lm85.c 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559
  1. /*
  2. lm85.c - Part of lm_sensors, Linux kernel modules for hardware
  3. monitoring
  4. Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
  5. Copyright (c) 2002, 2003 Philip Pokorny <ppokorny@penguincomputing.com>
  6. Copyright (c) 2003 Margit Schubert-While <margitsw@t-online.de>
  7. Copyright (c) 2004 Justin Thiessen <jthiessen@penguincomputing.com>
  8. Chip details at <http://www.national.com/ds/LM/LM85.pdf>
  9. This program is free software; you can redistribute it and/or modify
  10. it under the terms of the GNU General Public License as published by
  11. the Free Software Foundation; either version 2 of the License, or
  12. (at your option) any later version.
  13. This program is distributed in the hope that it will be useful,
  14. but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. GNU General Public License for more details.
  17. You should have received a copy of the GNU General Public License
  18. along with this program; if not, write to the Free Software
  19. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  20. */
  21. #include <linux/module.h>
  22. #include <linux/init.h>
  23. #include <linux/slab.h>
  24. #include <linux/jiffies.h>
  25. #include <linux/i2c.h>
  26. #include <linux/hwmon.h>
  27. #include <linux/hwmon-vid.h>
  28. #include <linux/hwmon-sysfs.h>
  29. #include <linux/err.h>
  30. #include <linux/mutex.h>
  31. /* Addresses to scan */
  32. static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
  33. /* Insmod parameters */
  34. I2C_CLIENT_INSMOD_6(lm85b, lm85c, adm1027, adt7463, emc6d100, emc6d102);
  35. /* The LM85 registers */
  36. #define LM85_REG_IN(nr) (0x20 + (nr))
  37. #define LM85_REG_IN_MIN(nr) (0x44 + (nr) * 2)
  38. #define LM85_REG_IN_MAX(nr) (0x45 + (nr) * 2)
  39. #define LM85_REG_TEMP(nr) (0x25 + (nr))
  40. #define LM85_REG_TEMP_MIN(nr) (0x4e + (nr) * 2)
  41. #define LM85_REG_TEMP_MAX(nr) (0x4f + (nr) * 2)
  42. /* Fan speeds are LSB, MSB (2 bytes) */
  43. #define LM85_REG_FAN(nr) (0x28 + (nr) * 2)
  44. #define LM85_REG_FAN_MIN(nr) (0x54 + (nr) * 2)
  45. #define LM85_REG_PWM(nr) (0x30 + (nr))
  46. #define LM85_REG_COMPANY 0x3e
  47. #define LM85_REG_VERSTEP 0x3f
  48. /* These are the recognized values for the above regs */
  49. #define LM85_COMPANY_NATIONAL 0x01
  50. #define LM85_COMPANY_ANALOG_DEV 0x41
  51. #define LM85_COMPANY_SMSC 0x5c
  52. #define LM85_VERSTEP_VMASK 0xf0
  53. #define LM85_VERSTEP_GENERIC 0x60
  54. #define LM85_VERSTEP_LM85C 0x60
  55. #define LM85_VERSTEP_LM85B 0x62
  56. #define LM85_VERSTEP_ADM1027 0x60
  57. #define LM85_VERSTEP_ADT7463 0x62
  58. #define LM85_VERSTEP_ADT7463C 0x6A
  59. #define LM85_VERSTEP_EMC6D100_A0 0x60
  60. #define LM85_VERSTEP_EMC6D100_A1 0x61
  61. #define LM85_VERSTEP_EMC6D102 0x65
  62. #define LM85_REG_CONFIG 0x40
  63. #define LM85_REG_ALARM1 0x41
  64. #define LM85_REG_ALARM2 0x42
  65. #define LM85_REG_VID 0x43
  66. /* Automated FAN control */
  67. #define LM85_REG_AFAN_CONFIG(nr) (0x5c + (nr))
  68. #define LM85_REG_AFAN_RANGE(nr) (0x5f + (nr))
  69. #define LM85_REG_AFAN_SPIKE1 0x62
  70. #define LM85_REG_AFAN_MINPWM(nr) (0x64 + (nr))
  71. #define LM85_REG_AFAN_LIMIT(nr) (0x67 + (nr))
  72. #define LM85_REG_AFAN_CRITICAL(nr) (0x6a + (nr))
  73. #define LM85_REG_AFAN_HYST1 0x6d
  74. #define LM85_REG_AFAN_HYST2 0x6e
  75. #define ADM1027_REG_EXTEND_ADC1 0x76
  76. #define ADM1027_REG_EXTEND_ADC2 0x77
  77. #define EMC6D100_REG_ALARM3 0x7d
  78. /* IN5, IN6 and IN7 */
  79. #define EMC6D100_REG_IN(nr) (0x70 + ((nr) - 5))
  80. #define EMC6D100_REG_IN_MIN(nr) (0x73 + ((nr) - 5) * 2)
  81. #define EMC6D100_REG_IN_MAX(nr) (0x74 + ((nr) - 5) * 2)
  82. #define EMC6D102_REG_EXTEND_ADC1 0x85
  83. #define EMC6D102_REG_EXTEND_ADC2 0x86
  84. #define EMC6D102_REG_EXTEND_ADC3 0x87
  85. #define EMC6D102_REG_EXTEND_ADC4 0x88
  86. /* Conversions. Rounding and limit checking is only done on the TO_REG
  87. variants. Note that you should be a bit careful with which arguments
  88. these macros are called: arguments may be evaluated more than once.
  89. */
  90. /* IN are scaled acording to built-in resistors */
  91. static const int lm85_scaling[] = { /* .001 Volts */
  92. 2500, 2250, 3300, 5000, 12000,
  93. 3300, 1500, 1800 /*EMC6D100*/
  94. };
  95. #define SCALE(val, from, to) (((val) * (to) + ((from) / 2)) / (from))
  96. #define INS_TO_REG(n, val) \
  97. SENSORS_LIMIT(SCALE(val, lm85_scaling[n], 192), 0, 255)
  98. #define INSEXT_FROM_REG(n, val, ext) \
  99. SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
  100. #define INS_FROM_REG(n, val) SCALE((val), 192, lm85_scaling[n])
  101. /* FAN speed is measured using 90kHz clock */
  102. static inline u16 FAN_TO_REG(unsigned long val)
  103. {
  104. if (!val)
  105. return 0xffff;
  106. return SENSORS_LIMIT(5400000 / val, 1, 0xfffe);
  107. }
  108. #define FAN_FROM_REG(val) ((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
  109. 5400000 / (val))
  110. /* Temperature is reported in .001 degC increments */
  111. #define TEMP_TO_REG(val) \
  112. SENSORS_LIMIT(SCALE(val, 1000, 1), -127, 127)
  113. #define TEMPEXT_FROM_REG(val, ext) \
  114. SCALE(((val) << 4) + (ext), 16, 1000)
  115. #define TEMP_FROM_REG(val) ((val) * 1000)
  116. #define PWM_TO_REG(val) SENSORS_LIMIT(val, 0, 255)
  117. #define PWM_FROM_REG(val) (val)
  118. /* ZONEs have the following parameters:
  119. * Limit (low) temp, 1. degC
  120. * Hysteresis (below limit), 1. degC (0-15)
  121. * Range of speed control, .1 degC (2-80)
  122. * Critical (high) temp, 1. degC
  123. *
  124. * FAN PWMs have the following parameters:
  125. * Reference Zone, 1, 2, 3, etc.
  126. * Spinup time, .05 sec
  127. * PWM value at limit/low temp, 1 count
  128. * PWM Frequency, 1. Hz
  129. * PWM is Min or OFF below limit, flag
  130. * Invert PWM output, flag
  131. *
  132. * Some chips filter the temp, others the fan.
