mmu.c 81 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "mmu.h"
  20. #include "x86.h"
  21. #include "kvm_cache_regs.h"
  22. #include <linux/kvm_host.h>
  23. #include <linux/types.h>
  24. #include <linux/string.h>
  25. #include <linux/mm.h>
  26. #include <linux/highmem.h>
  27. #include <linux/module.h>
  28. #include <linux/swap.h>
  29. #include <linux/hugetlb.h>
  30. #include <linux/compiler.h>
  31. #include <linux/srcu.h>
  32. #include <linux/slab.h>
  33. #include <linux/uaccess.h>
  34. #include <asm/page.h>
  35. #include <asm/cmpxchg.h>
  36. #include <asm/io.h>
  37. #include <asm/vmx.h>
  38. /*
  39. * When setting this variable to true it enables Two-Dimensional-Paging
  40. * where the hardware walks 2 page tables:
  41. * 1. the guest-virtual to guest-physical
  42. * 2. while doing 1. it walks guest-physical to host-physical
  43. * If the hardware supports that we don't need to do shadow paging.
  44. */
  45. bool tdp_enabled = false;
  46. #undef MMU_DEBUG
  47. #undef AUDIT
  48. #ifdef AUDIT
  49. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  50. #else
  51. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  52. #endif
  53. #ifdef MMU_DEBUG
  54. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  55. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  56. #else
  57. #define pgprintk(x...) do { } while (0)
  58. #define rmap_printk(x...) do { } while (0)
  59. #endif
  60. #if defined(MMU_DEBUG) || defined(AUDIT)
  61. static int dbg = 0;
  62. module_param(dbg, bool, 0644);
  63. #endif
  64. static int oos_shadow = 1;
  65. module_param(oos_shadow, bool, 0644);
  66. #ifndef MMU_DEBUG
  67. #define ASSERT(x) do { } while (0)
  68. #else
  69. #define ASSERT(x) \
  70. if (!(x)) { \
  71. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  72. __FILE__, __LINE__, #x); \
  73. }
  74. #endif
  75. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  76. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  77. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  78. #define PT64_LEVEL_BITS 9
  79. #define PT64_LEVEL_SHIFT(level) \
  80. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  81. #define PT64_LEVEL_MASK(level) \
  82. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  83. #define PT64_INDEX(address, level)\
  84. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  85. #define PT32_LEVEL_BITS 10
  86. #define PT32_LEVEL_SHIFT(level) \
  87. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  88. #define PT32_LEVEL_MASK(level) \
  89. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  90. #define PT32_LVL_OFFSET_MASK(level) \
  91. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  92. * PT32_LEVEL_BITS))) - 1))
  93. #define PT32_INDEX(address, level)\
  94. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  95. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  96. #define PT64_DIR_BASE_ADDR_MASK \
  97. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  98. #define PT64_LVL_ADDR_MASK(level) \
  99. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  100. * PT64_LEVEL_BITS))) - 1))
  101. #define PT64_LVL_OFFSET_MASK(level) \
  102. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  103. * PT64_LEVEL_BITS))) - 1))
  104. #define PT32_BASE_ADDR_MASK PAGE_MASK
  105. #define PT32_DIR_BASE_ADDR_MASK \
  106. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  107. #define PT32_LVL_ADDR_MASK(level) \
  108. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  109. * PT32_LEVEL_BITS))) - 1))
  110. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  111. | PT64_NX_MASK)
  112. #define RMAP_EXT 4
  113. #define ACC_EXEC_MASK 1
  114. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  115. #define ACC_USER_MASK PT_USER_MASK
  116. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  117. #include <trace/events/kvm.h>
  118. #define CREATE_TRACE_POINTS
  119. #include "mmutrace.h"
  120. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  121. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  122. struct kvm_rmap_desc {
  123. u64 *sptes[RMAP_EXT];
  124. struct kvm_rmap_desc *more;
  125. };
  126. struct kvm_shadow_walk_iterator {
  127. u64 addr;
  128. hpa_t shadow_addr;
  129. int level;
  130. u64 *sptep;
  131. unsigned index;
  132. };
  133. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  134. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  135. shadow_walk_okay(&(_walker)); \
  136. shadow_walk_next(&(_walker)))
  137. typedef int (*mmu_parent_walk_fn) (struct kvm_mmu_page *sp);
  138. static struct kmem_cache *pte_chain_cache;
  139. static struct kmem_cache *rmap_desc_cache;
  140. static struct kmem_cache *mmu_page_header_cache;
  141. static u64 __read_mostly shadow_trap_nonpresent_pte;
  142. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  143. static u64 __read_mostly shadow_base_present_pte;
  144. static u64 __read_mostly shadow_nx_mask;
  145. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  146. static u64 __read_mostly shadow_user_mask;
  147. static u64 __read_mostly shadow_accessed_mask;
  148. static u64 __read_mostly shadow_dirty_mask;
  149. static inline u64 rsvd_bits(int s, int e)
  150. {
  151. return ((1ULL << (e - s + 1)) - 1) << s;
  152. }
  153. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  154. {
  155. shadow_trap_nonpresent_pte = trap_pte;
  156. shadow_notrap_nonpresent_pte = notrap_pte;
  157. }
  158. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  159. void kvm_mmu_set_base_ptes(u64 base_pte)
  160. {
  161. shadow_base_present_pte = base_pte;
  162. }
  163. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  164. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  165. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  166. {
  167. shadow_user_mask = user_mask;
  168. shadow_accessed_mask = accessed_mask;
  169. shadow_dirty_mask = dirty_mask;
  170. shadow_nx_mask = nx_mask;
  171. shadow_x_mask = x_mask;
  172. }
  173. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  174. static bool is_write_protection(struct kvm_vcpu *vcpu)
  175. {
  176. return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
  177. }
  178. static int is_cpuid_PSE36(void)
  179. {
  180. return 1;
  181. }
  182. static int is_nx(struct kvm_vcpu *vcpu)
  183. {
  184. return vcpu->arch.efer & EFER_NX;
  185. }
  186. static int is_shadow_present_pte(u64 pte)
  187. {
  188. return pte != shadow_trap_nonpresent_pte
  189. && pte != shadow_notrap_nonpresent_pte;
  190. }
  191. static int is_large_pte(u64 pte)
  192. {
  193. return pte & PT_PAGE_SIZE_MASK;
  194. }
  195. static int is_writable_pte(unsigned long pte)
  196. {
  197. return pte & PT_WRITABLE_MASK;
  198. }
  199. static int is_dirty_gpte(unsigned long pte)
  200. {
  201. return pte & PT_DIRTY_MASK;
  202. }
  203. static int is_rmap_spte(u64 pte)
  204. {
  205. return is_shadow_present_pte(pte);
  206. }
  207. static int is_last_spte(u64 pte, int level)
  208. {
  209. if (level == PT_PAGE_TABLE_LEVEL)
  210. return 1;
  211. if (is_large_pte(pte))
  212. return 1;
  213. return 0;
  214. }
  215. static pfn_t spte_to_pfn(u64 pte)
  216. {
  217. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  218. }
  219. static gfn_t pse36_gfn_delta(u32 gpte)
  220. {
  221. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  222. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  223. }
  224. static void __set_spte(u64 *sptep, u64 spte)
  225. {
  226. #ifdef CONFIG_X86_64
  227. set_64bit((unsigned long *)sptep, spte);
  228. #else
  229. set_64bit((unsigned long long *)sptep, spte);
  230. #endif
  231. }
  232. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  233. struct kmem_cache *base_cache, int min)
  234. {
  235. void *obj;
  236. if (cache->nobjs >= min)
  237. return 0;
  238. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  239. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  240. if (!obj)
  241. return -ENOMEM;
  242. cache->objects[cache->nobjs++] = obj;
  243. }
  244. return 0;
  245. }
  246. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  247. struct kmem_cache *cache)
  248. {
  249. while (mc->nobjs)
  250. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  251. }
  252. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  253. int min)
  254. {
  255. struct page *page;
  256. if (cache->nobjs >= min)
  257. return 0;
  258. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  259. page = alloc_page(GFP_KERNEL);
  260. if (!page)
  261. return -ENOMEM;
  262. cache->objects[cache->nobjs++] = page_address(page);
  263. }
  264. return 0;
  265. }
  266. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  267. {
  268. while (mc->nobjs)
  269. free_page((unsigned long)mc->objects[--mc->nobjs]);
  270. }
  271. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  272. {
  273. int r;
  274. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  275. pte_chain_cache, 4);
  276. if (r)
  277. goto out;
  278. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  279. rmap_desc_cache, 4);
  280. if (r)
  281. goto out;
  282. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  283. if (r)
  284. goto out;
  285. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  286. mmu_page_header_cache, 4);
  287. out:
  288. return r;
  289. }
  290. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  291. {
  292. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache, pte_chain_cache);
  293. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, rmap_desc_cache);
  294. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  295. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  296. mmu_page_header_cache);
  297. }
  298. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  299. size_t size)
  300. {
  301. void *p;
  302. BUG_ON(!mc->nobjs);
  303. p = mc->objects[--mc->nobjs];
  304. return p;
  305. }
  306. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  307. {
  308. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  309. sizeof(struct kvm_pte_chain));
  310. }
  311. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  312. {
  313. kmem_cache_free(pte_chain_cache, pc);
  314. }
  315. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  316. {
  317. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  318. sizeof(struct kvm_rmap_desc));
  319. }
  320. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  321. {
  322. kmem_cache_free(rmap_desc_cache, rd);
  323. }
  324. /*
  325. * Return the pointer to the largepage write count for a given
  326. * gfn, handling slots that are not large page aligned.
  327. */
  328. static int *slot_largepage_idx(gfn_t gfn,
  329. struct kvm_memory_slot *slot,
  330. int level)
  331. {
  332. unsigned long idx;
  333. idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
  334. (slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
  335. return &slot->lpage_info[level - 2][idx].write_count;
  336. }
  337. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  338. {
  339. struct kvm_memory_slot *slot;
  340. int *write_count;
  341. int i;
  342. gfn = unalias_gfn(kvm, gfn);
  343. slot = gfn_to_memslot_unaliased(kvm, gfn);
  344. for (i = PT_DIRECTORY_LEVEL;
  345. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  346. write_count = slot_largepage_idx(gfn, slot, i);
  347. *write_count += 1;
  348. }
  349. }
  350. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  351. {
  352. struct kvm_memory_slot *slot;
  353. int *write_count;
  354. int i;
  355. gfn = unalias_gfn(kvm, gfn);
  356. slot = gfn_to_memslot_unaliased(kvm, gfn);
  357. for (i = PT_DIRECTORY_LEVEL;
  358. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  359. write_count = slot_largepage_idx(gfn, slot, i);
  360. *write_count -= 1;
  361. WARN_ON(*write_count < 0);
  362. }
  363. }
  364. static int has_wrprotected_page(struct kvm *kvm,
  365. gfn_t gfn,
  366. int level)
  367. {
  368. struct kvm_memory_slot *slot;
  369. int *largepage_idx;
  370. gfn = unalias_gfn(kvm, gfn);
  371. slot = gfn_to_memslot_unaliased(kvm, gfn);
  372. if (slot) {
  373. largepage_idx = slot_largepage_idx(gfn, slot, level);
  374. return *largepage_idx;
  375. }
  376. return 1;
  377. }
  378. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  379. {
  380. unsigned long page_size;
  381. int i, ret = 0;
  382. page_size = kvm_host_page_size(kvm, gfn);
  383. for (i = PT_PAGE_TABLE_LEVEL;
  384. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  385. if (page_size >= KVM_HPAGE_SIZE(i))
  386. ret = i;
  387. else
  388. break;
  389. }
  390. return ret;
  391. }
  392. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  393. {
  394. struct kvm_memory_slot *slot;
  395. int host_level, level, max_level;
  396. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  397. if (slot && slot->dirty_bitmap)
  398. return PT_PAGE_TABLE_LEVEL;
  399. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  400. if (host_level == PT_PAGE_TABLE_LEVEL)
  401. return host_level;
  402. max_level = kvm_x86_ops->get_lpage_level() < host_level ?
  403. kvm_x86_ops->get_lpage_level() : host_level;
  404. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  405. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  406. break;
  407. return level - 1;
  408. }
  409. /*
  410. * Take gfn and return the reverse mapping to it.
  411. * Note: gfn must be unaliased before this function get called
  412. */
  413. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  414. {
  415. struct kvm_memory_slot *slot;
  416. unsigned long idx;
  417. slot = gfn_to_memslot(kvm, gfn);
  418. if (likely(level == PT_PAGE_TABLE_LEVEL))
  419. return &slot->rmap[gfn - slot->base_gfn];
  420. idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
  421. (slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
  422. return &slot->lpage_info[level - 2][idx].rmap_pde;
  423. }
  424. /*
  425. * Reverse mapping data structures:
  426. *
  427. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  428. * that points to page_address(page).
