->arch.pio_data);
  1227. #endif
  1228. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1229. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1230. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1231. #endif
  1232. else
  1233. return VM_FAULT_SIGBUS;
  1234. get_page(page);
  1235. vmf->page = page;
  1236. return 0;
  1237. }
  1238. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  1239. .fault = kvm_vcpu_fault,
  1240. };
  1241. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1242. {
  1243. vma->vm_ops = &kvm_vcpu_vm_ops;
  1244. return 0;
  1245. }
  1246. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1247. {
  1248. struct kvm_vcpu *vcpu = filp->private_data;
  1249. kvm_put_kvm(vcpu->kvm);
  1250. return 0;
  1251. }
  1252. static const struct file_operations kvm_vcpu_fops = {
  1253. .release = kvm_vcpu_release,
  1254. .unlocked_ioctl = kvm_vcpu_ioctl,
  1255. .compat_ioctl = kvm_vcpu_ioctl,
  1256. .mmap = kvm_vcpu_mmap,
  1257. };
  1258. /*
  1259. * Allocates an inode for the vcpu.
  1260. */
  1261. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1262. {
  1263. int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
  1264. if (fd < 0)
  1265. kvm_put_kvm(vcpu->kvm);
  1266. return fd;
  1267. }
  1268. /*
  1269. * Creates some virtual cpus. Good luck creating more than one.
  1270. */
  1271. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  1272. {
  1273. int r;
  1274. struct kvm_vcpu *vcpu;
  1275. if (!valid_vcpu(n))
  1276. return -EINVAL;
  1277. vcpu = kvm_arch_vcpu_create(kvm, n);
  1278. if (IS_ERR(vcpu))
  1279. return PTR_ERR(vcpu);
  1280. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1281. r = kvm_arch_vcpu_setup(vcpu);
  1282. if (r)
  1283. return r;
  1284. mutex_lock(&kvm->lock);
  1285. if (kvm->vcpus[n]) {
  1286. r = -EEXIST;
  1287. goto vcpu_destroy;
  1288. }
  1289. kvm->vcpus[n] = vcpu;
  1290. mutex_unlock(&kvm->lock);
  1291. /* Now it's all set up, let userspace reach it */
  1292. kvm_get_kvm(kvm);
  1293. r = create_vcpu_fd(vcpu);
  1294. if (r < 0)
  1295. goto unlink;
  1296. return r;
  1297. unlink:
  1298. mutex_lock(&kvm->lock);
  1299. kvm->vcpus[n] = NULL;
  1300. vcpu_destroy:
  1301. mutex_unlock(&kvm->lock);
  1302. kvm_arch_vcpu_destroy(vcpu);
  1303. return r;
  1304. }
  1305. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1306. {
  1307. if (sigset) {
  1308. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1309. vcpu->sigset_active = 1;
  1310. vcpu->sigset = *sigset;
  1311. } else
  1312. vcpu->sigset_active = 0;
  1313. return 0;
  1314. }
  1315. static long kvm_vcpu_ioctl(struct file *filp,
  1316. unsigned int ioctl, unsigned long arg)
  1317. {
  1318. struct kvm_vcpu *vcpu = filp->private_data;
  1319. void __user *argp = (void __user *)arg;
  1320. int r;
  1321. struct kvm_fpu *fpu = NULL;
  1322. struct kvm_sregs *kvm_sregs = NULL;
  1323. if (vcpu->kvm->mm != current->mm)
  1324. return -EIO;
  1325. switch (ioctl) {
  1326. case KVM_RUN:
  1327. r = -EINVAL;
  1328. if (arg)
  1329. goto out;
  1330. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1331. break;
  1332. case KVM_GET_REGS: {
  1333. struct kvm_regs *kvm_regs;
  1334. r = -ENOMEM;
  1335. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1336. if (!kvm_regs)
  1337. goto out;
  1338. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1339. if (r)
  1340. goto out_free1;
  1341. r = -EFAULT;
  1342. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1343. goto out_free1;
  1344. r = 0;
  1345. out_free1:
  1346. kfree(kvm_regs);
  1347. break;
  1348. }
  1349. case KVM_SET_REGS: {
  1350. struct kvm_regs *kvm_regs;
  1351. r = -ENOMEM;