  133. * Filter constant (or disabled) .1 seconds
  134. */
  135. /* These are the zone temperature range encodings in .001 degree C */
  136. static const int lm85_range_map[] = {
  137. 2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
  138. 13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
  139. };
  140. static int RANGE_TO_REG(int range)
  141. {
  142. int i;
  143. if (range >= lm85_range_map[15])
  144. return 15;
  145. /* Find the closest match */
  146. for (i = 14; i >= 0; --i) {
  147. if (range >= lm85_range_map[i]) {
  148. if ((lm85_range_map[i + 1] - range) <
  149. (range - lm85_range_map[i]))
  150. return i + 1;
  151. return i;
  152. }
  153. }
  154. return 0;
  155. }
  156. #define RANGE_FROM_REG(val) lm85_range_map[(val) & 0x0f]
  157. /* These are the PWM frequency encodings */
  158. static const int lm85_freq_map[] = { /* .1 Hz */
  159. 100, 150, 230, 300, 380, 470, 620, 940
  160. };
  161. static int FREQ_TO_REG(int freq)
  162. {
  163. int i;
  164. if (freq >= lm85_freq_map[7])
  165. return 7;
  166. for (i = 0; i < 7; ++i)
  167. if (freq <= lm85_freq_map[i])
  168. break;
  169. return i;
  170. }
  171. #define FREQ_FROM_REG(val) lm85_freq_map[(val) & 0x07]
  172. /* Since we can't use strings, I'm abusing these numbers
  173. * to stand in for the following meanings:
  174. * 1 -- PWM responds to Zone 1
  175. * 2 -- PWM responds to Zone 2
  176. * 3 -- PWM responds to Zone 3
  177. * 23 -- PWM responds to the higher temp of Zone 2 or 3
  178. * 123 -- PWM responds to highest of Zone 1, 2, or 3
  179. * 0 -- PWM is always at 0% (ie, off)
  180. * -1 -- PWM is always at 100%
  181. * -2 -- PWM responds to manual control
  182. */
  183. static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
  184. #define ZONE_FROM_REG(val) lm85_zone_map[(val) >> 5]
  185. static int ZONE_TO_REG(int zone)
  186. {
  187. int i;
  188. for (i = 0; i <= 7; ++i)
  189. if (zone == lm85_zone_map[i])
  190. break;
  191. if (i > 7) /* Not found. */
  192. i = 3; /* Always 100% */
  193. return i << 5;
  194. }
  195. #define HYST_TO_REG(val) SENSORS_LIMIT(((val) + 500) / 1000, 0, 15)
  196. #define HYST_FROM_REG(val) ((val) * 1000)
  197. /* Chip sampling rates
  198. *
  199. * Some sensors are not updated more frequently than once per second
  200. * so it doesn't make sense to read them more often than that.
  201. * We cache the results and return the saved data if the driver
  202. * is called again before a second has elapsed.
  203. *
  204. * Also, there is significant configuration data for this chip
  205. * given the automatic PWM fan control that is possible. There
  206. * are about 47 bytes of config data to only 22 bytes of actual
  207. * readings. So, we keep the config data up to date in the cache
  208. * when it is written and only sample it once every 1 *minute*
  209. */
  210. #define LM85_DATA_INTERVAL (HZ + HZ / 2)
  211. #define LM85_CONFIG_INTERVAL (1 * 60 * HZ)
  212. /* LM85 can automatically adjust fan speeds based on temperature
  213. * This structure encapsulates an entire Zone config. There are
  214. * three zones (one for each temperature input) on the lm85
  215. */
  216. struct lm85_zone {
  217. s8 limit; /* Low temp limit */
  218. u8 hyst; /* Low limit hysteresis. (0-15) */
  219. u8 range; /* Temp range, encoded */
  220. s8 critical; /* "All fans ON" temp limit */
  221. u8 off_desired; /* Actual "off" temperature specified. Preserved
  222. * to prevent "drift" as other autofan control
  223. * values change.
  224. */
  225. u8 max_desired; /* Actual "max" temperature specified. Preserved
  226. * to prevent "drift" as other autofan control
  227. * values change.
  228. */
  229. };
  230. struct lm85_autofan {
  231. u8 config; /* Register value */
  232. u8 freq; /* PWM frequency, encoded */
  233. u8 min_pwm; /* Minimum PWM value, encoded */
  234. u8 min_off; /* Min PWM or OFF below "limit", flag */
  235. };
  236. /* For each registered chip, we need to keep some data in memory.
  237. The structure is dynamically allocated. */
  238. struct lm85_data {
  239. struct i2c_client client;
  240. struct device *hwmon_dev;
  241. enum chips type;
  242. struct mutex update_lock;
  243. int valid; /* !=0 if following fields are valid */
  244. unsigned long last_reading; /* In jiffies */
  245. unsigned long last_config; /* In jiffies */
  246. u8 in[8]; /* Register value */
  247. u8 in_max[8]; /* Register value */
  248. u8 in_min[8]; /* Register value */
  249. s8 temp[3]; /* Register value */
  250. s8 temp_min[3]; /* Register value */
  251. s8 temp_max[3]; /* Register value */
  252. u16 fan[4]; /* Register value */
  253. u16 fan_min[4]; /* Register value */
  254. u8 pwm[3]; /* Register value */
  255. u8 temp_ext[3]; /* Decoded values */
  256. u8 in_ext[8]; /* Decoded values */
  257. u8 vid; /* Register value */
  258. u8 vrm; /* VRM version */
  259. u32 alarms; /* Register encoding, combined */
  260. struct lm85_autofan autofan[3];
  261. struct lm85_zone zone[3];
  262. };
  263. static int lm85_attach_adapter(struct i2c_adapter *adapter);
  264. static int lm85_detect(struct i2c_adapter *adapter, int address,
  265. int kind);
  266. static int lm85_detach_client(struct i2c_client *client);
  267. static int lm85_read_value(struct i2c_client *client, u8 reg);
  268. static void lm85_write_value(struct i2c_client *client, u8 reg, int value);
  269. static struct lm85_data *lm85_update_device(struct device *dev);
  270. static void lm85_init_client(struct i2c_client *client);
  271. static struct i2c_driver lm85_driver = {
  272. .driver = {
  273. .name = "lm85",
  274. },
  275. .attach_adapter = lm85_attach_adapter,
  276. .detach_client = lm85_detach_client,
  277. };
  278. /* 4 Fans */
  279. static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
  280. char *buf)
  281. {
  282. int nr = to_sensor_dev_attr(attr)->index;
  283. struct lm85_data *data = lm85_update_device(dev);
  284. return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
  285. }
  286. static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
  287. char *buf)
  288. {
  289. int nr = to_sensor_dev_attr(attr)->index;
  290. struct lm85_data *data = lm85_update_device(dev);
  291. return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
  292. }
  293. static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
  294. const char *buf, size_t count)
  295. {
  296. int nr = to_sensor_dev_attr(attr)->index;
  297. struct i2c_client *client = to_i2c_client(dev);
  298. struct lm85_data *data = i2c_get_clientdata(client);
  299. unsigned long val = simple_strtoul(buf, NULL, 10);
  300. mutex_lock(&data->update_lock);
  301. data->fan_min[nr] = FAN_TO_REG(val);
  302. lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
  303. mutex_unlock(&data->update_lock);
  304. return count;
  305. }
  306. #define show_fan_offset(offset) \
  307. static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
  308. show_fan, NULL, offset - 1); \
  309. static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
  310. show_fan_min, set_fan_min, offset - 1)
  311. show_fan_offset(1);
  312. show_fan_offset(2);
  313. show_fan_offset(3);
  314. show_fan_offset(4);
  315. /* vid, vrm, alarms */
  316. static ssize_t show_vid_reg(struct device *dev, struct device_attribute *attr,
  317. char *buf)