  429. *
  430. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  431. * containing more mappings.
  432. *
  433. * Returns the number of rmap entries before the spte was added or zero if
  434. * the spte was not added.
  435. *
  436. */
  437. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  438. {
  439. struct kvm_mmu_page *sp;
  440. struct kvm_rmap_desc *desc;
  441. unsigned long *rmapp;
  442. int i, count = 0;
  443. if (!is_rmap_spte(*spte))
  444. return count;
  445. gfn = unalias_gfn(vcpu->kvm, gfn);
  446. sp = page_header(__pa(spte));
  447. sp->gfns[spte - sp->spt] = gfn;
  448. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  449. if (!*rmapp) {
  450. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  451. *rmapp = (unsigned long)spte;
  452. } else if (!(*rmapp & 1)) {
  453. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  454. desc = mmu_alloc_rmap_desc(vcpu);
  455. desc->sptes[0] = (u64 *)*rmapp;
  456. desc->sptes[1] = spte;
  457. *rmapp = (unsigned long)desc | 1;
  458. } else {
  459. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  460. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  461. while (desc->sptes[RMAP_EXT-1] && desc->more) {
  462. desc = desc->more;
  463. count += RMAP_EXT;
  464. }
  465. if (desc->sptes[RMAP_EXT-1]) {
  466. desc->more = mmu_alloc_rmap_desc(vcpu);
  467. desc = desc->more;
  468. }
  469. for (i = 0; desc->sptes[i]; ++i)
  470. ;
  471. desc->sptes[i] = spte;
  472. }
  473. return count;
  474. }
  475. static void rmap_desc_remove_entry(unsigned long *rmapp,
  476. struct kvm_rmap_desc *desc,
  477. int i,
  478. struct kvm_rmap_desc *prev_desc)
  479. {
  480. int j;
  481. for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
  482. ;
  483. desc->sptes[i] = desc->sptes[j];
  484. desc->sptes[j] = NULL;
  485. if (j != 0)
  486. return;
  487. if (!prev_desc && !desc->more)
  488. *rmapp = (unsigned long)desc->sptes[0];
  489. else
  490. if (prev_desc)
  491. prev_desc->more = desc->more;
  492. else
  493. *rmapp = (unsigned long)desc->more | 1;
  494. mmu_free_rmap_desc(desc);
  495. }
  496. static void rmap_remove(struct kvm *kvm, u64 *spte)
  497. {
  498. struct kvm_rmap_desc *desc;
  499. struct kvm_rmap_desc *prev_desc;
  500. struct kvm_mmu_page *sp;
  501. pfn_t pfn;
  502. unsigned long *rmapp;
  503. int i;
  504. if (!is_rmap_spte(*spte))
  505. return;
  506. sp = page_header(__pa(spte));
  507. pfn = spte_to_pfn(*spte);
  508. if (*spte & shadow_accessed_mask)
  509. kvm_set_pfn_accessed(pfn);
  510. if (is_writable_pte(*spte))
  511. kvm_set_pfn_dirty(pfn);
  512. rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], sp->role.level);
  513. if (!*rmapp) {
  514. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  515. BUG();
  516. } else if (!(*rmapp & 1)) {
  517. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  518. if ((u64 *)*rmapp != spte) {
  519. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  520. spte, *spte);
  521. BUG();
  522. }
  523. *rmapp = 0;
  524. } else {
  525. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  526. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  527. prev_desc = NULL;
  528. while (desc) {
  529. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
  530. if (desc->sptes[i] == spte) {
  531. rmap_desc_remove_entry(rmapp,
  532. desc, i,
  533. prev_desc);
  534. return;
  535. }
  536. prev_desc = desc;
  537. desc = desc->more;
  538. }
  539. pr_err("rmap_remove: %p %llx many->many\n", spte, *spte);
  540. BUG();
  541. }
  542. }
  543. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  544. {
  545. struct kvm_rmap_desc *desc;
  546. u64 *prev_spte;
  547. int i;
  548. if (!*rmapp)
  549. return NULL;
  550. else if (!(*rmapp & 1)) {
  551. if (!spte)
  552. return (u64 *)*rmapp;
  553. return NULL;
  554. }
  555. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  556. prev_spte = NULL;
  557. while (desc) {
  558. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
  559. if (prev_spte == spte)
  560. return desc->sptes[i];
  561. prev_spte = desc->sptes[i];
  562. }
  563. desc = desc->more;
  564. }
  565. return NULL;
  566. }
  567. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  568. {
  569. unsigned long *rmapp;
  570. u64 *spte;
  571. int i, write_protected = 0;
  572. gfn = unalias_gfn(kvm, gfn);
  573. rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
  574. spte = rmap_next(kvm, rmapp, NULL);
  575. while (spte) {
  576. BUG_ON(!spte);
  577. BUG_ON(!(*spte & PT_PRESENT_MASK));
  578. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  579. if (is_writable_pte(*spte)) {
  580. __set_spte(spte, *spte & ~PT_WRITABLE_MASK);
  581. write_protected = 1;
  582. }
  583. spte = rmap_next(kvm, rmapp, spte);
  584. }
  585. if (write_protected) {
  586. pfn_t pfn;
  587. spte = rmap_next(kvm, rmapp, NULL);
  588. pfn = spte_to_pfn(*spte);
  589. kvm_set_pfn_dirty(pfn);
  590. }
  591. /* check for huge page mappings */
  592. for (i = PT_DIRECTORY_LEVEL;
  593. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  594. rmapp = gfn_to_rmap(kvm, gfn, i);
  595. spte = rmap_next(kvm, rmapp, NULL);
  596. while (spte) {
  597. BUG_ON(!spte);
  598. BUG_ON(!(*spte & PT_PRESENT_MASK));
  599. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  600. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  601. if (is_writable_pte(*spte)) {
  602. rmap_remove(kvm, spte);
  603. --kvm->stat.lpages;
  604. __set_spte(spte, shadow_trap_nonpresent_pte);
  605. spte = NULL;
  606. write_protected = 1;
  607. }
  608. spte = rmap_next(kvm, rmapp, spte);
  609. }
  610. }
  611. return write_protected;
  612. }
  613. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  614. unsigned long data)
  615. {
  616. u64 *spte;
  617. int need_tlb_flush = 0;
  618. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  619. BUG_ON(!(*spte & PT_PRESENT_MASK));
  620. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  621. rmap_remove(kvm, spte);
  622. __set_spte(spte, shadow_trap_nonpresent_pte);
  623. need_tlb_flush = 1;
  624. }
  625. return need_tlb_flush;
  626. }
  627. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  628. unsigned long data)
  629. {
  630. int need_flush = 0;
  631. u64 *spte, new_spte;
  632. pte_t *ptep = (pte_t *)data;
  633. pfn_t new_pfn;
  634. WARN_ON(pte_huge(*ptep));
  635. new_pfn = pte_pfn(*ptep);
  636. spte = rmap_next(kvm, rmapp, NULL);
  637. while (spte) {
  638. BUG_ON(!is_shadow_present_pte(*spte));
  639. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
  640. need_flush = 1;
  641. if (pte_write(*ptep)) {
  642. rmap_remove(kvm, spte);
  643. __set_spte(spte, shadow_trap_nonpresent_pte);
  644. spte = rmap_next(kvm, rmapp, NULL);
  645. } else {
  646. new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
  647. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  648. new_spte &= ~PT_WRITABLE_MASK;
  649. new_spte &= ~SPTE_HOST_WRITEABLE;
  650. if (is_writable_pte(*spte))
  651. kvm_set_pfn_dirty(spte_to_pfn(*spte));
  652. __set_spte(spte, new_spte);
  653. spte = rmap_next(kvm, rmapp, spte);
  654. }
  655. }
  656. if (need_flush)
  657. kvm_flush_remote_tlbs(kvm);
  658. return 0;
  659. }
  660. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  661. unsigned long data,
  662. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  663. unsigned long data))
  664. {
  665. int i, j;
  666. int ret;
  667. int retval = 0;
  668. struct kvm_memslots *slots;
  669. slots = kvm_memslots(kvm);
  670. for (i = 0; i < slots->nmemslots; i++) {
  671. struct kvm_memory_slot *memslot = &slots->memslots[i];
  672. unsigned long start = memslot->userspace_addr;
  673. unsigned long end;
  674. end = start + (memslot->npages << PAGE_SHIFT);
  675. if (hva >= start && hva < end) {
  676. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  677. ret = handler(kvm, &memslot->rmap[gfn_offset], data);
  678. for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
  679. int idx = gfn_offset;
  680. idx /= KVM_PAGES_PER_HPAGE(PT_DIRECTORY_LEVEL + j);
  681. ret |= handler(kvm,
  682. &memslot->lpage_info[j][idx].rmap_pde,
  683. data);
  684. }
  685. trace_kvm_age_page(hva, memslot, ret);
  686. retval |= ret;
  687. }
  688. }
  689. return retval;
  690. }
  691. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  692. {
  693. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  694. }
  695. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  696. {
  697. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  698. }
  699. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  700. unsigned long data)
  701. {
  702. u64 *spte;
  703. int young = 0;
  704. /*
  705. * Emulate the accessed bit for EPT, by checking if this page has
  706. * an EPT mapping, and clearing it if it does. On the next access,
  707. * a new EPT mapping will be established.
  708. * This has some overhead, but not as much as the cost of swapping
  709. * out actively used pages or breaking up actively used hugepages.