  1352. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1353. if (!kvm_regs)
  1354. goto out;
  1355. r = -EFAULT;
  1356. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  1357. goto out_free2;
  1358. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1359. if (r)
  1360. goto out_free2;
  1361. r = 0;
  1362. out_free2:
  1363. kfree(kvm_regs);
  1364. break;
  1365. }
  1366. case KVM_GET_SREGS: {
  1367. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1368. r = -ENOMEM;
  1369. if (!kvm_sregs)
  1370. goto out;
  1371. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1372. if (r)
  1373. goto out;
  1374. r = -EFAULT;
  1375. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1376. goto out;
  1377. r = 0;
  1378. break;
  1379. }
  1380. case KVM_SET_SREGS: {
  1381. kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1382. r = -ENOMEM;
  1383. if (!kvm_sregs)
  1384. goto out;
  1385. r = -EFAULT;
  1386. if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
  1387. goto out;
  1388. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1389. if (r)
  1390. goto out;
  1391. r = 0;
  1392. break;
  1393. }
  1394. case KVM_GET_MP_STATE: {
  1395. struct kvm_mp_state mp_state;
  1396. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1397. if (r)
  1398. goto out;
  1399. r = -EFAULT;
  1400. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1401. goto out;
  1402. r = 0;
  1403. break;
  1404. }
  1405. case KVM_SET_MP_STATE: {
  1406. struct kvm_mp_state mp_state;
  1407. r = -EFAULT;
  1408. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1409. goto out;
  1410. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1411. if (r)
  1412. goto out;
  1413. r = 0;
  1414. break;
  1415. }
  1416. case KVM_TRANSLATE: {
  1417. struct kvm_translation tr;
  1418. r = -EFAULT;
  1419. if (copy_from_user(&tr, argp, sizeof tr))
  1420. goto out;
  1421. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1422. if (r)
  1423. goto out;
  1424. r = -EFAULT;
  1425. if (copy_to_user(argp, &tr, sizeof tr))
  1426. goto out;
  1427. r = 0;
  1428. break;
  1429. }
  1430. case KVM_DEBUG_GUEST: {
  1431. struct kvm_debug_guest dbg;
  1432. r = -EFAULT;
  1433. if (copy_from_user(&dbg, argp, sizeof dbg))
  1434. goto out;
  1435. r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
  1436. if (r)
  1437. goto out;
  1438. r = 0;
  1439. break;
  1440. }
  1441. case KVM_SET_SIGNAL_MASK: {
  1442. struct kvm_signal_mask __user *sigmask_arg = argp;
  1443. struct kvm_signal_mask kvm_sigmask;
  1444. sigset_t sigset, *p;
  1445. p = NULL;
  1446. if (argp) {
  1447. r = -EFAULT;
  1448. if (copy_from_user(&kvm_sigmask, argp,
  1449. sizeof kvm_sigmask))
  1450. goto out;
  1451. r = -EINVAL;
  1452. if (kvm_sigmask.len != sizeof sigset)
  1453. goto out;
  1454. r = -EFAULT;
  1455. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1456. sizeof sigset))
  1457. goto out;
  1458. p = &sigset;
  1459. }
  1460. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  1461. break;
  1462. }
  1463. case KVM_GET_FPU: {
  1464. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1465. r = -ENOMEM;
  1466. if (!fpu)
  1467. goto out;
  1468. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1469. if (r)
  1470. goto out;
  1471. r = -EFAULT;
  1472. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1473. goto out;
  1474. r = 0;
  1475. break;
  1476. }
  1477. case KVM_SET_FPU: {
  1478. fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1479. r = -ENOMEM;
  1480. if (!fpu)
  1481. goto out;
  1482. r = -EFAULT;
  1483. if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
  1484. goto out;