  318. {
  319. struct lm85_data *data = lm85_update_device(dev);
  320. int vid;
  321. if (data->type == adt7463 && (data->vid & 0x80)) {
  322. /* 6-pin VID (VRM 10) */
  323. vid = vid_from_reg(data->vid & 0x3f, data->vrm);
  324. } else {
  325. /* 5-pin VID (VRM 9) */
  326. vid = vid_from_reg(data->vid & 0x1f, data->vrm);
  327. }
  328. return sprintf(buf, "%d\n", vid);
  329. }
  330. static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL);
  331. static ssize_t show_vrm_reg(struct device *dev, struct device_attribute *attr,
  332. char *buf)
  333. {
  334. struct lm85_data *data = dev_get_drvdata(dev);
  335. return sprintf(buf, "%ld\n", (long) data->vrm);
  336. }
  337. static ssize_t store_vrm_reg(struct device *dev, struct device_attribute *attr,
  338. const char *buf, size_t count)
  339. {
  340. struct lm85_data *data = dev_get_drvdata(dev);
  341. data->vrm = simple_strtoul(buf, NULL, 10);
  342. return count;
  343. }
  344. static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg);
  345. static ssize_t show_alarms_reg(struct device *dev, struct device_attribute
  346. *attr, char *buf)
  347. {
  348. struct lm85_data *data = lm85_update_device(dev);
  349. return sprintf(buf, "%u\n", data->alarms);
  350. }
  351. static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL);
  352. static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
  353. char *buf)
  354. {
  355. int nr = to_sensor_dev_attr(attr)->index;
  356. struct lm85_data *data = lm85_update_device(dev);
  357. return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
  358. }
  359. static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
  360. static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
  361. static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
  362. static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
  363. static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
  364. static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 18);
  365. static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 16);
  366. static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 17);
  367. static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
  368. static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14);
  369. static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
  370. static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 6);
  371. static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 15);
  372. static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10);
  373. static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11);
  374. static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 12);
  375. static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 13);
  376. /* pwm */
  377. static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
  378. char *buf)
  379. {
  380. int nr = to_sensor_dev_attr(attr)->index;
  381. struct lm85_data *data = lm85_update_device(dev);
  382. return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
  383. }
  384. static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
  385. const char *buf, size_t count)
  386. {
  387. int nr = to_sensor_dev_attr(attr)->index;
  388. struct i2c_client *client = to_i2c_client(dev);
  389. struct lm85_data *data = i2c_get_clientdata(client);
  390. long val = simple_strtol(buf, NULL, 10);
  391. mutex_lock(&data->update_lock);
  392. data->pwm[nr] = PWM_TO_REG(val);
  393. lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
  394. mutex_unlock(&data->update_lock);
  395. return count;
  396. }
  397. static ssize_t show_pwm_enable(struct device *dev, struct device_attribute
  398. *attr, char *buf)
  399. {
  400. int nr = to_sensor_dev_attr(attr)->index;
  401. struct lm85_data *data = lm85_update_device(dev);
  402. int pwm_zone, enable;
  403. pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
  404. switch (pwm_zone) {
  405. case -1: /* PWM is always at 100% */
  406. enable = 0;
  407. break;
  408. case 0: /* PWM is always at 0% */
  409. case -2: /* PWM responds to manual control */
  410. enable = 1;
  411. break;
  412. default: /* PWM in automatic mode */
  413. enable = 2;
  414. }
  415. return sprintf(buf, "%d\n", enable);
  416. }
  417. static ssize_t set_pwm_enable(struct device *dev, struct device_attribute
  418. *attr, const char *buf, size_t count)
  419. {
  420. int nr = to_sensor_dev_attr(attr)->index;
  421. struct i2c_client *client = to_i2c_client(dev);
  422. struct lm85_data *data = i2c_get_clientdata(client);
  423. long val = simple_strtol(buf, NULL, 10);
  424. u8 config;
  425. switch (val) {
  426. case 0:
  427. config = 3;
  428. break;
  429. case 1:
  430. config = 7;
  431. break;
  432. case 2:
  433. /* Here we have to choose arbitrarily one of the 5 possible
  434. configurations; I go for the safest */
  435. config = 6;
  436. break;
  437. default:
  438. return -EINVAL;
  439. }
  440. mutex_lock(&data->update_lock);
  441. data->autofan[nr].config = lm85_read_value(client,
  442. LM85_REG_AFAN_CONFIG(nr));
  443. data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
  444. | (config << 5);
  445. lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
  446. data->autofan[nr].config);
  447. mutex_unlock(&data->update_lock);
  448. return count;
  449. }
  450. #define show_pwm_reg(offset) \
  451. static SENSOR_DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR, \
  452. show_pwm, set_pwm, offset - 1); \
  453. static SENSOR_DEVICE_ATTR(pwm##offset##_enable, S_IRUGO | S_IWUSR, \
  454. show_pwm_enable, set_pwm_enable, offset - 1)
  455. show_pwm_reg(1);
  456. show_pwm_reg(2);
  457. show_pwm_reg(3);
  458. /* Voltages */
  459. static ssize_t show_in(struct device *dev, struct device_attribute *attr,
  460. char *buf)
  461. {
  462. int nr = to_sensor_dev_attr(attr)->index;
  463. struct lm85_data *data = lm85_update_device(dev);
  464. return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
  465. data->in_ext[nr]));
  466. }
  467. static ssize_t show_in_min(struct device *dev, struct device_attribute *attr,
  468. char *buf)
  469. {
  470. int nr = to_sensor_dev_attr(attr)->index;
  471. struct lm85_data *data = lm85_update_device(dev);
  472. return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
  473. }
  474. static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
  475. const char *buf, size_t count)
  476. {
  477. int nr = to_sensor_dev_attr(attr)->index;
  478. struct i2c_client *client = to_i2c_client(dev);
  479. struct lm85_data *data = i2c_get_clientdata(client);
  480. long val = simple_strtol(buf, NULL, 10);
  481. mutex_lock(&data->update_lock);
  482. data->in_min[nr] = INS_TO_REG(nr, val);
  483. lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
  484. mutex_unlock(&data->update_lock);
  485. return count;
  486. }
  487. static ssize_t show_in_max(struct device *dev, struct device_attribute *attr,
  488. char *buf)
  489. {
  490. int nr = to_sensor_dev_attr(attr)->index;
  491. struct lm85_data *data = lm85_update_device(dev);
  492. return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
  493. }
  494. static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
  495. const char *buf, size_t count)
  496. {
  497. int nr = to_sensor_dev_attr(attr)->index;
  498. struct i2c_client *client = to_i2c_client(dev);