  710. */
  711. if (!shadow_accessed_mask)
  712. return kvm_unmap_rmapp(kvm, rmapp, data);
  713. spte = rmap_next(kvm, rmapp, NULL);
  714. while (spte) {
  715. int _young;
  716. u64 _spte = *spte;
  717. BUG_ON(!(_spte & PT_PRESENT_MASK));
  718. _young = _spte & PT_ACCESSED_MASK;
  719. if (_young) {
  720. young = 1;
  721. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  722. }
  723. spte = rmap_next(kvm, rmapp, spte);
  724. }
  725. return young;
  726. }
  727. #define RMAP_RECYCLE_THRESHOLD 1000
  728. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  729. {
  730. unsigned long *rmapp;
  731. struct kvm_mmu_page *sp;
  732. sp = page_header(__pa(spte));
  733. gfn = unalias_gfn(vcpu->kvm, gfn);
  734. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  735. kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
  736. kvm_flush_remote_tlbs(vcpu->kvm);
  737. }
  738. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  739. {
  740. return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
  741. }
  742. #ifdef MMU_DEBUG
  743. static int is_empty_shadow_page(u64 *spt)
  744. {
  745. u64 *pos;
  746. u64 *end;
  747. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  748. if (is_shadow_present_pte(*pos)) {
  749. printk(KERN_ERR "%s: %p %llx\n", __func__,
  750. pos, *pos);
  751. return 0;
  752. }
  753. return 1;
  754. }
  755. #endif
  756. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  757. {
  758. ASSERT(is_empty_shadow_page(sp->spt));
  759. list_del(&sp->link);
  760. __free_page(virt_to_page(sp->spt));
  761. __free_page(virt_to_page(sp->gfns));
  762. kmem_cache_free(mmu_page_header_cache, sp);
  763. ++kvm->arch.n_free_mmu_pages;
  764. }
  765. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  766. {
  767. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  768. }
  769. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  770. u64 *parent_pte)
  771. {
  772. struct kvm_mmu_page *sp;
  773. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  774. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  775. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  776. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  777. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  778. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  779. sp->multimapped = 0;
  780. sp->parent_pte = parent_pte;
  781. --vcpu->kvm->arch.n_free_mmu_pages;
  782. return sp;
  783. }
  784. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  785. struct kvm_mmu_page *sp, u64 *parent_pte)
  786. {
  787. struct kvm_pte_chain *pte_chain;
  788. struct hlist_node *node;
  789. int i;
  790. if (!parent_pte)
  791. return;
  792. if (!sp->multimapped) {
  793. u64 *old = sp->parent_pte;
  794. if (!old) {
  795. sp->parent_pte = parent_pte;
  796. return;
  797. }
  798. sp->multimapped = 1;
  799. pte_chain = mmu_alloc_pte_chain(vcpu);
  800. INIT_HLIST_HEAD(&sp->parent_ptes);
  801. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  802. pte_chain->parent_ptes[0] = old;
  803. }
  804. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  805. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  806. continue;
  807. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  808. if (!pte_chain->parent_ptes[i]) {
  809. pte_chain->parent_ptes[i] = parent_pte;
  810. return;
  811. }
  812. }
  813. pte_chain = mmu_alloc_pte_chain(vcpu);
  814. BUG_ON(!pte_chain);
  815. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  816. pte_chain->parent_ptes[0] = parent_pte;
  817. }
  818. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  819. u64 *parent_pte)
  820. {
  821. struct kvm_pte_chain *pte_chain;
  822. struct hlist_node *node;
  823. int i;
  824. if (!sp->multimapped) {
  825. BUG_ON(sp->parent_pte != parent_pte);
  826. sp->parent_pte = NULL;
  827. return;
  828. }
  829. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  830. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  831. if (!pte_chain->parent_ptes[i])
  832. break;
  833. if (pte_chain->parent_ptes[i] != parent_pte)
  834. continue;
  835. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  836. && pte_chain->parent_ptes[i + 1]) {
  837. pte_chain->parent_ptes[i]
  838. = pte_chain->parent_ptes[i + 1];
  839. ++i;
  840. }
  841. pte_chain->parent_ptes[i] = NULL;
  842. if (i == 0) {
  843. hlist_del(&pte_chain->link);
  844. mmu_free_pte_chain(pte_chain);
  845. if (hlist_empty(&sp->parent_ptes)) {
  846. sp->multimapped = 0;
  847. sp->parent_pte = NULL;
  848. }
  849. }
  850. return;
  851. }
  852. BUG();
  853. }
  854. static void mmu_parent_walk(struct kvm_mmu_page *sp, mmu_parent_walk_fn fn)
  855. {
  856. struct kvm_pte_chain *pte_chain;
  857. struct hlist_node *node;
  858. struct kvm_mmu_page *parent_sp;
  859. int i;
  860. if (!sp->multimapped && sp->parent_pte) {
  861. parent_sp = page_header(__pa(sp->parent_pte));
  862. fn(parent_sp);
  863. mmu_parent_walk(parent_sp, fn);
  864. return;
  865. }
  866. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  867. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  868. if (!pte_chain->parent_ptes[i])
  869. break;
  870. parent_sp = page_header(__pa(pte_chain->parent_ptes[i]));
  871. fn(parent_sp);
  872. mmu_parent_walk(parent_sp, fn);
  873. }
  874. }
  875. static void kvm_mmu_update_unsync_bitmap(u64 *spte)
  876. {
  877. unsigned int index;
  878. struct kvm_mmu_page *sp = page_header(__pa(spte));
  879. index = spte - sp->spt;
  880. if (!__test_and_set_bit(index, sp->unsync_child_bitmap))
  881. sp->unsync_children++;
  882. WARN_ON(!sp->unsync_children);
  883. }
  884. static void kvm_mmu_update_parents_unsync(struct kvm_mmu_page *sp)
  885. {
  886. struct kvm_pte_chain *pte_chain;
  887. struct hlist_node *node;
  888. int i;
  889. if (!sp->parent_pte)
  890. return;
  891. if (!sp->multimapped) {
  892. kvm_mmu_update_unsync_bitmap(sp->parent_pte);
  893. return;
  894. }
  895. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  896. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  897. if (!pte_chain->parent_ptes[i])
  898. break;
  899. kvm_mmu_update_unsync_bitmap(pte_chain->parent_ptes[i]);
  900. }
  901. }
  902. static int unsync_walk_fn(struct kvm_mmu_page *sp)
  903. {
  904. kvm_mmu_update_parents_unsync(sp);
  905. return 1;
  906. }
  907. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  908. {
  909. mmu_parent_walk(sp, unsync_walk_fn);
  910. kvm_mmu_update_parents_unsync(sp);
  911. }
  912. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  913. struct kvm_mmu_page *sp)
  914. {
  915. int i;
  916. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  917. sp->spt[i] = shadow_trap_nonpresent_pte;
  918. }
  919. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  920. struct kvm_mmu_page *sp)
  921. {
  922. return 1;
  923. }
  924. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  925. {
  926. }
  927. #define KVM_PAGE_ARRAY_NR 16
  928. struct kvm_mmu_pages {
  929. struct mmu_page_and_offset {
  930. struct kvm_mmu_page *sp;
  931. unsigned int idx;
  932. } page[KVM_PAGE_ARRAY_NR];
  933. unsigned int nr;
  934. };
  935. #define for_each_unsync_children(bitmap, idx) \
  936. for (idx = find_first_bit(bitmap, 512); \
  937. idx < 512; \
  938. idx = find_next_bit(bitmap, 512, idx+1))
  939. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  940. int idx)
  941. {
  942. int i;
  943. if (sp->unsync)
  944. for (i=0; i < pvec->nr; i++)
  945. if (pvec->page[i].sp == sp)
  946. return 0;
  947. pvec->page[pvec->nr].sp = sp;
  948. pvec->page[pvec->nr].idx = idx;
  949. pvec->nr++;
  950. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  951. }
  952. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  953. struct kvm_mmu_pages *pvec)
  954. {
  955. int i, ret, nr_unsync_leaf = 0;
  956. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  957. u64 ent = sp->spt[i];
  958. if (is_shadow_present_pte(ent) && !is_large_pte(ent)) {
  959. struct kvm_mmu_page *child;
  960. child = page_header(ent & PT64_BASE_ADDR_MASK);
  961. if (child->unsync_children) {
  962. if (mmu_pages_add(pvec, child, i))
  963. return -ENOSPC;
  964. ret = __mmu_unsync_walk(child, pvec);
  965. if (!ret)
  966. __clear_bit(i, sp->unsync_child_bitmap);
  967. else if (ret > 0)
  968. nr_unsync_leaf += ret;
  969. else
  970. return ret;
  971. }
  972. if (child->unsync) {
  973. nr_unsync_leaf++;
  974. if (mmu_pages_add(pvec, child, i))
  975. return -ENOSPC;
  976. }
  977. }
  978. }
  979. if (find_first_bit(sp->unsync_child_bitmap, 512) == 512)
  980. sp->unsync_children = 0;
  981. return nr_unsync_leaf;
  982. }
  983. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  984. struct kvm_mmu_pages *pvec)
  985. {
  986. if (!sp->unsync_children)
  987. return 0;
  988. mmu_pages_add(pvec, sp, 0);
  989. return __mmu_unsync_walk(sp, pvec);
  990. }
  991. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
  992. {
  993. unsigned index;
  994. struct hlist_head *bucket;
  995. struct kvm_mmu_page *sp;
  996. struct hlist_node *node;
  997. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  998. index = kvm_page_table_hashfn(gfn);
  999. bucket = &kvm->arch.mmu_page_hash[index];
  1000. hlist_for_each_entry(sp, node, bucket, hash_link)
  1001. if (sp->gfn == gfn && !sp->role.direct
  1002. && !sp->role.invalid) {
  1003. pgprintk("%s: found role %x\n",
  1004. __func__, sp->role.word);
  1005. return sp;
  1006. }
  1007. return NULL;
  1008. }
  1009. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1010. {
  1011. WARN_ON(!sp->unsync);
  1012. trace_kvm_mmu_sync_page(sp);
  1013. sp->unsync = 0;
  1014. --kvm->stat.mmu_unsync;
  1015. }
  1016. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp);
  1017. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1018. {
  1019. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1020. kvm_mmu_zap_page(vcpu->kvm, sp);
  1021. return 1;
  1022. }
  1023. if (rmap_write_protect(vcpu->kvm, sp->gfn))
  1024. kvm_flush_remote_tlbs(vcpu->kvm);
  1025. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1026. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1027. kvm_mmu_zap_page(vcpu->kvm, sp);
  1028. return 1;
  1029. }
  1030. kvm_mmu_flush_tlb(vcpu);
  1031. return 0;
  1032. }
  1033. struct mmu_page_path {
  1034. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1035. unsigned int idx[PT64_ROOT_LEVEL-1];
  1036. };
  1037. #define for_each_sp(pvec, sp, parents, i) \
  1038. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1039. sp = pvec.page[i].sp; \
  1040. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1041. i = mmu_pages_next(&pvec, &parents, i))
  1042. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1043. struct mmu_page_path *parents,
  1044. int i)
  1045. {
  1046. int n;
  1047. for (n = i+1; n < pvec->nr; n++) {
  1048. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1049. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1050. parents->idx[0] = pvec->page[n].idx;
  1051. return n;
  1052. }
  1053. parents->parent[sp->role.level-2] = sp;
  1054. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1055. }
  1056. return n;
  1057. }
  1058. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1059. {
  1060. struct kvm_mmu_page *sp;
  1061. unsigned int level = 0;
  1062. do {
  1063. unsigned int idx = parents->idx[level];
  1064. sp = parents->parent[level];
  1065. if (!sp)
  1066. return;
  1067. --sp->unsync_children;
  1068. WARN_ON((int)sp->unsync_children < 0);
  1069. __clear_bit(idx, sp->unsync_child_bitmap);
  1070. level++;
  1071. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1072. }
  1073. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1074. struct mmu_page_path *parents,
  1075. struct kvm_mmu_pages *pvec)
  1076. {
  1077. parents->parent[parent->role.level-1] = NULL;
  1078. pvec->nr = 0;
  1079. }
  1080. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1081. struct kvm_mmu_page *parent)
  1082. {
  1083. int i;
  1084. struct kvm_mmu_page *sp;
  1085. struct mmu_page_path parents;
  1086. struct kvm_mmu_pages pages;
  1087. kvm_mmu_pages_init(parent, &parents, &pages);
  1088. while (mmu_unsync_walk(parent, &pages)) {
  1089. int protected = 0;
  1090. for_each_sp(pages, sp, parents, i)
  1091. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1092. if (protected)
  1093. kvm_flush_remote_tlbs(vcpu->kvm);
  1094. for_each_sp(pages, sp, parents, i) {
  1095. kvm_sync_page(vcpu, sp);
  1096. mmu_pages_clear_parents(&parents);
  1097. }
  1098. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1099. kvm_mmu_pages_init(parent, &parents, &pages);
  1100. }
  1101. }
  1102. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1103. gfn_t gfn,
  1104. gva_t gaddr,
  1105. unsigned level,
  1106. int direct,
  1107. unsigned access,
  1108. u64 *parent_pte)
  1109. {
  1110. union kvm_mmu_page_role role;
  1111. unsigned index;
  1112. unsigned quadrant;
  1113. struct hlist_head *bucket;
  1114. struct kvm_mmu_page *sp;
  1115. struct hlist_node *node, *tmp;
  1116. role = vcpu->arch.mmu.base_role;
  1117. role.level = level;
  1118. role.direct = direct;
  1119. if (role.direct)
  1120. role.cr4_pae = 0;
  1121. role.access = access;
  1122. if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1123. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1124. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1125. role.quadrant = quadrant;