  1485. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1486. if (r)
  1487. goto out;
  1488. r = 0;
  1489. break;
  1490. }
  1491. default:
  1492. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1493. }
  1494. out:
  1495. kfree(fpu);
  1496. kfree(kvm_sregs);
  1497. return r;
  1498. }
  1499. static long kvm_vm_ioctl(struct file *filp,
  1500. unsigned int ioctl, unsigned long arg)
  1501. {
  1502. struct kvm *kvm = filp->private_data;
  1503. void __user *argp = (void __user *)arg;
  1504. int r;
  1505. if (kvm->mm != current->mm)
  1506. return -EIO;
  1507. switch (ioctl) {
  1508. case KVM_CREATE_VCPU:
  1509. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1510. if (r < 0)
  1511. goto out;
  1512. break;
  1513. case KVM_SET_USER_MEMORY_REGION: {
  1514. struct kvm_userspace_memory_region kvm_userspace_mem;
  1515. r = -EFAULT;
  1516. if (copy_from_user(&kvm_userspace_mem, argp,
  1517. sizeof kvm_userspace_mem))
  1518. goto out;
  1519. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1520. if (r)
  1521. goto out;
  1522. break;
  1523. }
  1524. case KVM_GET_DIRTY_LOG: {
  1525. struct kvm_dirty_log log;
  1526. r = -EFAULT;
  1527. if (copy_from_user(&log, argp, sizeof log))
  1528. goto out;
  1529. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1530. if (r)
  1531. goto out;
  1532. break;
  1533. }
  1534. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1535. case KVM_REGISTER_COALESCED_MMIO: {
  1536. struct kvm_coalesced_mmio_zone zone;
  1537. r = -EFAULT;
  1538. if (copy_from_user(&zone, argp, sizeof zone))
  1539. goto out;
  1540. r = -ENXIO;
  1541. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1542. if (r)
  1543. goto out;
  1544. r = 0;
  1545. break;
  1546. }
  1547. case KVM_UNREGISTER_COALESCED_MMIO: {
  1548. struct kvm_coalesced_mmio_zone zone;
  1549. r = -EFAULT;
  1550. if (copy_from_user(&zone, argp, sizeof zone))
  1551. goto out;
  1552. r = -ENXIO;
  1553. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1554. if (r)
  1555. goto out;
  1556. r = 0;
  1557. break;
  1558. }
  1559. #endif
  1560. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  1561. case KVM_ASSIGN_PCI_DEVICE: {
  1562. struct kvm_assigned_pci_dev assigned_dev;
  1563. r = -EFAULT;
  1564. if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
  1565. goto out;
  1566. r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
  1567. if (r)
  1568. goto out;
  1569. break;
  1570. }
  1571. case KVM_ASSIGN_IRQ: {
  1572. struct kvm_assigned_irq assigned_irq;
  1573. r = -EFAULT;
  1574. if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
  1575. goto out;
  1576. r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
  1577. if (r)
  1578. goto out;
  1579. break;
  1580. }
  1581. #endif
  1582. default:
  1583. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1584. }
  1585. out:
  1586. return r;
  1587. }
  1588. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1589. {
  1590. struct page *page[1];
  1591. unsigned long addr;
  1592. int npages;
  1593. gfn_t gfn = vmf->pgoff;
  1594. struct kvm *kvm = vma->vm_file->private_data;
  1595. addr = gfn_to_hva(kvm, gfn);
  1596. if (kvm_is_error_hva(addr))
  1597. return VM_FAULT_SIGBUS;
  1598. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1599. NULL);
  1600. if (unlikely(npages != 1))
  1601. return VM_FAULT_SIGBUS;
  1602. vmf->page = page[0];
  1603. return 0;
  1604. }
  1605. static struct vm_operations_struct kvm_vm_vm_ops = {
  1606. .fault = kvm_vm_fault,
  1607. };
  1608. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1609. {
  1610. vma->vm_ops = &kvm_vm_vm_ops;
  1611. return 0;
  1612. }
  1613. static const struct file_operations kvm_vm_fops = {