  499. struct lm85_data *data = i2c_get_clientdata(client);
  500. long val = simple_strtol(buf, NULL, 10);
  501. mutex_lock(&data->update_lock);
  502. data->in_max[nr] = INS_TO_REG(nr, val);
  503. lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
  504. mutex_unlock(&data->update_lock);
  505. return count;
  506. }
  507. #define show_in_reg(offset) \
  508. static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
  509. show_in, NULL, offset); \
  510. static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
  511. show_in_min, set_in_min, offset); \
  512. static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
  513. show_in_max, set_in_max, offset)
  514. show_in_reg(0);
  515. show_in_reg(1);
  516. show_in_reg(2);
  517. show_in_reg(3);
  518. show_in_reg(4);
  519. show_in_reg(5);
  520. show_in_reg(6);
  521. show_in_reg(7);
  522. /* Temps */
  523. static ssize_t show_temp(struct device *dev, struct device_attribute *attr,
  524. char *buf)
  525. {
  526. int nr = to_sensor_dev_attr(attr)->index;
  527. struct lm85_data *data = lm85_update_device(dev);
  528. return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
  529. data->temp_ext[nr]));
  530. }
  531. static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr,
  532. char *buf)
  533. {
  534. int nr = to_sensor_dev_attr(attr)->index;
  535. struct lm85_data *data = lm85_update_device(dev);
  536. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
  537. }
  538. static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
  539. const char *buf, size_t count)
  540. {
  541. int nr = to_sensor_dev_attr(attr)->index;
  542. struct i2c_client *client = to_i2c_client(dev);
  543. struct lm85_data *data = i2c_get_clientdata(client);
  544. long val = simple_strtol(buf, NULL, 10);
  545. mutex_lock(&data->update_lock);
  546. data->temp_min[nr] = TEMP_TO_REG(val);
  547. lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
  548. mutex_unlock(&data->update_lock);
  549. return count;
  550. }
  551. static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr,
  552. char *buf)
  553. {
  554. int nr = to_sensor_dev_attr(attr)->index;
  555. struct lm85_data *data = lm85_update_device(dev);
  556. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
  557. }
  558. static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
  559. const char *buf, size_t count)
  560. {
  561. int nr = to_sensor_dev_attr(attr)->index;
  562. struct i2c_client *client = to_i2c_client(dev);
  563. struct lm85_data *data = i2c_get_clientdata(client);
  564. long val = simple_strtol(buf, NULL, 10);
  565. mutex_lock(&data->update_lock);
  566. data->temp_max[nr] = TEMP_TO_REG(val);
  567. lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
  568. mutex_unlock(&data->update_lock);
  569. return count;
  570. }
  571. #define show_temp_reg(offset) \
  572. static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \
  573. show_temp, NULL, offset - 1); \
  574. static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR, \
  575. show_temp_min, set_temp_min, offset - 1); \
  576. static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \
  577. show_temp_max, set_temp_max, offset - 1);
  578. show_temp_reg(1);
  579. show_temp_reg(2);
  580. show_temp_reg(3);
  581. /* Automatic PWM control */
  582. static ssize_t show_pwm_auto_channels(struct device *dev,
  583. struct device_attribute *attr, char *buf)
  584. {
  585. int nr = to_sensor_dev_attr(attr)->index;
  586. struct lm85_data *data = lm85_update_device(dev);
  587. return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
  588. }
  589. static ssize_t set_pwm_auto_channels(struct device *dev,
  590. struct device_attribute *attr, const char *buf, size_t count)
  591. {
  592. int nr = to_sensor_dev_attr(attr)->index;
  593. struct i2c_client *client = to_i2c_client(dev);
  594. struct lm85_data *data = i2c_get_clientdata(client);
  595. long val = simple_strtol(buf, NULL, 10);
  596. mutex_lock(&data->update_lock);
  597. data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
  598. | ZONE_TO_REG(val);
  599. lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
  600. data->autofan[nr].config);
  601. mutex_unlock(&data->update_lock);
  602. return count;
  603. }
  604. static ssize_t show_pwm_auto_pwm_min(struct device *dev,
  605. struct device_attribute *attr, char *buf)
  606. {
  607. int nr = to_sensor_dev_attr(attr)->index;
  608. struct lm85_data *data = lm85_update_device(dev);
  609. return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
  610. }
  611. static ssize_t set_pwm_auto_pwm_min(struct device *dev,
  612. struct device_attribute *attr, const char *buf, size_t count)
  613. {
  614. int nr = to_sensor_dev_attr(attr)->index;
  615. struct i2c_client *client = to_i2c_client(dev);
  616. struct lm85_data *data = i2c_get_clientdata(client);
  617. long val = simple_strtol(buf, NULL, 10);
  618. mutex_lock(&data->update_lock);
  619. data->autofan[nr].min_pwm = PWM_TO_REG(val);
  620. lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
  621. data->autofan[nr].min_pwm);
  622. mutex_unlock(&data->update_lock);
  623. return count;
  624. }
  625. static ssize_t show_pwm_auto_pwm_minctl(struct device *dev,
  626. struct device_attribute *attr, char *buf)
  627. {
  628. int nr = to_sensor_dev_attr(attr)->index;
  629. struct lm85_data *data = lm85_update_device(dev);
  630. return sprintf(buf, "%d\n", data->autofan[nr].min_off);
  631. }
  632. static ssize_t set_pwm_auto_pwm_minctl(struct device *dev,
  633. struct device_attribute *attr, const char *buf, size_t count)
  634. {
  635. int nr = to_sensor_dev_attr(attr)->index;
  636. struct i2c_client *client = to_i2c_client(dev);
  637. struct lm85_data *data = i2c_get_clientdata(client);
  638. long val = simple_strtol(buf, NULL, 10);
  639. u8 tmp;
  640. mutex_lock(&data->update_lock);
  641. data->autofan[nr].min_off = val;
  642. tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
  643. tmp &= ~(0x20 << nr);
  644. if (data->autofan[nr].min_off)
  645. tmp |= 0x20 << nr;
  646. lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
  647. mutex_unlock(&data->update_lock);
  648. return count;
  649. }
  650. static ssize_t show_pwm_auto_pwm_freq(struct device *dev,
  651. struct device_attribute *attr, char *buf)
  652. {
  653. int nr = to_sensor_dev_attr(attr)->index;
  654. struct lm85_data *data = lm85_update_device(dev);
  655. return sprintf(buf, "%d\n", FREQ_FROM_REG(data->autofan[nr].freq));
  656. }
  657. static ssize_t set_pwm_auto_pwm_freq(struct device *dev,
  658. struct device_attribute *attr, const char *buf, size_t count)
  659. {
  660. int nr = to_sensor_dev_attr(attr)->index;
  661. struct i2c_client *client = to_i2c_client(dev);
  662. struct lm85_data *data = i2c_get_clientdata(client);
  663. long val = simple_strtol(buf, NULL, 10);
  664. mutex_lock(&data->update_lock);
  665. data->autofan[nr].freq = FREQ_TO_REG(val);
  666. lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
  667. (data->zone[nr].range << 4)
  668. | data->autofan[nr].freq);
  669. mutex_unlock(&data->update_lock);
  670. return count;
  671. }
  672. #define pwm_auto(offset) \
  673. static SENSOR_DEVICE_ATTR(pwm##offset##_auto_channels, \
  674. S_IRUGO | S_IWUSR, show_pwm_auto_channels, \
  675. set_pwm_auto_channels, offset - 1); \