  1126. }
  1127. index = kvm_page_table_hashfn(gfn);
  1128. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1129. hlist_for_each_entry_safe(sp, node, tmp, bucket, hash_link)
  1130. if (sp->gfn == gfn) {
  1131. if (sp->unsync)
  1132. if (kvm_sync_page(vcpu, sp))
  1133. continue;
  1134. if (sp->role.word != role.word)
  1135. continue;
  1136. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1137. if (sp->unsync_children) {
  1138. set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
  1139. kvm_mmu_mark_parents_unsync(sp);
  1140. }
  1141. trace_kvm_mmu_get_page(sp, false);
  1142. return sp;
  1143. }
  1144. ++vcpu->kvm->stat.mmu_cache_miss;
  1145. sp = kvm_mmu_alloc_page(vcpu, parent_pte);
  1146. if (!sp)
  1147. return sp;
  1148. sp->gfn = gfn;
  1149. sp->role = role;
  1150. hlist_add_head(&sp->hash_link, bucket);
  1151. if (!direct) {
  1152. if (rmap_write_protect(vcpu->kvm, gfn))
  1153. kvm_flush_remote_tlbs(vcpu->kvm);
  1154. account_shadowed(vcpu->kvm, gfn);
  1155. }
  1156. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  1157. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  1158. else
  1159. nonpaging_prefetch_page(vcpu, sp);
  1160. trace_kvm_mmu_get_page(sp, true);
  1161. return sp;
  1162. }
  1163. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1164. struct kvm_vcpu *vcpu, u64 addr)
  1165. {
  1166. iterator->addr = addr;
  1167. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1168. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1169. if (iterator->level == PT32E_ROOT_LEVEL) {
  1170. iterator->shadow_addr
  1171. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1172. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1173. --iterator->level;
  1174. if (!iterator->shadow_addr)
  1175. iterator->level = 0;
  1176. }
  1177. }
  1178. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1179. {
  1180. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1181. return false;
  1182. if (iterator->level == PT_PAGE_TABLE_LEVEL)
  1183. if (is_large_pte(*iterator->sptep))
  1184. return false;
  1185. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1186. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1187. return true;
  1188. }
  1189. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1190. {
  1191. iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
  1192. --iterator->level;
  1193. }
  1194. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1195. struct kvm_mmu_page *sp)
  1196. {
  1197. unsigned i;
  1198. u64 *pt;
  1199. u64 ent;
  1200. pt = sp->spt;
  1201. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1202. ent = pt[i];
  1203. if (is_shadow_present_pte(ent)) {
  1204. if (!is_last_spte(ent, sp->role.level)) {
  1205. ent &= PT64_BASE_ADDR_MASK;
  1206. mmu_page_remove_parent_pte(page_header(ent),
  1207. &pt[i]);
  1208. } else {
  1209. if (is_large_pte(ent))
  1210. --kvm->stat.lpages;
  1211. rmap_remove(kvm, &pt[i]);
  1212. }
  1213. }
  1214. pt[i] = shadow_trap_nonpresent_pte;
  1215. }
  1216. }
  1217. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1218. {
  1219. mmu_page_remove_parent_pte(sp, parent_pte);
  1220. }
  1221. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1222. {
  1223. int i;
  1224. struct kvm_vcpu *vcpu;
  1225. kvm_for_each_vcpu(i, vcpu, kvm)
  1226. vcpu->arch.last_pte_updated = NULL;
  1227. }
  1228. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1229. {
  1230. u64 *parent_pte;
  1231. while (sp->multimapped || sp->parent_pte) {
  1232. if (!sp->multimapped)
  1233. parent_pte = sp->parent_pte;
  1234. else {
  1235. struct kvm_pte_chain *chain;
  1236. chain = container_of(sp->parent_ptes.first,
  1237. struct kvm_pte_chain, link);
  1238. parent_pte = chain->parent_ptes[0];
  1239. }
  1240. BUG_ON(!parent_pte);
  1241. kvm_mmu_put_page(sp, parent_pte);
  1242. __set_spte(parent_pte, shadow_trap_nonpresent_pte);
  1243. }
  1244. }
  1245. static int mmu_zap_unsync_children(struct kvm *kvm,
  1246. struct kvm_mmu_page *parent)
  1247. {
  1248. int i, zapped = 0;
  1249. struct mmu_page_path parents;
  1250. struct kvm_mmu_pages pages;
  1251. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1252. return 0;
  1253. kvm_mmu_pages_init(parent, &parents, &pages);
  1254. while (mmu_unsync_walk(parent, &pages)) {
  1255. struct kvm_mmu_page *sp;
  1256. for_each_sp(pages, sp, parents, i) {
  1257. kvm_mmu_zap_page(kvm, sp);
  1258. mmu_pages_clear_parents(&parents);
  1259. zapped++;
  1260. }
  1261. kvm_mmu_pages_init(parent, &parents, &pages);
  1262. }
  1263. return zapped;
  1264. }
  1265. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1266. {
  1267. int ret;
  1268. trace_kvm_mmu_zap_page(sp);
  1269. ++kvm->stat.mmu_shadow_zapped;
  1270. ret = mmu_zap_unsync_children(kvm, sp);
  1271. kvm_mmu_page_unlink_children(kvm, sp);
  1272. kvm_mmu_unlink_parents(kvm, sp);
  1273. kvm_flush_remote_tlbs(kvm);
  1274. if (!sp->role.invalid && !sp->role.direct)
  1275. unaccount_shadowed(kvm, sp->gfn);
  1276. if (sp->unsync)
  1277. kvm_unlink_unsync_page(kvm, sp);
  1278. if (!sp->root_count) {
  1279. /* Count self */
  1280. ret++;
  1281. hlist_del(&sp->hash_link);
  1282. kvm_mmu_free_page(kvm, sp);
  1283. } else {
  1284. sp->role.invalid = 1;
  1285. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1286. kvm_reload_remote_mmus(kvm);
  1287. }
  1288. kvm_mmu_reset_last_pte_updated(kvm);
  1289. return ret;
  1290. }
  1291. /*
  1292. * Changing the number of mmu pages allocated to the vm
  1293. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  1294. */
  1295. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  1296. {
  1297. int used_pages;
  1298. used_pages = kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages;
  1299. used_pages = max(0, used_pages);
  1300. /*
  1301. * If we set the number of mmu pages to be smaller be than the
  1302. * number of actived pages , we must to free some mmu pages before we
  1303. * change the value
  1304. */
  1305. if (used_pages > kvm_nr_mmu_pages) {
  1306. while (used_pages > kvm_nr_mmu_pages &&
  1307. !list_empty(&kvm->arch.active_mmu_pages)) {
  1308. struct kvm_mmu_page *page;
  1309. page = container_of(kvm->arch.active_mmu_pages.prev,
  1310. struct kvm_mmu_page, link);
  1311. used_pages -= kvm_mmu_zap_page(kvm, page);
  1312. }
  1313. kvm_nr_mmu_pages = used_pages;
  1314. kvm->arch.n_free_mmu_pages = 0;
  1315. }
  1316. else
  1317. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  1318. - kvm->arch.n_alloc_mmu_pages;
  1319. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  1320. }
  1321. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1322. {
  1323. unsigned index;
  1324. struct hlist_head *bucket;
  1325. struct kvm_mmu_page *sp;
  1326. struct hlist_node *node, *n;
  1327. int r;
  1328. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1329. r = 0;
  1330. index = kvm_page_table_hashfn(gfn);
  1331. bucket = &kvm->arch.mmu_page_hash[index];
  1332. restart:
  1333. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
  1334. if (sp->gfn == gfn && !sp->role.direct) {
  1335. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  1336. sp->role.word);
  1337. r = 1;
  1338. if (kvm_mmu_zap_page(kvm, sp))
  1339. goto restart;
  1340. }
  1341. return r;
  1342. }
  1343. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1344. {
  1345. unsigned index;
  1346. struct hlist_head *bucket;
  1347. struct kvm_mmu_page *sp;
  1348. struct hlist_node *node, *nn;
  1349. index = kvm_page_table_hashfn(gfn);
  1350. bucket = &kvm->arch.mmu_page_hash[index];
  1351. restart:
  1352. hlist_for_each_entry_safe(sp, node, nn, bucket, hash_link) {
  1353. if (sp->gfn == gfn && !sp->role.direct
  1354. && !sp->role.invalid) {
  1355. pgprintk("%s: zap %lx %x\n",
  1356. __func__, gfn, sp->role.word);
  1357. if (kvm_mmu_zap_page(kvm, sp))
  1358. goto restart;
  1359. }
  1360. }
  1361. }
  1362. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1363. {
  1364. int slot = memslot_id(kvm, gfn);
  1365. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1366. __set_bit(slot, sp->slot_bitmap);
  1367. }
  1368. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1369. {
  1370. int i;
  1371. u64 *pt = sp->spt;
  1372. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1373. return;
  1374. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1375. if (pt[i] == shadow_notrap_nonpresent_pte)
  1376. __set_spte(&pt[i], shadow_trap_nonpresent_pte);
  1377. }
  1378. }
  1379. /*
  1380. * The function is based on mtrr_type_lookup() in
  1381. * arch/x86/kernel/cpu/mtrr/generic.c
  1382. */
  1383. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1384. u64 start, u64 end)
  1385. {
  1386. int i;
  1387. u64 base, mask;
  1388. u8 prev_match, curr_match;
  1389. int num_var_ranges = KVM_NR_VAR_MTRR;
  1390. if (!mtrr_state->enabled)
  1391. return 0xFF;
  1392. /* Make end inclusive end, instead of exclusive */
  1393. end--;
  1394. /* Look in fixed ranges. Just return the type as per start */
  1395. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1396. int idx;
  1397. if (start < 0x80000) {
  1398. idx = 0;
  1399. idx += (start >> 16);
  1400. return mtrr_state->fixed_ranges[idx];
  1401. } else if (start < 0xC0000) {
  1402. idx = 1 * 8;
  1403. idx += ((start - 0x80000) >> 14);
  1404. return mtrr_state->fixed_ranges[idx];
  1405. } else if (start < 0x1000000) {
  1406. idx = 3 * 8;
  1407. idx += ((start - 0xC0000) >> 12);
  1408. return mtrr_state->fixed_ranges[idx];
  1409. }
  1410. }
  1411. /*
  1412. * Look in variable ranges
  1413. * Look of multiple ranges matching this address and pick type
  1414. * as per MTRR precedence
  1415. */
  1416. if (!(mtrr_state->enabled & 2))
  1417. return mtrr_state->def_type;
  1418. prev_match = 0xFF;
  1419. for (i = 0; i < num_var_ranges; ++i) {
  1420. unsigned short start_state, end_state;
  1421. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1422. continue;
  1423. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1424. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1425. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1426. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1427. start_state = ((start & mask) == (base & mask));
  1428. end_state = ((end & mask) == (base & mask));
  1429. if (start_state != end_state)
  1430. return 0xFE;
  1431. if ((start & mask) != (base & mask))
  1432. continue;
  1433. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1434. if (prev_match == 0xFF) {
  1435. prev_match = curr_match;
  1436. continue;
  1437. }
  1438. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1439. curr_match == MTRR_TYPE_UNCACHABLE)
  1440. return MTRR_TYPE_UNCACHABLE;
  1441. if ((prev_match == MTRR_TYPE_WRBACK &&
  1442. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1443. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1444. curr_match == MTRR_TYPE_WRBACK)) {
  1445. prev_match = MTRR_TYPE_WRTHROUGH;
  1446. curr_match = MTRR_TYPE_WRTHROUGH;
  1447. }
  1448. if (prev_match != curr_match)
  1449. return MTRR_TYPE_UNCACHABLE;
  1450. }
  1451. if (prev_match != 0xFF)
  1452. return prev_match;
  1453. return mtrr_state->def_type;
  1454. }
  1455. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1456. {
  1457. u8 mtrr;
  1458. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1459. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1460. if (mtrr == 0xfe || mtrr == 0xff)
  1461. mtrr = MTRR_TYPE_WRBACK;
  1462. return mtrr;
  1463. }
  1464. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1465. static int kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1466. {
  1467. unsigned index;
  1468. struct hlist_head *bucket;
  1469. struct kvm_mmu_page *s;
  1470. struct hlist_node *node, *n;
  1471. index = kvm_page_table_hashfn(sp->gfn);
  1472. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1473. /* don't unsync if pagetable is shadowed with multiple roles */
  1474. hlist_for_each_entry_safe(s, node, n, bucket, hash_link) {
  1475. if (s->gfn != sp->gfn || s->role.direct)
  1476. continue;
  1477. if (s->role.word != sp->role.word)
  1478. return 1;
  1479. }
  1480. trace_kvm_mmu_unsync_page(sp);
  1481. ++vcpu->kvm->stat.mmu_unsync;
  1482. sp->unsync = 1;
  1483. kvm_mmu_mark_parents_unsync(sp);
  1484. mmu_convert_notrap(sp);
  1485. return 0;
  1486. }
  1487. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1488. bool can_unsync)
  1489. {
  1490. struct kvm_mmu_page *shadow;
  1491. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  1492. if (shadow) {
  1493. if (shadow->role.level != PT_PAGE_TABLE_LEVEL)
  1494. return 1;
  1495. if (shadow->unsync)
  1496. return 0;
  1497. if (can_unsync && oos_shadow)
  1498. return kvm_unsync_page(vcpu, shadow);
  1499. return 1;
  1500. }
  1501. return 0;
  1502. }
  1503. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1504. unsigned pte_access, int user_fault,
  1505. int write_fault, int dirty, int level,
  1506. gfn_t gfn, pfn_t pfn, bool speculative,
  1507. bool can_unsync, bool reset_host_protection)
  1508. {
  1509. u64 spte;
  1510. int ret = 0;
  1511. /*
  1512. * We don't set the accessed bit, since we sometimes want to see
  1513. * whether the guest actually used the pte (in order to detect
  1514. * demand paging).