  1614. .release = kvm_vm_release,
  1615. .unlocked_ioctl = kvm_vm_ioctl,
  1616. .compat_ioctl = kvm_vm_ioctl,
  1617. .mmap = kvm_vm_mmap,
  1618. };
  1619. static int kvm_dev_ioctl_create_vm(void)
  1620. {
  1621. int fd;
  1622. struct kvm *kvm;
  1623. kvm = kvm_create_vm();
  1624. if (IS_ERR(kvm))
  1625. return PTR_ERR(kvm);
  1626. fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
  1627. if (fd < 0)
  1628. kvm_put_kvm(kvm);
  1629. return fd;
  1630. }
  1631. static long kvm_dev_ioctl(struct file *filp,
  1632. unsigned int ioctl, unsigned long arg)
  1633. {
  1634. long r = -EINVAL;
  1635. switch (ioctl) {
  1636. case KVM_GET_API_VERSION:
  1637. r = -EINVAL;
  1638. if (arg)
  1639. goto out;
  1640. r = KVM_API_VERSION;
  1641. break;
  1642. case KVM_CREATE_VM:
  1643. r = -EINVAL;
  1644. if (arg)
  1645. goto out;
  1646. r = kvm_dev_ioctl_create_vm();
  1647. break;
  1648. case KVM_CHECK_EXTENSION:
  1649. r = kvm_dev_ioctl_check_extension(arg);
  1650. break;
  1651. case KVM_GET_VCPU_MMAP_SIZE:
  1652. r = -EINVAL;
  1653. if (arg)
  1654. goto out;
  1655. r = PAGE_SIZE; /* struct kvm_run */
  1656. #ifdef CONFIG_X86
  1657. r += PAGE_SIZE; /* pio data page */
  1658. #endif
  1659. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1660. r += PAGE_SIZE; /* coalesced mmio ring page */
  1661. #endif
  1662. break;
  1663. case KVM_TRACE_ENABLE:
  1664. case KVM_TRACE_PAUSE:
  1665. case KVM_TRACE_DISABLE:
  1666. r = kvm_trace_ioctl(ioctl, arg);
  1667. break;
  1668. default:
  1669. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1670. }
  1671. out:
  1672. return r;
  1673. }
  1674. static struct file_operations kvm_chardev_ops = {
  1675. .unlocked_ioctl = kvm_dev_ioctl,
  1676. .compat_ioctl = kvm_dev_ioctl,
  1677. };
  1678. static struct miscdevice kvm_dev = {
  1679. KVM_MINOR,
  1680. "kvm",
  1681. &kvm_chardev_ops,
  1682. };
  1683. static void hardware_enable(void *junk)
  1684. {
  1685. int cpu = raw_smp_processor_id();
  1686. if (cpu_isset(cpu, cpus_hardware_enabled))
  1687. return;
  1688. cpu_set(cpu, cpus_hardware_enabled);
  1689. kvm_arch_hardware_enable(NULL);
  1690. }
  1691. static void hardware_disable(void *junk)
  1692. {
  1693. int cpu = raw_smp_processor_id();
  1694. if (!cpu_isset(cpu, cpus_hardware_enabled))
  1695. return;
  1696. cpu_clear(cpu, cpus_hardware_enabled);
  1697. kvm_arch_hardware_disable(NULL);
  1698. }
  1699. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1700. void *v)
  1701. {
  1702. int cpu = (long)v;
  1703. val &= ~CPU_TASKS_FROZEN;
  1704. switch (val) {
  1705. case CPU_DYING:
  1706. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1707. cpu);
  1708. hardware_disable(NULL);
  1709. break;
  1710. case CPU_UP_CANCELED:
  1711. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1712. cpu);
  1713. smp_call_function_single(cpu, hardware_disable, NULL, 1);
  1714. break;
  1715. case CPU_ONLINE:
  1716. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1717. cpu);
  1718. smp_call_function_single(cpu, hardware_enable, NULL, 1);
  1719. break;
  1720. }
  1721. return NOTIFY_OK;
  1722. }
  1723. asmlinkage void kvm_handle_fault_on_reboot(void)
  1724. {
  1725. if (kvm_rebooting)
  1726. /* spin while reset goes on */
  1727. while (true)
  1728. ;
  1729. /* Fault while not rebooting. We want the trace. */
  1730. BUG();
  1731. }
  1732. EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
  1733. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1734. void *v)
  1735. {
  1736. if (val == SYS_RESTART) {
  1737. /*
  1738. * Some (well, at least mine) BIOSes hang on reboot if
  1739. * in vmx root mode.