  676. static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_min, \
  677. S_IRUGO | S_IWUSR, show_pwm_auto_pwm_min, \
  678. set_pwm_auto_pwm_min, offset - 1); \
  679. static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_minctl, \
  680. S_IRUGO | S_IWUSR, show_pwm_auto_pwm_minctl, \
  681. set_pwm_auto_pwm_minctl, offset - 1); \
  682. static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_freq, \
  683. S_IRUGO | S_IWUSR, show_pwm_auto_pwm_freq, \
  684. set_pwm_auto_pwm_freq, offset - 1);
  685. pwm_auto(1);
  686. pwm_auto(2);
  687. pwm_auto(3);
  688. /* Temperature settings for automatic PWM control */
  689. static ssize_t show_temp_auto_temp_off(struct device *dev,
  690. struct device_attribute *attr, char *buf)
  691. {
  692. int nr = to_sensor_dev_attr(attr)->index;
  693. struct lm85_data *data = lm85_update_device(dev);
  694. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
  695. HYST_FROM_REG(data->zone[nr].hyst));
  696. }
  697. static ssize_t set_temp_auto_temp_off(struct device *dev,
  698. struct device_attribute *attr, const char *buf, size_t count)
  699. {
  700. int nr = to_sensor_dev_attr(attr)->index;
  701. struct i2c_client *client = to_i2c_client(dev);
  702. struct lm85_data *data = i2c_get_clientdata(client);
  703. int min;
  704. long val = simple_strtol(buf, NULL, 10);
  705. mutex_lock(&data->update_lock);
  706. min = TEMP_FROM_REG(data->zone[nr].limit);
  707. data->zone[nr].off_desired = TEMP_TO_REG(val);
  708. data->zone[nr].hyst = HYST_TO_REG(min - val);
  709. if (nr == 0 || nr == 1) {
  710. lm85_write_value(client, LM85_REG_AFAN_HYST1,
  711. (data->zone[0].hyst << 4)
  712. | data->zone[1].hyst);
  713. } else {
  714. lm85_write_value(client, LM85_REG_AFAN_HYST2,
  715. (data->zone[2].hyst << 4));
  716. }
  717. mutex_unlock(&data->update_lock);
  718. return count;
  719. }
  720. static ssize_t show_temp_auto_temp_min(struct device *dev,
  721. struct device_attribute *attr, char *buf)
  722. {
  723. int nr = to_sensor_dev_attr(attr)->index;
  724. struct lm85_data *data = lm85_update_device(dev);
  725. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
  726. }
  727. static ssize_t set_temp_auto_temp_min(struct device *dev,
  728. struct device_attribute *attr, const char *buf, size_t count)
  729. {
  730. int nr = to_sensor_dev_attr(attr)->index;
  731. struct i2c_client *client = to_i2c_client(dev);
  732. struct lm85_data *data = i2c_get_clientdata(client);
  733. long val = simple_strtol(buf, NULL, 10);
  734. mutex_lock(&data->update_lock);
  735. data->zone[nr].limit = TEMP_TO_REG(val);
  736. lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
  737. data->zone[nr].limit);
  738. /* Update temp_auto_max and temp_auto_range */
  739. data->zone[nr].range = RANGE_TO_REG(
  740. TEMP_FROM_REG(data->zone[nr].max_desired) -
  741. TEMP_FROM_REG(data->zone[nr].limit));
  742. lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
  743. ((data->zone[nr].range & 0x0f) << 4)
  744. | (data->autofan[nr].freq & 0x07));
  745. /* Update temp_auto_hyst and temp_auto_off */
  746. data->zone[nr].hyst = HYST_TO_REG(TEMP_FROM_REG(
  747. data->zone[nr].limit) - TEMP_FROM_REG(
  748. data->zone[nr].off_desired));
  749. if (nr == 0 || nr == 1) {
  750. lm85_write_value(client, LM85_REG_AFAN_HYST1,
  751. (data->zone[0].hyst << 4)
  752. | data->zone[1].hyst);
  753. } else {
  754. lm85_write_value(client, LM85_REG_AFAN_HYST2,
  755. (data->zone[2].hyst << 4));
  756. }
  757. mutex_unlock(&data->update_lock);
  758. return count;
  759. }
  760. static ssize_t show_temp_auto_temp_max(struct device *dev,
  761. struct device_attribute *attr, char *buf)
  762. {
  763. int nr = to_sensor_dev_attr(attr)->index;
  764. struct lm85_data *data = lm85_update_device(dev);
  765. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
  766. RANGE_FROM_REG(data->zone[nr].range));
  767. }
  768. static ssize_t set_temp_auto_temp_max(struct device *dev,
  769. struct device_attribute *attr, const char *buf, size_t count)
  770. {
  771. int nr = to_sensor_dev_attr(attr)->index;
  772. struct i2c_client *client = to_i2c_client(dev);
  773. struct lm85_data *data = i2c_get_clientdata(client);
  774. int min;
  775. long val = simple_strtol(buf, NULL, 10);
  776. mutex_lock(&data->update_lock);
  777. min = TEMP_FROM_REG(data->zone[nr].limit);
  778. data->zone[nr].max_desired = TEMP_TO_REG(val);
  779. data->zone[nr].range = RANGE_TO_REG(
  780. val - min);
  781. lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
  782. ((data->zone[nr].range & 0x0f) << 4)
  783. | (data->autofan[nr].freq & 0x07));
  784. mutex_unlock(&data->update_lock);
  785. return count;
  786. }
  787. static ssize_t show_temp_auto_temp_crit(struct device *dev,
  788. struct device_attribute *attr, char *buf)
  789. {
  790. int nr = to_sensor_dev_attr(attr)->index;
  791. struct lm85_data *data = lm85_update_device(dev);
  792. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
  793. }
  794. static ssize_t set_temp_auto_temp_crit(struct device *dev,
  795. struct device_attribute *attr, const char *buf, size_t count)
  796. {
  797. int nr = to_sensor_dev_attr(attr)->index;
  798. struct i2c_client *client = to_i2c_client(dev);
  799. struct lm85_data *data = i2c_get_clientdata(client);
  800. long val = simple_strtol(buf, NULL, 10);
  801. mutex_lock(&data->update_lock);
  802. data->zone[nr].critical = TEMP_TO_REG(val);
  803. lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
  804. data->zone[nr].critical);
  805. mutex_unlock(&data->update_lock);
  806. return count;
  807. }
  808. #define temp_auto(offset) \
  809. static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_off, \
  810. S_IRUGO | S_IWUSR, show_temp_auto_temp_off, \
  811. set_temp_auto_temp_off, offset - 1); \
  812. static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_min, \
  813. S_IRUGO | S_IWUSR, show_temp_auto_temp_min, \
  814. set_temp_auto_temp_min, offset - 1); \
  815. static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_max, \
  816. S_IRUGO | S_IWUSR, show_temp_auto_temp_max, \
  817. set_temp_auto_temp_max, offset - 1); \
  818. static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_crit, \
  819. S_IRUGO | S_IWUSR, show_temp_auto_temp_crit, \
  820. set_temp_auto_temp_crit, offset - 1);
  821. temp_auto(1);
  822. temp_auto(2);
  823. temp_auto(3);
  824. static int lm85_attach_adapter(struct i2c_adapter *adapter)
  825. {
  826. if (!(adapter->class & I2C_CLASS_HWMON))
  827. return 0;
  828. return i2c_probe(adapter, &addr_data, lm85_detect);
  829. }
  830. static struct attribute *lm85_attributes[] = {
  831. &sensor_dev_attr_fan1_input.dev_attr.attr,
  832. &sensor_dev_attr_fan2_input.dev_attr.attr,
  833. &sensor_dev_attr_fan3_input.dev_attr.attr,
  834. &sensor_dev_attr_fan4_input.dev_attr.attr,
  835. &sensor_dev_attr_fan1_min.dev_attr.attr,
  836. &sensor_dev_attr_fan2_min.dev_attr.attr,
  837. &sensor_dev_attr_fan3_min.dev_attr.attr,
  838. &sensor_dev_attr_fan4_min.dev_attr.attr,
  839. &sensor_dev_attr_fan1_alarm.dev_attr.attr,
  840. &sensor_dev_attr_fan2_alarm.dev_attr.attr,
  841. &sensor_dev_attr_fan3_alarm.dev_attr.attr,
  842. &sensor_dev_attr_fan4_alarm.dev_attr.attr,
  843. &sensor_dev_attr_pwm1.dev_attr.attr,
  844. &sensor_dev_attr_pwm2.dev_attr.attr,
  845. &sensor_dev_attr_pwm3.dev_attr.attr,