  1515. */
  1516. spte = shadow_base_present_pte | shadow_dirty_mask;
  1517. if (!speculative)
  1518. spte |= shadow_accessed_mask;
  1519. if (!dirty)
  1520. pte_access &= ~ACC_WRITE_MASK;
  1521. if (pte_access & ACC_EXEC_MASK)
  1522. spte |= shadow_x_mask;
  1523. else
  1524. spte |= shadow_nx_mask;
  1525. if (pte_access & ACC_USER_MASK)
  1526. spte |= shadow_user_mask;
  1527. if (level > PT_PAGE_TABLE_LEVEL)
  1528. spte |= PT_PAGE_SIZE_MASK;
  1529. if (tdp_enabled)
  1530. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1531. kvm_is_mmio_pfn(pfn));
  1532. if (reset_host_protection)
  1533. spte |= SPTE_HOST_WRITEABLE;
  1534. spte |= (u64)pfn << PAGE_SHIFT;
  1535. if ((pte_access & ACC_WRITE_MASK)
  1536. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  1537. if (level > PT_PAGE_TABLE_LEVEL &&
  1538. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1539. ret = 1;
  1540. spte = shadow_trap_nonpresent_pte;
  1541. goto set_pte;
  1542. }
  1543. spte |= PT_WRITABLE_MASK;
  1544. if (!tdp_enabled && !(pte_access & ACC_WRITE_MASK))
  1545. spte &= ~PT_USER_MASK;
  1546. /*
  1547. * Optimization: for pte sync, if spte was writable the hash
  1548. * lookup is unnecessary (and expensive). Write protection
  1549. * is responsibility of mmu_get_page / kvm_sync_page.
  1550. * Same reasoning can be applied to dirty page accounting.
  1551. */
  1552. if (!can_unsync && is_writable_pte(*sptep))
  1553. goto set_pte;
  1554. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1555. pgprintk("%s: found shadow page for %lx, marking ro\n",
  1556. __func__, gfn);
  1557. ret = 1;
  1558. pte_access &= ~ACC_WRITE_MASK;
  1559. if (is_writable_pte(spte))
  1560. spte &= ~PT_WRITABLE_MASK;
  1561. }
  1562. }
  1563. if (pte_access & ACC_WRITE_MASK)
  1564. mark_page_dirty(vcpu->kvm, gfn);
  1565. set_pte:
  1566. __set_spte(sptep, spte);
  1567. return ret;
  1568. }
  1569. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1570. unsigned pt_access, unsigned pte_access,
  1571. int user_fault, int write_fault, int dirty,
  1572. int *ptwrite, int level, gfn_t gfn,
  1573. pfn_t pfn, bool speculative,
  1574. bool reset_host_protection)
  1575. {
  1576. int was_rmapped = 0;
  1577. int was_writable = is_writable_pte(*sptep);
  1578. int rmap_count;
  1579. pgprintk("%s: spte %llx access %x write_fault %d"
  1580. " user_fault %d gfn %lx\n",
  1581. __func__, *sptep, pt_access,
  1582. write_fault, user_fault, gfn);
  1583. if (is_rmap_spte(*sptep)) {
  1584. /*
  1585. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1586. * the parent of the now unreachable PTE.
  1587. */
  1588. if (level > PT_PAGE_TABLE_LEVEL &&
  1589. !is_large_pte(*sptep)) {
  1590. struct kvm_mmu_page *child;
  1591. u64 pte = *sptep;
  1592. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1593. mmu_page_remove_parent_pte(child, sptep);
  1594. __set_spte(sptep, shadow_trap_nonpresent_pte);
  1595. kvm_flush_remote_tlbs(vcpu->kvm);
  1596. } else if (pfn != spte_to_pfn(*sptep)) {
  1597. pgprintk("hfn old %lx new %lx\n",
  1598. spte_to_pfn(*sptep), pfn);
  1599. rmap_remove(vcpu->kvm, sptep);
  1600. __set_spte(sptep, shadow_trap_nonpresent_pte);
  1601. kvm_flush_remote_tlbs(vcpu->kvm);
  1602. } else
  1603. was_rmapped = 1;
  1604. }
  1605. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  1606. dirty, level, gfn, pfn, speculative, true,
  1607. reset_host_protection)) {
  1608. if (write_fault)
  1609. *ptwrite = 1;
  1610. kvm_x86_ops->tlb_flush(vcpu);
  1611. }
  1612. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  1613. pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
  1614. is_large_pte(*sptep)? "2MB" : "4kB",
  1615. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  1616. *sptep, sptep);
  1617. if (!was_rmapped && is_large_pte(*sptep))
  1618. ++vcpu->kvm->stat.lpages;
  1619. page_header_update_slot(vcpu->kvm, sptep, gfn);
  1620. if (!was_rmapped) {
  1621. rmap_count = rmap_add(vcpu, sptep, gfn);
  1622. kvm_release_pfn_clean(pfn);
  1623. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  1624. rmap_recycle(vcpu, sptep, gfn);
  1625. } else {
  1626. if (was_writable)
  1627. kvm_release_pfn_dirty(pfn);
  1628. else
  1629. kvm_release_pfn_clean(pfn);
  1630. }
  1631. if (speculative) {
  1632. vcpu->arch.last_pte_updated = sptep;
  1633. vcpu->arch.last_pte_gfn = gfn;
  1634. }
  1635. }
  1636. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1637. {
  1638. }
  1639. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1640. int level, gfn_t gfn, pfn_t pfn)
  1641. {
  1642. struct kvm_shadow_walk_iterator iterator;
  1643. struct kvm_mmu_page *sp;
  1644. int pt_write = 0;
  1645. gfn_t pseudo_gfn;
  1646. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  1647. if (iterator.level == level) {
  1648. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
  1649. 0, write, 1, &pt_write,
  1650. level, gfn, pfn, false, true);
  1651. ++vcpu->stat.pf_fixed;
  1652. break;
  1653. }
  1654. if (*iterator.sptep == shadow_trap_nonpresent_pte) {
  1655. pseudo_gfn = (iterator.addr & PT64_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1656. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  1657. iterator.level - 1,
  1658. 1, ACC_ALL, iterator.sptep);
  1659. if (!sp) {
  1660. pgprintk("nonpaging_map: ENOMEM\n");
  1661. kvm_release_pfn_clean(pfn);
  1662. return -ENOMEM;
  1663. }
  1664. __set_spte(iterator.sptep,
  1665. __pa(sp->spt)
  1666. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1667. | shadow_user_mask | shadow_x_mask);
  1668. }
  1669. }
  1670. return pt_write;
  1671. }
  1672. static void kvm_send_hwpoison_signal(struct kvm *kvm, gfn_t gfn)
  1673. {
  1674. char buf[1];
  1675. void __user *hva;
  1676. int r;
  1677. /* Touch the page, so send SIGBUS */
  1678. hva = (void __user *)gfn_to_hva(kvm, gfn);
  1679. r = copy_from_user(buf, hva, 1);
  1680. }
  1681. static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn)
  1682. {
  1683. kvm_release_pfn_clean(pfn);
  1684. if (is_hwpoison_pfn(pfn)) {
  1685. kvm_send_hwpoison_signal(kvm, gfn);
  1686. return 0;
  1687. }
  1688. return 1;
  1689. }
  1690. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1691. {
  1692. int r;
  1693. int level;
  1694. pfn_t pfn;
  1695. unsigned long mmu_seq;
  1696. level = mapping_level(vcpu, gfn);
  1697. /*
  1698. * This path builds a PAE pagetable - so we can map 2mb pages at
  1699. * maximum. Therefore check if the level is larger than that.
  1700. */
  1701. if (level > PT_DIRECTORY_LEVEL)
  1702. level = PT_DIRECTORY_LEVEL;
  1703. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1704. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1705. smp_rmb();
  1706. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1707. /* mmio */
  1708. if (is_error_pfn(pfn))
  1709. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  1710. spin_lock(&vcpu->kvm->mmu_lock);
  1711. if (mmu_notifier_retry(vcpu, mmu_seq))
  1712. goto out_unlock;
  1713. kvm_mmu_free_some_pages(vcpu);
  1714. r = __direct_map(vcpu, v, write, level, gfn, pfn);
  1715. spin_unlock(&vcpu->kvm->mmu_lock);
  1716. return r;
  1717. out_unlock:
  1718. spin_unlock(&vcpu->kvm->mmu_lock);
  1719. kvm_release_pfn_clean(pfn);
  1720. return 0;
  1721. }
  1722. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1723. {
  1724. int i;
  1725. struct kvm_mmu_page *sp;
  1726. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1727. return;
  1728. spin_lock(&vcpu->kvm->mmu_lock);
  1729. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1730. hpa_t root = vcpu->arch.mmu.root_hpa;
  1731. sp = page_header(root);
  1732. --sp->root_count;
  1733. if (!sp->root_count && sp->role.invalid)
  1734. kvm_mmu_zap_page(vcpu->kvm, sp);
  1735. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1736. spin_unlock(&vcpu->kvm->mmu_lock);
  1737. return;
  1738. }
  1739. for (i = 0; i < 4; ++i) {
  1740. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1741. if (root) {
  1742. root &= PT64_BASE_ADDR_MASK;
  1743. sp = page_header(root);
  1744. --sp->root_count;
  1745. if (!sp->root_count && sp->role.invalid)
  1746. kvm_mmu_zap_page(vcpu->kvm, sp);
  1747. }
  1748. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1749. }
  1750. spin_unlock(&vcpu->kvm->mmu_lock);
  1751. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1752. }
  1753. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  1754. {
  1755. int ret = 0;
  1756. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  1757. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1758. ret = 1;
  1759. }
  1760. return ret;
  1761. }
  1762. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1763. {
  1764. int i;
  1765. gfn_t root_gfn;
  1766. struct kvm_mmu_page *sp;
  1767. int direct = 0;
  1768. u64 pdptr;
  1769. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1770. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1771. hpa_t root = vcpu->arch.mmu.root_hpa;
  1772. ASSERT(!VALID_PAGE(root));
  1773. if (mmu_check_root(vcpu, root_gfn))
  1774. return 1;
  1775. if (tdp_enabled) {
  1776. direct = 1;
  1777. root_gfn = 0;
  1778. }
  1779. spin_lock(&vcpu->kvm->mmu_lock);
  1780. kvm_mmu_free_some_pages(vcpu);
  1781. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1782. PT64_ROOT_LEVEL, direct,
  1783. ACC_ALL, NULL);
  1784. root = __pa(sp->spt);
  1785. ++sp->root_count;
  1786. spin_unlock(&vcpu->kvm->mmu_lock);
  1787. vcpu->arch.mmu.root_hpa = root;
  1788. return 0;
  1789. }
  1790. direct = !is_paging(vcpu);
  1791. for (i = 0; i < 4; ++i) {
  1792. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1793. ASSERT(!VALID_PAGE(root));
  1794. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1795. pdptr = kvm_pdptr_read(vcpu, i);
  1796. if (!is_present_gpte(pdptr)) {
  1797. vcpu->arch.mmu.pae_root[i] = 0;
  1798. continue;
  1799. }
  1800. root_gfn = pdptr >> PAGE_SHIFT;
  1801. } else if (vcpu->arch.mmu.root_level == 0)
  1802. root_gfn = 0;
  1803. if (mmu_check_root(vcpu, root_gfn))
  1804. return 1;
  1805. if (tdp_enabled) {
  1806. direct = 1;
  1807. root_gfn = i << 30;
  1808. }
  1809. spin_lock(&vcpu->kvm->mmu_lock);
  1810. kvm_mmu_free_some_pages(vcpu);
  1811. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1812. PT32_ROOT_LEVEL, direct,
  1813. ACC_ALL, NULL);
  1814. root = __pa(sp->spt);
  1815. ++sp->root_count;
  1816. spin_unlock(&vcpu->kvm->mmu_lock);
  1817. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1818. }
  1819. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1820. return 0;
  1821. }
  1822. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  1823. {
  1824. int i;
  1825. struct kvm_mmu_page *sp;
  1826. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1827. return;
  1828. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1829. hpa_t root = vcpu->arch.mmu.root_hpa;
  1830. sp = page_header(root);
  1831. mmu_sync_children(vcpu, sp);
  1832. return;
  1833. }
  1834. for (i = 0; i < 4; ++i) {
  1835. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1836. if (root && VALID_PAGE(root)) {
  1837. root &= PT64_BASE_ADDR_MASK;
  1838. sp = page_header(root);
  1839. mmu_sync_children(vcpu, sp);
  1840. }
  1841. }
  1842. }
  1843. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  1844. {
  1845. spin_lock(&vcpu->kvm->mmu_lock);
  1846. mmu_sync_roots(vcpu);
  1847. spin_unlock(&vcpu->kvm->mmu_lock);
  1848. }
  1849. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  1850. u32 access, u32 *error)
  1851. {
  1852. if (error)
  1853. *error = 0;
  1854. return vaddr;
  1855. }
  1856. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1857. u32 error_code)
  1858. {
  1859. gfn_t gfn;
  1860. int r;
  1861. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1862. r = mmu_topup_memory_caches(vcpu);
  1863. if (r)
  1864. return r;
  1865. ASSERT(vcpu);
  1866. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1867. gfn = gva >> PAGE_SHIFT;
  1868. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1869. error_code & PFERR_WRITE_MASK, gfn);
  1870. }
  1871. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1872. u32 error_code)
  1873. {
  1874. pfn_t pfn;
  1875. int r;
  1876. int level;
  1877. gfn_t gfn = gpa >> PAGE_SHIFT;
  1878. unsigned long mmu_seq;
  1879. ASSERT(vcpu);
  1880. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1881. r = mmu_topup_memory_caches(vcpu);
  1882. if (r)
  1883. return r;
  1884. level = mapping_level(vcpu, gfn);
  1885. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1886. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1887. smp_rmb();
  1888. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1889. if (is_error_pfn(pfn))
  1890. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  1891. spin_lock(&vcpu->kvm->mmu_lock);
  1892. if (mmu_notifier_retry(vcpu, mmu_seq))
  1893. goto out_unlock;
  1894. kvm_mmu_free_some_pages(vcpu);