  1740. */
  1741. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1742. kvm_rebooting = true;
  1743. on_each_cpu(hardware_disable, NULL, 1);
  1744. }
  1745. return NOTIFY_OK;
  1746. }
  1747. static struct notifier_block kvm_reboot_notifier = {
  1748. .notifier_call = kvm_reboot,
  1749. .priority = 0,
  1750. };
  1751. void kvm_io_bus_init(struct kvm_io_bus *bus)
  1752. {
  1753. memset(bus, 0, sizeof(*bus));
  1754. }
  1755. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1756. {
  1757. int i;
  1758. for (i = 0; i < bus->dev_count; i++) {
  1759. struct kvm_io_device *pos = bus->devs[i];
  1760. kvm_iodevice_destructor(pos);
  1761. }
  1762. }
  1763. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
  1764. gpa_t addr, int len, int is_write)
  1765. {
  1766. int i;
  1767. for (i = 0; i < bus->dev_count; i++) {
  1768. struct kvm_io_device *pos = bus->devs[i];
  1769. if (pos->in_range(pos, addr, len, is_write))
  1770. return pos;
  1771. }
  1772. return NULL;
  1773. }
  1774. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  1775. {
  1776. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  1777. bus->devs[bus->dev_count++] = dev;
  1778. }
  1779. static struct notifier_block kvm_cpu_notifier = {
  1780. .notifier_call = kvm_cpu_hotplug,
  1781. .priority = 20, /* must be > scheduler priority */
  1782. };
  1783. static int vm_stat_get(void *_offset, u64 *val)
  1784. {
  1785. unsigned offset = (long)_offset;
  1786. struct kvm *kvm;
  1787. *val = 0;
  1788. spin_lock(&kvm_lock);
  1789. list_for_each_entry(kvm, &vm_list, vm_list)
  1790. *val += *(u32 *)((void *)kvm + offset);
  1791. spin_unlock(&kvm_lock);
  1792. return 0;
  1793. }
  1794. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  1795. static int vcpu_stat_get(void *_offset, u64 *val)
  1796. {
  1797. unsigned offset = (long)_offset;
  1798. struct kvm *kvm;
  1799. struct kvm_vcpu *vcpu;
  1800. int i;
  1801. *val = 0;
  1802. spin_lock(&kvm_lock);
  1803. list_for_each_entry(kvm, &vm_list, vm_list)
  1804. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1805. vcpu = kvm->vcpus[i];
  1806. if (vcpu)
  1807. *val += *(u32 *)((void *)vcpu + offset);
  1808. }
  1809. spin_unlock(&kvm_lock);
  1810. return 0;
  1811. }
  1812. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  1813. static struct file_operations *stat_fops[] = {
  1814. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  1815. [KVM_STAT_VM] = &vm_stat_fops,
  1816. };
  1817. static void kvm_init_debug(void)
  1818. {
  1819. struct kvm_stats_debugfs_item *p;
  1820. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  1821. for (p = debugfs_entries; p->name; ++p)
  1822. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  1823. (void *)(long)p->offset,
  1824. stat_fops[p->kind]);
  1825. }
  1826. static void kvm_exit_debug(void)
  1827. {
  1828. struct kvm_stats_debugfs_item *p;
  1829. for (p = debugfs_entries; p->name; ++p)
  1830. debugfs_remove(p->dentry);
  1831. debugfs_remove(kvm_debugfs_dir);
  1832. }
  1833. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1834. {
  1835. hardware_disable(NULL);
  1836. return 0;
  1837. }
  1838. static int kvm_resume(struct sys_device *dev)
  1839. {
  1840. hardware_enable(NULL);
  1841. return 0;
  1842. }
  1843. static struct sysdev_class kvm_sysdev_class = {
  1844. .name = "kvm",
  1845. .suspend = kvm_suspend,
  1846. .resume = kvm_resume,
  1847. };
  1848. static struct sys_device kvm_sysdev = {
  1849. .id = 0,