  846. &sensor_dev_attr_pwm1_enable.dev_attr.attr,
  847. &sensor_dev_attr_pwm2_enable.dev_attr.attr,
  848. &sensor_dev_attr_pwm3_enable.dev_attr.attr,
  849. &sensor_dev_attr_in0_input.dev_attr.attr,
  850. &sensor_dev_attr_in1_input.dev_attr.attr,
  851. &sensor_dev_attr_in2_input.dev_attr.attr,
  852. &sensor_dev_attr_in3_input.dev_attr.attr,
  853. &sensor_dev_attr_in0_min.dev_attr.attr,
  854. &sensor_dev_attr_in1_min.dev_attr.attr,
  855. &sensor_dev_attr_in2_min.dev_attr.attr,
  856. &sensor_dev_attr_in3_min.dev_attr.attr,
  857. &sensor_dev_attr_in0_max.dev_attr.attr,
  858. &sensor_dev_attr_in1_max.dev_attr.attr,
  859. &sensor_dev_attr_in2_max.dev_attr.attr,
  860. &sensor_dev_attr_in3_max.dev_attr.attr,
  861. &sensor_dev_attr_in0_alarm.dev_attr.attr,
  862. &sensor_dev_attr_in1_alarm.dev_attr.attr,
  863. &sensor_dev_attr_in2_alarm.dev_attr.attr,
  864. &sensor_dev_attr_in3_alarm.dev_attr.attr,
  865. &sensor_dev_attr_temp1_input.dev_attr.attr,
  866. &sensor_dev_attr_temp2_input.dev_attr.attr,
  867. &sensor_dev_attr_temp3_input.dev_attr.attr,
  868. &sensor_dev_attr_temp1_min.dev_attr.attr,
  869. &sensor_dev_attr_temp2_min.dev_attr.attr,
  870. &sensor_dev_attr_temp3_min.dev_attr.attr,
  871. &sensor_dev_attr_temp1_max.dev_attr.attr,
  872. &sensor_dev_attr_temp2_max.dev_attr.attr,
  873. &sensor_dev_attr_temp3_max.dev_attr.attr,
  874. &sensor_dev_attr_temp1_alarm.dev_attr.attr,
  875. &sensor_dev_attr_temp2_alarm.dev_attr.attr,
  876. &sensor_dev_attr_temp3_alarm.dev_attr.attr,
  877. &sensor_dev_attr_temp1_fault.dev_attr.attr,
  878. &sensor_dev_attr_temp3_fault.dev_attr.attr,
  879. &sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
  880. &sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
  881. &sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
  882. &sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
  883. &sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
  884. &sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
  885. &sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
  886. &sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
  887. &sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
  888. &sensor_dev_attr_pwm1_auto_pwm_freq.dev_attr.attr,
  889. &sensor_dev_attr_pwm2_auto_pwm_freq.dev_attr.attr,
  890. &sensor_dev_attr_pwm3_auto_pwm_freq.dev_attr.attr,
  891. &sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
  892. &sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
  893. &sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
  894. &sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
  895. &sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
  896. &sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
  897. &sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
  898. &sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
  899. &sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
  900. &sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
  901. &sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
  902. &sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
  903. &dev_attr_vrm.attr,
  904. &dev_attr_cpu0_vid.attr,
  905. &dev_attr_alarms.attr,
  906. NULL
  907. };
  908. static const struct attribute_group lm85_group = {
  909. .attrs = lm85_attributes,
  910. };
  911. static struct attribute *lm85_attributes_in4[] = {
  912. &sensor_dev_attr_in4_input.dev_attr.attr,
  913. &sensor_dev_attr_in4_min.dev_attr.attr,
  914. &sensor_dev_attr_in4_max.dev_attr.attr,
  915. &sensor_dev_attr_in4_alarm.dev_attr.attr,
  916. NULL
  917. };
  918. static const struct attribute_group lm85_group_in4 = {
  919. .attrs = lm85_attributes_in4,
  920. };
  921. static struct attribute *lm85_attributes_in567[] = {
  922. &sensor_dev_attr_in5_input.dev_attr.attr,
  923. &sensor_dev_attr_in6_input.dev_attr.attr,
  924. &sensor_dev_attr_in7_input.dev_attr.attr,
  925. &sensor_dev_attr_in5_min.dev_attr.attr,
  926. &sensor_dev_attr_in6_min.dev_attr.attr,
  927. &sensor_dev_attr_in7_min.dev_attr.attr,
  928. &sensor_dev_attr_in5_max.dev_attr.attr,
  929. &sensor_dev_attr_in6_max.dev_attr.attr,
  930. &sensor_dev_attr_in7_max.dev_attr.attr,
  931. &sensor_dev_attr_in5_alarm.dev_attr.attr,
  932. &sensor_dev_attr_in6_alarm.dev_attr.attr,
  933. &sensor_dev_attr_in7_alarm.dev_attr.attr,
  934. NULL
  935. };
  936. static const struct attribute_group lm85_group_in567 = {
  937. .attrs = lm85_attributes_in567,
  938. };
  939. static int lm85_detect(struct i2c_adapter *adapter, int address,
  940. int kind)
  941. {
  942. int company, verstep;
  943. struct i2c_client *client;
  944. struct lm85_data *data;
  945. int err = 0;
  946. const char *type_name;
  947. if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
  948. /* We need to be able to do byte I/O */
  949. goto ERROR0;
  950. }
  951. /* OK. For now, we presume we have a valid client. We now create the
  952. client structure, even though we cannot fill it completely yet.
  953. But it allows us to access lm85_{read,write}_value. */
  954. if (!(data = kzalloc(sizeof(struct lm85_data), GFP_KERNEL))) {
  955. err = -ENOMEM;
  956. goto ERROR0;
  957. }
  958. client = &data->client;
  959. i2c_set_clientdata(client, data);
  960. client->addr = address;
  961. client->adapter = adapter;
  962. client->driver = &lm85_driver;
  963. /* Now, we do the remaining detection. */
  964. company = lm85_read_value(client, LM85_REG_COMPANY);
  965. verstep = lm85_read_value(client, LM85_REG_VERSTEP);
  966. dev_dbg(&adapter->dev, "Detecting device at %d,0x%02x with"
  967. " COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
  968. i2c_adapter_id(client->adapter), client->addr,
  969. company, verstep);
  970. /* If auto-detecting, Determine the chip type. */
  971. if (kind <= 0) {
  972. dev_dbg(&adapter->dev, "Autodetecting device at %d,0x%02x ...\n",
  973. i2c_adapter_id(adapter), address);
  974. if (company == LM85_COMPANY_NATIONAL
  975. && verstep == LM85_VERSTEP_LM85C) {
  976. kind = lm85c;
  977. } else if (company == LM85_COMPANY_NATIONAL
  978. && verstep == LM85_VERSTEP_LM85B) {
  979. kind = lm85b;
  980. } else if (company == LM85_COMPANY_NATIONAL
  981. && (verstep & LM85_VERSTEP_VMASK) == LM85_VERSTEP_GENERIC) {
  982. dev_err(&adapter->dev, "Unrecognized version/stepping 0x%02x"
  983. " Defaulting to LM85.\n", verstep);
  984. kind = any_chip;
  985. } else if (company == LM85_COMPANY_ANALOG_DEV
  986. && verstep == LM85_VERSTEP_ADM1027) {
  987. kind = adm1027;
  988. } else if (company == LM85_COMPANY_ANALOG_DEV
  989. && (verstep == LM85_VERSTEP_ADT7463
  990. || verstep == LM85_VERSTEP_ADT7463C)) {
  991. kind = adt7463;
  992. } else if (company == LM85_COMPANY_ANALOG_DEV
  993. && (verstep & LM85_VERSTEP_VMASK) == LM85_VERSTEP_GENERIC) {
  994. dev_err(&adapter->dev, "Unrecognized version/stepping 0x%02x"
  995. " Defaulting to Generic LM85.\n", verstep);
  996. kind = any_chip;
  997. } else if (company == LM85_COMPANY_SMSC
  998. && (verstep == LM85_VERSTEP_EMC6D100_A0
  999. || verstep == LM85_VERSTEP_EMC6D100_A1)) {
  1000. /* Unfortunately, we can't tell a '100 from a '101
  1001. * from the registers. Since a '101 is a '100
  1002. * in a package with fewer pins and therefore no
  1003. * 3.3V, 1.5V or 1.8V inputs, perhaps if those
  1004. * inputs read 0, then it's a '101.