  1895. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  1896. level, gfn, pfn);
  1897. spin_unlock(&vcpu->kvm->mmu_lock);
  1898. return r;
  1899. out_unlock:
  1900. spin_unlock(&vcpu->kvm->mmu_lock);
  1901. kvm_release_pfn_clean(pfn);
  1902. return 0;
  1903. }
  1904. static void nonpaging_free(struct kvm_vcpu *vcpu)
  1905. {
  1906. mmu_free_roots(vcpu);
  1907. }
  1908. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  1909. {
  1910. struct kvm_mmu *context = &vcpu->arch.mmu;
  1911. context->new_cr3 = nonpaging_new_cr3;
  1912. context->page_fault = nonpaging_page_fault;
  1913. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1914. context->free = nonpaging_free;
  1915. context->prefetch_page = nonpaging_prefetch_page;
  1916. context->sync_page = nonpaging_sync_page;
  1917. context->invlpg = nonpaging_invlpg;
  1918. context->root_level = 0;
  1919. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1920. context->root_hpa = INVALID_PAGE;
  1921. return 0;
  1922. }
  1923. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1924. {
  1925. ++vcpu->stat.tlb_flush;
  1926. kvm_x86_ops->tlb_flush(vcpu);
  1927. }
  1928. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  1929. {
  1930. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  1931. mmu_free_roots(vcpu);
  1932. }
  1933. static void inject_page_fault(struct kvm_vcpu *vcpu,
  1934. u64 addr,
  1935. u32 err_code)
  1936. {
  1937. kvm_inject_page_fault(vcpu, addr, err_code);
  1938. }
  1939. static void paging_free(struct kvm_vcpu *vcpu)
  1940. {
  1941. nonpaging_free(vcpu);
  1942. }
  1943. static bool is_rsvd_bits_set(struct kvm_vcpu *vcpu, u64 gpte, int level)
  1944. {
  1945. int bit7;
  1946. bit7 = (gpte >> 7) & 1;
  1947. return (gpte & vcpu->arch.mmu.rsvd_bits_mask[bit7][level-1]) != 0;
  1948. }
  1949. #define PTTYPE 64
  1950. #include "paging_tmpl.h"
  1951. #undef PTTYPE
  1952. #define PTTYPE 32
  1953. #include "paging_tmpl.h"
  1954. #undef PTTYPE
  1955. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, int level)
  1956. {
  1957. struct kvm_mmu *context = &vcpu->arch.mmu;
  1958. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  1959. u64 exb_bit_rsvd = 0;
  1960. if (!is_nx(vcpu))
  1961. exb_bit_rsvd = rsvd_bits(63, 63);
  1962. switch (level) {
  1963. case PT32_ROOT_LEVEL:
  1964. /* no rsvd bits for 2 level 4K page table entries */
  1965. context->rsvd_bits_mask[0][1] = 0;
  1966. context->rsvd_bits_mask[0][0] = 0;
  1967. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  1968. if (!is_pse(vcpu)) {
  1969. context->rsvd_bits_mask[1][1] = 0;
  1970. break;
  1971. }
  1972. if (is_cpuid_PSE36())
  1973. /* 36bits PSE 4MB page */
  1974. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  1975. else
  1976. /* 32 bits PSE 4MB page */
  1977. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  1978. break;
  1979. case PT32E_ROOT_LEVEL:
  1980. context->rsvd_bits_mask[0][2] =
  1981. rsvd_bits(maxphyaddr, 63) |
  1982. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  1983. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  1984. rsvd_bits(maxphyaddr, 62); /* PDE */
  1985. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  1986. rsvd_bits(maxphyaddr, 62); /* PTE */
  1987. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  1988. rsvd_bits(maxphyaddr, 62) |
  1989. rsvd_bits(13, 20); /* large page */
  1990. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  1991. break;
  1992. case PT64_ROOT_LEVEL:
  1993. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  1994. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  1995. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  1996. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  1997. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  1998. rsvd_bits(maxphyaddr, 51);
  1999. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2000. rsvd_bits(maxphyaddr, 51);
  2001. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2002. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2003. rsvd_bits(maxphyaddr, 51) |
  2004. rsvd_bits(13, 29);
  2005. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2006. rsvd_bits(maxphyaddr, 51) |
  2007. rsvd_bits(13, 20); /* large page */
  2008. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2009. break;
  2010. }
  2011. }
  2012. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  2013. {
  2014. struct kvm_mmu *context = &vcpu->arch.mmu;
  2015. ASSERT(is_pae(vcpu));
  2016. context->new_cr3 = paging_new_cr3;
  2017. context->page_fault = paging64_page_fault;
  2018. context->gva_to_gpa = paging64_gva_to_gpa;
  2019. context->prefetch_page = paging64_prefetch_page;
  2020. context->sync_page = paging64_sync_page;
  2021. context->invlpg = paging64_invlpg;
  2022. context->free = paging_free;
  2023. context->root_level = level;
  2024. context->shadow_root_level = level;
  2025. context->root_hpa = INVALID_PAGE;
  2026. return 0;
  2027. }
  2028. static int paging64_init_context(struct kvm_vcpu *vcpu)
  2029. {
  2030. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2031. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  2032. }
  2033. static int paging32_init_context(struct kvm_vcpu *vcpu)
  2034. {
  2035. struct kvm_mmu *context = &vcpu->arch.mmu;
  2036. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2037. context->new_cr3 = paging_new_cr3;
  2038. context->page_fault = paging32_page_fault;
  2039. context->gva_to_gpa = paging32_gva_to_gpa;
  2040. context->free = paging_free;
  2041. context->prefetch_page = paging32_prefetch_page;
  2042. context->sync_page = paging32_sync_page;
  2043. context->invlpg = paging32_invlpg;
  2044. context->root_level = PT32_ROOT_LEVEL;
  2045. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2046. context->root_hpa = INVALID_PAGE;
  2047. return 0;
  2048. }
  2049. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  2050. {
  2051. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2052. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  2053. }
  2054. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2055. {
  2056. struct kvm_mmu *context = &vcpu->arch.mmu;
  2057. context->new_cr3 = nonpaging_new_cr3;
  2058. context->page_fault = tdp_page_fault;
  2059. context->free = nonpaging_free;
  2060. context->prefetch_page = nonpaging_prefetch_page;
  2061. context->sync_page = nonpaging_sync_page;
  2062. context->invlpg = nonpaging_invlpg;
  2063. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2064. context->root_hpa = INVALID_PAGE;
  2065. if (!is_paging(vcpu)) {
  2066. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2067. context->root_level = 0;
  2068. } else if (is_long_mode(vcpu)) {
  2069. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2070. context->gva_to_gpa = paging64_gva_to_gpa;
  2071. context->root_level = PT64_ROOT_LEVEL;
  2072. } else if (is_pae(vcpu)) {
  2073. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2074. context->gva_to_gpa = paging64_gva_to_gpa;
  2075. context->root_level = PT32E_ROOT_LEVEL;
  2076. } else {
  2077. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2078. context->gva_to_gpa = paging32_gva_to_gpa;
  2079. context->root_level = PT32_ROOT_LEVEL;
  2080. }
  2081. return 0;
  2082. }
  2083. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  2084. {
  2085. int r;
  2086. ASSERT(vcpu);
  2087. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2088. if (!is_paging(vcpu))
  2089. r = nonpaging_init_context(vcpu);
  2090. else if (is_long_mode(vcpu))
  2091. r = paging64_init_context(vcpu);
  2092. else if (is_pae(vcpu))
  2093. r = paging32E_init_context(vcpu);
  2094. else
  2095. r = paging32_init_context(vcpu);
  2096. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  2097. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  2098. return r;
  2099. }
  2100. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  2101. {
  2102. vcpu->arch.update_pte.pfn = bad_pfn;
  2103. if (tdp_enabled)
  2104. return init_kvm_tdp_mmu(vcpu);
  2105. else
  2106. return init_kvm_softmmu(vcpu);
  2107. }
  2108. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  2109. {
  2110. ASSERT(vcpu);
  2111. if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2112. /* mmu.free() should set root_hpa = INVALID_PAGE */
  2113. vcpu->arch.mmu.free(vcpu);
  2114. }
  2115. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  2116. {
  2117. destroy_kvm_mmu(vcpu);
  2118. return init_kvm_mmu(vcpu);
  2119. }
  2120. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  2121. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  2122. {
  2123. int r;
  2124. r = mmu_topup_memory_caches(vcpu);
  2125. if (r)
  2126. goto out;
  2127. r = mmu_alloc_roots(vcpu);
  2128. spin_lock(&vcpu->kvm->mmu_lock);
  2129. mmu_sync_roots(vcpu);
  2130. spin_unlock(&vcpu->kvm->mmu_lock);
  2131. if (r)
  2132. goto out;
  2133. /* set_cr3() should ensure TLB has been flushed */
  2134. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  2135. out:
  2136. return r;
  2137. }
  2138. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  2139. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  2140. {
  2141. mmu_free_roots(vcpu);
  2142. }
  2143. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  2144. struct kvm_mmu_page *sp,
  2145. u64 *spte)
  2146. {
  2147. u64 pte;
  2148. struct kvm_mmu_page *child;
  2149. pte = *spte;
  2150. if (is_shadow_present_pte(pte)) {
  2151. if (is_last_spte(pte, sp->role.level))
  2152. rmap_remove(vcpu->kvm, spte);
  2153. else {
  2154. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2155. mmu_page_remove_parent_pte(child, spte);
  2156. }
  2157. }
  2158. __set_spte(spte, shadow_trap_nonpresent_pte);
  2159. if (is_large_pte(pte))
  2160. --vcpu->kvm->stat.lpages;
  2161. }
  2162. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  2163. struct kvm_mmu_page *sp,
  2164. u64 *spte,
  2165. const void *new)
  2166. {
  2167. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  2168. ++vcpu->kvm->stat.mmu_pde_zapped;
  2169. return;
  2170. }
  2171. ++vcpu->kvm->stat.mmu_pte_updated;
  2172. if (!sp->role.cr4_pae)
  2173. paging32_update_pte(vcpu, sp, spte, new);
  2174. else
  2175. paging64_update_pte(vcpu, sp, spte, new);
  2176. }
  2177. static bool need_remote_flush(u64 old, u64 new)
  2178. {
  2179. if (!is_shadow_present_pte(old))
  2180. return false;
  2181. if (!is_shadow_present_pte(new))
  2182. return true;
  2183. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2184. return true;
  2185. old ^= PT64_NX_MASK;
  2186. new ^= PT64_NX_MASK;
  2187. return (old & ~new & PT64_PERM_MASK) != 0;
  2188. }
  2189. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
  2190. {
  2191. if (need_remote_flush(old, new))
  2192. kvm_flush_remote_tlbs(vcpu->kvm);
  2193. else
  2194. kvm_mmu_flush_tlb(vcpu);
  2195. }
  2196. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2197. {
  2198. u64 *spte = vcpu->arch.last_pte_updated;
  2199. return !!(spte && (*spte & shadow_accessed_mask));
  2200. }
  2201. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2202. u64 gpte)
  2203. {
  2204. gfn_t gfn;
  2205. pfn_t pfn;
  2206. if (!is_present_gpte(gpte))
  2207. return;
  2208. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  2209. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2210. smp_rmb();
  2211. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2212. if (is_error_pfn(pfn)) {
  2213. kvm_release_pfn_clean(pfn);
  2214. return;
  2215. }
  2216. vcpu->arch.update_pte.gfn = gfn;
  2217. vcpu->arch.update_pte.pfn = pfn;
  2218. }
  2219. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  2220. {
  2221. u64 *spte = vcpu->arch.last_pte_updated;
  2222. if (spte
  2223. && vcpu->arch.last_pte_gfn == gfn
  2224. && shadow_accessed_mask
  2225. && !(*spte & shadow_accessed_mask)
  2226. && is_shadow_present_pte(*spte))
  2227. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  2228. }
  2229. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2230. const u8 *new, int bytes,
  2231. bool guest_initiated)
  2232. {
  2233. gfn_t gfn = gpa >> PAGE_SHIFT;
  2234. struct kvm_mmu_page *sp;
  2235. struct hlist_node *node, *n;
  2236. struct hlist_head *bucket;
  2237. unsigned index;
  2238. u64 entry, gentry;
  2239. u64 *spte;
  2240. unsigned offset = offset_in_page(gpa);
  2241. unsigned pte_size;
  2242. unsigned page_offset;
  2243. unsigned misaligned;
  2244. unsigned quadrant;
  2245. int level;
  2246. int flooded = 0;
  2247. int npte;
  2248. int r;
  2249. int invlpg_counter;
  2250. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2251. invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
  2252. /*
  2253. * Assume that the pte write on a page table of the same type
  2254. * as the current vcpu paging mode. This is nearly always true
  2255. * (might be false while changing modes). Note it is verified later
  2256. * by update_pte().