  1850. .cls = &kvm_sysdev_class,
  1851. };
  1852. struct page *bad_page;
  1853. pfn_t bad_pfn;
  1854. static inline
  1855. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  1856. {
  1857. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  1858. }
  1859. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  1860. {
  1861. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1862. kvm_arch_vcpu_load(vcpu, cpu);
  1863. }
  1864. static void kvm_sched_out(struct preempt_notifier *pn,
  1865. struct task_struct *next)
  1866. {
  1867. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1868. kvm_arch_vcpu_put(vcpu);
  1869. }
  1870. int kvm_init(void *opaque, unsigned int vcpu_size,
  1871. struct module *module)
  1872. {
  1873. int r;
  1874. int cpu;
  1875. kvm_init_debug();
  1876. r = kvm_arch_init(opaque);
  1877. if (r)
  1878. goto out_fail;
  1879. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1880. if (bad_page == NULL) {
  1881. r = -ENOMEM;
  1882. goto out;
  1883. }
  1884. bad_pfn = page_to_pfn(bad_page);
  1885. r = kvm_arch_hardware_setup();
  1886. if (r < 0)
  1887. goto out_free_0;
  1888. for_each_online_cpu(cpu) {
  1889. smp_call_function_single(cpu,
  1890. kvm_arch_check_processor_compat,
  1891. &r, 1);
  1892. if (r < 0)
  1893. goto out_free_1;
  1894. }
  1895. on_each_cpu(hardware_enable, NULL, 1);
  1896. r = register_cpu_notifier(&kvm_cpu_notifier);
  1897. if (r)
  1898. goto out_free_2;
  1899. register_reboot_notifier(&kvm_reboot_notifier);
  1900. r = sysdev_class_register(&kvm_sysdev_class);
  1901. if (r)
  1902. goto out_free_3;
  1903. r = sysdev_register(&kvm_sysdev);
  1904. if (r)
  1905. goto out_free_4;
  1906. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  1907. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  1908. __alignof__(struct kvm_vcpu),
  1909. 0, NULL);
  1910. if (!kvm_vcpu_cache) {
  1911. r = -ENOMEM;
  1912. goto out_free_5;
  1913. }
  1914. kvm_chardev_ops.owner = module;
  1915. r = misc_register(&kvm_dev);
  1916. if (r) {
  1917. printk(KERN_ERR "kvm: misc device register failed\n");
  1918. goto out_free;
  1919. }
  1920. kvm_preempt_ops.sched_in = kvm_sched_in;
  1921. kvm_preempt_ops.sched_out = kvm_sched_out;
  1922. #ifndef CONFIG_X86
  1923. msi2intx = 0;
  1924. #endif
  1925. return 0;
  1926. out_free:
  1927. kmem_cache_destroy(kvm_vcpu_cache);
  1928. out_free_5:
  1929. sysdev_unregister(&kvm_sysdev);
  1930. out_free_4:
  1931. sysdev_class_unregister(&kvm_sysdev_class);
  1932. out_free_3:
  1933. unregister_reboot_notifier(&kvm_reboot_notifier);
  1934. unregister_cpu_notifier(&kvm_cpu_notifier);
  1935. out_free_2:
  1936. on_each_cpu(hardware_disable, NULL, 1);
  1937. out_free_1:
  1938. kvm_arch_hardware_unsetup();
  1939. out_free_0:
  1940. __free_page(bad_page);
  1941. out:
  1942. kvm_arch_exit();
  1943. kvm_exit_debug();
  1944. out_fail:
  1945. return r;
  1946. }
  1947. EXPORT_SYMBOL_GPL(kvm_init);
  1948. void kvm_exit(void)
  1949. {
  1950. kvm_trace_cleanup();
  1951. misc_deregister(&kvm_dev);
  1952. kmem_cache_destroy(kvm_vcpu_cache);
  1953. sysdev_unregister(&kvm_sysdev);
  1954. sysdev_class_unregister(&kvm_sysdev_class);
  1955. unregister_reboot_notifier(&kvm_reboot_notifier);
  1956. unregister_cpu_notifier(&kvm_cpu_notifier);
  1957. on_each_cpu(hardware_disable, NULL, 1);
  1958. kvm_arch_hardware_unsetup();
  1959. kvm_arch_exit();
  1960. kvm_exit_debug();
  1961. __free_page(bad_page);
  1962. }
  1963. EXPORT_SYMBOL_GPL(kvm_exit);