  1005. */
  1006. kind = emc6d100;
  1007. } else if (company == LM85_COMPANY_SMSC
  1008. && verstep == LM85_VERSTEP_EMC6D102) {
  1009. kind = emc6d102;
  1010. } else if (company == LM85_COMPANY_SMSC
  1011. && (verstep & LM85_VERSTEP_VMASK) == LM85_VERSTEP_GENERIC) {
  1012. dev_err(&adapter->dev, "lm85: Detected SMSC chip\n");
  1013. dev_err(&adapter->dev, "lm85: Unrecognized version/stepping 0x%02x"
  1014. " Defaulting to Generic LM85.\n", verstep);
  1015. kind = any_chip;
  1016. } else if (kind == any_chip
  1017. && (verstep & LM85_VERSTEP_VMASK) == LM85_VERSTEP_GENERIC) {
  1018. dev_err(&adapter->dev, "Generic LM85 Version 6 detected\n");
  1019. /* Leave kind as "any_chip" */
  1020. } else {
  1021. dev_dbg(&adapter->dev, "Autodetection failed\n");
  1022. /* Not an LM85... */
  1023. if (kind == any_chip) { /* User used force=x,y */
  1024. dev_err(&adapter->dev, "Generic LM85 Version 6 not"
  1025. " found at %d,0x%02x. Try force_lm85c.\n",
  1026. i2c_adapter_id(adapter), address);
  1027. }
  1028. err = 0;
  1029. goto ERROR1;
  1030. }
  1031. }
  1032. /* Fill in the chip specific driver values */
  1033. switch (kind) {
  1034. case lm85b:
  1035. type_name = "lm85b";
  1036. break;
  1037. case lm85c:
  1038. type_name = "lm85c";
  1039. break;
  1040. case adm1027:
  1041. type_name = "adm1027";
  1042. break;
  1043. case adt7463:
  1044. type_name = "adt7463";
  1045. break;
  1046. case emc6d100:
  1047. type_name = "emc6d100";
  1048. break;
  1049. case emc6d102:
  1050. type_name = "emc6d102";
  1051. break;
  1052. default:
  1053. type_name = "lm85";
  1054. }
  1055. strlcpy(client->name, type_name, I2C_NAME_SIZE);
  1056. /* Fill in the remaining client fields */
  1057. data->type = kind;
  1058. mutex_init(&data->update_lock);
  1059. /* Tell the I2C layer a new client has arrived */
  1060. err = i2c_attach_client(client);
  1061. if (err)
  1062. goto ERROR1;
  1063. /* Set the VRM version */
  1064. data->vrm = vid_which_vrm();
  1065. /* Initialize the LM85 chip */
  1066. lm85_init_client(client);
  1067. /* Register sysfs hooks */
  1068. err = sysfs_create_group(&client->dev.kobj, &lm85_group);
  1069. if (err)
  1070. goto ERROR2;
  1071. /* The ADT7463 has an optional VRM 10 mode where pin 21 is used
  1072. as a sixth digital VID input rather than an analog input. */
  1073. data->vid = lm85_read_value(client, LM85_REG_VID);
  1074. if (!(kind == adt7463 && (data->vid & 0x80)))
  1075. if ((err = sysfs_create_group(&client->dev.kobj,
  1076. &lm85_group_in4)))
  1077. goto ERROR3;
  1078. /* The EMC6D100 has 3 additional voltage inputs */
  1079. if (kind == emc6d100)
  1080. if ((err = sysfs_create_group(&client->dev.kobj,
  1081. &lm85_group_in567)))
  1082. goto ERROR3;
  1083. data->hwmon_dev = hwmon_device_register(&client->dev);
  1084. if (IS_ERR(data->hwmon_dev)) {
  1085. err = PTR_ERR(data->hwmon_dev);
  1086. goto ERROR3;
  1087. }
  1088. return 0;
  1089. /* Error out and cleanup code */
  1090. ERROR3:
  1091. sysfs_remove_group(&client->dev.kobj, &lm85_group);
  1092. sysfs_remove_group(&client->dev.kobj, &lm85_group_in4);
  1093. if (kind == emc6d100)
  1094. sysfs_remove_group(&client->dev.kobj, &lm85_group_in567);
  1095. ERROR2:
  1096. i2c_detach_client(client);
  1097. ERROR1:
  1098. kfree(data);
  1099. ERROR0:
  1100. return err;
  1101. }
  1102. static int lm85_detach_client(struct i2c_client *client)
  1103. {
  1104. struct lm85_data *data = i2c_get_clientdata(client);
  1105. hwmon_device_unregister(data->hwmon_dev);
  1106. sysfs_remove_group(&client->dev.kobj, &lm85_group);
  1107. sysfs_remove_group(&client->dev.kobj, &lm85_group_in4);
  1108. if (data->type == emc6d100)
  1109. sysfs_remove_group(&client->dev.kobj, &lm85_group_in567);
  1110. i2c_detach_client(client);
  1111. kfree(data);
  1112. return 0;
  1113. }
  1114. static int lm85_read_value(struct i2c_client *client, u8 reg)
  1115. {
  1116. int res;
  1117. /* What size location is it? */
  1118. switch (reg) {
  1119. case LM85_REG_FAN(0): /* Read WORD data */
  1120. case LM85_REG_FAN(1):
  1121. case LM85_REG_FAN(2):
  1122. case LM85_REG_FAN(3):
  1123. case LM85_REG_FAN_MIN(0):
  1124. case LM85_REG_FAN_MIN(1):
  1125. case LM85_REG_FAN_MIN(2):
  1126. case LM85_REG_FAN_MIN(3):
  1127. case LM85_REG_ALARM1: /* Read both bytes at once */
  1128. res = i2c_smbus_read_byte_data(client, reg) & 0xff;
  1129. res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
  1130. break;
  1131. default: /* Read BYTE data */
  1132. res = i2c_smbus_read_byte_data(client, reg);
  1133. break;
  1134. }
  1135. return res;
  1136. }
  1137. static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
  1138. {
  1139. switch (reg) {
  1140. case LM85_REG_FAN(0): /* Write WORD data */
  1141. case LM85_REG_FAN(1):
  1142. case LM85_REG_FAN(2):
  1143. case LM85_REG_FAN(3):
  1144. case LM85_REG_FAN_MIN(0):
  1145. case LM85_REG_FAN_MIN(1):
  1146. case LM85_REG_FAN_MIN(2):
  1147. case LM85_REG_FAN_MIN(3):
  1148. /* NOTE: ALARM is read only, so not included here */
  1149. i2c_smbus_write_byte_data(client, reg, value & 0xff);
  1150. i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
  1151. break;
  1152. default: /* Write BYTE data */
  1153. i2c_smbus_write_byte_data(client, reg, value);
  1154. break;
  1155. }
  1156. }
  1157. static void lm85_init_client(struct i2c_client *client)
  1158. {
  1159. int value;
  1160. struct lm85_data *data = i2c_get_clientdata(client);
  1161. dev_dbg(&client->dev, "Initializing device\n");
  1162. /* Warn if part was not "READY" */
  1163. value = lm85_read_value(client, LM85_REG_CONFIG);
  1164. dev_dbg(&client->dev, "LM85_REG_CONFIG is: 0x%02x\n", value);
  1165. if (value & 0x02) {
  1166. dev_err(&client->dev, "Client (%d,0x%02x) config is locked.\n",
  1167. i2c_adapter_id(client->adapter), client->addr);
  1168. }
  1169. if (!(value & 0x04)) {
  1170. dev_err(&client->dev, "Client (%d,0x%02x) is not ready.\n",
  1171. i2c_adapter_id(client->adapter), client->addr);
  1172. }
  1173. if (value & 0x10
  1174. && (data->type == adm1027
  1175. || data->type == adt7463)) {
  1176. dev_err(&client->dev, "Client (%d,0x%02x) VxI mode is set. "
  1177. "Please report this to the lm85 maintainer.\n",
  1178. i2c_adapter_id(client->adapter), client->addr);
  1179. }
  1180. /* WE INTENTIONALLY make no changes to the limits,
  1181. * offsets, pwms, fans and zones. If they were
  1182. * configured, we don't want to mess with them.