  2257. */
  2258. if ((is_pae(vcpu) && bytes == 4) || !new) {
  2259. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2260. if (is_pae(vcpu)) {
  2261. gpa &= ~(gpa_t)7;
  2262. bytes = 8;
  2263. }
  2264. r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
  2265. if (r)
  2266. gentry = 0;
  2267. new = (const u8 *)&gentry;
  2268. }
  2269. switch (bytes) {
  2270. case 4:
  2271. gentry = *(const u32 *)new;
  2272. break;
  2273. case 8:
  2274. gentry = *(const u64 *)new;
  2275. break;
  2276. default:
  2277. gentry = 0;
  2278. break;
  2279. }
  2280. mmu_guess_page_from_pte_write(vcpu, gpa, gentry);
  2281. spin_lock(&vcpu->kvm->mmu_lock);
  2282. if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
  2283. gentry = 0;
  2284. kvm_mmu_access_page(vcpu, gfn);
  2285. kvm_mmu_free_some_pages(vcpu);
  2286. ++vcpu->kvm->stat.mmu_pte_write;
  2287. kvm_mmu_audit(vcpu, "pre pte write");
  2288. if (guest_initiated) {
  2289. if (gfn == vcpu->arch.last_pt_write_gfn
  2290. && !last_updated_pte_accessed(vcpu)) {
  2291. ++vcpu->arch.last_pt_write_count;
  2292. if (vcpu->arch.last_pt_write_count >= 3)
  2293. flooded = 1;
  2294. } else {
  2295. vcpu->arch.last_pt_write_gfn = gfn;
  2296. vcpu->arch.last_pt_write_count = 1;
  2297. vcpu->arch.last_pte_updated = NULL;
  2298. }
  2299. }
  2300. index = kvm_page_table_hashfn(gfn);
  2301. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  2302. restart:
  2303. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
  2304. if (sp->gfn != gfn || sp->role.direct || sp->role.invalid)
  2305. continue;
  2306. pte_size = sp->role.cr4_pae ? 8 : 4;
  2307. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2308. misaligned |= bytes < 4;
  2309. if (misaligned || flooded) {
  2310. /*
  2311. * Misaligned accesses are too much trouble to fix
  2312. * up; also, they usually indicate a page is not used
  2313. * as a page table.
  2314. *
  2315. * If we're seeing too many writes to a page,
  2316. * it may no longer be a page table, or we may be
  2317. * forking, in which case it is better to unmap the
  2318. * page.
  2319. */
  2320. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2321. gpa, bytes, sp->role.word);
  2322. if (kvm_mmu_zap_page(vcpu->kvm, sp))
  2323. goto restart;
  2324. ++vcpu->kvm->stat.mmu_flooded;
  2325. continue;
  2326. }
  2327. page_offset = offset;
  2328. level = sp->role.level;
  2329. npte = 1;
  2330. if (!sp->role.cr4_pae) {
  2331. page_offset <<= 1; /* 32->64 */
  2332. /*
  2333. * A 32-bit pde maps 4MB while the shadow pdes map
  2334. * only 2MB. So we need to double the offset again
  2335. * and zap two pdes instead of one.
  2336. */
  2337. if (level == PT32_ROOT_LEVEL) {
  2338. page_offset &= ~7; /* kill rounding error */
  2339. page_offset <<= 1;
  2340. npte = 2;
  2341. }
  2342. quadrant = page_offset >> PAGE_SHIFT;
  2343. page_offset &= ~PAGE_MASK;
  2344. if (quadrant != sp->role.quadrant)
  2345. continue;
  2346. }
  2347. spte = &sp->spt[page_offset / sizeof(*spte)];
  2348. while (npte--) {
  2349. entry = *spte;
  2350. mmu_pte_write_zap_pte(vcpu, sp, spte);
  2351. if (gentry)
  2352. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  2353. mmu_pte_write_flush_tlb(vcpu, entry, *spte);
  2354. ++spte;
  2355. }
  2356. }
  2357. kvm_mmu_audit(vcpu, "post pte write");
  2358. spin_unlock(&vcpu->kvm->mmu_lock);
  2359. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  2360. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  2361. vcpu->arch.update_pte.pfn = bad_pfn;
  2362. }
  2363. }
  2364. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2365. {
  2366. gpa_t gpa;
  2367. int r;
  2368. if (tdp_enabled)
  2369. return 0;
  2370. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  2371. spin_lock(&vcpu->kvm->mmu_lock);
  2372. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2373. spin_unlock(&vcpu->kvm->mmu_lock);
  2374. return r;
  2375. }
  2376. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2377. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2378. {
  2379. while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES &&
  2380. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  2381. struct kvm_mmu_page *sp;
  2382. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2383. struct kvm_mmu_page, link);
  2384. kvm_mmu_zap_page(vcpu->kvm, sp);
  2385. ++vcpu->kvm->stat.mmu_recycled;
  2386. }
  2387. }
  2388. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  2389. {
  2390. int r;
  2391. enum emulation_result er;
  2392. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  2393. if (r < 0)
  2394. goto out;
  2395. if (!r) {
  2396. r = 1;
  2397. goto out;
  2398. }
  2399. r = mmu_topup_memory_caches(vcpu);
  2400. if (r)
  2401. goto out;
  2402. er = emulate_instruction(vcpu, cr2, error_code, 0);
  2403. switch (er) {
  2404. case EMULATE_DONE:
  2405. return 1;
  2406. case EMULATE_DO_MMIO:
  2407. ++vcpu->stat.mmio_exits;
  2408. /* fall through */
  2409. case EMULATE_FAIL:
  2410. return 0;
  2411. default:
  2412. BUG();
  2413. }
  2414. out:
  2415. return r;
  2416. }
  2417. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2418. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2419. {
  2420. vcpu->arch.mmu.invlpg(vcpu, gva);
  2421. kvm_mmu_flush_tlb(vcpu);
  2422. ++vcpu->stat.invlpg;
  2423. }
  2424. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2425. void kvm_enable_tdp(void)
  2426. {
  2427. tdp_enabled = true;
  2428. }
  2429. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2430. void kvm_disable_tdp(void)
  2431. {
  2432. tdp_enabled = false;
  2433. }
  2434. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2435. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2436. {
  2437. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2438. }
  2439. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2440. {
  2441. struct page *page;
  2442. int i;
  2443. ASSERT(vcpu);
  2444. /*
  2445. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2446. * Therefore we need to allocate shadow page tables in the first
  2447. * 4GB of memory, which happens to fit the DMA32 zone.
  2448. */
  2449. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2450. if (!page)
  2451. return -ENOMEM;
  2452. vcpu->arch.mmu.pae_root = page_address(page);
  2453. for (i = 0; i < 4; ++i)
  2454. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2455. return 0;
  2456. }
  2457. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2458. {
  2459. ASSERT(vcpu);
  2460. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2461. return alloc_mmu_pages(vcpu);
  2462. }
  2463. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2464. {
  2465. ASSERT(vcpu);
  2466. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2467. return init_kvm_mmu(vcpu);
  2468. }
  2469. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  2470. {
  2471. ASSERT(vcpu);
  2472. destroy_kvm_mmu(vcpu);
  2473. free_mmu_pages(vcpu);
  2474. mmu_free_memory_caches(vcpu);
  2475. }
  2476. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2477. {
  2478. struct kvm_mmu_page *sp;
  2479. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2480. int i;
  2481. u64 *pt;
  2482. if (!test_bit(slot, sp->slot_bitmap))
  2483. continue;
  2484. pt = sp->spt;
  2485. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  2486. /* avoid RMW */
  2487. if (pt[i] & PT_WRITABLE_MASK)
  2488. pt[i] &= ~PT_WRITABLE_MASK;
  2489. }
  2490. kvm_flush_remote_tlbs(kvm);
  2491. }
  2492. void kvm_mmu_zap_all(struct kvm *kvm)
  2493. {
  2494. struct kvm_mmu_page *sp, *node;
  2495. spin_lock(&kvm->mmu_lock);
  2496. restart:
  2497. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  2498. if (kvm_mmu_zap_page(kvm, sp))
  2499. goto restart;
  2500. spin_unlock(&kvm->mmu_lock);
  2501. kvm_flush_remote_tlbs(kvm);
  2502. }
  2503. static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm)
  2504. {
  2505. struct kvm_mmu_page *page;
  2506. page = container_of(kvm->arch.active_mmu_pages.prev,
  2507. struct kvm_mmu_page, link);
  2508. return kvm_mmu_zap_page(kvm, page);
  2509. }
  2510. static int mmu_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
  2511. {
  2512. struct kvm *kvm;
  2513. struct kvm *kvm_freed = NULL;
  2514. int cache_count = 0;
  2515. spin_lock(&kvm_lock);
  2516. list_for_each_entry(kvm, &vm_list, vm_list) {
  2517. int npages, idx, freed_pages;
  2518. idx = srcu_read_lock(&kvm->srcu);
  2519. spin_lock(&kvm->mmu_lock);
  2520. npages = kvm->arch.n_alloc_mmu_pages -
  2521. kvm->arch.n_free_mmu_pages;
  2522. cache_count += npages;
  2523. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  2524. freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm);
  2525. cache_count -= freed_pages;
  2526. kvm_freed = kvm;
  2527. }
  2528. nr_to_scan--;
  2529. spin_unlock(&kvm->mmu_lock);
  2530. srcu_read_unlock(&kvm->srcu, idx);
  2531. }
  2532. if (kvm_freed)
  2533. list_move_tail(&kvm_freed->vm_list, &vm_list);
  2534. spin_unlock(&kvm_lock);
  2535. return cache_count;
  2536. }
  2537. static struct shrinker mmu_shrinker = {
  2538. .shrink = mmu_shrink,
  2539. .seeks = DEFAULT_SEEKS * 10,
  2540. };
  2541. static void mmu_destroy_caches(void)
  2542. {
  2543. if (pte_chain_cache)
  2544. kmem_cache_destroy(pte_chain_cache);
  2545. if (rmap_desc_cache)
  2546. kmem_cache_destroy(rmap_desc_cache);
  2547. if (mmu_page_header_cache)
  2548. kmem_cache_destroy(mmu_page_header_cache);
  2549. }
  2550. void kvm_mmu_module_exit(void)
  2551. {
  2552. mmu_destroy_caches();
  2553. unregister_shrinker(&mmu_shrinker);
  2554. }
  2555. int kvm_mmu_module_init(void)
  2556. {
  2557. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  2558. sizeof(struct kvm_pte_chain),
  2559. 0, 0, NULL);
  2560. if (!pte_chain_cache)
  2561. goto nomem;
  2562. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  2563. sizeof(struct kvm_rmap_desc),
  2564. 0, 0, NULL);
  2565. if (!rmap_desc_cache)
  2566. goto nomem;
  2567. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  2568. sizeof(struct kvm_mmu_page),
  2569. 0, 0, NULL);
  2570. if (!mmu_page_header_cache)
  2571. goto nomem;
  2572. register_shrinker(&mmu_shrinker);
  2573. return 0;
  2574. nomem:
  2575. mmu_destroy_caches();
  2576. return -ENOMEM;
  2577. }
  2578. /*
  2579. * Caculate mmu pages needed for kvm.