  1183. * If they weren't, the default is 100% PWM, no
  1184. * control and will suffice until 'sensors -s'
  1185. * can be run by the user.
  1186. */
  1187. /* Start monitoring */
  1188. value = lm85_read_value(client, LM85_REG_CONFIG);
  1189. /* Try to clear LOCK, Set START, save everything else */
  1190. value = (value & ~0x02) | 0x01;
  1191. dev_dbg(&client->dev, "Setting CONFIG to: 0x%02x\n", value);
  1192. lm85_write_value(client, LM85_REG_CONFIG, value);
  1193. }
  1194. static struct lm85_data *lm85_update_device(struct device *dev)
  1195. {
  1196. struct i2c_client *client = to_i2c_client(dev);
  1197. struct lm85_data *data = i2c_get_clientdata(client);
  1198. int i;
  1199. mutex_lock(&data->update_lock);
  1200. if (!data->valid ||
  1201. time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
  1202. /* Things that change quickly */
  1203. dev_dbg(&client->dev, "Reading sensor values\n");
  1204. /* Have to read extended bits first to "freeze" the
  1205. * more significant bits that are read later.
  1206. * There are 2 additional resolution bits per channel and we
  1207. * have room for 4, so we shift them to the left.
  1208. */
  1209. if (data->type == adm1027 || data->type == adt7463) {
  1210. int ext1 = lm85_read_value(client,
  1211. ADM1027_REG_EXTEND_ADC1);
  1212. int ext2 = lm85_read_value(client,
  1213. ADM1027_REG_EXTEND_ADC2);
  1214. int val = (ext1 << 8) + ext2;
  1215. for (i = 0; i <= 4; i++)
  1216. data->in_ext[i] =
  1217. ((val >> (i * 2)) & 0x03) << 2;
  1218. for (i = 0; i <= 2; i++)
  1219. data->temp_ext[i] =
  1220. (val >> ((i + 4) * 2)) & 0x0c;
  1221. }
  1222. data->vid = lm85_read_value(client, LM85_REG_VID);
  1223. for (i = 0; i <= 3; ++i) {
  1224. data->in[i] =
  1225. lm85_read_value(client, LM85_REG_IN(i));
  1226. data->fan[i] =
  1227. lm85_read_value(client, LM85_REG_FAN(i));
  1228. }
  1229. if (!(data->type == adt7463 && (data->vid & 0x80))) {
  1230. data->in[4] = lm85_read_value(client,
  1231. LM85_REG_IN(4));
  1232. }
  1233. for (i = 0; i <= 2; ++i) {
  1234. data->temp[i] =
  1235. lm85_read_value(client, LM85_REG_TEMP(i));
  1236. data->pwm[i] =
  1237. lm85_read_value(client, LM85_REG_PWM(i));
  1238. }
  1239. data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
  1240. if (data->type == emc6d100) {
  1241. /* Three more voltage sensors */
  1242. for (i = 5; i <= 7; ++i) {
  1243. data->in[i] = lm85_read_value(client,
  1244. EMC6D100_REG_IN(i));
  1245. }
  1246. /* More alarm bits */
  1247. data->alarms |= lm85_read_value(client,
  1248. EMC6D100_REG_ALARM3) << 16;
  1249. } else if (data->type == emc6d102) {
  1250. /* Have to read LSB bits after the MSB ones because
  1251. the reading of the MSB bits has frozen the
  1252. LSBs (backward from the ADM1027).
  1253. */
  1254. int ext1 = lm85_read_value(client,
  1255. EMC6D102_REG_EXTEND_ADC1);
  1256. int ext2 = lm85_read_value(client,
  1257. EMC6D102_REG_EXTEND_ADC2);
  1258. int ext3 = lm85_read_value(client,
  1259. EMC6D102_REG_EXTEND_ADC3);
  1260. int ext4 = lm85_read_value(client,
  1261. EMC6D102_REG_EXTEND_ADC4);
  1262. data->in_ext[0] = ext3 & 0x0f;
  1263. data->in_ext[1] = ext4 & 0x0f;
  1264. data->in_ext[2] = ext4 >> 4;
  1265. data->in_ext[3] = ext3 >> 4;
  1266. data->in_ext[4] = ext2 >> 4;
  1267. data->temp_ext[0] = ext1 & 0x0f;
  1268. data->temp_ext[1] = ext2 & 0x0f;
  1269. data->temp_ext[2] = ext1 >> 4;
  1270. }
  1271. data->last_reading = jiffies;
  1272. } /* last_reading */
  1273. if (!data->valid ||
  1274. time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
  1275. /* Things that don't change often */
  1276. dev_dbg(&client->dev, "Reading config values\n");
  1277. for (i = 0; i <= 3; ++i) {
  1278. data->in_min[i] =
  1279. lm85_read_value(client, LM85_REG_IN_MIN(i));
  1280. data->in_max[i] =
  1281. lm85_read_value(client, LM85_REG_IN_MAX(i));
  1282. data->fan_min[i] =
  1283. lm85_read_value(client, LM85_REG_FAN_MIN(i));
  1284. }
  1285. if (!(data->type == adt7463 && (data->vid & 0x80))) {
  1286. data->in_min[4] = lm85_read_value(client,
  1287. LM85_REG_IN_MIN(4));
  1288. data->in_max[4] = lm85_read_value(client,
  1289. LM85_REG_IN_MAX(4));
  1290. }
  1291. if (data->type == emc6d100) {
  1292. for (i = 5; i <= 7; ++i) {
  1293. data->in_min[i] = lm85_read_value(client,
  1294. EMC6D100_REG_IN_MIN(i));
  1295. data->in_max[i] = lm85_read_value(client,
  1296. EMC6D100_REG_IN_MAX(i));
  1297. }
  1298. }
  1299. for (i = 0; i <= 2; ++i) {
  1300. int val;
  1301. data->temp_min[i] =
  1302. lm85_read_value(client, LM85_REG_TEMP_MIN(i));
  1303. data->temp_max[i] =
  1304. lm85_read_value(client, LM85_REG_TEMP_MAX(i));
  1305. data->autofan[i].config =
  1306. lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
  1307. val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
  1308. data->autofan[i].freq = val & 0x07;
  1309. data->zone[i].range = val >> 4;
  1310. data->autofan[i].min_pwm =
  1311. lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
  1312. data->zone[i].limit =
  1313. lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
  1314. data->zone[i].critical =
  1315. lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
  1316. }
  1317. i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
  1318. data->autofan[0].min_off = (i & 0x20) != 0;
  1319. data->autofan[1].min_off = (i & 0x40) != 0;
  1320. data->autofan[2].min_off = (i & 0x80) != 0;
  1321. i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
  1322. data->zone[0].hyst = i >> 4;
  1323. data->zone[1].hyst = i & 0x0f;
  1324. i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
  1325. data->zone[2].hyst = i >> 4;
  1326. data->last_config = jiffies;
  1327. } /* last_config */
  1328. data->valid = 1;
  1329. mutex_unlock(&data->update_lock);
  1330. return data;
  1331. }
  1332. static int __init sm_lm85_init(void)
  1333. {
  1334. return i2c_add_driver(&lm85_driver);
  1335. }
  1336. static void __exit sm_lm85_exit(void)
  1337. {
  1338. i2c_del_driver(&lm85_driver);
  1339. }
  1340. MODULE_LICENSE("GPL");
  1341. MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
  1342. "Margit Schubert-While <margitsw@t-online.de>, "
  1343. "Justin Thiessen <jthiessen@penguincomputing.com>");
  1344. MODULE_DESCRIPTION("LM85-B, LM85-C driver");
  1345. module_init(sm_lm85_init);
  1346. module_exit(sm_lm85_exit);