  2580. */
  2581. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2582. {
  2583. int i;
  2584. unsigned int nr_mmu_pages;
  2585. unsigned int nr_pages = 0;
  2586. struct kvm_memslots *slots;
  2587. slots = kvm_memslots(kvm);
  2588. for (i = 0; i < slots->nmemslots; i++)
  2589. nr_pages += slots->memslots[i].npages;
  2590. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  2591. nr_mmu_pages = max(nr_mmu_pages,
  2592. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  2593. return nr_mmu_pages;
  2594. }
  2595. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2596. unsigned len)
  2597. {
  2598. if (len > buffer->len)
  2599. return NULL;
  2600. return buffer->ptr;
  2601. }
  2602. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2603. unsigned len)
  2604. {
  2605. void *ret;
  2606. ret = pv_mmu_peek_buffer(buffer, len);
  2607. if (!ret)
  2608. return ret;
  2609. buffer->ptr += len;
  2610. buffer->len -= len;
  2611. buffer->processed += len;
  2612. return ret;
  2613. }
  2614. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  2615. gpa_t addr, gpa_t value)
  2616. {
  2617. int bytes = 8;
  2618. int r;
  2619. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  2620. bytes = 4;
  2621. r = mmu_topup_memory_caches(vcpu);
  2622. if (r)
  2623. return r;
  2624. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  2625. return -EFAULT;
  2626. return 1;
  2627. }
  2628. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2629. {
  2630. kvm_set_cr3(vcpu, vcpu->arch.cr3);
  2631. return 1;
  2632. }
  2633. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  2634. {
  2635. spin_lock(&vcpu->kvm->mmu_lock);
  2636. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  2637. spin_unlock(&vcpu->kvm->mmu_lock);
  2638. return 1;
  2639. }
  2640. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  2641. struct kvm_pv_mmu_op_buffer *buffer)
  2642. {
  2643. struct kvm_mmu_op_header *header;
  2644. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  2645. if (!header)
  2646. return 0;
  2647. switch (header->op) {
  2648. case KVM_MMU_OP_WRITE_PTE: {
  2649. struct kvm_mmu_op_write_pte *wpte;
  2650. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  2651. if (!wpte)
  2652. return 0;
  2653. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  2654. wpte->pte_val);
  2655. }
  2656. case KVM_MMU_OP_FLUSH_TLB: {
  2657. struct kvm_mmu_op_flush_tlb *ftlb;
  2658. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  2659. if (!ftlb)
  2660. return 0;
  2661. return kvm_pv_mmu_flush_tlb(vcpu);
  2662. }
  2663. case KVM_MMU_OP_RELEASE_PT: {
  2664. struct kvm_mmu_op_release_pt *rpt;
  2665. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  2666. if (!rpt)
  2667. return 0;
  2668. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  2669. }
  2670. default: return 0;
  2671. }
  2672. }
  2673. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  2674. gpa_t addr, unsigned long *ret)
  2675. {
  2676. int r;
  2677. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  2678. buffer->ptr = buffer->buf;
  2679. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  2680. buffer->processed = 0;
  2681. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  2682. if (r)
  2683. goto out;
  2684. while (buffer->len) {
  2685. r = kvm_pv_mmu_op_one(vcpu, buffer);
  2686. if (r < 0)
  2687. goto out;
  2688. if (r == 0)
  2689. break;
  2690. }
  2691. r = 1;
  2692. out:
  2693. *ret = buffer->processed;
  2694. return r;
  2695. }
  2696. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  2697. {
  2698. struct kvm_shadow_walk_iterator iterator;
  2699. int nr_sptes = 0;
  2700. spin_lock(&vcpu->kvm->mmu_lock);
  2701. for_each_shadow_entry(vcpu, addr, iterator) {
  2702. sptes[iterator.level-1] = *iterator.sptep;
  2703. nr_sptes++;
  2704. if (!is_shadow_present_pte(*iterator.sptep))
  2705. break;
  2706. }
  2707. spin_unlock(&vcpu->kvm->mmu_lock);
  2708. return nr_sptes;
  2709. }
  2710. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  2711. #ifdef AUDIT
  2712. static const char *audit_msg;
  2713. static gva_t canonicalize(gva_t gva)
  2714. {
  2715. #ifdef CONFIG_X86_64
  2716. gva = (long long)(gva << 16) >> 16;
  2717. #endif
  2718. return gva;
  2719. }
  2720. typedef void (*inspect_spte_fn) (struct kvm *kvm, u64 *sptep);
  2721. static void __mmu_spte_walk(struct kvm *kvm, struct kvm_mmu_page *sp,
  2722. inspect_spte_fn fn)
  2723. {
  2724. int i;
  2725. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2726. u64 ent = sp->spt[i];
  2727. if (is_shadow_present_pte(ent)) {
  2728. if (!is_last_spte(ent, sp->role.level)) {
  2729. struct kvm_mmu_page *child;
  2730. child = page_header(ent & PT64_BASE_ADDR_MASK);
  2731. __mmu_spte_walk(kvm, child, fn);
  2732. } else
  2733. fn(kvm, &sp->spt[i]);
  2734. }
  2735. }
  2736. }
  2737. static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
  2738. {
  2739. int i;
  2740. struct kvm_mmu_page *sp;
  2741. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2742. return;
  2743. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2744. hpa_t root = vcpu->arch.mmu.root_hpa;
  2745. sp = page_header(root);
  2746. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2747. return;
  2748. }
  2749. for (i = 0; i < 4; ++i) {
  2750. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2751. if (root && VALID_PAGE(root)) {
  2752. root &= PT64_BASE_ADDR_MASK;
  2753. sp = page_header(root);
  2754. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2755. }
  2756. }
  2757. return;
  2758. }
  2759. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  2760. gva_t va, int level)
  2761. {
  2762. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  2763. int i;
  2764. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  2765. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  2766. u64 ent = pt[i];
  2767. if (ent == shadow_trap_nonpresent_pte)
  2768. continue;
  2769. va = canonicalize(va);
  2770. if (is_shadow_present_pte(ent) && !is_last_spte(ent, level))
  2771. audit_mappings_page(vcpu, ent, va, level - 1);
  2772. else {
  2773. gpa_t gpa = kvm_mmu_gva_to_gpa_read(vcpu, va, NULL);
  2774. gfn_t gfn = gpa >> PAGE_SHIFT;
  2775. pfn_t pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2776. hpa_t hpa = (hpa_t)pfn << PAGE_SHIFT;
  2777. if (is_error_pfn(pfn)) {
  2778. kvm_release_pfn_clean(pfn);
  2779. continue;
  2780. }
  2781. if (is_shadow_present_pte(ent)
  2782. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  2783. printk(KERN_ERR "xx audit error: (%s) levels %d"
  2784. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  2785. audit_msg, vcpu->arch.mmu.root_level,
  2786. va, gpa, hpa, ent,
  2787. is_shadow_present_pte(ent));
  2788. else if (ent == shadow_notrap_nonpresent_pte
  2789. && !is_error_hpa(hpa))
  2790. printk(KERN_ERR "audit: (%s) notrap shadow,"
  2791. " valid guest gva %lx\n", audit_msg, va);
  2792. kvm_release_pfn_clean(pfn);
  2793. }
  2794. }
  2795. }
  2796. static void audit_mappings(struct kvm_vcpu *vcpu)
  2797. {
  2798. unsigned i;
  2799. if (vcpu->arch.mmu.root_level == 4)
  2800. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  2801. else
  2802. for (i = 0; i < 4; ++i)
  2803. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  2804. audit_mappings_page(vcpu,
  2805. vcpu->arch.mmu.pae_root[i],
  2806. i << 30,
  2807. 2);
  2808. }
  2809. static int count_rmaps(struct kvm_vcpu *vcpu)
  2810. {
  2811. struct kvm *kvm = vcpu->kvm;
  2812. struct kvm_memslots *slots;
  2813. int nmaps = 0;
  2814. int i, j, k, idx;
  2815. idx = srcu_read_lock(&kvm->srcu);
  2816. slots = kvm_memslots(kvm);
  2817. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  2818. struct kvm_memory_slot *m = &slots->memslots[i];
  2819. struct kvm_rmap_desc *d;
  2820. for (j = 0; j < m->npages; ++j) {
  2821. unsigned long *rmapp = &m->rmap[j];
  2822. if (!*rmapp)
  2823. continue;
  2824. if (!(*rmapp & 1)) {
  2825. ++nmaps;
  2826. continue;
  2827. }
  2828. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  2829. while (d) {
  2830. for (k = 0; k < RMAP_EXT; ++k)
  2831. if (d->sptes[k])
  2832. ++nmaps;
  2833. else
  2834. break;
  2835. d = d->more;
  2836. }
  2837. }
  2838. }
  2839. srcu_read_unlock(&kvm->srcu, idx);
  2840. return nmaps;
  2841. }
  2842. void inspect_spte_has_rmap(struct kvm *kvm, u64 *sptep)
  2843. {
  2844. unsigned long *rmapp;
  2845. struct kvm_mmu_page *rev_sp;
  2846. gfn_t gfn;
  2847. if (*sptep & PT_WRITABLE_MASK) {
  2848. rev_sp = page_header(__pa(sptep));
  2849. gfn = rev_sp->gfns[sptep - rev_sp->spt];
  2850. if (!gfn_to_memslot(kvm, gfn)) {
  2851. if (!printk_ratelimit())
  2852. return;
  2853. printk(KERN_ERR "%s: no memslot for gfn %ld\n",
  2854. audit_msg, gfn);
  2855. printk(KERN_ERR "%s: index %ld of sp (gfn=%lx)\n",
  2856. audit_msg, (long int)(sptep - rev_sp->spt),
  2857. rev_sp->gfn);
  2858. dump_stack();
  2859. return;
  2860. }
  2861. rmapp = gfn_to_rmap(kvm, rev_sp->gfns[sptep - rev_sp->spt],
  2862. rev_sp->role.level);
  2863. if (!*rmapp) {
  2864. if (!printk_ratelimit())
  2865. return;
  2866. printk(KERN_ERR "%s: no rmap for writable spte %llx\n",
  2867. audit_msg, *sptep);
  2868. dump_stack();
  2869. }
  2870. }
  2871. }
  2872. void audit_writable_sptes_have_rmaps(struct kvm_vcpu *vcpu)
  2873. {
  2874. mmu_spte_walk(vcpu, inspect_spte_has_rmap);
  2875. }
  2876. static void check_writable_mappings_rmap(struct kvm_vcpu *vcpu)
  2877. {
  2878. struct kvm_mmu_page *sp;
  2879. int i;
  2880. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2881. u64 *pt = sp->spt;
  2882. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  2883. continue;
  2884. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2885. u64 ent = pt[i];
  2886. if (!(ent & PT_PRESENT_MASK))
  2887. continue;
  2888. if (!(ent & PT_WRITABLE_MASK))
  2889. continue;
  2890. inspect_spte_has_rmap(vcpu->kvm, &pt[i]);
  2891. }
  2892. }
  2893. return;
  2894. }
  2895. static void audit_rmap(struct kvm_vcpu *vcpu)
  2896. {
  2897. check_writable_mappings_rmap(vcpu);
  2898. count_rmaps(vcpu);
  2899. }
  2900. static void audit_write_protection(struct kvm_vcpu *vcpu)
  2901. {
  2902. struct kvm_mmu_page *sp;
  2903. struct kvm_memory_slot *slot;
  2904. unsigned long *rmapp;
  2905. u64 *spte;
  2906. gfn_t gfn;
  2907. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2908. if (sp->role.direct)
  2909. continue;
  2910. if (sp->unsync)
  2911. continue;
  2912. gfn = unalias_gfn(vcpu->kvm, sp->gfn);
  2913. slot = gfn_to_memslot_unaliased(vcpu->kvm, sp->gfn);
  2914. rmapp = &slot->rmap[gfn - slot->base_gfn];
  2915. spte = rmap_next(vcpu->kvm, rmapp, NULL);
  2916. while (spte) {
  2917. if (*spte & PT_WRITABLE_MASK)
  2918. printk(KERN_ERR "%s: (%s) shadow page has "
  2919. "writable mappings: gfn %lx role %x\n",
  2920. __func__, audit_msg, sp->gfn,
  2921. sp->role.word);
  2922. spte = rmap_next(vcpu->kvm, rmapp, spte);
  2923. }
  2924. }
  2925. }
  2926. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  2927. {
  2928. int olddbg = dbg;
  2929. dbg = 0;
  2930. audit_msg = msg;
  2931. audit_rmap(vcpu);
  2932. audit_write_protection(vcpu);
  2933. if (strcmp("pre pte write", audit_msg) != 0)
  2934. audit_mappings(vcpu);
  2935. audit_writable_sptes_have_rmaps(vcpu);
  2936. dbg = olddbg;
  2937. }
  2938. #endif